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Dynamic Optimization refers to any program optimization performed after the 
initial static compile time.  While typically not designed as a replacement for static 
optimization, dynamic optimization is a complementary optimization opportunity that 
leverages a vast amount of information that is not available until runtime. Dynamic 
optimization opens the doors for machine and user-specific optimizations without the 
need for original source code.   

This thesis includes three contributions to the field of dynamic optimization.  The 
first main goal is the survey of several current approaches to dynamic optimization, as 
well as its related topics of dynamic compilation, the postponement of some or all of 
compilation until runtime, and dynamic translation, the translation of an executable from 
one instruction-set architecture (ISA) to another. 

The second major goal of this thesis is the proposal of a new infrastructure for 
dynamic optimization in EPIC architectures.  Several salient features of the EPIC ISA 
prove it to be not only a good candidate for dynamic optimization, but such optimizations 
are essential for scalability that is up to par with superscalar processors.  By extending 
many of the existing approaches to dynamic optimization to allow for offline 
optimization, a new dynamic optimization system is proposed for EPIC architectures.  
For compatibility reasons, this new system is almost entirely a software-based solution, 
yet it utilizes the hardware-based profiling counters planned for future EPIC processors.   

Finally, the third contribution of this thesis is the introduction of several original 
optimization algorithms, which are specifically designed for implementation in a 
dynamic optimization infrastructure.  Dynamic if-conversion is a lightweight runtime 
algorithm that converts control dependencies to data dependencies and vice versa at 
runtime, based on branch misprediction rates, that achieves a speedup of up to 17% for 
the SpecInt95 benchmarks.  Several other algorithms, such as predicate profiling, 
predicate promotion and false predicate path collapse are designed to aid in offline 
instruction rescheduling. 
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Chapter 1 Introduction 

When inspecting the basic run-time performance equation, runtime = instruction 

count * cycles per instruction * cycle time [22], it becomes clear that a reduction in the 

overall runtime of a program can be accomplished by reducing any of the three variables 

– instruction count, cycles per instruction, or cycle time.  The ideas discussed in this 

thesis attempt to reduce the run time of a given program by reducing both its instruction 

count and its cycles per instruction.  This run-time reduction is not the result of new 

compiler techniques, as is typically the case.  A dynamic optimization system is 

presented, which supplements the optimization performed by the static compiler and 

allows for a uniform level of optimization for all executables. 

Dynamic Optimization refers to any optimization of software that is performed 

after the initial compile.  Dynamic optimizations can be performed as the program is 

running or anytime thereafter, such as during the exit procedure of a program of even 

after the program has exited – during the idle time of the computer.  Dynamic 

optimization can be used to leverage a large set of run-time information that is not 

available to the static compiler.  This information can range from run-time constants to 

operator usage patterns.  Such information can provide the foundation for an entirely new 

set of optimization algorithms. 

Dynamic optimization is especially challenging due to the strict performance 

requirements for runtime optimization.  Typically, our industry is not willing to accept a 

new idea unless performance improvements are seen immediately.  Therefore, the 

standard lower-bound for dynamic optimization performance is that it must result in an 
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overall system that performs at least as well as a system that does not employ dynamic 

optimization.  While it is possible that users will permit some program slowdown if it is a 

one-time occurrence, this is only true in the case that performance of the program is 

improved to the extent that the average runtime over time is notably improved.   

1.1 Motivation for Dynamic Optimization 

Several factors may lead to the decision to implement a dynamic optimization 

system.  Often, decisions made by a static compiler are not well suited for the runtime 

behavior of the program.  This may be due a variance in the usage patterns of the client, a 

change or upgrade of hardware (such as the pipeline structure) since the initial compile 

time, or simply an overly aggressive static compilation decision.  The current software 

development cycle does not provide an opportunity for correcting or changing decisions 

made by the static compiler.  Dynamic optimization can provide this flexibility in the 

software development cycle. 

The limitations of a static-only optimization scheme make dynamic optimization 

an appealing option.  Runtime values and branch behavior are known and can be 

leveraged in an effective manner.  Some of the most prominent observations that led up 

to the need for dynamic optimization are described in the next subsections.  

Software Vendor Optimization Levels.  One justification for a dynamic 

optimization system concerns the large amounts of off-the-shelf software packages that 

are purchased every year.  Ideally, all software vendors would employ the highest level of 

optimization during their compilation process.  Yet this is often not the case.  Vendors 

may forgo high optimization levels because of the compile time necessary or because of 



 3 

the difficulty of debugging an executable with a high level of optimization.  The varying 

level of compile technology available in the compilers used by software vendors has 

resulted in an unknown level of optimization in off-the-shelf software products and 

consumers have no way of ensuring that high levels of optimization were employed in the 

products they purchase.  Dynamic optimization allows even the latest advances in 

optimization technology to be introduced to existing software, therefore ensuring optimal 

performance.  For instance, Hewlett-Packard Laboratories has shown that programs 

originally compiled with level-2 optimization (-O2) running under their Dynamo 

dynamic optimization system performs as well as the same program compiled with level-

4 optimization (-04) without dynamic optimization [6]. 

Processor Changes Within an ISA.  Yet another reason for choosing to 

implement dynamic optimization concerns processor upgrades within a processor family 

and cross-generation compatibility between processor families [10], [14], [40].  A 

program compiled for a given instruction-set architecture (ISA) can be run on any 

processor implementing that ISA.  The program is only optimized, however, for 

execution on a processor with an identical execution pipeline, identical function units, 

and identical instruction availability.  Variances in any of these attributes result in a 

program that is not employing the available functionality of the processor.   Even worse, 

incorrect execution is possible for processors that do not check instruction dependencies 

at runtime, such as traditional VLIW processors or RISC processors that have load-use 

delay slots.   

Allowing a user to recompile for his/her own system could easily provide for 

custom optimization, yet in the current software development cycle a recompilation 
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requires original source code.  Clearly, software vendors would not want to release their 

source code due to the proprietary information available within.  Releasing versions of 

the executable for every single processor would furthermore be quite tedious.  Dynamic 

optimization enables custom optimization for any processor within an ISA from a single 

executable, without the need for original source code. 

Changes in Usage Patterns.  Ideally, a program should be optimized based on 

how it is used.  Unfortunately, usage patterns vary from person to person, and even one 

person’s usage may vary over time [40] as they discover new features of the software.  

Since conventional compilation optimizes the program only once and before the user runs 

the program, optimization will either (1) not take into account actual user behavior, or (2) 

base optimization on an average profile.  There is no guarantee that the average profile 

information is at all representative of typical user behavior.  Representative profile 

information is difficult to produce because of the large variance among users, and over 

time for the same user.  This sheds doubt on the effectiveness of a unified set of profile 

data. 

Dynamic optimization allows for software that is optimized for the particular user.  

Code can be optimized to better represent actual runtime behavior for each and every run 

of a program.  It allows for continued optimization as the client’s usage patterns change.  

This level of customization is simply not possible with conventional static optimization 

methods. 

Trend Toward Static Scheduling.  While most of the processors of the past rely 

on dynamic scheduling of instructions, an upcoming generation of processors contains a 

simpler processor core that relies on static scheduling.  Scheduling programs once, and 
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even before the program executes, increases the importance of accurate profile data.  

Inaccurate profiles result in poor scheduling decisions that will affect every run of a 

program [40].  Because static scheduling involves a great deal of speculation, poor 

scheduling choices can greatly harm runtime performance.   At this time, unfortunately, 

there is no widely accepted and used means for correcting poor scheduling choices by the 

static scheduler.  Dynamic optimization, on the other hand, may be effectively used to 

leverage runtime information in order to recognize poor static scheduling choices and 

correct them. 

Power Reduction.  A well-designed dynamic optimization system has great 

potential for venturing into other domains, such as power reduction.  There are many 

opportunities for noting the runtime power consumption and making changes that focus 

on consuming less power.  For example, code transformations can be performed that 

result in less bit flips between sequences of instructions [43].  Reduced bit flips result in 

reduced power consumption.  Rather than having a NOP instruction equate to adding two 

zeros together, it could add the inputs of the previous instruction while storing the result 

in a free register.  As processors become more and more power hungry, dynamic 

optimization could become an essential tool for balancing power and performance in a 

case-by-case basis. 

Complementary Optimization Opportunity.  There is an abundance of 

information unavailable at static compile time that can be leveraged by dynamic 

optimizations.  Optimizations can be based on run-time constants and may span library 

and function calls.  Branch behavior for the particular run is known, so more aggressive 

optimizations can be performed.  But most notable is the fact that dynamic optimization 



 6 

can be completely compatible with the array of static optimizations already implemented 

in conventional compilers. 

1.2 Current Approaches 

There are various approaches to dynamic optimization.  One approach is direct 

optimization of the binary executable using an executable editing mechanism.  This 

method is typically system dependent, yet it results in a dynamic optimization 

infrastructure that does not have any front-end compiler requirements – any existing 

executable can be optimized requiring no special compilers or programming languages.  

Another approach involves performing optimizations on intermediate representations of 

the program, which are generated at the same time as the executable itself.  This approach 

simplifies the optimization procedure and provides for system independency, yet it 

requires all software vendors to produce intermediate representations of their software.  

Intermediate representations, which can typically be reverse engineered to produce 

original source code, are not popular among software vendors.  A variation of that 

approach, however, is the generation of an intermediate representation from the final 

executable, upon which optimizations are performed.  This approach, while not as fast as 

the direct optimization of the original executable, provides for system-independent 

optimizations. 

Dynamically optimized code can either be immediately consumed, it may be 

cached for use during the current or subsequent executions, or it may be permanently 

applied to the executable.  It is evident that any optimizations that are based on the 

propagation of runtime constants cannot be permanently applied to the executable, as 
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they would not be correct in subsequent runs.  Yet there are several optimizations that can 

be permanently applied, such as rescheduling based on a hardware change. 

The time at which optimizations are performed is another design decision.  Most 

of the current research efforts focus on one of the following optimization opportunities:   

• compile time, i.e. static optimization [36] 

• run time, i.e. on-line dynamic optimization [6], [8], [10], [14], [27], [28] 

• idle time, i.e. off-line dynamic optimization [27], [46] 

All dynamic optimizations can be classified as either heavyweight or lightweight 

optimizations.  Heavyweight optimizations make the largest amount of impact on 

program performance.  Not surprisingly, heavyweight optimizations take the largest 

amount of time to perform, and therefore may not always be feasible to perform at 

runtime.  They can, however, be performed offline, during the idle time of the computer.  

Lightweight optimizations, on the other hand, can typically be performed at runtime.  

Again, not surprisingly, most lightweight optimizations do not result in the same level of 

performance improvement as that of heavyweight optimizations. 

The advantages and disadvantages of each of the current approaches for 

performing dynamic optimization will be explored in detail in Chapter 2, the background 

section.   

1.3 Dynamic Compilation vs. Optimization 

Some researchers make a sharp distinction between dynamic optimization, the 

optimization of compiled executables, and dynamic compilation, postponing some or all 
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of static compilation until runtime and therefore invoking compilation on a code format 

that would not otherwise execute [6], [27].   

Dynamic compilation differs from dynamic optimization in their means for 

optimization.  Dynamic compilation is performed on code that was specially designed for 

the task.  Special compilers and programming languages are required in order to generate 

an executable containing holes (portions of uncompiled code) that will be filled in at 

runtime.  No special compiler or programming language is required for dynamic 

optimization, however, because all optimizations are performed on a working executable. 

Projects involving both dynamic optimization and dynamic compilation are 

described in the background section, however all of the original ideas presented in this 

thesis focus exclusively on dynamic optimization. 

1.4 Dynamic Translation vs. Optimization 

Another distinction must be made between dynamic optimization and dynamic 

translation or emulation projects.  Translation or emulation systems allow an executable 

compiled for one ISA to execute on a processor featuring another ISA.  While translation 

systems may optimize the code that is translated, the primary goal is compatibility. 

Several systems falling into the translation/emulation category are discussed in 

the related-work chapter in order to clarify the difference between these systems and the 

dynamic optimization system proposed later in this thesis. 
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1.5 Layout of the Thesis 

The purpose of this thesis is to explore many old and new approaches for 

dynamically optimizing executables.  This includes the analysis of the goals associated 

with dynamic optimization and the means for accomplishing the goals.  Also presented is 

an infrastructure for the dynamic optimization of EPIC computers.  In addition, several 

new dynamic optimization algorithms are presented which leverage features of an EPIC 

architecture. 

Chapter 2 of this thesis contains background information.  Several research 

projects involving dynamic optimization are discussed including the potential advantages 

and disadvantages of each approach.  Three projects involving dynamic optimization 

(Section 2.1), five projects involving dynamic compilation (Section 2.2), and three 

projects involving dynamic translation (Section 2.3) are included in the discussion.  Next, 

Section 2.4 discusses the current research on profiling monitors for feedback-directed 

optimizations.  Several useful tools are available that can be leveraged in any dynamic 

optimization project.  These tools are discussed in Section 2.5.   

Chapter 3 describes the salient features of EPIC architectures and describes why 

EPIC is a good target for dynamic optimization. 

Shortcomings discovered in many of the current research approaches led to the 

proposal of a new dynamic optimization system.  Chapter 4 motivates and presents a 

high-level view of the DO dynamic optimization system.  DO is a combination 

online/offline dynamic optimizer that is built on the solid foundation already available in 

the dynamic optimization research community. 
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One line of study that few researchers have ventured into is the development of 

specialized runtime optimization algorithms.  Chapter 5 introduces a set of new dynamic 

optimization algorithms designed for implementation in EPIC architectures.  After laying 

the groundwork for dynamic optimizations by studying the optimal time at which the 

optimizations should be performed, Section 5.2 goes on to introduce several new 

dynamic optimization algorithms that are specially designed for runtime implementation 

on EPIC architectures.  Finally, Chapter 6 concludes that dynamic optimization is a 

promising new field and there is much work that can be done as future research. 
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Chapter 2 Background 

Many research groups are currently working on Dynamic Optimization efforts in 

one of its many forms.  Some groups work exclusively within a given instruction set 

architecture (ISA), gearing their optimizations toward reoptimizing for differing features 

of processors within a processor family or user behavior.  Others work between ISAs.  In 

this case, the final product does the job of emulating one instruction set on a different 

instruction-set architecture. 

The purpose of the following sections is to provide an overview of some of the 

similar research efforts that are currently underway.  A brief description of each of the 

approaches is mentioned, along with any notable advantages or disadvantages of the 

model. 

2.1 Dynamic Optimization Efforts 

About a dozen research groups are currently exploring dynamic optimization, 

compilation, or emulation techniques.  Each group has a different set of approaches for 

accomplishing the overall goals.  The approaches differ in when, how, and what is 

optimized.  Some of the concepts contained within the approaches can be reorganized and 

balanced to form a new, more universal approach to dynamic optimization. 

2.1.1 Dynamo – HP Labs 

A group of researchers at Hewlett-Packard Laboratories developed a dynamic 

optimization system, which they call Dynamo.  Dynamo is a caching and linking 
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mechanism that works to optimize native executables and DLLs (dynamically-linked 

libraries) at run time [6]. 
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Figure 2.1 – How HPL’s Dynamo Works [6] 

 

Figure 2.1 [6] shows how Dynamo selects, optimizes and stores program 

fragments.  As indicated in the figure, Dynamo interprets a native binary until it detects a 

hot trace.  This is determined by observing the branches in the program.  If that branch 

target meets certain conditions, such as being the target of a backward-taken branch, a 

counter associated with the target address is incremented.  Only when the counter 

exceeds a certain threshold value is the trace deemed a hot trace (in the case of Dynamo, 

the threshold is 50.)  The corresponding program fragment (an executable unit of trace 

instructions) is inserted into the software-based code cache, using a very speculative but 

simple trace-selection scheme.  It is assumed that the path immediately following a hot 
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entry point is likely to be taken in the future.  Link stubs are inserted to catch any off-

trace branches, in order to direct execution to the correct location, which may also be in 

the code cache.  From that point forward, anytime the particular branch target address is 

encountered, Dynamo takes control and executes the optimized instructions from the 

fragment cache.   

Dynamo ensures that time is not wasted optimizing infrequently executed 

fragments; only hot fragments are selected for optimization.   This method of determining 

hot traces ensures that Dynamo doesn’t waste time dealing with infrequently executed 

code.  If effort were spent optimizing every program fragment, the interpretation 

overhead of Dynamo would be unacceptable.  

HP Labs’ Dynamo group points out an important distinction between their work 

and the solutions that are currently being developed by other research groups.  First, they 

assume that the starting point for optimization is a native program binary.  For this 

reason, no translation step is involved.  This significantly reduces the complexity of the 

Dynamo solution, while allowing it to be effectively used with any existing executable.  

Second, the Dynamo group points out the difference in their solution and the solutions 

that involve dynamic compilation.  Dynamo does not postpone any part of the 

compilation process until runtime.  This design decision was made because the group felt 

that the solution should be transparent.  Dynamic compilation solutions require a set of 

program annotations that must be inserted by the programmer, or they require the use of a 

new programming language that has been designed for the task of dynamic compilation.  

Solutions of this sort are less transparent, and are therefore excluded from the Dynamo 

framework.  This design decision is especially notable because it allows the dynamic 
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optimizer to bail out at any point without any adverse effects within the program itself.  

Bailout occurs when the amount of time spent in the fragment cache falls below a certain 

threshold.  Dynamo suspends execution and allows the program to run directly on the 

underlying processor. 

Another distinctive feature of Dynamo is that it is completely online, that is, all 

optimizations are performed at runtime.  All data that is generated to aid in optimization 

is used within the same execution; no data is written out for later optimizations. 

Yet the most notable feature of Dynamo is the performance.  Even without 

employing any optimizations, Dynamo’s methods produce speedup by storing fragments 

in the fragment cache.  These fragments are executable traces through the code with 

many of the branches and procedure calls removed.  Even many off-trace branches within 

a particular trace result in hits in the fragment cache.  Taken branches normally limit 

fetch bandwidth, therefore the removal of procedure call and branch overheads for 

frequently executed paths results in an overall speedup of the code.  Optimizations 

performed on the traces result in even higher levels of speedup. 

The major advantage of Dynamo is that it is a binary-to-binary solution.  No 

special compilation methods are needed; therefore the solution is applicable to all future 

applications, as well as legacy executables.  Dynamo is rare in that it is a completely 

transparent solution.  Yet the interpretation feature also requires that custom versions of 

some of the Dynamo code be written for each processor and operating system. 

There is an entire domain of optimization, namely off-line optimization, which 

Dynamo does not leverage, however.  The fact that Dynamo occasionally bails out of 

certain optimizations, but no information is stored regarding that action, leads to the 
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conclusion that a similar attempt and failure will ensue during each of the subsequent 

executions.  Furthermore, the optimization that was attempted will never be completed, 

resulting in a suboptimal execution.  If information regarding the failed attempt to 

optimize was maintained in an external file, the dynamic optimizer could avoid the cost 

of future failed attempts.  This external data could also be used in order to complete 

optimizations off line, such as during any idle time of the operating system. 

2.1.2 Morph 

Zhang et al, of Harvard University developed a framework for offline dynamic 

optimization, known as Morph [46].  Unlike Dynamo, which performs all optimizations 

online (during execution), Morph collects profile information at runtime and uses that 

information to perform optimizations offline (after the program has exited.) 

The main components of Morph are the Morph Back-end, the Morph Monitor, the 

Morph Editor, and the Morph Manager.  The Morph Back-end is a portion of the 

compiler that produces the executable along with shared libraries containing all of the 

annotations necessary to support dynamic re-optimization.  The Morph Monitor is a low-

overhead profiling system that is built into the Digital UNIX operating system and serves 

the purpose of program monitoring.  The Morph Editor is a component built into the 

SUIF research compiler [20] that performs optimizations on the intermediate 

representation produced by SUIF and outputs an executable.  Finally, the Morph 

Manager, an off-line system component, makes decisions concerning the time at which to 

invoke re-optimization of programs based on the data reported by the monitor.   

The Morph research group points out three necessary requirements that motivated 

their design.  First, optimizations must occur on the particular machine where the 
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software is actually being executed and should emphasize the usage patterns of the end 

user.  This requirement ensures the effectiveness of profile data.  Second, no source code 

should be required for optimization.  This requirement is clearly due to the proprietary 

nature of industry source code.  A dynamic optimization solution that required software 

vendors to release their source code would not be welcomed by industry.  The final 

requirement is that any optimization performed should be entirely transparent to an end 

user.  A user should be able to benefit from dynamic optimization without any necessary 

interaction or knowledge of the optimization system.  This requirement also encompasses 

correctness, in that optimization itself must not break any working code. 
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Figure 2.2 – The Harvard University Morph Project [46] 
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The three requirements listed above show that Morph is geared toward 

mainstream, industrial use, rather than selective research use.  Morph hides complexity 

and insures that an end user is unaware of the reoptimization being performed, save the 

performance increase that will be encountered after reoptimization.  

A drawback of Morph is that all optimizations are performed after the program 

has exited.  A system such as Morph cannot leverage much of the runtime information 

that varies from run to run.  For example, an optimization such as constant propagation, 

based on runtime constants, cannot be employed in the optimization process.  

Furthermore, the profile data collected throughout the course of an execution will be 

compiled into a single set of averages, and no indication of profile shifting [40] or phased 

behavior [41] will be evident.   

Another concern is the assumption of a single user workstation environment.  

While Morph may be quite effective at learning the usage patterns of a single user, it 

could potentially hurt the performance of a multi-user program.  It is not designed to be 

useful in an environment where a centralized binary is shared over a network, as is 

becoming a more and more common case. 

The next drawback of Morph concerns the shared libraries containing program 

annotation.  It is unfortunate that these annotations require compilation with the SUIF 

research compiler in order to be produced and cannot be generated on the fly.  Morph 

requires a recompilation of all existing software in order to be employed, and cannot be 

effectively implemented on the large quantities of legacy binaries that are available in 

industry.   While a component of Morph known as Post Morph, which should infer 

Morph annotations from legacy binaries, has been mentioned briefly, details are scarce. 
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Finally, Morph’s program annotation is simply an intermediate representation of 

the entire program.  Maintaining an intermediate representation of an entire program 

could result in severe code expansion.  In addition, software vendors may not be willing 

to allow an intermediate representation of their software to be maintained on every users 

system for fear of reverse engineering. 

2.1.3 Evolutionary Compilation 

Sumedh Sathaye of North Carolina State University suggested many ideas for an 

Evolutionary Compilation system in his Ph.D. thesis [40].  His contributions include two 

schemes for dynamic rescheduling code for VLIW architectures: an evolutionary 

compiler and a dynamic rescheduler.  Sathaye also contributed a technique for reducing 

dynamic scheduling overhead, known as the Persistent Reschedule-Page Cache (PRC).   

Sathaye’s evolutionary compilation ideas were based on the notion that the usage 

patterns of a user evolve over time and that the code must be optimized accordingly.  His 

dynamic rescheduling ideas focused on the different optimization opportunities available 

between certain processors within a single ISA. 

The evolutionary compilation framework is designed to be resident in the 

operating system and contains a hardware-based program monitor, a loader, and an 

evolutionary compiler. While the application is executing, the monitoring hardware keeps 

track of the usage pattern of the application.  If it becomes apparent that the usage pattern 

has changed from that for which the application was optimized, the evolutionary 

compiler steps in and reschedules the application to better suit the needs of the user. 

The OS loader loads an application and determines if there is a generation 

mismatch between the object code and the machine on which it will be running.  If a 
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mismatch exists, the Dynamic Rescheduler steps in at page-fault time and performs 

object-code transformation with page-sized granularity.  This process employs an 

external file, known as the object-file annotation, which was produced during the initial 

compile of the application. 
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Figure 2.3 – Sathaye’s Evolutionary Compilation System [40] 

 

Because the process of rescheduling an executable can be time consuming, 

Sayathe suggested caching the rescheduled versions of the executable in a special PRC, 

Persistent Rescheduled-Page Cache.  This technique reduces scheduling time by storing 

previously translated code portions and not requiring such portions to be rescheduled and 

optimized every time they are encountered. 

The notable feature of Sayathe’s Evolutionary Compilation system is its focus on 

the profile shift associated with a user’s changing usage patterns.  While many of the 
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other solutions focused exclusively on optimizing for generation mismatches, Sayathe 

suggests an alternate optimization stimulus. 

A weakness of the system is that all retargeting is performed right at runtime, yet 

the rescheduled code is not maintained for subsequent executions.  While a one-time 

slowdown for rescheduling might be acceptable, rescheduling during each execution for 

retargeting to the same processor is unnecessary. 

In addition, like the Morph solution, the static compiler generates the program 

annotations required for rescheduling.  This means that only programs compiled using a 

specialized compiler that generates such annotations can be rescheduled.  Evolutionary 

compilation is not applicable to the volumes of legacy binaries in existence. 

Finally, it should be noted that terminology has progressed since Sayathe’s use of 

the phrase evolutionary compilation.  As stated in the introduction, compilation is a term 

reserved for the process of generating a native executable from non-native instructions.   

Today, evolutionary compilation as described by Sayathe is simply referred to as 

rescheduling. 

2.2 Dynamic Compilation Efforts 

Dynamic compilation refers to the postponement of some or all of the static 

compilation process until runtime.  In many cases the static compiler performs some 

initial compilation activities, but the creation of executable code is not performed until 

runtime.  Dynamic compilation differs from basic dynamic optimization in this respect – 

the static distributed program is not executable without the dynamic compilation system 

in place.  While dynamic optimization works with files that would otherwise execute, this 
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is not the case with dynamic compilation.  For this reason, there is a strong association 

between the dynamic compiler and its programs.  It would not be easy to switch dynamic 

compilers if a program was partially compiled with a different dynamic compiler.   

Several groups are currently working on projects related to dynamic compilers 

and dynamic compilation methodologies.  Some of the research efforts are discussed in 

the following subsections. 

2.2.1 DyC 

A research group at the University of Washington has developed a rather 

thorough system to support dynamic compilation called DyC.  DyC consists of a 

declarative annotation language and corresponding compiler [18], [19]. 

The annotated language resembles C, while including the necessary instructions 

for providing compiler directives used in dynamic compilation.  Differences in the model 

and a standard programming model are that DyC requires all data to be declared as static 

or dynamic initially, and requires dynamic compilation possibilities to be explicitly 

declared by the programmer. 

DyC’s static compiler produces an executable that contains a combination of 

statically compiled code and a run-time specializer for the portions of code where 

dynamic compilation will occur.  The run-time specializer allows code to be optimized 

for various instances of run-time variables.  Two control-flow subgraphs, called setup 

code and template code, replace each dynamic code region.  The setup code contains 

static computations, while the template code contains dynamic computations.  The 

dynamic template is created containing holes that will be filled in at dynamic compile 
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time, once the runtime values are known.  Scheduling and register allocation is performed 

on the two subgraphs independently, with no interference between the two. 

Finally, custom dynamic compilers are implemented within the code itself, which 

trigger the dynamic compilation and throw away the corresponding template. 

A notable advantage of the DyC model is its speed.  The performance can be 

attributed to its lack of an intermediate format.  In addition, no general analysis is 

performed at run time, as all decisions are made in advance and dynamic compilation is 

actually coded into the final executable.  These two design decisions have led to notable 

performance gains over other research models. 
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Figure 2.4 – UW’s DyC Dynamic Compilation System [18] 

 

A limitation of DyC that the group plans to improve upon is inadequate support 

for global variables and partially static data structures [19].  These limitations arise from 

the fact that each variable and data structure must be initially declared as static or 

dynamic, and no combinations are permitted. 
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A weakness of the DyC model, however, is that it requires the use of an entirely 

new language.  While the system is a rather complete and adequate environment for 

dynamic compilation, it cannot be used with existing code.  In order for mainstream use 

to be possible, software developers must switch to the annotated C language.   

Should the group decide to automate the annotation process and provide the 

functionality for DyC to work with standard programming languages, DyC may become 

a viable option for dynamic optimization in industry. 

2.2.2 DCG 

DCG, or dynamic code generation, is a system developed by Engler et al. of the 

Massachusetts Institute of Technology [15].  Dynamic code generation entails the idea of 

an executable process that creates additional executable code that is tailored to the 

environment on which the program is run.  It is similar to the concept of self-modifying 

code, but rather than altering existing code, the existing code is augmented with 

additional code. 

Within the DCG model, the task of code generation is postponed until run time.  

Instead, the intermediate representation of the lcc compiler is released, which will be 

converted to machine code just before execution.  Because the intermediate 

representation is machine-independent, the system is completely retargetable.  A single 

intermediate representation of a program can be used to generate code for any of a 

number of systems.  Furthermore, the resulting executable will be optimized for the 

architecture on which it was created. 
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A single procedure is the basic unit of code generation within the DCG model.  A 

procedure is compiled by DCG and a pointer to the code is then passed to the client.  The 

code is invoked as an indirect call to a C procedure. 

The DCG model takes care of code generation tasks including tree construction 

and labeling, register allocation, instruction selection, jump resolution, and binary code 

emission.  Not included in the list of tasks is code optimization.  While executable code is 

dynamically generated, DCG makes no efforts to support automatic global optimization 

or pipeline scheduling.  This matter is instead “the responsibility of the client, which has 

access to the low-level IR specification” [15].  Despite this fact, DCG reserves eight 

registers for its personal use.   The user can utilize these registers for a limited amount of 

register re-allocation, if desired. 

DCG has been shown to be an efficient means for emitting code locally, however 

it makes no claims, nor any attempts to optimize the code it produces.  The limiting factor 

is the fact that it produces code procedure-by-procedure, and therefore has no global 

awareness of optimization opportunities.  This fact, combined with the fact that 

optimization issues are left to the client, is a clear weakness of the DCG model in the 

dynamic optimization domain. 

2.2.3 Dynamo – Indiana University 

Leone et al. of Indiana University have proposed a staged-compiler architecture 

for dynamic optimization which they also call Dynamo1 [33]. 

Within the scheme of Dynamo, the programmer annotates a particular program 

with directives that specify the conditions under which dynamic optimizations should 
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occur for a certain portion of code and the actions that should be performed in order to 

optimize the code. 

The key feature of Indiana’s Dynamo project is the staged compiler concept.  

During static compilation, only portions of the code that will not benefit from dynamic 

optimization are compiled into native code.  The other portions of code are segmented 

into lightweight optimization candidates and heavyweight optimization candidates.  

Lightweight optimizations require little time to perform and only provide minor 

improvements to code.  Heavyweight optimizations, on the other hand, are rather time 

consuming but typically provide substantial benefits to performance.  During static 

compile time, heavyweight candidates are partially compiled into a high-level 

intermediate format.  This high-level IR is suitable for more aggressive optimizations.  

Conversely, lightweight candidates are compiled into a mid-to-low-level IR, which is 

more suitable for simple optimization techniques. 

A minimal amount of optimization is performed at static compile time.  Selective 

dynamic optimization is then performed at runtime.  The dynamic optimizer begins by 

performing candidate selection and cost- benefit analysis.  Candidate selection allows the 

system to identify code portions that may benefit from dynamic optimization using a 

profiler.  Cost-benefit analysis then assesses the feasibility of run-time optimization. 

The most evident flaw concerns the cost-benefit analyzer.  For Dynamo, this step 

is performed at run time.  This form of analysis will most likely be extremely time-

consuming and inaccurate.  Not only must it accurately predict the benefit of and time 

required to perform a particular optimization, it must do so quickly enough not to impact 

the performance of the executing program.  By using critical execution time, analysis of 

                                                                                                                                            
1 To be fair, the Dynamo project at Indiana University was actually started prior to HPL’s Dynamo. 
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this form actually reduces the amount of dynamic optimization that can be performed at 

runtime. 

Another drawback of IU’s Dynamo is many static optimizations are forgone if it 

appears that they will impact the amount of runtime optimization that will be available.  

While many other approaches look at dynamic optimization as a complementary 

optimization opportunity, Dynamo sees it as a replacement for many of the static 

optimization opportunities. 

The Dynamo approach is extremely limited in that it does not perform automatic 

optimization selection and instead relies on the programmer to recognize optimization 

opportunities and annotate the code accordingly.   Furthermore, in order for existing code 

to benefit from the Dynamo strategy, the code must be explicitly altered.  This attribute 

alone is such a severe limitation that it can be seen as an indication of why Dynamo may 

not be viewed as a universal dynamic optimization solution. 

2.2.4 Runtime Optimization 

In an effort labeled Dynamic Runtime Optimization, Kistler, et al. of the 

University of California at Irvine suggests moving all program optimization to runtime 

[27].  At compile time, he suggests that the role of the compiler should be to produce an 

object file that contains a generic tree-based intermediate representation of the program, 

rather than native machine instructions.  No optimizations are performed on the 

intermediate format, as that would jeopardize its portability.  This would allow the 

intermediate format to be issued to any of a number of processors, which would then 

optimize the object file to take advantage of the particular features of the processor itself.  



 27

This optimization would all be done at runtime, however, utilizing the idle time of the 

program. 

Kistler suggests a new system architecture that consists of four key elements: a 

compiler, a dynamic code-generating loader, an adaptive profiler, and a dynamic 

optimizer. 
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Figure 2.5 – Kistler’s Dynamic Runtime Optimization System [27] 

 

The role of the compiler is to generate an intermediate representation object file 

from the original source code.  It is not the role of the compiler, however, to perform any 

static optimizations, as that may obstruct the opportunity for dynamic runtime 

optimizations. 

The dynamic code-generating loader then transforms the intermediate 

representation into native machine code at load time, then executes the given code. 
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During the execution period, the adaptive profiler observes the runtime behavior 

and gathers all of the necessary information required for future dynamic optimization 

decisions. 

Finally, the dynamic optimizer periodically optimizes code portions that are 

executed most frequently.  The intermediate code representation is optimized in the 

background during the idle time of the operating system. 

One of the major advantages of this runtime optimization model is that it allows 

the dynamic optimizer to be aware of the time-consuming portions of the code (via the 

profiler) and to focus optimization efforts on such portions.  This is clearly superior to the 

static optimization model, which applies optimizations uniformly to all code portions, 

regardless of usage patterns.  

The major disadvantage of this system architecture is that a great deal of strain is 

put on the runtime system.  In typical systems, the only task performed at runtime is the 

execution of native code on the processor.  In this system, however, the runtime system 

takes on the added responsibility of code generation, profiling, and dynamic optimization.  

Moving this much functionality to the runtime system may not result in the desired 

performance gains.  

In addition, this model increases code size significantly due to the intermediate 

representation of the code that must be kept around for use in the dynamic optimizer.   

This form of runtime optimization is not applicable to the existing code base.  It 

would require software vendors to either release their source code (not an option), or 

compile their software into the proprietary intermediate format.  Furthermore, software 

vendors may be leery of the intermediate representation of their code that will be kept 
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around.  If there is any possibility of decompilation of the IR, vendors will not be willing 

to implement the optimizer for fear of code piracy.  Unfortunately, this model requires 

100% compliance by software vendors in order to be effective. 

2.2.5 Tempo 

In 1995, Charles Consel of the University of Rennes / Irisa, France introduced an 

infrastructure, which he called Tempo, upon which much of the DyC project of the 

University of Washington was based [11]. 

Consel was the first to automate the process of run-time specialization, where a 

template is produced containing holes that correspond to each of the values that are 

constant at run time.  Using formal methods, Consel proved the correctness of his 

proposed techniques for a variety of languages and developed Tempo, a prototype 

version of his run-time specializer based in the C programming language. 

At compile time, a tree grammar is produced, which is an approximation of the 

possible program specializations.  This tree grammar is produced using programmer 

annotations in the code that specify the program invariants.  The tree grammar is then 

converted into a set of templates.  At run time, a run-time specializer selects the 

appropriate templates, computes invariants and fills them into the template holes, and 

relocates jump targets. 

This method for dealing with constants known at runtime was revolutionary for its 

time.  When compared to other pre-1995 run-time specializers, Tempo possessed the 

following notable traits.  It was the first automated specializer of its time.  While other 

research groups had employed methods similar to templatizing code, all such templates 

were created by hand and therefore suffered from the risk of programmer error.  Because 
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the Tempo compiler produced the templates automatically, the risk of error was greatly 

reduced.  Second, Tempo’s correctness was formally proven and published [11].  Third, 

although a prototype was developed in C, the details of Tempo were applicable to any of 

a number of programming languages.  Fourth, this model was the first of its kind to be 

portable.  And finally, Tempo was shown to be an efficient means of run-time 

specialization.  The code produced required as little as three runs to amortize the cost of 

specialization, resulting in code that ran five times faster. 

On the negative side, Tempo addressed only one of the numerous goals of 

dynamic optimization.  Tempo makes no attempt to deal with issues such as rescheduling 

code for differing architectures, or register reallocation. 

Furthermore, the one goal that Tempo did address, it did so in a manner that 

required a great deal of programmer effort.  While the task of template creation was in 

fact automated, the task of determining potential templatized portions was still the duty of 

the programmer.  This not only required effort and knowledge on behalf of the 

programmer, but it introduced the potential for error and/or suboptimal specialization. 

2.2.6 Summary 

The dynamic compilation and optimization methods presented in this section can 

be summarized in Table 2.1.  Several of the research groups employed dynamic 

compilation, which is an interesting approach but it requires a great deal of software 

development effort.  New compilers and programming languages are required in order to 

employ such an approach.  Other groups chose the dynamic optimization route, however 

approaches varied widely.  The approaches ranged from a high amount of user effort 

required, to completely transparent approaches that required no user effort at all.  Most 
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approaches perform optimizations at runtime and very few perform any optimizations 

offline. 

Table 2.1 – Summary of Past Approaches 

Name Dynamic 
Optimization 

Dynamic 
Compilation 

At 
Runtime 

After 
Runtime 

User 
Effort 

Comments 

DyC  X X  High  
Morph X   X Med  
Dynamo-
HP Labs 

X  X  Lo  

Dynamo-
Indiana U 

 X   High  

DCG  X X  High No Optimization 
EC X  X  Low  
RO  X X X NA  
Tempo  X   High  
 

2.3 Translation and Emulation Efforts 

Several research groups have undertaken the task of emulating a program 

compiled for one ISA in an environment that uses a different ISA.  While IBM developed 

an emulator for executing x86 instructions in a VLIW environment, Transmeta developed 

a general approach to program translation.  Future efforts that provide for compatibility 

with IA-64 will soon be underway. 

2.3.1 DAISY 

A group at IBM’s T.J. Watson Research Center has developed a system that they 

call DAISY: Dynamically Architected Instruction Set from Yorktown.  DAISY focuses 

on providing complete compatibility between architectures [14]. 
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While most DAISY documentation focuses on VLIW as the target architecture, 

with modifications DAISY could be used to translate code to execute on processors using 

the new EPIC instruction set architecture. 

As each code fragment is executed for the first time, DAISY translates the 

fragment into a simple RISC-like intermediate representation.  This translation occurs at 

instruction cache miss time.  The translated version of the code is then stored in a caching 

emulator, which is simply a portion of main memory that is not visible to the old 

architecture and resembles a cache.  Because the translation is cached, the process of 

translating each fragment must only occur once. 

Within DAISY, precise exceptions are handled by scheduling VLIW instructions 

in the same order as they occurred in the original binary.  Unfortunately, this scheduling 

mechanism will result in code that is far from optimized. 

DAISY provides 100% architectural compatibility between ILP architectures and 

other existing architectures.  It also provides fast emulation using clever caching 

techniques.  Such caching techniques would not be necessary, however if the new 

translated version of the code fragments would actually replace the old code. 

2.3.2 Crusoe 

In January 2000, Transmeta announced the Crusoe package [28].  Comprised as a 

combination of a low-power VLIW chip and specialized Code Morphing software, 

Crusoe entered the mobile computing market offering a microprocessor that achieved 

notable performance while using a fraction of the power.   
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While the core Crusoe processor is a 4-wide VLIW, it is able to run all legacy x86 

code using the Code Morphing software, which translates x86 instructions into the 

native instruction set on the fly.  The savings in power came from the fact that not all 

attributes of the x86 architecture needed to be supported in hardware.  An entirely new, 

simple processor could be used. 

The Crusoe technology essentially eliminates the ties between the x86 ISA and 

the underlying hardware. Furthermore, as upgrades to the Crusoe processor are released, 

the user need only replace the Code Morphing software, which is specialized to the 

new processor.  Even dramatic changes in the processor will not require any of the 

software (aside from the code-morphing software) to be recompiled. 

The more advanced of the two Crusoe processors introduced in January 2000, can 

also perform LongRun power management.  Unlike many mobile processors which 

have two clock frequency settings for power savings, full speed or off, the Crusoe 

processor can dynamically analyze the program(s) being run and adjust the clock 

frequency to any frequency between maximum and off.  Crusoe can also vary the voltage 

used by the processor as the clock frequency is varied.  These adjustments of clock speed 

and voltage result in cubic reductions in power since power varies linearly with clock 

speed and quadratically with voltage. 

The most ingenious feature of the Crusoe system, is that the Code Morphing 

software could be upgraded to not only translate x86 code, but Sparc, Alpha, HP-UX, and 

IA-64 code as well.  This would result in a single system that could transparently execute 

any legacy code compiled for any architecture without the user knowing or caring about 

compatibility issues. 
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The drawback of the Crusoe system is that the translation step is not free; some 

amount of time must be spent executing the code-morphing software.  The translated 

groups of instructions are maintained in a translation cache, however, amortizing the cost 

of the translation step.  Because the translated code stored in the translation cache is 

optimized, it can potentially execute faster than the original code. 

While the power saving features of the Crusoe processor makes it an competitive 

option for mobile computing, the translation and optimization features could be employed 

in the general-purpose (desktop) computing market.  The potential for compatibility 

among all instruction-set architectures is a goal that the entire computing community 

could certainly benefit from. 

2.3.3 FX!32 

Compaq (Digital) Corporation introduced a combined emulator and translator that 

allows x86 applications to run on an Alpha using the Windows NT 4.0 operating system 

[23].  This system, called FX!32, combines run-time emulation with an off-line 

optimization system in order to truly distinguish itself from other emulation systems, 

such as DAISY or Crusoe. 

While all of the emulation systems described in this section perform the task of 

executing non-native instructions on a particular processor, FX!32 employs advanced 

background dynamic optimization to optimize the Alpha code that is produced during the 

emulation stage using profiling information gathered at runtime.   

The design goals of the background optimization system were user transparency 

and high performance.  To ensure transparency, FX!32 had to be certain that no user 

interaction was necessary during optimization and that the native code produced was 
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complete and correct.  These restrictions resulted in an optimization algorithm that relied 

on no assumptions or manual interaction of any kind.  To ensure the best possible 

performance, FX!32 leverages many modern advances in compiler optimizations.  

A major optimization leveraged by FX!32 is the concept of global optimization.  

While many other dynamic optimizations are limited to discrete elements such as basic 

blocks, FX!32 breaks this limitation and is able to perform global optimizations that were 

currently implemented only during static compile time.  This method produces an Alpha 

executable that performs at least 70% as well as the ideal performance value, which is 

determined by directly compiling the original source code into an Alpha executable.   

2.4 Profiling Monitors For Feedback-Directed Optimization 

An important feature of any dynamic optimization system is its ability leverage 

profile information about a user to guide runtime optimizations.  This allows the software 

to perform well for the way it is typically used.  This concept is known as feedback-

directed optimization.  The feedback from the usage patterns guides the optimization 

process. 

The question of how to monitor usage statistics for a particular piece of software 

without hurting software performance is an open research area.  The monitoring could be 

performed in the operating system, such as a daemon that frequently polls the software 

and gathers statistics much like the monitoring scheme suggested in Thomas Kistler’s 

dynamic run-time optimization system in Section 2.2.4.  The problem with a software-

monitoring scheme such as this is that it carries a lot of overhead.  The scheme requires a 

system call to be performed at given intervals in order for statistics to be gathered.  The 
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overhead associated with software monitoring may outweigh the benefits gained from 

dynamic optimization. 

Another alternative is to provide dedicated profiling hardware.  Since all profiling 

tasks are performed by the dedicated hardware, there is no performance impact on the 

running program.  The drawback of hardware-based profiling is the expense incurred in 

adding specialized hardware.  Convincing processor manufacturers to dedicate silicon to 

a task such as profiling may not initially be a welcomed concept.  This silicon could be 

used for a more universal application, such as speeding up the clock or adding a function 

unit.  Furthermore, upgrading the monitoring hardware would require a new processor.  

Hardware monitoring is much less flexible or upgradeable than its software counterpart. 

Several research groups have looked into the problem of program monitoring and 

profiling.  While most groups agree that hardware profiling is the most feasible form of 

program profiling, their approach and scope differs greatly. 

2.4.1 ProfileMe 

In order to overcome many of the limitations of profiling in the out-of-order 

processor domain, Digital Equipment Corporation introduced a novel profiling 

mechanism, called ProfileMe [13].  Rather than employing event counters that monitor 

specific events such as the number of branch predictions and causing an exception when 

the counters overflow, the group chose to randomly choose instructions and gather all 

pertinent information regarding the specific instruction. 

The move to instruction sampling arose from problems noted in previous 

monitors. In order to optimize a program, it is necessary to discern the particular 

instruction(s) causing an unfavorable event such as a branch misprediction.  In previous 
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models, accurate event counts can be maintained, but the method for indicating the 

instruction causing each event is rarely correct.  Out-of-order instruction execution 

complicated this process, resulting in a nearly random distribution of causing 

instructions.  Speculative execution further complicates the process, as speculative 

instructions were ignored in previous models.  ProfileMe permits the analysis of which 

instructions are aborting and why, while other sampling methods ignore aborted 

instructions. 

ProfileMe is a hardware/software approach to accurately track events and their 

causes.  This is done in two ways.  The first method is the instruction sampling 

technique.  This technique selects a random instruction and tracks all information about 

the instruction, such as cache miss rates.  Another sampling technique can also be 

employed.  This technique, known as the paired sampling technique, collects data about 

the interaction of other instructions with the random selected instruction. 

The major advantages of ProfileMe over techniques such as hardware event 

counters are:  

 
(1) It collects complete information about each instruction, rather than sampling a 
small number of events at a time;  (2) it accurately attributes events to 
instructions; (3) it collects information about all instructions, including 
instructions in uninterruptible sections of code; and (4) it collects information 
about useful concurrency, thus helping to pinpoint real bottlenecks [13]. 
 
The ProfileMe group chose sampling as a means of profiling rather than some of 

the other methods, such as simulation or instrumentation, for three reasons.  First, 

sampling works on unmodified programs.  No additional instructions need to be inserted 

into the program in order for sampling to proceed.  Second, sampling can be used to 

profile entire systems.  Finally, sampling requires very low overhead.  The overhead can 
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be directly correlated to the sampling rate.  Reducing the sampling interval can therefore 

directly reduce the overhead caused by sampling. 

2.4.2 Profiling for Hot Spots 

Wen-mei Hwu’s group at the University of Illinois extends the typical profiling 

scheme by also recording the relative importance of the basic blocks encountered [37].  

They define a hot spot of code to be a small section of code that is executed very 

frequently. 
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Figure 2.6 – Illinois' Monitor Table Hardware for Hot-Spot Detection [37] 

The importance of hot spot determination lies in the realm of dynamic 

optimization.  A frequently executed portion of code that contains a small static footprint, 

as in the case of hot spots, is a prime candidate for runtime optimization.  Due to time 

restrictions, not all optimizations can be performed at runtime.  Therefore potential 

optimizations must be prioritized.  In the case of hot spots, a small amount of time may 
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be required for optimization, compared to the long period of time that will subsequently 

be spent executing the code.  Hot spots should therefore be the top priority for runtime 

optimizations. 

The Illinois group proposes three components to aid in the tasks of hot spot 

detection and its corresponding dynamic optimization.  These components include a Hot 

Spot Detector, a Monitor Table, and Operating System Support.  The hot spot detector 

can be implemented in hardware to remove overhead.  Its main task is to locate the 

blocks of code that are most frequently executed.  The monitor table is a collection of 

previously identified and optimized hot spots.  It is the task of the monitor table to handle 

the replacement scheme of optimized hot spot code.  If it is determined that a particular 

hot spot is no longer frequently executed, it should be replaced by a better runtime-

optimization candidate.  Finally, operating system support is necessary for adding hot 

spots to the monitor table and gathering blocks into a region that can be passed to the 

runtime optimizer. 

2.4.3 The Profile Buffer 

Because of the large overhead that can be encountered during profiling, a group at 

North Carolina State University proposed a profile buffer for maintaining accurate profile 

information with low overhead [9].  

The profile buffer hardware consists of a decoder and a set of branch counters.  

Each row in the buffer has two buffer entries associated with it, one is a counter that 

maintains the number of times the branch was taken, the other maintains the number of 

times the branch was not taken. 
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Figure 2.7 – The Profile Buffer Hardware [9] 

As a branch is encountered, it is converted to an index into the buffer table.  Once 

the outcome of the branch is known, the corresponding entry in the buffer table is 

updated.  After a certain amount of time and before the profile buffer fills, the contents 

are spilled to memory.  In order to hide the latency of the buffer spill, the action is 

performed during a context switch. 

Due to the fact that the profile buffer restricts profiling to include only branch 

outcomes, it alone is not useful in the context of dynamic optimization.  Dynamic 

optimization requires a great deal more profile information in order to perform any 

worthwhile optimizations.  If the profile buffer was included in a large set of monitoring 

hardware, however, its low-overhead scheme could be very useful to runtime 

optimization where performance is the top priority. 

2.4.4 Itanium Monitors 

Chapter 4 and Chapter 5 of this thesis focus on dynamic optimization in the realm 

of EPIC architectures.  For this reason, the particular monitoring features that will be 

available in the first chips employing the IA-64 architecture are of particular interest. 
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Zahir, et al. of Intel Corporation recently wrote of the specific features that will be 

incorporated into the Itanium processor line that will radically simplify the task of 

monitoring and profiling executing programs [45].  The new features focus on locating 

performance bottlenecks. 

Specifically, the performance monitors that will be built in provide four levels of 

profiling functionality.  First, the Itanium will have the ability to monitor a large number 

of event rates, such as cycles per instruction, miss rates for the caches and translation 

lookaside buffer, branch misprediction rates, or any other rate that need be monitored.  

Second, Itanium provides support for breaking the total execution time of a program 

down into one of four components: branch related, execution related, data access, and 

instruction access.  Third, hardware support will be available for monitoring specific 

pieces of code.  This will allow the programmer to select certain address or data ranges, 

then zoom in on the specific activities occurring in that range.  Finally, Itanium will be 

equipped with certain event address registers that can be used for maintaining sampling 

counts, such as the number of branch mispredictions. 

The specific monitoring features that will be resident in the Itanium processor will 

clearly be of extreme importance to any developer of a dynamic optimization system for 

IA-64.   

More importantly, these features indicate the processor designers’ support and 

approval of future dynamic optimization efforts.  Eventually, the interest in hardware-

based performance monitors by the optimization community will lead to increased 

hardware support within the processor development community.  The expressed interest 
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is therefore vital for the continuous development of advanced hardware monitoring 

features. 

2.4.5 Summary 

Profiling monitors provide invaluable information to any dynamic optimization 

system.  Fortunately, several research groups have focused on providing fast, effective 

profiling in both hardware and software.  Furthermore, industry is beginning to show 

support for hardware monitoring by incorporating many profiling features right into their 

microprocessors.  Eventually, all hardware features are attributed to the demand for such 

features.  As we express more and more interest in monitoring features, chip designers 

are more apt to incorporate those features into future designs. 

2.5 Useful Tools for Dynamic Optimization 

A number of tools are available to make the complex tasks involved in optimizing 

executable files much simpler.  In addition, because these tools have been proven correct, 

they aid in reducing the risk of error in the end product. 

2.5.1 DynInstAPI 

A research group at the University of Maryland – College Park has developed an 

API, or application program interface, that can be used for runtime code generation called 

Dyninst API [7].  
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Figure 2.8 – Runtime Code Insertion via DynInstAPI  

Figure 2.8 [4] shows an example of the runtime code generator API being used in 

several lines of C code.  The DynInstAPI could be very useful to a dynamic optimizer 

because it could be used to insert code into an executable that would trigger the dynamic 

optimization process after a given event occurs (such as the detection of a profile shift.) 

2.5.2 EEL 

An executable editing library, EEL, has been developed at the University of 

Wisconsin that hides much of the complexity of editing anything from object files to 

fully-linked executables.  The library also hides any system-dependent details of editing 

executables.  EEL is currently available for the Solaris operating system [31]. 

Using EEL, an executable may be edited at the level of a routine, a control-flow 

graph, an instruction, a snippet, or an entire executable, which consists of routines and 

data.  EEL provides comprehensive control-flow and data-flow analysis for CFGs.  It 

automatically handles required modifications to calls, branches, and jumps necessary for 

CFG adjustment. 

EEL could be extremely useful to a dynamic optimization system because it has 

already been proven effective for global register allocation and interprocedural analysis.  
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While it is not designed to handle run-time editing, it could be useful for heavyweight 

offline optimization. 

2.5.3 OM 

The OM project at Digital Research focuses on binary editing and its applications.  

OM is a binary editor designed for code optimization, instrumentation and translation.  It 

reads an executable, converts it to an intermediate representation, edits the IR, then 

converts the IR back into an executable [42].  

OM’s major difference from EEL is that it allows conversion to a different binary 

format from that which originally existed.  Because all executables are converted into a 

generic intermediate representation, any executable format can be generated. 

The use of the IR makes this tool much slower than EEL, and would probably 

only be useful for converting between different ISAs.  Unfortunately, this tool is not 

available to those outside of Digital. 
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Chapter 3 Salient Features of EPIC Architectures 

The release of Intel’s new EPIC instruction-set architecture opens the doors for a 

new set of run-time and post-run-time optimizations.  Such optimizations can focus on 

the idiosyncrasies of the new architecture in order to produce optimizations for 

performance and scalability that is not possible at compile time and are exclusive to the 

EPIC architecture. 

A discerning factor of the EPIC architecture in comparison to its superscalar 

predecessor is that instruction scheduling is no longer done on the fly at runtime, but now 

becomes a compile-time task.  This means that instructions are scheduled without any 

knowledge of user inputs.  The compiler must now predict the outcome of branches 

before learning of any runtime constants.  In cases such as these, it would be quite 

advantageous to employ a runtime optimizer that uses runtime information to reoptimize 

the code scheduled by the static compiler. 

3.1 New Features of IA-64 

Several new features embody the new 64-bit architecture that will be used with 

the new Itanium chips starting in the second half of 2000 [24].  A great many differences 

can be noted between the new IA-64 architecture and its predecessor, which has been an 

industry usage leader for personal computers for many years – the x86 architecture. 

The overall goal of the IA-64 architecture was to produce an instruction-set 

architecture that allowed for the necessary hardware expansion that would occur over the 

new few decades, while also providing industry-leading performance. 
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In designing the IA-64 architecture, six goals were emphasized [24].  The 

designers made a special attempt to (1) increase instruction-level parallelism, (2) better 

manage memory latencies, (3) improve branch handling and management of branch 

resources, (4) deliver exceptional floating point performance, (5) reduce procedure call 

overhead, and (6) provide massive resources. Such goals were realized by incorporating 

several notable features into the ISA.  Several distinguishing features of IA-64 were 

described in [24] and are summarized in the following sections. 

• Large Register File 

First, the IA-64 architecture provides a much larger register file than most of the 

conventional ISAs.  There are 128 64-bit general-purpose registers, 128 82-bit floating-

point registers, 64 one-bit predicate registers, and eight 64-bit branch registers.  This 

massive register file allows multiple computations to be performed in parallel with only 

compulsory memory accesses. 

• IA-64 Instructions 

IA-64 instructions are grouped into three 41-bit instructions and a 5-bit template, 

which make up a bundle as shown in  

Figure 3.1.  The template bits represent the type of instructions that make up the 

bundle.  Instruction types fall into one of six predefined groups shown in Table 6.1.  Each 

of the instruction groups is sent to one of the four types of execution units: instruction, 

memory, floating point, and branch.  The set of allowable templates is shown in Table 

6.2. 
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Figure 3.1 – An IA-64 Instruction Bundle  

IA-64 introduces the concept of instruction groups.  An instruction group is made 

up of a variable number of instruction bundles, followed by a stop bit.  The stop bit is a 

signal to the processor that the instructions following the stop bit cannot be executed in 

parallel with the instructions preceding the stop bit due to a dependency.  The stop bit is 

the fifth bit of the instruction template as shown in Figure 3.1. 

 
Table 3.1 – The Six IA-64 Instruction Types 

Instruction Type Description Execution Unit Type 
A Integer ALU I-unit or M-unit 
I Non-ALU Integer I-unit 
M Memory M-unit 
F Floating Point F-unit 
B Branch B-unit 
L Long Immediate I-unit 

 

Table 3.2 – Possible Instruction Combinations 

Template Variations 
MII 4 

MLX 2 
MMI 4 
MFI 2 

MMF 2 
MIB 2 
MBB 2 
BBB 2 
MMB 2 
MFB 2 

Instruction 2  (41bits) Instruction 1 (41 bits) Instruction 0 (41 bits)  Template 

Template Type (4 bits) Stop 
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The first implementation of IA-64, codenamed Merced, is the Itanium processor.  

During any given cycle, two instruction bundles are issued to the function units for 

execution in Merced.  This results in up to six instructions issued to the function units 

during a single cycle. 

• Explicit Parallelism 

Because stop bits must be inserted between dependent instructions, it is the duty 

of the compiler to determine and explicitly express the parallelism available in a 

particular program.  After determining each of the read after write (RAW) and write after 

write (WAW) hazards, the compiler schedules the instructions into a set of instruction 

groups which can issued to the processor in order.  No instruction reordering is 

performed at runtime; the schedule that is determined at compile time is maintained 

throughout execution.  This compile time scheduling allows instructions to be issued 

without hardware dependence checks, which is a key factor in the performance of IA-64. 

• Memory Access and Speculation 

Like other load-store architectures, IA-64 allows memory access only through 

explicit load and store instructions.2  Through an effective use of speculation, all memory 

latency can furthermore be reduced.  Speculation allows an instruction to execute before 

the processor knows if it is necessary.  A load can be issued before all prior store 

addresses are known.  This hides the latency of the load instruction, allows the data from 

the load to be available as soon as it is needed. 

Two types of speculation exist: control speculation and data speculation. 
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• Control Speculation 

Control speculation [36], was also incorporated into IA-64.  Control speculation 

occurs in IA-64 as loads and their respective uses are moved above branch boundaries.  A 

special NaT3 bit exists for each register in the register file.  This bit allows control 

speculation to proceed without causing unnecessary page faults or other exceptions yet 

also maintaining precise exceptions.  If a speculative load causes an exception, the 

exception is not handled until it is known that the load was actually necessary.  Instead of 

handling the exception, the NaT bit is set on the destination register of the load.  This 

NaT bit is propagated to all of the uses of the load.  It is not until an operation is executed 

non-speculatively that the NaT bit is checked and the corresponding exception is handled. 

Figure 3.2 and Figure 3.3 are examples of the cycle time difference between an 

instruction sequence with vs. without control speculative loads. 

 

br L1  //cycle 0 
ld r3=[r5];; //cycle 1 
shr r7=r3,r87 //cycle 3 

 
Figure 3.2 – An IA-64 Instruction Sequence Without Control Speculative Loads 

 
ld.s r3=[r5] //earlier cycle 

... 
br L1;;  //cycle 0 
chk.s r3  //cycle 1 
shr r7=r3,r87 //cycle 1 

Figure 3.3 – An IA-64 Instruction Sequence With Control Speculative Loads 

 

                                                                                                                                            
2 An exception to this rule applies in the case of a special semaphore instruction, which allows limited 
memory access. 
3 NaT stands for Not A Thing, and is used to signify an invalid speculative register. 
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• Data Speculation 

Data speculation occurs when loads are moved above memory references that 

may potentially overlap with the memory address of the load.  For example, in the 

sequence shown in Figure 3.4, current compilers could not move the load above its 

preceding store, because it is not known whether register 55 and register 5 contain the 

same memory addresses. 

st [r55]=r45 //cycle 0 
ld r3=[r5];; //cycle 0 
shr r7=r3,r87 //cycle 2 

 
Figure 3.4 – An IA-64 Instruction Sequence Without Data Speculative Loads 

ld.a r3=[r5] //advanced load 
... 

st [r55]=r45 //cycle 0 
ld.c r3=[r5] //cycle 0 – check 
shr r7=r3, r87 //cycle 0 

 
Figure 3.5 – An IA-64 Instruction Sequence Utilizing Data Speculative Loads 

 

The load instruction in Figure 3.4 is replaced by the advanced load and load check 

instructions in Figure 3.5.  In this case, data speculative loads removed two cycles from 

the execution time of the code fragment. 

• Predication 

In order to overcome the major performance penalty incurred by branches, IA-64 

uses predication as a method for removing a substantial number of the branches within 

code.  The concept behind predicated instructions is simple.  Instructions may have a 

predicate associated with them, which is a condition that may be evaluated as true or 

false.  If the predicate is evaluated as true, the instruction proceeds normally; if the 
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predicate is false, the results of the execution are not committed.   Predicate registers are 

one-bit boolean registers that can be associated with any given instruction.  The example 

in Figure 3.6 and Figure 3.7 shows the conversion of a set of C instructions with branches 

into the corresponding predicated IA-64 code. 

if (a) { 
 b = c + d; 
} 
if (e) { 
 h = i + j; 
} 

Figure 3.6 – Sample C Code With Branches 

 
 cmp.ne p1,p2=a,r0  //p1 <- a!=0 
 cmp.ne p3,p4=e,0;; //p3 <- e!=0 
(p1) add  b=c,d  //if a!=0 then add 
(p3) sub  h=i,j  //if e!=0 then sub 

Figure 3.7 – Corresponding IA-64 Predicated Instructions 

 

The advantage of the predicated instruction sequence is that since the branches are 

removed, it is no longer necessary to produce changes to the program counter that result 

in pipeline stalls.  The code can essentially be executed in sequence as if no branches 

were present, resulting in a major performance boost.  Yet, the drawback of predication is 

that a balance between control flow and predication should be attempted.  Over-

predication of instructions will result in a high percentage of code being executed whose 

results will be thrown away due to false predicates. 

• Stacked Registers (Register Windows) 

The IA-64 register file is organized in a manner that results in a large reduction in 

the overhead experienced in a context switch such as a procedure call. 
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As a procedure is called, the first 32 general-purpose registers (GR0-GR31) are 

automatically visible and are referred to as static or global registers.  The procedure may 

then allocate up to 96 additional registers (GR32-GR127), known as the stacked registers 

to be used as input, output, or global variables. The set of input/output/local registers for 

a particular procedure is referred to as the procedure’s stack frame. As additional 

procedures are called, the output registers of the calling procedure are overlapped with 

the input registers of the called procedure.  The stacked register concept allows 

parameters to be passed between procedures with little to no overhead. 

• Software Pipelining Support 

Software pipelining is a compilation method that is frequently used to improve the 

parallelism and performance of loops.  During software pipelining, loops may be unrolled 

and may therefore be resident in the execution pipeline concurrently with other iterations 

of the same loop. 

The IA-64 architecture provides much-needed support for software pipelining, 

which reduces the likelihood of code expansion and cache misses that plagued earlier 

VLIW efforts.  The support includes dedicated instructions and a rotating register 

scheme. 

Rotating registers refers to the design principle where registers are rotated by one 

position each time an iteration of a loop is initiated.  Rotating registers allows for the 

removal of anti- and output dependencies across loop iterations.  Without this feature, it 

would be necessary to unroll loops and apply register renaming.  The general-purpose, 

floating-point, and predicate registers all support register rotation.  This scheme 
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simplifies the software-pipelining algorithm allowing a reduction in necessary 

instructions. 

• Register Stack Engine 

Unlike previous architectures, IA-64 maintains dedicated hardware, known as the 

register stack engine, which performs the task of moving data from memory to the 

registers and vice versa.  No program intervention or processor resources are wasted 

spilling data from the registers, resulting in notable performance improvements. 

3.2 Summary 

Numerous state-of-the-art features are present in the IA-64 instruction-set 

architecture.  Improvements have been made to the resources and algorithms available to 

handle many of the bottlenecks of previous architectures.  Some of the bottlenecks 

included a limited-sized register file, and low potential for achieving high levels of 

instruction-level parallelism.  

A great deal of effort has also been placed on producing an ISA that will 

withstand the test of time by foreseeing the many upgrades that may be performed in the 

years to come.  One of the major weaknesses of its predecessor – the x86 architecture, 

was that it had reached its limits in terms of expandability.  The final IA-64 design 

includes a great deal of improvements that have resulted in the potential for a massive 

performance increase and scalability. 
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Chapter 4 DO: A Dynamic Optimization Infrastructure 

A major limitation of many of the proposed solutions regarding dynamic 

optimization is that the methods are not applicable to existing precompiled software.  

Programmers must either flag certain portions of the code as dynamically optimizable, or 

software vendors must compile their code into an intermediate format or using a 

proprietary compiler in order for dynamic optimization to be possible.  This results in 

optimizations that are only as effective as the programmer his/herself and a solution that 

is only as effective as vendors are willing to provide.  The solutions require an unrealistic 

full compliance on the part of the programmers and software vendors in order to be 

effective.  While it would certainly be advantageous if we could guarantee such 

compliance, it is often not the case. 

Several project goals should be established before designing a dynamic 

optimization infrastructure.  In our case we have chosen compatibility, transparency, and 

performance as our most important goals.  Each goal is described in the following 

sections. 

The Compatibility Goal.  A goal overlooked by many of the research groups is 

finding a solution that is just as applicable to past development (i.e. legacy code) as it is 

to future software development [15], [18], [33].  This does not preclude the use of new 

compiler-inserted hints; it merely restricts them from being a requirement.  Optimization 

hints inserted by the compiler should be helpful, but not necessary, as this would 

adversely impact the effectiveness of this model on legacy code.  Compiler hints could 

include information regarding register allocation that would aid in future reallocation.   
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In DO, program annotation is either produced by the compiler back-end or it is 

generated as an offline process.  Yet many basic lightweight optimizations can be 

performed on code containing no annotation.  This fact can often be leveraged during 

program optimization while no annotation information is available (typically during the 

first execution of a legacy binary). 

The Transparency Goal.  A user need not have any awareness of a dynamic 

optimization system in order to benefit from optimized software.  Dynamic optimization 

should be automatically invoked on any piece of user-level software that is started on a 

machine.  Furthermore, the entire optimization process should not require any interaction 

from the user while it is running.  These are all realistic expectations of any effective 

dynamic optimization system.  To design a system that is anything but transparent from 

the viewpoint of an end user would result in a system that is only as effective as its user.  

For this reason, transparency is a top priority in the DO infrastructure. 

The Performance Goal.  The lower bound for performance in a dynamic 

optimization system should be the performance achieved without dynamic optimization.  

However, there are many factors that come into play with such a system.  While an initial 

slowdown may occur, this may be acceptable if that slowdown is amortized by the 

speedup during successive executions.  Furthermore, the actual optimizations performed 

play an important role in the performance improvements achieved, so it would be 

expected that the performance of a particular dynamic optimization infrastructure will 

improve as more research is done in the area of dynamic optimization algorithms. 
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4.1 An Extension of Dynamo 

In order to meet the goals of compatibility, transparency and performance, a new 

dynamic optimization infrastructure is proposed.  This infrastructure, called DO, is 

completely software resident, but extends beyond the boundaries of existing dynamic 

optimizers by providing for offline optimization and retaining information regarding 

previous dynamic optimization runs in the form of DLLs (dynamically-linked libraries).  

DO exists as user-level software on a system employing the explicitly parallel instruction 

computer (EPIC) ISA.  This opens the doors for a variety of optimizations available only 

in the EPIC ISA, such as employing the stacked register allocation scheme for dynamic 

register reallocation. 

Because a large number of dynamic optimization systems have been developed 

over the years, it is not necessary or even feasible to attempt to build an entirely new 

dynamic optimization system from scratch in order to make significant contributions to 

the world of dynamic optimization.  Instead, a better approach is to leverage some of the 

existing work in dynamic optimization infrastructure development and make various 

extensions that are seen fit due to existing weaknesses in the design or to compensate for 

advances in dynamic optimization infrastructure research. 

With this in mind, the DO infrastructure builds on the existing HP Labs Dynamo 

codebase, yet notable extensions are incorporated.  First of all, while Dynamo worked 

exclusively on a PA-RISC architecture employing the HP-UX operating system, DO will 

be based on a version of Dynamo ported to the IA-64 architecture with versions available 

for both the Linux and Windows operating systems.   
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4.2 Performance Improvements Achieved by HPL’s Dynamo 

Two factors motivated using Dynamo as a starting point for the DO infrastructure. 

First, Dynamo shared many of the underlying goals described in Section 4.1.  The goals 

of transparency, compatibility and performance were already incorporated into Dynamo.  

The most promising feature of Dynamo, however, was the performance improvements 

achieved.  Dynamo produced an average of 11% speedup on the SpecInt95 benchmarks 

with less than 1% overhead.   
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Figure 4.1 – Dynamo Overhead as a Percentage of Execution Time 

 

Figure 4.1 shows the overhead of running Dynamo on the SpecInt95 benchmarks 

[6].  The average overhead incurred by Dynamo was less than 1% of the overall 

execution time.  The lightly shaded bars represent benchmarks that Dynamo deemed ill 

behaved and bailed out of the optimization attempts.  Ill-behaved programs are programs 
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that do not spend significant amounts of time in a stable working set.  By the time 

Dynamo has identified program hot spots, the working set changes. 

As stated before, Dynamo works at the granularity level of program fragments, 

which is an executable unit of trace instructions.  Figure 4.2 shows the smallest number 

of program fragments that are necessary to account for 90% of the total execution time of 

the SpecInt95 benchmarks [6]. 
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Figure 4.2 – The Smallest Number of Fragments that Account for 90% of the Total 
Execution Time 

Figure 4.2 shows that typically fewer than 100 fragments account for 90% of the 

execution time.  The lightly colored bars again represent programs that Dynamo would 

have chosen to bail out on.  For example, in the benchmarks go and vortex, it is clear that 

a significant portion of time is not spent in a small section of the code.  In the case of go, 

it took 1038 fragments to account for 90% of the execution time.  The fragment cache is 

not large enough to handle such a large number of fragments and the generation of those 

fragments furthermore carries too much overhead.  In such cases it is not beneficial to 

execute under Dynamo control, therefore the decision to bail out was a correct one. 
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Figure 4.3 – Wall Clock Time Comparison of Dynamo Performance to Native 

Execution 

 

A notable feature of the results obtained by the Dynamo group is that effort was 

made to produce meaningful results.  This was done by comparing the wall clock time of 

programs employing Dynamo versus programs run directly on the hardware.  Figure 4.3 

shows the wall clock comparison of runtime of each of the benchmarks as compared to 

its native execution using the default level of optimization [6].  Only those programs 

where a bailout occurred resulted in a slowdown.  Overall an average speedup of 11% 

was attainable over all of the benchmarks.  This speedup was the result of aggressive 

optimization – those optimizations that do not guarantee precise exceptions.  Performing 

only those optimizations that provided for precise exceptions resulted in an average of 

8% speedup. Yet the most notable aspect of Figure 4.3 was the fact that an average 

speedup of 7% was achieved with absolutely no optimization, due to improved 

instruction cache locality. 
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4.3 A High-Level Description 

Several factors led to the choice of ISA and operating systems for the new DO 

infrastructure.  IA-64 is a prime ISA because there are many optimization opportunities 

inherent in an architecture that depends exclusively on static scheduling.  Providing an 

infrastructure that supports the study of new dynamic optimization algorithms tailored for 

IA-64 could be quite beneficial to the researchers and users of IA-64. 

Linux is a natural choice of operating systems in a research environment because 

the source code is publicly available, if necessary.  Once correctness and performance has 

been proven, it is possible that a research version of dynamic optimization could be 

incorporated into future versions of Linux.  It is far less likely that a solution such as DO 

would appear in the operating system owned by a large corporation, due to the “not 

invented here” mentality.  Furthermore, because Linux is open-sourced, this dynamic 

optimization solution will be open to the suggestions and collaboration of thousands of 

researchers throughout the world. 

Microsoft’s Windows operating system is an interesting platform for the study of 

dynamic optimization because of its idiosyncrasies when compared to UNIX operating 

systems.  Recent research [32] indicates that the dominant execution paths in interactive 

software benchmarks, such as the WindowsNT benchmarks, may be less predictable than 

the SpecInt95 benchmarks due to the large program dependence on user interaction.  It 

could be the case that an entirely new set of optimization rules should be employed for 

interactive software.  This notion could be studied using the DO infrastructure for 

Windows. 
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The next notable extension from Dynamo incorporated into the new DO 

infrastructure is an offline optimizer.  The offline optimizer will use information obtained 

during online optimization to perform any optimizations that were deemed too time 

consuming to be performed during runtime, such as complete program rescheduling.  

While the notion of offline optimization in itself is not new, there has yet to be an 

optimization infrastructure that features both online and offline optimization in a 

complementary manner. 

In addition, various minor extensions will be incorporated in order to set DO apart 

from its Dynamo predecessor.  One such extension is the periodic reevaluation of 

program fragments that are resident in the fragment cache.  Limited studies have been 

performed to detect the existence of profile shifts [40] also known as phased behavior 

[41].  While the studies were not extensive enough to be conclusive, it makes intuitive 

sense to verify that an optimized fragment that is resident in the fragment cache should 

still be considered optimized.  A second minor extension will be the consideration of 

optionally including compiler generated program annotation to aid in dynamic 

optimization.  While this annotation may turn out to be useful for speeding up runtime 

optimizations, permanently requiring such annotations will not be considered due to the 

goal of backward compatibility with existing binaries.  Another extension corrects for 

one of the weaknesses noted in the Dynamo description (Section 2.1.1) concerning 

Dynamo bailout.  As stated before, the current Dynamo model could theoretically be 

initiated and fail for every instance of a program due to the bailout mechanism.  To 

remedy this situation, DO will maintain information regarding the reason for each bailout 

beyond the execution time of a particular program.  This will reduce the number of 
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repeated attempts of the identical optimization in subsequent runs.  A final extension will 

be the study of incorporating DO into the operating system.  This concept is interesting 

because it allows for a level of control not possible in user-level software.  Currently, this 

design idea is only feasible in the Linux OS as the source code is publicly available and 

can be altered relatively easily. 

Figure 4.4 introduces the DO infrastructure.  The inputs of the dynamic 

optimization system can be either (a) existing legacy code compiled in a standard fashion, 

or (b) code compiled along with a DLL containing program annotation for the executable 

that can assist in later optimization decisions. 

 

 
Figure 4.4 – The DO Dynamic Optimization Infrastructure 
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The profile daemon is software resident and works closely with the interpreter, but unlike 
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in Dynamo, hardware profile counters are available to it.  The profiling counters present 

in the IA-64 processor are incremented for selected events such as branch mispredictions.  

The profile daemon manages the hardware counters (along with software-based counters, 

if more are needed) and notifies the dynamic optimizer when any hot spots are detected.  

The dynamic runtime optimizer (1) interprets the data provided by the profile daemon 

regarding potential optimizations that may be performed (2) performs cost-benefit 

analysis for the optimization and (3) performs particular optimizations if feasible. 

Next, the dynamic runtime optimizer sends information to the offline optimizer.  

This information consists of (1) data regarding runtime optimizations that were 

performed, (2) data regarding optimizations that were not feasible at runtime, but could 

be performed offline, and (3) data regarding optimizations that were attempted at 

runtime, but were aborted due to performance constraints. 

During the idle time of the computer, heavyweight, time-consuming optimizations 

are performed by the offline optimizer using data from the runtime optimizer.  Because 

the offline optimizations are performed during idle computing time, no performance 

constraints exist.  Furthermore, offline optimizations are permanent so they need only be 

performed when there is a change in program usage patterns or a processor upgrade. 

The Dynamic Optimization systems presented in Sections 2.2.1 - 2.2.3 each 

perform some of the tasks presented in this section, but none of the systems perform all 

of the tasks.  The DO infrastructure is intended to be a complete, realistic extension of 

Dynamo.  It removes the constraints of other research infrastructures.  Software 

developers do not need to learn new languages, use special compilers, or use special 

compiling flags.  Users do not need to know or care about the dynamic optimization 
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system in place; they do not need to initiate the optimization process or worry whether or 

not their software is compliant with the dynamic optimization system.  The DO dynamic 

optimization model is completely transparent to the user.  It combines lightweight online 

optimization techniques with heavyweight offline techniques to produce an effective, 

complementary optimization system. 
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Chapter 5 Dynamic Optimization Opportunities and 

Algorithms 

A challenging aspect of dynamic optimization is deciding if and when to optimize 

a portion of code.  Dynamic optimizations should be performed as soon as the profile 

information is available, on the other hand, the profile information should reflect overall 

program behavior.  To further complicate the decision-making process, time should not 

be wasted optimizing rarely executed code.  Instead, hot spots [6] should be located in 

order to focus on optimizing active portions of code.  These uncertainties warrant a study 

of the most favorable optimization opportunities. 

Many of the optimization algorithms presented in this chapter rely on profile 

information gathered during a particular run.  For example, the dynamic if-conversion 

algorithm (see Section 5.2.1) relies heavily on the misprediction rate of the branches 

during the current execution.  Not only is it important to gather accurate branch 

misprediction rates, but the profile data must be gathered early enough for the program to 

benefit from dynamic if-conversion.  Therefore a study of several sampling heuristics is 

warranted before going into detail about new optimization algorithms.  

5.1 Sampling Study: Branch Mispredictions 

Because dynamic profiling might not be free (as in the case of Dynamo), the 

misprediction rate of a branch may be sampled and dynamic optimization decisions may 

be based on that sample rate.  Therefore, an important question is: How representative of 

the overall misprediction rate is a sample misprediction rate?   The answer to this 
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question varies depending on the heuristic used to collect the statistics.  This section takes 

a close look at several heuristics used to collect misprediction rate statistics for use in 

dynamic optimizations.   

5.1.1 Misprediction Sampling Based on First N Occurrences 

One scheme for gathering sample misprediction data is fairly straightforward.  

The misprediction rate for the first n occurrences of a branch is tracked, then it is 

assumed that the behavior of that branch will follow the same trend in the future.  Figure 

5.1 shows the percent difference between sampled and full branch mispredictions rates, 

averaged over all branches for the SPECint95 benchmarks. 

Figure 5.1 – The Average Difference Between Sample (First N Branch Occurrences) 
and Actual Misprediction Rates for all Branches in the SPECint95 Benchmarks. 

 

The results in Figure 5.1 were calculated by determining the correlation of the 

misprediction rate of various sample sizes (25, 50, 75, 100, 125, 150) to the full-run 

misprediction rate, averaged over all static branches.  The sample sequences are 

successive outcomes of branches taken at the beginning of program execution.  This 
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process is repeated for all branches in a benchmark.  The outcomes are averaged in order 

to produce a single graph line for each benchmark.   
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Figure 5.2 – Error Values for 99% Confidence Interval  

The rates were viewed as a set of Bernoulli trials [17] where Bernoulli 

distributions were determined.  A Bernoulli distribution is a means for representing a trial 

with two possible outcomes, in our case a misprediction or a correct prediction.  Next, the 

two distributions - the overall outcome and the sample outcome, were compared using the 

Kolmogrov-Smirnov test [2].  A 99% confidence interval was chosen to determine the 

difference between the two distributions. 

Figure 5.1 shows that the average difference in the misprediction rate of the 

SPECint95 benchmarks for a sample size of 25 branch occurrences when compared to the 

overall behavior of the branch is around 7%.  This would equate to a misprediction rate 

of 17% in the sample run as compared to a 10% misprediction rate overall.  If the sample 

size were increased to 150 branch occurrences, the average difference drops down to 

around 2%. 
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An important factor to keep in mind is that the average differences shown in 

Figure 5.1 themselves have a delta error value caused by the averaging.  These error 

values are shown in Figure 5.2.  The error values in Figure 5.2 encompass a 99% 

confidence interval.  For example, we are 99% certain that the difference between the 25-

sample misprediction rate of the vortex benchmark and the actual rate is 4% +/- 7%, or 

between –3% and 11%.  Figure 5.2 allows us to calculate the worst-case scenario that can 

be expected when comparing sample misprediction rates to actual rates for any given 

branch.   

An important conclusion that can be drawn from Figure 5.1 and Figure 5.2 is that 

choosing the first n branch occurrences as the sample for estimating overall branch 

misprediction rate can be quite inaccurate for small values of n such as 25 or 50.  In the 

worse case, inaccuracies of up to 26% may be seen.  Sample sizes of 75 or greater result 

in error values of less than 4% on average with an error of less than 4% (or between 0% 

and 8%).  Yet as the sample size is increased, the benefits gained from dynamic 

optimizations are reduced because the point at which the optimizations are performed is 

delayed. 

5.1.2 Adaptive Warmup Exclusion 

Another approach for sampling misprediction rates involves recognizing an end-

of-warm-up (confidence) condition and only then beginning to collect misprediction 

statistics.  Section 5.1.1 described a sampling heuristic that compared the first n outcomes 

of a particular branch to its overall outcome statistics for the entire program duration.  

The problem with this approach is that the data was gathered at the start of the program.  

The start of any program typically has a high misprediction rate as the branch predictors 
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learn the branch patterns.  This behavior may not be representative of the entire program 

behavior because the misprediction rate of a particular branch often decreases notably 

after the warm-up period, as shown in Figure 5.3 for several critical and/or hard-to-

predict branches in SPECint95.   Several conclusions can be drawn from Figure 5.3.  

First, it is apparent that the behavior at program start is an inaccurate indicator of overall 

behavior.  Second, branch mispredictions rates typically do not vary by more than 10% as 

the branch continues execution. 
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Figure 5.3 – Misprediction Rate Over Time for Certain Hard-to-Predict Branches in 
SPECint95 

 
The adaptive warmup exclusion sampling heuristic attempts to recognize the 

stabilization of the branch predictors on a branch-by-branch basis.  Only when a branch 

reaches the end of its warmup period does the profiling of misprediction statistics for the 

branch begin.  The algorithm for detecting an end-of-warmup condition is shown in 

Figure 5.4.  The algorithm attempts to recognize an end of warmup condition as the point 

at which the branch misprediction rate settles to within a threshold value (10% for 

example) of the previous rate.   The results of testing this heuristic with a threshold value 
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of 10% are shown in Figure 5.5.  The graph shows us that by ignoring the warm-up 

period of the branch predictors, average sampling accuracy improves by 43% (dropping 

from 7% difference to 4% difference).   

 
| PMISS_A – PMISS_B | < T 

 
PMISS_A = last misprediction rate  PMISS_B = this misprediction rate 
T = threshold 

Figure 5.4 – Determining the End-of-Warmup Condition 
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Figure 5.5 – Mean Difference Between Sample (First N Branch Occurrences 
Ignoring Warm-up Period) and Actual Misprediction Rates 
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Figure 5.6 – Effect of Varying the Warm-up Completion Threshold Value 
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Figure 5.6 shows the effect of holding the sample size at a single value and 

varying the threshold value from 10% to 5% 1% and 0.5%4.  The threshold is defined as 

the difference in misprediction rates of two subsequent branch occurrences.  As the graph 

indicates, varying the threshold value results in minimal changes to the mean difference 

between the sample and actual misprediction rate.  This study of the dynamic sampling 

heuristics provides insight into the effectiveness and accuracy of dynamic optimizations 

that are performed based on sampled statistics.  If the sampling heuristic is inaccurate, 

any dynamic optimizations that make transformations based on sample data are likely to 

be inaccurate or unnecessary and may hurt overall program performance. 

5.2 New Dynamic Optimization Algorithms 

While performance features of the IA-64 architecture result in reduced run times 

and better hardware utilization, these features can also be uniquely leveraged by dynamic 

optimizing algorithms. 

Dynamic optimizations may soon become a necessity for the scalability of the 

EPIC architecture.  Because all scheduling is performed at static compile time, any 

program compiled for the Itanium chip will be optimized for execution on the Itanium.  

Such programs may not execute in the most effective manner on any subsequent chip.  

New function units and layouts will not be utilized since the instructions were scheduled 

for execution on a chip that did not possess such features.  Dynamic rescheduling could 

                                                
4 To avoid false positives, a misprediction rate change of 0% does not trigger an end of warm-up condition.   
Therefore a rate change from 100% to 100% after two samples would not prematurely end the warm-up 
period. 
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eventually become a necessity in order to utilize the full potential of subsequent EPIC 

microprocessors. 

A notable amount of scheduling flexibility is lost when moving from an out-of-

order execution scheme to an in-order scheme as will be done in the transition from the 

Pentium (a superscalar) to the Itanium (an EPIC) chip.  The Pentium chip line could 

manage a smooth transition from one chip design to its successor because it contained a 

reorder buffer that would issue instructions out-of-order.  Essentially, the instruction 

schedule developed by the compiler was not set in stone; it could be substantially altered 

via dynamic scheduling. 

This is not the case with the EPIC architecture.  The schedule produced by the 

compiler is set in stone.  No reordering of instructions is allowed because all dependency-

checking hardware has been removed.  While this compile-time scheduling scheme 

originally produces faster code, the speed of the post-compilation executable is not 

scalable to more advanced EPIC processors that will be released.  For this reason, 

dynamically rescheduling executables may eventually become a necessity for scalable 

performance. 

Furthermore, an extensive amount of dynamic optimizations can be performed 

that will instantly improve the performance of an IA-64 executable on even the first 

processor. 

This section takes a close look at some optimizations that may be performed at 

runtime.  The results are obtained using an EPIC-style execution-driven simulator 

operating on the SpecInt95 benchmarks.  Our LEGO back-end compiler [30], which is 

based on the HPL PlayDoh Architecture [25], was used to schedule the benchmarks.  
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Treegion scheduling was used [21], combined with static if-conversion and most modern 

optimizations that would be present in an EPIC compiler such as aggressive list 

scheduling, speculative scheduling, liveness analysis, and support for multi-way 

branching.  The branch predictor modeled is a hybrid predictor containing a PAS 

predictor and a Gshare predictor [16] [44]. 

One goal of modern compiler research has been achieving a synergy between 

static and dynamic optimizations.  It is often the case that certain static optimizations 

eliminate opportunities for more effective dynamic optimizations, and vice versa.  The 

run-time optimizations presented in this thesis are independent of the optimizations 

performed at compile time, and can therefore be applied to any code developed for the 

EPIC architecture regardless of the optimization level performed at compile time.   

Predicate profiling and prediction is a concept similar to branch profiling and 

prediction.  Because IA-64 compilers often choose predication over branches, predicting 

the value of predicates can allow instructions to be scheduled in an effective manner.  

False predicate path collapsing is a concept that focuses on the weaknesses 

inherent in a predicated architecture, such as IA-64.  This optimization looks ahead in the 

executing code and locates all instructions that are dependent on a predicate that has 

already been deemed false.  These instructions are squashed from the instruction path and 

are never issued to the function units.  While reducing the code size, this scheme 

potentially reduces power. 

Dynamic rescheduling improves the scalability of the IA-64 architecture by 

providing the functionality to reschedule and reoptimize an executable.  This 
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functionality is necessary for improved performance on subsequent processors, as the 

processor may feature a different number or type of function units or pipeline structure. 

Predicate promotion is an idea that allows instructions to break instruction group 

dependencies.  This allows rescheduling to be performed between instruction groups, 

such that an instruction contained within one instruction group can be promoted to a 

previous instruction group and fill in any no-op slots available.  Predicate promotion is 

performed using a new double predication concept, which will later be discussed in 

detail. 

Finally, dynamic instruction hint adjustment builds upon the fact that IA-64 

allows path-predictions to be hard coded into a branch instruction at compile time.  

Because such branch predictions are not based on run time behavior, a method for 

changing such predictions based on actual behavior should be incorporated. 

Each of these optimizations will be discussed in detail in the following 

subsections. 

5.2.1 Dynamic If-Conversion 

If-conversion replaces a branch and its control dependent paths with guarded (or 

predicated) execution [3], [38].  Rather than evaluating a branch condition and 

conditionally executing only one control dependent path, both paths are executed and 

predicates control which results are used.  It is a means for converting control 

dependences into data dependences. 

Much of the current research involving if-conversion is based on the work done at 

Hewlett-Packard Laboratories [38].  A basic if-conversion algorithm is presented, called 

the RK algorithm.  The R function specifies which instructions should be based on the 



 75

same predicate value, while the K function indicates the conditions under which a 

predicate should be set to true. 

BEFORE:     AFTER: 
if (cond) Branch L1   p1, p2’ = cond 
 r2 = MEM[A]    r2 = MEM[A] <p2> 
 r1 = r2 + 1    r1 = r2 + 1 <p2>   
 r0 = MEM[r1]    r0 = MEM[r1] <p2> 
L1 : r9 = r3 + r4   L1 : r9 = r3 + r4  

 
Figure 5.7 – If-Conversion Example 

If-conversion avoids the penalty incurred when a branch is otherwise 

mispredicted.  It is not a good idea to if-convert all branches, however.  In certain 

instances, it is better to branch over a large set of instructions rather than execute all of 

them.  If-conversion works best when attempts are made to reach a balance between 

control flow and predication [5].  Yet a perfect balance is not attainable at static compile 

time.  The disadvantage is that if-conversion is performed at static compile time when 

little information is known about the behavior of a particular branch.   

Mahlke et al. [35] introduced compiler support for predicated execution using the 

hyperblock.  The hyperblock is used to increase the scheduling scope.  This is 

accomplished by allowing speculative execution of predicated instructions.  In addition, 

basic blocks based can be selectively included based on frequency and size.  Mahlke then 

studied the impact of predicated execution on branch prediction and discovered that 56% 

of dynamic branch mispredictions are eliminated with predication support [34].  Our 

work may be viewed as an extension of the work done by Mahlke into the dynamic 

domain. 

Aside from Mahlke, several other researchers have delved into if-conversion.  

One example is the work of Klauser et al [29].  They describe a method for dynamically 

introducing predication to architectures that do not already support it.  While their main 



 76

objective was to provide hardware support for the dynamic introduction of predication 

into programs, our main goal is to use software to enhance performance on an ISA that 

already supports predication. 

Dynamic if-conversion is the runtime equivalent of static if-conversion.  It can be 

used to if-convert branches that are performing poorly during a particular run.  It can also 

be used to ensure that if-conversion is performed at all, as some binaries may not have 

been statically compiled with if-conversion. 

The decision between branching and predication should take into account (1) 

branch misprediction penalty (2) misprediction rate (3) fetch/execution overhead for 

otherwise correctly predicted branches.  While the misprediction penalty may be known 

at compile time, such a penalty may change over time due to processor upgrades.  It can 

be claimed that misprediction rate can never be accurately determined before runtime.  

While branch profile information from previous executions may be available, there is no 

guarantee that such information is still relevant.   

Simply predicating all paths of execution is certainly not the best approach when 

many of the paths in question have a very high likelihood of not requiring execution.  In 

fact, predication is the best approach only if both of the following assumptions are true:  

(1) each path in the original branch contains a small5 number of instructions, and (2) each 

path has a relatively equal chance of being executed.  In other words, it is only 

worthwhile to predicate instructions if it is cheaper to execute all paths than to branch 

over the untaken path (and risk a misprediction). 
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if (x) Path A 
else Path B 

 
LA + LB ≤ LA*PA + LB*PB + LBr 

 
LA = Latency of Path A 
LB = Latency of Path B 

PA = Probability of Path A 
PB = Probability of Path B 
LBr = Latency of a Branch 

Figure 5.8 – A Predication Algorithm 

Figure 5.8 introduces an equation for deciding whether or not to predicate 

instructions.  This algorithm states that predication is the recommended method of 

execution if the latency of executing both paths is less than the latency of executing one 

path plus a branch instruction.  It is important to include the corresponding potential 

pipeline stalls due to misprediction into the latency of the branch instruction.  Figure 5.9 

is a generalized version of Figure 5.8 that can be applicable to multiple path execution 

decisions, such as a case statement. 

 

Σ Li   ≤  Σ (( Li + LiBr ) * Pi ) 

Figure 5.9 – A General Predication Algorithm 

 

As IA-64 processors evolve, the predication vs. branching calculations may 

change.  Reducing the latency of certain operations may result in branches that should 

now be converted to predicated instructions for good performance, or vice versa.  

Reevaluation of predication should occur with each new implementation.  Dynamic 

optimization effectively provides this flexibility. 

                                                                                                                                            
5 In this case, small is defined as the number of penalty cycles incurred for a taken branch.  If the number of 
cycles spent executing predicated instructions exceeds the penalty cycles incurred for taking the branch, it 
is not worthwhile to predicate the instructions. 
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The Dynamic If-Conversion Adjustment Algorithm.  Deciding whether or not to 

convert a branch to a set of predicates at runtime is a matter of comparing the average 

latency of either option.   

First of all, the branch must be a forward branch, that is, the target address must 

be greater than the branch address.  This restriction is put in place because backward 

loops typically do not benefit from branch to predicate conversion.  Not only are loops 

highly predictable, but they always require a branch before the epilog.  This branch 

cannot be converted to predication.  In the case of loop unrolling, the unrolled portions of 

a loop that end up benefiting from branch conversion become forward branches in the 

unrolling process.  

The second requirement is that a candidate branch must be on a hot path.  The 

cost of converting a branch to predicated code is typically amortized over the subsequent 

uses of the section of code.  Therefore, time and effort should not be wasted on a branch 

that is not likely to be encountered frequently.   

PMISS ∗ LMISS  ≥  PHIT ∗ LHIT ∗ (1+error) 
 
PMISS = odds of mispredicting branch  LMISS = misprediction penalty 
PHIT  = odds of correctly predicting branch LHIT = cycles to execute predicated instructions 
 

Figure 5.10 – Dynamic If-Conversion Algorithm 

Figure 5.10 describes the dynamic forward if-conversion (branch-to-predicate) 

adjustment decision.  The left side of the equation estimates the average penalty for 

leaving the branch as is.  The right side estimates the overall cost of removing the branch 

and predicating the following set of instructions.  The error value mentioned in the right 

side of the equation compensates for the error involved in determining the branch 

misprediction rate.  Since only a sample of the misprediction rate has been gathered when 
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Figure 5.10 is evaluated, the error term compensates for the error with a 99% confidence 

interval. 

Branches over very large sections of code will typically not be considered for 

forward if-conversion because the cost of executing all of the predicated instructions on 

the off path far outweighs the benefits of removing the branch misprediction penalty.  In 

the case of IA-64, where the branch mispredictions penalty is 10 cycles [23], most of the 

converted branches will have a target address that is within 10 cycles of the branch 

instruction itself.  Higher distances are permitted in the case of unusually high 

misprediction rates.  The maximum value of the allowable branch distance (target address 

– branch address) is roughly the misprediction penalty in cycles multiplied by the 

misprediction rate multiplied by the instruction size as shown in Figure 5.11.  

  
AT – AB > 0 

AT – AB  <  LMISS ∗ PMISS ∗ SINSTR 

 

AT = target address AB = branch address 
LMISS = miss penalty PMISS = miss rate SINSTR = instruction size 

Figure 5.11 – Maximum Allowable Branch Distance 

 
The basic concept is that the latency of a few predicated instructions may be much 

smaller than the latency of a potential branch misprediction.  And if a branch 

misprediction is likely to occur, it is better to convert that branch to predicated 

instructions.  The potential for a branch misprediction is then eliminated and, often, the 

predicated instructions can be scheduled into the holes (NOPs) of the existing schedule.   

Dynamic If-Conversion Results.  The effectiveness of the dynamic branch 

adjustment algorithm was determined by comparing simulated run times on the 

SPECint95 benchmarks on an IA-64 processor employing a Yeh-Patt PAS/Gshare Hybrid 
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branch predictor.  Although the actual Itanium branch predictor has not been announced 

as of this writing, the Yeh-Patt PAS/Gshare Hybrid branch predictor is one of the most 

effective predictors available to date. 

Figure 5.12 – Speedup from Applying the Dynamic If-Conversion Algorithm 

Figure 5.13 – Number of Branches Converted to Predicates  
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Figure 5.12 and Figure 5.13 show the speedup of applying dynamic if-conversion 

and the actual number of static branches converted to predicates for the SPECint95 

benchmarks.  There was a great deal of variance in the number of branches converted 

(from 1 to 215) and the corresponding speedup (from 0.16% to 14.7%), yet no slowdown 

was detected.  On average, 46 branches were converted to predicates for a speedup of 

2.5%.  Since 95% of branches are predicted correctly using the Yeh-Patt/Gshare hybrid 

branch predictor, this algorithm works to improve the 5% of mispredicted branches. 
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Figure 5.14 – Percent of Branch Mispredictions Eliminated using Dynamic If-
Conversion 

Figure 5.14 shows that on average, 25% percent of branch mispredictions are 

eliminated when the dynamic if-conversion algorithm is in use.  From these results, the 

dynamic branch adjustment algorithm complements the branch predictor, effectively 

eliminating much of the 10-cycle branch misprediction penalty in Itanium. 
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5.2.2 Dynamic Reverse If-Conversion 

Dynamic if-conversion predicates some branches that were not predicated by the 

static compiler; the opposite scenario could also be true.  The compiler may have 

converted certain basic blocks to predicated regions yet the decision may be more valid 

for some runs than others.  The predicates may turn out to be quite biased for a given run.  

In this instance, it would be better if the predicated region was converted back into a 

branch. 

Dynamic predicate-to-branch conversion, or dynamic reverse if-conversion, 

converts predicated regions back into control-flow regions at runtime.  The idea is that 

the predicates guarding the instructions evaluate true so rarely that it would be better to 

branch over the instructions rather than to predicate them. 

The Dynamic Reverse If-Conversion Algorithm.  The algorithm for dynamically 

converting predicates to branches is shown below.  It is very similar to the forward if-

conversion algorithm in that it weighs the cost of each option – leaving the instructions as 

predicated instructions or converting them to branches. 

 

PPRED’ ∗ LPRED  ≥  PMISS ∗ LMISS 

 
PPRED’ = odds of false predicate   LPRED  = number of predicated cycles 
PMISS = odds of mispredict   LMISS = misprediction penalty 

 

Figure 5.15 – The Dynamic Reverse If-Conversion Algorithm 

 

The left side of the equation calculates the penalty for leaving the instructions as a 

set of predicated instructions, while the right side predicts the penalty for converting the 
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predicates to a branch.  The odds of misprediction are not known for a set of predicates 

because the branch predictor is not used for predicated instructions.  Therefore, the 

average misprediction rate for the current branch predictor is used. 

Dynamic Reverse If-Conversion Results.  Figure 5.16 and Figure 5.17 show the 

speedup of the dynamic reverse if-conversion algorithm for SPECint95 and the number 

of predicate traces converted to branches for each benchmark, respectfully.  The graphs 

show an average speedup of 5% for converting an average of 27 predicate traces back 

into branches.  The speedup in Figure 5.16 results from removing relatively long 

sequences of instructions that had been guarded by a typically-false predicate.  Rather 

than endure the performance penalty of continually executing instructions predicated on a 

false predicate, the predication was converted to control flow, and a branch was placed 

before the instructions. 
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Figure 5.16 – Speedup Resulting from Dynamic Reverse-If-Conversion  
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Figure 5.17  – Actual Number of Predicate Traces Converted to Branches 

  
Implementation Details.  Because the dynamic if-converison algorithms are 

lightweight, they can be easily implemented in a modern dynamic optimization system 

with low overhead.  Since many dynamic optimizers already perform some sort of hot-

path detection, we can be assured that time is not be wasted performing optimizations on 

rarely executed instructions. 

While the algorithms require some sort of profiling structure, it is not limited to a 

pure hardware or software solution.  For example, Itanium provides built-in performance 

monitors [24] and Dynamo uses software structures such the branch and trace counters 

[6].  Dynamo already associates a software counter with many branches and these 

counters could also be leveraged to determine candidate branches for predicate 

conversion.  In addition, Dynamo also maintains a fragment cache containing recently 

optimized fragments (executable traces).   
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Furthermore, incorporating the dynamic if-conversion algorithms can improve the 

performance of other algorithms already in place.  For example, when combining 

dynamic if-conversion with aggressive dynamic rescheduling, the performance can 

potentially be better than additive.  Dynamic if-conversion creates many more 

optimization opportunities for rescheduling because there is much more flexibility in 

scheduling predicated instructions than control-flow sequences. This, combined with the 

fact that the algorithms are not tied to any particular implementation, make the dynamic 

algorithms an effective option for any system. 

5.2.3 Dynamic Rescheduling for Scalability 

Superscalar processors often supports out-of-order execution, i.e. dynamic 

scheduling.  In the EPIC architecture, all scheduling is performed at compile time.  The 

compiler must have knowledge about the number and type of function units in advance in 

order to schedule instructions correctly.  What happens when another EPIC processor is 

released that contains more and/or differently configured function units than its 

predecessor?  All code must be recompiled to utilize the additional function units; 

otherwise the new units will lie idle.  How can an ISA such as IA-64 survive processor 

upgrades?  A process known as dynamic rescheduling [10] could be the answer. 

Dynamic rescheduling is intended to be a one-time program overhaul, where 

instructions are broken down into instruction groups and instruction bundles are reformed 

to reflect the new hardware.  Dynamic rescheduling need only be performed once for 

each new processor encountered. 
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Figure 5.18 shows the dynamic rescheduler converting an executable optimized 

for the first Itanium chip into an executable optimized for the next-generation Itanium 

chip.  

 
 
 
   Optimized for execution     Optimized for execution 
    on Itanium chip      on Itanium-II chip 

Figure 5.18 – Dynamic Rescheduling 

 

While it may be possible to do a limited amount of rescheduling online, 

performing an entire program overhaul may be best left as an offline process.  If 

performed offline, a greater amount of optimization can be performed including 

heavyweight optimizations, such as register reallocation, without concern for the time it 

takes to perform such optimizations. 

Another use for dynamic rescheduling is as an optimization tool when a profile 

shift [40] or phased behavior [41] is detected.  This form of dynamic rescheduling is 

necessarily an online process that occurs each time a substantial profile drift is detected.  

Several of the dynamic optimizations presented in the next subsections can be quite 

useful for an online version of dynamic rescheduling. 

5.2.4 Predicate Promotion with Double Predication 

Currently, stop bits indicate a dependence boundary that cannot be broken in the 

IA-64 instruction sequence.  The stop bit signifies a synchronization point, or instruction 

group boundary, where all instruction preceding the stop bit must be executed before 

moving on to any other instructions.  Reordering instructions within an instruction group 

a.out Dynamic rescheduler a.out 



 87

is rather straightforward, granted the templates for instruction bundles are followed.  

Since no dependencies or hazards are allowed within a single instruction group, the order 

of instructions can be altered as much as the templates allow.  Rescheduling only within 

instruction groups is too restrictive, however.  An algorithm for breaking the instruction 

group dependence boundary could be quite useful for extending dynamic rescheduling. 

Predicate promotion is one method for breaking the instruction group boundary.  

In Figure 5.19, the instructions following the assignment of r1 cannot be promoted 

above the instruction group boundary because of a possible dependence on r1.  It may be 

the case, however, that p3 turns out to be false, and no dependency exists.  Using an 

extra predicate, p7 – evaluated as p5 && !p3 – the instruction can be promoted above 

the instruction group boundary.  It can then fill in a no-op slot in a previous instruction 

group.  This concept is known as double predication, and it allows instructions to be 

promoted above instructions that possibly have a dependency. Of course, this promotion 

is only useful if there are NOP slots to be filled in a previous instruction group. 

 
 (p3)  add r1 = r2, r3;; 

… 
(p5)  add r8 = r1, r2 

 
Figure 5.19 – IA-64 Instructions With an Instruction Group Boundary 

 
cmp.and p7, p8 = p3, p5 
(p7) add r8 = r1, r2 
(p3) add r1 = r2, r3;; 
(p8) add r8 = r1, r2 

 
Figure 5.20 – Breaking the IA-64 Instruction Group Boundary 

Figure 5.20 demonstrates predicate promotion with double predication.  In the 

case that there is not a RAW hazard with r1, the latency of the following add instruction 
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is hidden by promoting the instruction into a NOP slot of a preceding instruction group.  

While there is a one-instruction overhead (the cmp instruction), this instruction can 

typically fit in a nearby NOP slot in the schedule. 

5.2.5 False Predicate Path Collapse 

While converting branches to predicated instructions reduces pipeline bubbles, it 

also means that many instructions are executed that are not on the taken path.  Because 

all potential paths through an executable must be scheduled at static compile time, a great 

deal of the scheduled code is unnecessarily executed but not committed due to 

dependence on a false predicate.  Such cycles could be better spent executing real 

instructions. 

The results of predicates are not known at static compile time.  They are, 

however, known at run time.  It is at run time that this knowledge can be very useful.  

The concept of false predicate path collapse refers to the immediate, albeit temporary, 

removal of all instructions whose predicate evaluates false.  Removing unnecessary 

instructions from the scheduled instruction stream will result in a better instruction 

sequence being issued to the processor. 

 
(p4) add r1 = r2,r3   (p5) exit fragment 
(p4) add r1 = r1,r4   (p4) add r1 = r2,r3 
(p5) mov r2, r3   Å   (p4) add r1 = r1, r4 
(p5) add r2=r3,r1 
(p5) sub r2=r2,r1 
(p5) br r1 
 

Figure 5.21 – An Example of False Predicate Path Collapse 

In the case of a cached supply of optimized instructions, false predicate path 

collapse can be applied and instructions based on a false predicate can be removed from 
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the cached set of instructions.  Any corresponding change of the predicate value would 

then invalidate the cached instructions associated with that predicate (see Figure 5.21).  

This concept differs from reverse if-conversion in that rather than inserting a branch over 

the set of instructions, the instructions are actually removed from the cached instruction 

stream. 

5.2.6 Predicate Profiling and Prediction 

At static compile time, no information is known about the typical behavior of 

instruction predicates.  Currently, all IA-64 instructions are scheduled with no knowledge 

of predicate behavior.  Regardless of how many times an IA-64 instruction sequence has 

been executed, no changes are made to the original schedule to reflect the behavioral 

pattern of predicates or branches. 

Maintaining profile information for predicates could aid in many ways, including 

better scheduling techniques that could in turn be used with false predicate path collapse.   

If instructions that are dependent on predicates that are frequently false are moved to the 

end of an instruction group, they could be easily squashed from the instruction stream 

with no delays in execution time. 

 

 

 

 

 

 

Figure 5.22 – Predicate Profiling Mechanism 
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Furthermore, consider a sequence of instructions that are all dependent on a 

predicate that is evaluated as false 99% of the time.  It would be more effective to 

speculatively remove these instructions from the instruction stream and provide a 

recovery mechanism for the 1% of the time that the instructions actually require 

execution. 

A simple software profile table can be built containing information about the 

predicates that are used during a particular run as shown in Figure 5.22.  Counters 

associated with the predicates can maintain information regarding the likelihood of the 

predicate evaluating to a certain value.  Since the possible values are either true or false, 

the process of determining the likelihood of evaluation to one of the values is rather 

straightforward.  A simple two-bit saturating counter is a lightweight method for 

determining information about the behavior of predicates that can therefore be used in 

dynamic rescheduling. 

5.2.7 Dynamic Instruction Hint Adjustment 

Branches are hard coded at compile time with branch extensions (called 

completers) that specify the static predicted outcome of the branch.  Table 5.1 shows the 

allowed completers. 

It is clear that a misjudgment at static compile time would result in suboptimal 

branch performance on every execution.  Ideally, feedback from a program monitor 

would detect and permanently correct such mispredictions within the code.  Yet this is 

not currently implemented. 
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Table 5.1 – IA-64 Branch Instruction Completers 

Branch Completer Branch Hint 
Spnt Static Predicted Not Taken 
Sptk Static Predicted Taken 
Dpnt Dynamic Predicted Not Taken 
Dptk Dynamic Predicted Taken 

 
Such an implementation would require minimal effort considering the monitoring 

features that are already incorporated into the Itanium processor.  The Itanium processor 

supports feedback-directed optimization by including special features such as monitoring 

registers in hardware.  These low-overhead resources need only be tapped by a dynamic 

optimization system in order to produce the necessary means to support optimizations 

such as dynamic branch hint adjustment. 
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Chapter 6 Conclusions & Future Work 

Given the compile-once-run-anytime nature of modern software distributions, 

software cannot be recompiled to achieve better performance on the latest processor.  

Dynamic optimization steps in and allows software to be reoptimized at runtime to 

perform well on any processor within an ISA.   Dynamic optimization also provides a 

level of user-customized optimization not possible with traditional compilation models.  

In this thesis, current approaches dynamic optimization, compilation and 

translation infrastructures are surveyed.  The strengths and weaknesses of each model are 

studied to propose an effective infrastructure for dynamic optimization.  The Dynamo 

dynamic optimizer from Hewlett-Packard Laboratories is recommended as a base model 

on which to build DO, a combination online/offline optimizer.  The DO extensions 

include optional compiler-inserted annotations for reduced runtime optimization, an 

offline optimizer that is capable of performing heavyweight optimizations such as 

instruction rescheduling, and a mechanism for detecting profile shifts and recording 

information about optimization bailout.  The DO infrastructure may be implemented in 

both the Linux and Windows environments in order to form a framework for studying 

runtime and post-runtime dynamic optimization algorithms. 

Finally, two dynamic optimization algorithms are developed and evaluated in 

detail: dynamic if-conversion and dynamic reverse if-conversion.  Determining an 

optimal means for tracking the misprediction rate of a branch and recognizing the need 

for dynamic if-conversion warranted a study into the matter.  As it turns out, if the warm-

up period for a branch (defined as the time it takes for the branch misprediction rate to 
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settle to a value within 1-10% of the previous value) is ignored, the error of our sample 

misprediction rates drops from 7% to 4% for a 25-event sample.  For larger sample sizes, 

the error drops below 2%.  The accuracy of the sample misprediction rates is important 

because the rates form the basis of our dynamic if-conversion algorithms. 

Dynamic if-conversion and dynamic reverse if-conversion was then introduced as 

a set of algorithms that take into account actual branch and predicate behavior to 

calculate the trade-offs of if-conversion at a particular runtime instance.  The algorithms 

are lightweight – they can be implemented with minimal impact on system performance, 

and they are universal – they can be implemented in any dynamic optimization system 

available without the need for specialized hardware.  By simulating the algorithms on an 

EPIC-style machine employing the latest branch prediction scheme, speedup values of up 

to 14.7% were observed. 

Various additional dynamic optimization algorithms were then presented 

including predicate profiling and prediction, dynamic rescheduling, predicate promotion, 

and dynamic instruction hint adjustment. 

The specific optimizations presented in this thesis are useful in the domain of 

dynamic optimizations for the IA-64 architecture.  Incorporating these algorithms into an 

environment for constant feedback-directed optimization of IA-64 executables could 

result in a major performance boost, while opening the doors for the future performance 

scalability of the EPIC architecture. 

Furthermore, the release of a dynamic optimization infrastructure into the 

research world can ease the effort involved in studying and testing future algorithms 
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developed worldwide.  Dynamic optimization has a clear future that can only be 

enhanced by further research. 

Dynamic optimization is a relatively new research area.  Several researchers have 

mapped out the future of dynamic optimization [41], [28], stressing problems that must 

be solved for dynamic optimization to be widely used.  Future work is described in this 

context.   

Build the Online/Offline Dynamic Optimizer.  While many research groups have 

chosen to build online dynamic optimizers, few have built offline optimizers and none 

have built a combination online/offline dynamic optimizer.  Online/offline optimization 

may be very effective if the offline optimizer uses data gathered from the online 

optimizer.  The DO proposal presented in 0 is quite feasible for implementation as part of 

a Ph.D. thesis.  While undertaking such a large project is challenging, having the 

infrastructure available to study the synergy between online and offline optimizations 

could pay off in the long run.  In addition, releasing this tool to the research domain could 

then propagate the interest in studying dynamic optimization algorithms, as the 

methodology for testing would be greatly simplified. 

Processor Enhancements to Support Dynamic Optimization.  While most 

current dynamic optimization systems are completely software based, it is likely that 

microprocessor designers would be willing to provide built-in hardware support to aid in 

dynamic optimization.  The form of support that could be provided is an open research 

area.  A cost-benefit analysis of hardware support for dynamic optimization is warranted. 

Optional Dynamic Translation from IA-32.  The ability to reoptimize 

executables to perform better for each iteration of EPIC chips is a powerful tool.  This 
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ability would be extremely useful for converting x86 executables to an equivalent EPIC 

executable, optimized for the processor on which it would be run. 

While one goal of the IA-64 architecture is complete backward-compatibility with 

the x86 architecture (also referred to as IA-32), x86 instructions executing on an IA-64 

processor may run much slower than a natively compiled binary.  Therefore a permanent 

conversion and rescheduling of x86 instructions for an IA-64 processor would be very 

useful.  This idea is worth exploring in further detail in the future. 
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