
ABSTRACT

IYER, BALAJI VISWANATHAN. Length Adaptive Processors: A Solution for the
Energy/Performance Dilemma in Embedded Systems. (Under the direction of Dr. Thomas M.
Conte).

Embedded-handheld devices are the predominant computing platform today. These

devices are required to perform complex tasks yet run on batteries. Some architects use ASIC

to combat this energy-performance dilemma. Even though they are efficient in solving this

problem, an ASIC can cause code-compatibility problems for the future generations. Thus, it

is necessary for a general purpose solution. Furthermore, no single processor configuration

provides the best energy-performance solution over a diverse set of applications or even

throughout the life of a single application. As a result, the processor needs to be adaptable to

the specific workload behavior. Code-generation and code-compatibility are the biggest

challenges in such adaptable processors.

At the same time, embedded systems have fixed energy source such as a 1-Volt

battery. Thus, the energy consumption of these devices must be predicted with utmost

accuracy. A gross miscalculation can cause the system to be cumbersome for the user.

 In this work, we provide a new paradigm of embedded processors called Dynamic

Length-Adaptive Processors that have the flexibility of a general purpose processor with the

specialization of an ASIC. We create such a processor called Clustered Length-Adaptive

Word Processor (CLAW) that is able to dynamically modify its issue width with one VLIW

instruction overhead. This processor is designed in Verilog, synthesized, DRC-checked, and

placed and routed. Its energy and performance values are reported using industrial-strength

transistor-level analysis tools to dispel several myths that were thought to be dominating

factors in embedded systems.

To compile benchmarks for the CLAW processor, we provide the necessary software

tools that help produce optimized code for performance improvement and energy reduction,

and discuss some of the code-generation procedures and challenges.

Second, we try and understand the code-generator patterns of the compiler by

sampling a representative application and design an ISA opcode-configuration that helps

minimize the energy necessary to decode the instructions with no performance-loss. We

discover that having a well designed opcode-configuration, not only reduces energy in the

decoder by also other units such as the fetch and exception units. Moreover, the sizable

amount of energy reduction can be achieved in a diverse set of applications.

Next, we try to reduce the energy consumption and power-dissipation of register-read

and register-writes by using popular common-value register-sharing techniques that are used

to enhance performance. We provide a power-model for these structures based on the value

localities of the application. Finally, we perform a case-study using the IEEE 802.11n PHY

Transmitter and Decoder and identify its energy-hungry units. Then, we apply our techniques

and show that CLAW is a solution for such hybrid complex algorithms for providing high-

performance while reducing the total energy.

Length Adaptive Processors: A Solution for the Energy/Performance
Dilemma in Embedded Systems

by
Balaji Viswanathan Iyer

A dissertation submitted to the Graduate Faculty of
North Carolina State University

in partial fulfillment of the
requirements for the degree of

Doctor of Philosophy

Computer Engineering

Raleigh, North Carolina

2009

APPROVED BY:

_______________________________ ______________________________
Dr. Thomas M. Conte Dr. Eric Rotenberg
Committee Chair

________________________________ ______________________________
Dr. W. Rhett Davis Dr. S. Purushothaman Iyer

 ii

DEDICATION

To my loving parents (T. N. and Geetha Viswanathan)

 iii

BIOGRAPHY

Balaji was born in Thrissur, India on December 16, 1980. He is the only child of T. N. and

Geetha Viswanathan. He immigrated to USA at the age of 11 with his parents. Balaji

completed his Bachelors Degree in Computer Engineering at Purdue University, West

Lafayette, Indiana in 2002. Later on, he received his Masters in Electrical Engineering from

North Carolina A&T State University under the direction of Dr. John Kelly in 2003. After

his MS, Balaji pursued his Ph.D. in Computer Engineering under Dr. Thomas M. Conte.

 iv

ACKNOWLEDGMENTS

 I would like to thank my advisor, Dr. Thomas M. Conte for being a great research

advisor. His support, guidance and encouragement have helped me gain an enormous amount

of knowledge and accomplish my PhD. I will be forever thankful toward him. I would also

like to thank my committee members, Dr. Eric Rotenberg, Dr. Purush Iyer and Dr. W. Rhett

Davis for their advice and encouragement on this journey.

I would further like to thank Dr. Davis and his students, Ravi Jenkal, Ambrish Sule

and Hao Hua for helping me with EDA tools and scripts. I am forever thankful for their time

and assistance with helping me synthesize and simulate my processor and do power

measurements using NCSU Cadence and Synopsys tools. Further thanks go to Meeta Yadav,

Thorlindur Thorolfsson, Monther Aldwairi, Manav Shah, and Shobhit Kanujia for helping

me start the CLAW project. I would like to thank Chad Rosier and Liang Han for helping me

with the GCC compiler.

In addition, my friends at CESR and NCSU: Mark Dechene, Mawuya Alotoom, Niket

Choudhri, Aravindh Anantharaman, Ali El-Hajj Mahmood, Vimal Reddy, Ahmed Alzwawi,

George Patsilaras, Yuentao Peng, Salil Pant, Liang Han, Mazen Kharboutli, Siddhartha

Chabrra, Devesh Tiwari, J. Elliot Forbes, Hashem Hashemi, Zane Purvis, Tongtong Chen,

Hanyu Cui, Fei Gao, Fei Guo, Sabina Grover, Palomi Pal, Chungsoo Lim, Shaolin Peng,

Zentao Hu, Sibin Mohan, Radha Venkatagiri, etc., have helped me both academically and

kept me sane socially.

 v

I would also like to thank the present and former TINKER members: Shobhit

Kanujia, Saurabh Sharma, Jesse Beu, Paul Bryan, Chad Rosier, Jason Poovey, Milind

Nemlekar and Sajjid Reza who have supported me in my research and provided me quality

insights and helped me relax when things got unbearable. Additional thanks go to Jason for

helping me proof-read my thesis proposal and several of my papers.

This section will be incomplete if I did not acknowledge the people who have helped

me get up to this level. My sincere thanks go to Dr. John Kelly Jr. for providing me

encouragement to pursue a PhD and for being a great MS advisor. Similarly, thanks go to my

two high-school Mathematics teachers (Mr. Randy Zamin and Mr. Bruce Thornquist) and my

Chemistry teacher (Mr. Mayfield) who has helped me uncover my Math and Science abilities

and showed me the light toward this career path.

Mrs. Sandy Bronson has greatly helped me on the administrative side by making sure

my paperwork is turned on to the right person at the right time. Thank you very much Mrs.

Bronson!

Finally, my family has offered a great deal of support and encouragement in my life. I

want to individually thank my loving father (T. N. Viswanathan) and mother (Geetha

Viswanathan). Finally, I would like to acknowledge my loving fiancée Gayathri.

 vi

TABLE OF CONTENTS

LIST OF TABLES...viii

LIST OF FIGURES ...ix

Chapter 1 Motivation ...1

1.1 Related Work...3
1.1.1 Opcode-Optimization...4
1.1.2 Register-Sharing ..5
1.1.3 Application-Aware Processor Customization ...6
1.1.4 Next-PC Computation for Clustered Architectures13
1.1.5 Clustered Microarchitecture Scheduling...10

1.2 Dissertation Layout..14

Chapter 2 Experimental Framework...15

2.1 The CLAW Architecture..16
2.2 Top-Level Architecture..17

2.2.1 Fetch Unit. ...18
2.2.2 Decode (or Dispatch), Execution and Write Back Units18

2.3 Integrating Multiple Clusters ...20
2.3.1 Register-File Organization ...21

2.4 Multithreading Architecture...22
2.5 Compiler Support for CLAW...24

2.5.1 GCC toolchain for CLAW ...24
2.6 Benchmarks...24
2.7 Analysis Framework..26

Chapter 3 Instruction-width optimization ...29

3.1 Dynamic Issue-Width Scalability...30
3.2 Pipeline Clock-Gating..31
3.3 Next PC Calculation ..34
3.4 Instruction Scheduling and Shutoff Insertion..35
3.5 Results...40

3.5.1 Base Results...40
3.5.2 Dynamic Length-Adaptivity...47

3.6 Conclusion...62

Chapter 4 Opcode Optimization ...64

4.1 Popular ISA Encoding in Existing Embedded Systems ..66
4.2 Methodology ...68

 vii

4.3 Results...71
4.4 Multi-cluster CLAW Configurations..80
4.5 Conclusion...83

Chapter 5 Register-Sharing ..84

5.1 Preliminary Analysis..85
5.2 Register Sharing Techniques..85
5.3 Experiments and Terminology ...88
5.4 Results...89
5.5 Conclusion...99

Chapter 6 A Case study on IEEE 802.11n PHY..100

6.1 Motivation ...100
6.2 IEEE 802.11n Architecture ..101

6.2.1 FEC Transmitter and Decoder..103
6.2.2 Interleaving and De-interleaving ..104
6.2.3 OFDM Symbol Mapping ...105
6.2.4 MIMO Encoding and Decoding ...106
6.2.5 Fast Fourier Transform ..108

6.3 Implementation..108
6.4 Results...110

6.4.1 Instruction Distribution ..110
6.4.2 Parallelism ...112
6.4.3 Energy Consumption..113

6.5 Conclusion...116

Chapter 7 Conclusion and Future-Work ...118

References ..121

 viii

LIST OF TABLES

Table 2-1: Register Functions..22
Table 2-2: Toolchain Components...24
Table 2-3: EEMBC Benchmarks Description ..26
Table 4-1: Original CLAW Encoding..65
Table 4-2: Encoded to Reduce Hamming Distance ..65
Table 4-3: Illustration of Distance Saved using Source Register Switching..........................71
Table 4-4: Percentage Dynamic Energy Reduction..73
Table 4-5: Percentage Static Energy Reduction ...74
Table 4-6: Different Load Instruction Types in CLAW ...78
Table 4-7: Percentage Dynamic Energy Reduction (2 Cluster CLAW)80
Table 4-8: Percentage Static Energy Reduction (2 Cluster CLAW)81
Table 4-9: Percentage Dynamic Energy Reduction (4-Cluster CLAW)................................82
Table 4-10: Percentage Static Energy Reduction (4-Cluster CLAW)82
Table 5-1: Zero and Duplicate writes for different register file configurations85
Table 6-1: Three Transmission Scenarios Example ...108
Table 6-2: Parallelism Parameters ...112

 ix

LIST OF FIGURES

Figure 1-1: OptimoDE, Tensilica, Lx and CLAW Design Flow...8
Figure 1-2: Steps for adding new Application into OptimoDE, Tensilica, Lx and CLAW......8
Figure 2-1: Power Delay Product of Some-Popular Embedded Processors17
Figure 2-2: CLAW Top-level Architecture..18
Figure 2-3: Clustered CLAW Block Diagram..21
Figure 2-4: CLAW Instruction Granularities ...21
Figure 2-5: CLAW Multithreading Flow-Diagram ..23
Figure 2-6: EEMBC Benchmark Structure ..25
Figure 2-7: Power Analysis Steps..27
Figure 2-8: Running an Executable on CLAW ..28
Figure 3-1: Shutoff Instruction Format ..31
Figure 3-2: Overall Clock Gating Circuit Block Diagram..32
Figure 3-3: Clock Gating Logic...32
Figure 3-4: Cascaded CLK Output ..33
Figure 3-5: Design-Flow of UAS Algorithm on GCC..36
Figure 3-6: Example of an Empty Cluster (marked in blue box) ..38
Figure 3-7: Cluster-Shutoff Algorithm ..39
Figure 3-8: Execution-time for 1-Cluster CLAW...41
Figure 3-9: Speedup of 2-Cluster CLAW over 1 Cluster Machine41
Figure 3-10: Speedup of 4 Cluster CLAW over 1 Cluster CLAW Machine42
Figure 3-11: Percentage of Copy Instructions in 2-Cluster CLAW Machine43
Figure 3-12: Percentage of Copy Instructions for 4-Cluster CLAW Machine.......................43
Figure 3-13: Dynamic and Static Energy or 1 Cluster CLAW..45
Figure 3-14: Dynamic Energy Values for a 2-Cluster CLAW Processor46
Figure 3-15: Dynamic Energy Values for a 4-Cluster CLAW Processor46
Figure 3-16: Static Energy Values for 2-Cluster CLAW Processor47
Figure 3-17: Static Energy Values for 4-Cluster CLAW Processor47
Figure 3-18: Dynamic Energy Distribution Function-Level Shutoff Insertion......................48
Figure 3-19: Static Energy Distribution Function-Level Shutoff Insertion49
Figure 3-20: Dynamic Energy Distribution BB-Level Shutoff Insertion50
Figure 3-21: Static Energy Distribution BB-Level Shutoff Insertion....................................51
Figure 3-22: WriteOut function from Puwmod01 ..52
Figure 3-23: Control Flow Graph of WriteOut...53
Figure 3-24: CFG using Treegions in WriteOut...54
Figure 3-25: CFG using Treegions for ZtableLookup in Ttsprk0155
Figure 3-26: Calculating Cluster Usage for Each Region...56
Figure 3-27: Shutoff Insertion at Treegion-level algorithm..57
Figure 3-28: Redundant Shutoff Removal Algorithm ..58

 x

Figure 3-29: Dynamic Energy Consumption for Region-Level Shutoff60
Figure 3-30: Static Energy Consumption with Region-level Shutoff....................................60
Figure 3-31: Dynamic Energy Consumption with BB-level Shutoff with Redundant Shutoff
Removal..61
Figure 3-32: Static Energy Consumption with BB-level Shutoff with Redundant Shutoff
Removal..62
Figure 4-1: Parallel Approach to Decode an OR instruction ..66
Figure 4-2: Serial Approach to Decode OR instruction..67
Figure 4-3: Opcode Optimization Algorithm ...69
Figure 4-4: Flow-Diagram of our Methodology...71
Figure 4-5: Base Energy Values for the Benchmarks...72
Figure 4-6: Dynamic EnergySavings in Each Unit of OSPF ..75
Figure 4-7: Dynamic Function-calls in Each Benchmark ...76
Figure 4-8: Number of Distinct Instruction Chains achieving 50% coverage78
Figure 5-1: Top-level block diagram of the map-table/map-vector.......................................86
Figure 5-2: Flow-Diagram for the Writeback Stage ...87
Figure 5-3: Flow-diagram of the Register-Read Stage ...87
Figure 5-4: Different Placements of Zero-Writes...89
Figure 5-5: Power Dissipation for Random Register-Write (Reg. File Size = 16).................90
Figure 5-6: Power Dissipation for Random Register-Write (Reg. File Size = 32)................90
Figure 5-7: Power Dissipation for random Register-Write (Reg. File Size = 64)91
Figure 5-8: Power Dissipation for random Register-Write (Reg. File Size = 128)92
Figure 5-9: Power Dissipation for random Register-Write (Reg. File Size = 256)92
Figure 5-10: Power Dissipation for Sequential Writes (Reg. File Size = 16)93
Figure 5-11: Power Dissipation for Sequential Writes (Reg. File Size = 32)94
Figure 5-12: Power Dissipation for Sequential Writes (Reg. File Size = 64)94
Figure 5-13: Power Dissipation for Sequential Writes (Reg. File Size = 128)95
Figure 5-14: Power Dissipation for Sequential Writes (Reg. File Size = 256)96
Figure 5-15: Power Dissipation for Seq-int writes (Reg. File Size = 16)96
Figure 5-16: Power Dissipation for Seq-int writes (Reg. File Size = 32)97
Figure 5-17: Power Dissipation for Seq-int writes (Reg. File Size = 64)97
Figure 5-18: Power Dissipation for Seq-int writes (Reg. File Size = 128)98
Figure 5-19: Power Dissipation for Seq-int writes (Reg. File Size = 256)98
Figure 6-1: IEEE 802.11N Transmitter..102
Figure 6-2: IEEE 802.11N Receiver ..103
Figure 6-3: Convolutional Transmitter [171] ...104
Figure 6-4: Block Interleaving [137] ...105
Figure 6-5: Alamouti Scheme (2 Transmit and 2 Receiver Antennas) [3]107
Figure 6-6: Dynamic Instruction Distribution of 802.11n Transmitter................................110
Figure 6-7: Dynamic Instruction Distribution of 802.11n Receiver....................................111
Figure 6-8: Static Energy Dissipation for 2 Cluster CLAW ...114
Figure 6-9: Dynamic Energy Dissipation for 2 Cluster CLAW..114
Figure 6-10: Static Energy for 4 Cluster CLAW..115

 xi

Figure 6-11: Dynamic Energy for 4 Cluster CLAW...116

 1

Chapter 1 Motivation

For the past decade portable handheld devices have gained significant popularity. These

embedded devices are now required to perform several complex tasks that were once only

attempted by high-performance systems [113] [147]. For example, a mobile-phone today

sends and receives voice, captures images and video, maintains a daily-planner, sends and

receives textual information, etc. Additionally, these devices must give high performance

while executing these applications [16] [56] [79] [113] . In order to be easily portable, they

must draw their power from a battery. Therefore, it is necessary for these embedded handheld

devices to give comparable performance with a high-performance system, yet consume

significantly less power and energy [56] [79] [113].

To tackle this problem, designers have discovered two broad solutions. If the architect is

aware of applications that are to be run on the system, then several processor optimizations

can be done such as inserting specialized units to perform a certain task faster (for example, a

unit that does discrete cosine transform for a image processing system), have specialized

instruction widths, etc. These processors are called Application-Specific Integrated Circuits

(ASIC). A well-designed ASIC can provide a significant performance boost while still

consuming a low amount of power. On the other hand, when a new application is introduced

into the system the ASIC must be re-designed, which can be prohibitively expensive and

time-consuming.

 2

In embedded systems, some applications are executed more frequently than others [147].

For example, in a music player such as iPod, the audio and video codec are executed more

frequently than the calendar application. Engineers can take a general purpose processor that

is able to execute a wide variety of application and tailor it for speeding up certain

algorithms. These processors can provide high-performance and still consume less-energy.

These tailored processors, unlike high-performance systems, are generally simpler and

require significant help from the compiler for scheduling, branch-prediction and so-forth

[16]. Sometimes, the availability of vast number of optimizing compilers, assemblers, etc. for

such architecture is limited [123]. Many embedded processor users are generally restricted to

a single compiler. By understanding the trends of this compiler in code-generation and

scheduling, one can optimize the appropriate processor units accordingly to greatly increase

performance and reduce power dissipation.

Even though such tailored processors seem to provide a flexible solution for embedded

systems, diverse characteristics among embedded applications and diversity within an

application make it impossible to select one processor configuration that is suitable for

providing optimal energy-performance solution.

Fisher, Faraboschi and Desoli in the year 1998 are the first researchers to understand this

concept and they tried to design a processor based on the application characteristics [48].

After a few years, three more processors emerged that have tried to find this optimal

configuration. They are Lx [46], OptimoDE [34] [175] and Tensilica Xtensa-7 [175]

 3

processors. All these processors provide a static solution for finding this optimal ratio. When

a new application is introduced the processor must be remanufactured to gain this optimum.

In this dissertation, we provide a dynamic approach to reach this energy-performance

optima. This work illustrates a bottom-up approach to design a processor that will give the

optimal energy-performance ratio by examining the compiler and the target application. We

try to uncover some of the limitations the compiler imposes on the processor and propose to

design (or modify) the processor accordingly.

The processor is designed such that the binaries compiled using this code-generator is

able to obtain the highest performance for the energy budget. The end result of this thesis is a

circuit-level processor and an optimizing-compiler “couple” that tries to minimize power and

energy consumed by the processor without any performance loss. The main areas focused in

this work are ISA encoding optimization, register-sharing based on value locality, dynamic

and static data-path modification, and a power-aware scheduling algorithm.

In this work, energy is used as a metric because it is directly proportional to battery life

and it is more dependent on the workload than the processor frequency. Similarly, when we

speak of performance, we mean the number of cycles the program takes to execute in the

processor.

1.1 Related Work

In this paper we discuss four different areas: opcode-optimization, register-sharing,

dynamic instruction-width modification and instruction-scheduling. Section 1.1.1 discusses

 4

the related work for opcode-optimization. Sections 1.1.2 and 1.1.3 discuss the related work

for register-sharing and instruction-width modification. The previous work in instruction-

scheduling algorithms and branch handling are explained in sections 1.1.4 and 1.1.5.

1.1.1 Opcode-Optimization

Tiwari, Malik and Wolfe in [148] and Tiwari, et al. in [149] describe ways to reduce

power by modifying the number of switching in software. They give a detailed description of

instruction level power reduction techniques for a specific set of applications. We extend this

idea to find some general power reduction schemes for a broad range of applications using

one application as a training set.

Kim and Kim in [75] and, Woo, Yoon and Kim in [155] describe a method for

reducing the Hamming distance between adjacent instructions. Unlike our work, they do not

mention the effects of their modifications on the power dissipation of the decoder or the

processor. They detail all of their work in switching activity, and neglect other metrics such

as power consumption or the wire-length of a processor component such as the instruction

decoder. Additionally, they do not analyze a single application or subset of applications,

rather they sample all applications that are run on the system to find the optimal encoding.

Varma et al. in [151] study the power reduction of switching in the register bus and the

bypass logic for the Intel XScale embedded processor. They indicate that switching in the

register port increased the instruction energy by 10%. Also, Haga et al. in [56] explore

dynamically assigning function units to reduce switching. They present a 26% power

reduction in the integer ALU.

 5

In [112] Pechanek, Larin and Conte present a technique for entropy based encoding of

the ISA. The primary focus of this work is variable size instructions which frequently occur

in DSP architecture. Kalambur and Irwin in [72] study ways to reduce data fetch energy by

adding an addressing mode for ALU instructions to access operands from memory.

1.1.2 Register-Sharing

Optimizing register-usage for improving performance has been studied for the past two

decades. However the problems concerning power and heat dissipation in processors became

a problem starting in the nineties. Zyuban and Kogge in [164] study the power dissipation of

an integer register-file. Their models express the power consumption of a register in terms of

the number of read-write ports and issue width. Similarly, Zhao and Ye in [161] also provide

models for finding power dissipation in register-file.

Hu and Martonosi in [62] find that most read and write operations occur within a few

cycles. They introduce a value aging buffer that saves recently-produced values so that the

instructions requiring these values need not access them from register-file. They received a

power reduction of 30% with less than a 5% performance loss.

Kim and Mudge in [76] observed that only 0.1% of the cycles fully utilize a 16-bit read

port. The aim of their work was to reduce the number of read ports, not the number of

registers. They used a delay-writeback queue, an operation prefetch buffer and request

queues. Their results showed a 22% reduction in energy per register access.

Gonzalez et al. in [55] explained ways to share partial values between registers inside a

register-file. They showed a 50% reduction in power consumption with 1.7% IPC loss.

 6

Ayala, Veidenbaum and Lopez-Vallejo in [8] proposed ways to statically find periods where

registers are not used and turn them off to reduce power. Using their method, they found a

46% total energy reduction in the entire MiBench benchmark suite.

Seznec, Toullec and Rouchecouste in [133] proposed that restricting certain function

units to write and read only a subset of registers (clustering the processor) can reduce the

access time by 33% and power by 50%. Jain et al. in [65] evaluates the register-file for an

ASIP. They use ARM7TDMI as a test processor. It is shown from their research that there

exists a high correlation between performance improvement and energy consumption. They

also showed that a slight increase in the number of registers gives a huge amount of power

reduction in ASIP (~50%).

Balakrishnan and Sohi in [10] discussed using a map-table for reducing physical

register pressure by sharing values such as ‘0’. Tran et al. in [150] proposed a way to mark

the reorder-buffer with one bit (this can be thought of as a bit-vector) to indicate if the

instruction’s result was a zero. Tran et al. also discusses using a map-table as a possibility.

These two papers are quoted extensively for value sharing inside the register-file to improve

performance. However, these papers do not mention the power implications of these

structures on the processor or the register file. We study their power effects and come up

with a power-model for these structures.

1.1.3 Application-Aware Processor Customization

The idea of customizing a general-purpose processor for an application was first

proposed by [48]. To our best knowledge, the only processors that provide flexibility and

 7

adaptability like CLAW are the Lx [46], Tensilica Xtensa LX2 [175] and the OptimoDE

processors [34]. Figure 1-1 shows the design process of Lx, OptimoDE, Tensilica and

CLAW (assuming we are designing the processor to target programs A and B). The only

major difference between OptimoDE and Tensilica is that OptimoDE allows the user to fully

customize the instructions, while Tensilica uses a standardized ISA [33].

Lx architects provide a framework that analyzes a benchmark (or a set of benchmarks)

and design a processor with appropriate issue-width, function-units, etc. to maximize the

processor performance using the appropriate energy budget. OptimoDE framework tries to

analyze the source-code and provide hints to the user regarding the optimal issue-width,

function-units, data-path sizes, etc. Standard function units are inserted by the tools, but

custom-units must be hand-generated.

The biggest drawback for Lx, Tensilica and OptimoDE is they are static approaches.

Let’s assume we are trying to add a new application (‘C’) into the processors designed in

Figure 1-1. As shown in Figure 1-2, the processors must be redesigned for optimal

functioning, which can be expensive and time-consuming. This problem is overcome in

CLAW by providing mechanisms to dynamically adapt issue-widths and function-unit sizes

during compile-time.

 8

PROGRAMS
{A, B}

PROFILE AND
EXTRACT

REVELANT
PARAMETERS

FUNCTION
UNIT

UTILIZATION.

DATA TYPE
INFORMATION

CREATE CUSTOM
PROCESSOR

(OPTIMODE X)

PROGRAMS
{A, B}.

PROFILE AND
EXTRACT

PARALLELISM
INFO

CAPTURE THE
ISSUE-WIDTH
NECESSARY

CREATE CUSTOM
PROCESSOR

(‘n’ ISSUE Lx)

PROGRAM A
PROFILE AND

EXTRACT
REVELANT

PARAMETERS

EMBED THE
PARAMETERS

INTO THE
EXECUTABLE

PROGRAM B
PROFILE AND

EXTRACT
REVELANT

PARAMETERS

EMBED THE
PARAMETERS

INTO THE
EXECUTABLE

THE HARDWARE
DYNAMICALLY
SCALES THE

ISSUE WIDTH AND
SHUTS OFF
UNWANTED

FUNCTION UNITS

OPTIMODE and
Tensilica

Lx

CLAW

Figure 1-1: OptimoDE, Tensilica, Lx and CLAW Design Flow

Figure 1-2: Steps for adding new Application into OptimoDE, Tensilica, Lx and CLAW

 9

To do the dynamic modification of issue width, the most successful method employed

by several high-performance configurable processors is gating the clock for the unused units

[61] [89] [97] [91] [118]. The granularity of a unit can be a specific gate [18], a function-unit

[9] [118] [61] [67], processor-stage [63] [91] [87] [89], or an entire cluster [97] [19]. Each of

the methodologies described can be beneficial, depending on the application. The key

question is at what part of the program must the gating occur so that optimal energy is

consumed with virtually no performance degradation? We provide the answer to this using

our CLAW software-framework.

In the past, several super-scalar researchers have studied this problem. In out-of-order

dynamic-scheduling processors, however, this problem is trivial because the processor has

direct control of the scheduling. Buyuktosunoglu, et al. [20] provides an adaptive issue queue

for reducing processor power. Albonesi [6] provides a methodology to dynamically shut off

units and processor issue-widths in super-scalar processors to save power. S. Rele et al. in

[119] have provided a mechanism to shutoff idle function-units in superscalar processors

using a profiling compiler. Unfortunately, dynamic-scheduling processors are not energy-

efficient for embedded systems. As per our calculations and comparisons with [165], for the

same transistor technology, the scheduling logic of a superscalar alone took more power than

an entire VLIW processor of the same issue-width.

Li and John [88] proposed a method to dynamically scale processor resources such as

the reorder-buffer, load-store queue and the instruction-window on a super-scalar processor.

They propose using specialized instructions inserted by the operating system. We incorporate

this idea into our design, however, we insert specialized instructions using a profiling

 10

compiler because many embedded systems may not have complex OS support, but a

compiler is almost always available.

1.1.4 Clustered Microarchitecture Scheduling

The processor mentioned in this dissertation is a statically-scheduled processor whose

instruction width can be modified with the feedback from the architect, the programmer and

the user during runtime or compile-time. The most efficient method to accomplish this, in

terms of energy and wire-scalability, is to combine several small-issue cores together to get the

desired width [60]. We accomplish this by combining multiple clusters together to form the

processor instruction-width. This section mainly presents the previous works encountered in

the field of cluster-scheduling for VLIW machines. The major work discussed are: the Bottom-

Up-Greedy algorithm in the Bulldog Compiler [43], Limited-Connectivity VLIW [24], Unified

Assign and Schedule [103] in the TINKER LEGO compiler, Combined Cluster Assignment,

Register Allocation and instruction Scheduling (CARS) algorithm implemented in the

Chameleon test-bed [71], and various cluster-scheduling algorithms for MultiVLIW by the

researchers at University of Polytechnic at Catalunya (UPC) [4] [5] [40] [130] [131] [158]. For

the rest of this paper, we collectively refer the work presented by UPC as MultiVLIW

scheduling.

One of the first works in scheduling for VLIW machines is the Bottom-Up-Greedy

(BUG) algorithm in the Bulldog Compiler by Ellis [43]. This algorithm was implemented by

Faraboschi, Desoli, and Fisher for a clustered architecture in [45]. BUG takes a data-

precedence graph (DPG) of a trace and recursively traverses it from the bottom to compute the

 11

function unit and operand availability of each instruction. Using this information, BUG assigns

the operations in a trace. After this, the list scheduler inserts communication operations into the

schedule wherever necessary.

Limited-connectivity VLIW (LC-VLIW) [24] focuses on partitioning code for a

clustered machine that does not have full-connectivity between all clusters. This approach uses

a multi-phase approach similar to [43]. The code is initially scheduled assuming the machine is

a fully connected clustered VLIW machine. The code is then compacted locally to minimize

the effect of inserted copy operations to the schedule.

Unified-Assign and Schedule (UAS) [103] unlike [24] or [43], integrates the cluster-

assignment step into the instruction scheduler. The advantage of assigning and scheduling in

the same phase is that the program’s control flow and data-flow information are available to

make efficient cluster-assignment decision. This reduces several redundant copy instructions.

The schedule of operations and the DPG of the list are passed into the scheduler (usually a list-

scheduler). Then the list is ordered based on a priority function. The inter-cluster buses are

considered to be machine resources and are used within the scheduler when necessary. UAS

claims to create a compact, efficient and nearly optimal schedule.

Combined cluster Assignment, Register allocation and instruction Scheduling (CARS)

algorithm [71] developed by Kailas, Ebcioglu and Agrawala tries to perform cluster-

assignment, instruction scheduling and register allocation in a single step. CARS takes a

dependence flow graph (DFG) with nodes representing operations and directed edges

representing data or control flow. The CARS algorithm, unlike UAS, considers registers as a

resource during cluster scheduling. Even though CARS is an advanced algorithm and seem to

 12

produce better results than UAS, we were unable to implement this algorithm because our

compiler framework does not allow performing register allocation in the same cycle as

instruction scheduling. Thus, we had to use UAS as our cluster scheduling algorithm of choice.

There have been several works produced by researchers in UPC regarding cluster

scheduling, that we collectively refer to as multiVLIW scheduling. The main difference

between multiVLIW scheduling and UAS, BUG, LC-VLIW and CARS is that its major

concentration is on cyclic code. Codina, Sanchez and Gonzalez in [40] present a methodology

to perform modulo scheduling and register-allocation in a single phase. Their technique, on

average, gave a 36% speedup on SPECfp95 benchmarks.

Sanchez and Gonzalez in [131] show that loop-unrolling and assigning the unrolled

loops to appropriate clusters in a single pass greatly reduces inter-cluster communication.

Using this method, they showed that a 4 issue clustered processor was 3.6 times faster (cycle-

time) than a unified architecture. Sanchez and Gonzalez in [130] presented a modulo-

scheduling scheme for the multiVLIW architecture. This work, unlike [131] presents a

distributed cache. The authors also reduced the amount of inter-cluster communication

compared to a base unified cache system.

Aleta, Codina, Sanchez and Gonzalez in [4] present ways to schedule loops in a

clustered processor by examining the control-flow and data-flow graphs. The authors claim

that this method helps them get a global view of the whole program, and thus they were able to

produce a schedule that was 23% faster than their base case on SPECfp95 benchmarks. Aleta,

Codina, Gonzalez and Kaeli in [5] take the same graph-based partition approach as in [4].

Unlike [4], the authors present heuristics to determine whether a part of the instructions can be

 13

replicated in different clusters to reduce additional inter-cluster communication. The authors,

on average, achieved 25% increase in IPC for a 4-cluster microarchitecture.

Finally, Zalamea, Llosa, Ayguade and Valero in [158] present a software-pipelining

technique that performs instruction scheduling with reduced register requirements, register

allocation, register-spilling and inter-cluster communication in a single step. They show that

this algorithm is very scalable with respect to the number of clusters, communication busses

and the communication latency.

To our best knowledge, none of these work or their successors have considered power

dissipation or energy consumption as a constraint. All of them concentrated solely on

performance (in terms of instruction-per-cycle). We believe that using a scheduling algorithm

for an embedded system that does not consider power dissipation or energy-consumption can

be prohibitively expensive in terms of battery life.

1.1.5 Next-PC Computation for Clustered Architectures

From our literature survey, this is one of the least discussed topics. Several

superscalar clustered architectures such as Balasubramonian in [11] [12], Parcerisa et al. in

[104] all advocate using a centralized scheme to handle branches.

We found only one source that performed an in-depth study on next-pc computation

for clustered VLIW architectures. Banerjia in [15] explains three ways to execute branches in

a clustered architecture. The first approach is to dedicate a cluster to execute only branch

operations. This cluster is called the branch cluster. The branch cluster is generally closer to

the I-Cache in order to reduce wire delays. The compiler must schedule all of the branches to

 14

the branch cluster. The maximum branch taken penalty in this system is only the inter-cluster

latency.

The second approach is to utilize a centralized branch-handler. When a branch is

executed, the branch arbitration logic must select from the appropriate result and broadcast

the value of next PC to all the clusters. The branch taken penalty for this approach can be the

sum of inter-cluster latency and the time taken to send an instruction from memory to

execute stage.

The third method is to replicate the branches and execute them in every cluster. This

duplication can be done by the compiler or at the hardware level by the branch repair logic.

This scheme achieves the same performance result as the branch cluster system. However,

the clusters have become more complicated since each of the clusters must have additional

components to execute the branches and do their normal computation. It can be argued that

the branch computation is not as complex as many other forms of computation.

1.2 Dissertation Layout
Remainder of this dissertation is organized as follows. Chapter 2 explains the

experimental framework along with the benchmark-set used in this work. This chapter also

gives a brief overview of the CLAW architecture. Chapter 3 explains our dynamic issue-width

modification methodology. In Chapter 4, we explain our low-energy opcode-optimization

method. Our register-sharing idea is outlined in Chapter 5. We perform a case-study of CLAW

on IEEE 802.11n physical layer algorithm and present our observations and results in Chapter

6. We conclude this thesis and mention some future directions for this work in Chapter 7.

 15

Chapter 2 Experimental Framework

Precise energy and power analysis is necessary for embedded systems due to their sole

reliability on batteries as an energy source. Underestimation of the required energy can make

the user require to change or recharge the batteries frequently. Overestimation can cause the

designer to put a larger battery, which can make the system larger or heavier. Either of these

scenarios can make the system unattractive and cumbersome to use.

 For precise power and energy analysis, it is necessary to use an accurate hardware-level

model for the processor. Previous research suggest that designing in hardware through

techniques such as layouts or HDL produces 14% better results than pure cycle-count studies

and 24% better results than pure cycle-time studies [37] [147]. For this work, we created a

new processor partially based on OpenRISC ISA, written in Verilog HDL, and modified it

into a scalable two-issue processor called Clustered Length Architecture Word processor

(CLAW). In addition, we added multi-threading support. A two-issue processor was chosen

because the applications we encountered had an IPC greater than one.

The OpenRISC processor instruction-set is very representative of several embedded

RISC architectures such as ARM [135], MIPS, Atmel [167], etc. To create executables to run

on our processor, we created a GCC toolchain. Detailed information about our toolchain is

given in section 2.5.

In the next subsection, we introduce our processor-framework called CLAW. In section

2.2 we discuss the top-level architecture of each cluster inside CLAW. Integrating multiple

CLAW clusters are discussed in section 2.3. We discuss the multithreading support provided

 16

by CLAW in section 2.4. The software toolset to produce executables for this processor is

discussed in section 2.5. Benchmarks used for our experiments are explained in section 2.6.

We conclude this chapter by discussing the analysis and simulation framework.

2.1 The CLAW Architecture

In this section, we explain the workings of a single-cluster CLAW. CLAW is a 32-bit

load-store processor with a 5-stage pipeline and provides basic DSP capability. It is able to

issue two instructions every cycle and can support up to eight simultaneous threads. It is

evolved from the Open Cores processor, OR1200.

This architecture targets medium to high performance networking, embedded,

automotive, and portable computer environments. CLAW is written entirely in Verilog and is

simulated using the Cadence Verilog simulator. This processor is synthesized and analyzed

using industrial-strength tools to provide accurate power, energy and performance values.

To see if CLAW is representative of the popular embedded processors available today,

we compare this processor with popular embedded processors available in the market. Figure

2-1 shows a graphical comparison of the power delay product of major embedded processors.

This metric is used as a valid comparison of processors in industry. We can see from the

graph that the base case single cluster CLAW (using 90nm Artisan SAGE-X RVT library) is

has one of the lowest power-delay product.

 17

A
R

M
7

C
LA

W

A
R

M
 C

or
te

x-
M

3

M
IP

S
32

 M
4K

 C
or

e

A
R

M
9

A
R

M
11

 M
P

C
or

e

A
R

M
 C

or
te

x-
A

8

M
IP

S
32

 2
4K

 F
am

ily

M
IP

S
32

 2
4K

E
 F

am
ily

A
R

M
10

26
E

J-
S

M
M

C

M
P

C
 5

X
X M

P
C

 6
X

X

M
P

C
 8

X
X M
P

C
 7

X
X

In
te

l X
sc

al
e

0

5

10

15

20

25

30

35

40

45

m
W

/M
H

z

Figure 2-1: Power Delay Product of Some-Popular Embedded Processors

2.2 Top-Level Architecture

Figure 2-2 describes the top-level diagram of a single-cluster CLAW machine. CLAW

is a very flexible processor for adding more execution units. Currently, we have an integer

and execute unit (ALU), fixed-point multiply and accumulate unit (MAC), and load and store

unit (LSU). Appropriate units can be added to the system without much complex

modification to the processor. In the next subsections, we explain the different processor

stages of CLAW.

 18

Figure 2-2: CLAW Top-level Architecture

2.2.1 Fetch Unit.

CLAW is able to fetch two instructions every cycle. Both instructions are fetched in

order from the memory (or instruction cache) and decoded simultaneously. When the

instructions are fetched, the program-counter (PC) is updated with the next PC or the values

from the previously resolved branches. The fetch unit does not predict any branch outcomes

or targets. When a branch target is taken, all instructions in the fetch and decode stages are

flushed from the pipeline and the appropriate new instructions are fetched. The fetched

instructions are then sent to the decode unit.

2.2.2 Decode (or Dispatch), Execution and Write Back Units

When instructions are received from the fetch units, they are decoded in one cycle.

After decoding them, they are sent to the registers to read the appropriate values. The general

purpose register file has four read ports to help both instructions read simultaneously. The

 19

instructions are then send to the execution units. For the remainder of this document the

general purpose register file will be referred to as the register file.

Execution units in the CLAW processor consist of the ALU, MAC unit and the LSU.

As discussed above, these units can be modified according to the processor’s application.

The ALU is responsible for the five-types of 32-bit integer instructions: arithmetic, compare,

logical, shift and rotate instructions. All integer instructions can be executed in one clock

cycle.

The MAC unit executes DSP MAC operations. MAC operations are 32x32 with 48-

bit accumulator. MAC unit is fully pipelined and can accept new MAC operations in each

new cycle. Since the MAC unit is the very power-hungry unit, we have implemented a unit-

gating mechanism to this unit to save power.

The LSU transfers all the data between the register file and the CPU’s internal bus.

This is implemented as an individual execution unit so that stalls in memory does not affect

the master pipeline if there is a data dependency. If the instruction requires any arithmetic

operations, it is first sent to the ALU and then transferred back the LSU.

The write back unit helps write data back to the register file. CLAW can have up to two

instructions written back to the register file. In order to do simultaneous writes, the register

files contain two write ports. However, two instructions cannot write to the same register

location. The compiler is responsible for avoiding such hazards. More details about this is

given in section 2.5.1.

 20

2.3 Integrating Multiple Clusters

We mentioned in the previous section that to increase issue-widths of the processor, we

cluster several two-issue cores of CLAW together to the gain the desired issue-width. When

clustering the processor, the major modification was in the fetch unit. Figure 2-3 shows the

top-level diagram of 4-cluster CLAW architecture. The cache controller fetches the

appropriate word for the current cycle. The cache controller routes the entire word to the

fetch unit. The fetch unit then routes the appropriate instructions to each cluster. The

instructions fed into the fetch unit are called Multi-cluster-Operands (MOP). The instructions

sent to each cluster are called the Cluster-Operands (COP) and the two individual

instructions executed by each cluster are each called an operand (OP).

A MOP is synonymous to a IA-64 Instruction group. For a ‘N’ cluster machine, its

MOP contains ‘N’ COPs. Each COP contains 2 OP. An OP is synonymous to a regular RISC

instruction such as “ADD” or ‘LOAD-WORD.” The terms instruction and OP are used

interchangeably in this document. The hierarchy of a MOP, COP and an OP for a 4-cluster

CLAW is illustrated in Figure 2-4. The ‘T’ bit on each OP is used to signify if it is the last

OP in a multi-op. This is used to by the memory controller to see when to stop fetching. The

‘X’ bit is reserved for future use.

 21

MEMORY CONTROLLER

CACHE/MEMORY

OP

 2 OP 2 OP 2 OP2 OP

FETCH, NEXT PC ARBITER

ADDRESS TO BE FETCHED

CLUSTER #1 CLUSTER #2 CLUSTER 3 CLUSTER #4

2 OP2 OP2 OP2 OP

OP
OP

OP

MOP

COPCOPCOPCOP

OPs FETCHED
FROM MEMORY

Figure 2-3: Clustered CLAW Block Diagram

OP OP CLUSTER OP (COP)

CLUSTER OP (64 BITS) CLUSTER OP (64 BITS)CLUSTER OP (64 BITS)CLUSTER OP(64 BITS)

25
6

BI
TS

Opcode
(6 BITS)

Destination
Register
5 BITS

IMMEDIATE FIELD (14)XT
Source
Register
5 BITS

OPERATION (OP)

MULTI OP (MOP)

Figure 2-4: CLAW Instruction Granularities

2.3.1 Register-File Organization

CLAW is a length-adaptive processor. The minimum number of clusters the machine

must possess is one. The maximum number of clusters is not always predictable. The CLAW

 22

designer must be able to add additional clusters into the system without the need to recompile

existing programs. Thus, cluster 1 holds the program state. Register ‘r1,’ ‘r2,’ and ‘r9’ are

the stack pointer, frame-pointer and the return address registers, respectively. Function-

arguments are stored in register r3-r8. Any function-argument after the sixth one must be

accessed through the stack.

Callee-saved registers are restricted to cluster 1 to avoid unnecessary inter-cluster

copies. To push a value into the stack, the value must reside inside a register-file of Cluster 1.

Otherwise, an explicit copy-operation must be performed to copy the value into the register-

file of Cluster 1, and then push the value into the stack. The compiler is responsible for

resolving such scenarios. Table 2-1 shows all the important registers in CLAW.

Table 2-1: Register Functions
Register Number(s) Function
R0, R32, R64… Zero-Value Register
R1 Stack-Pointer
R2 Frame Pointer
R3-R8 Function Arguments Register
R9 Return Address Register
R12, R14, R16 . . . R30 Callee Saved Register

2.4 Multithreading Architecture

In addition to fetching two instructions a cycle, CLAW also supports up to 8 threads.

Currently the processor fetches instructions from a new thread in round-robin fashion. The

number of threads can be decreased by the designer during design-time. Figure 2-5 shows the

multithreading architecture with two-thread support. The methodology for the two-thread

 23

support and eight-thread support are the same, but the figure is simplified to make the

architecture more legible.

Figure 2-5: CLAW Multithreading Flow-Diagram

The fetch unit contains eight PC registers, one for each thread. This helps keep track

of the program order. The threads are given a thread ID, ranging from 0 to 7 which is

transmitted along with the instruction. The instructions are decoded or dispatched in the same

way as a single threaded processor.

Every thread has its own register file. When the instruction’s register values are read,

the thread ID is checked and the values are fetched from the appropriate register file. During

the write back stage, the data is transmitted back to the register file for writing along with its

thread ID. The data is then written to the appropriate register file. For brevity, we are only

using one-thread for our experiments.

 24

2.5 Compiler Support for CLAW

Instruction scheduling for CLAW is done completely in software. The compiler is

responsible for eliminating all forms of hazards that can potentially cause unexpected results:

write after write (WAW), read after write (RAW), and write after read (WAR).

The compiler schedules two independent instructions every cycle. CLAW is unable to

execute more than one branch a cycle; therefore the compiler schedules only one branch in a

cycle, which is arbitrarily always the 2nd instruction. Implementing the capability to execute

multiple branches in a clock cycle remains as future work.

2.5.1 GCC toolchain for CLAW

To successfully execute programs in CLAW, we created a GNU Compiler Collection

(GCC) toolchain. GCC was picked as the compiler of choice because it is the most popular

compiler in use today. Table 2-2 explains the different parts of the toolchain. The toolchain is

able to produce valid executables for a 1, 2 or 4 cluster machines.

Table 2-2: Toolchain Components
Component Tool Version
Assembler claw-as 2.11.92
Archiver claw-ar 2.11.92
Loader claw-ld 2.11.92

Compiler claw-gcc 4.0.2
OS Headers Linux 2.4
C-Library uClibc 2.14

2.6 Benchmarks

In order to validate our experiments, we used a set of algorithms from the EEMBC

benchmark set [168]. The EEMBC benchmark is considered the most representative set of

 25

benchmarks that are used in embedded systems. Unlike several benchmark sets such as SPEC

[174], or Mediabench [84], EEMBC software-engineers have chosen a set of kernels in the

system. Figure 2-6 shows the structure of EEMBC benchmark. In the figure, performance-

data is collected only for the parts between “th_signal_start()” and “th_signal_finished()”

(shaded in red). This way, the algorithm can be isolated in each benchmark.

The EEMBC suite contains five distinct sets of benchmark sub-suites: automotive,

consumer, networking, office-automation and telecommunications. Some algorithms are

present in multiple benchmark suites. For this work, we chose the unique algorithms in the

five suites. For example, if there are multiple implementations of FIR filter, we only choose

one since the main concentration of the benchmark is the algorithm itself. Table 2-3 shows

the 10 EEMBC benchmarks we chose to run on hardware. These benchmarks were free of

system-calls in the actual benchmark task. The hardware simulation environment is unable to

handle system calls.

Figure 2-6: EEMBC Benchmark Structure

 26

Table 2-3: EEMBC Benchmarks Description
Benchmark Description
aifir01 FIR Filter
conven00 convolutional encoding
Dither01 Floyd-Steinberg error diffusion Dithering Algorithm
Ospf OSPF Dijikstra’s Algorithm
puwmod01 Pulse Width Modulation Algorithm
Rotate Image Rotation algorithm
Routelookup Dijkstra’s Algorithm
Rspeed01 Road Speed Calculation
Ttsprk01 Tooth-to-Spark tests in automobiles
Viterb01 Viterbi Decoder

2.7 Analysis Framework

Figure 2-7 illustrates the steps to capture power values from the processor. First, we

take a behavioral model of the CLAW processor (written in Verilog), and synthesize it using

the Cadence design analyzer with 90nm Artisan SAGE-X Physical-IP RVT library. The

VDD for this library is 1V with 25°C operating temperature and typical operating conditions.

To simulate benchmarks on CLAW, we use the Verilog-XL simulation system. We

created a program that reads a CLAW executable file and extracts the text, read-only data

(rodata) and read-write data region. These information are saved in “text.txt” and “data.txt.”

During the fetch stage, the processor requests the appropriate instruction stored in the

appropriate location through the icpu_adr_i bus. The test-bench reads this address and

outputs the appropriate instruction from the text.txt through the icpu_dat_i bus. Similar

procedure is done for the data information when the processor encounters a load/store

instruction. This entire procedure is detailed in Figure 2-8. This step produces a VCD file

used for calculating switching in the processor-wires. The simulator also outputs the number

of clock-ticks required to simulate the benchmark.

 27

.

Synthesis using Cadence
Design Analyzer

CLAW Processor in
Behavioral Verilog Standard-Cell Library

Synthesized Gate Level
VerilogStandard Cell Gates Test Bench with Test

Vectors

Cadence Verilog SimulatorPlace and Route in Cadence
Design Encounter

Power Analysis using
Synopsys PrimePower

Parasitic Information
(SPEF format)

Switching Information
(VCD Format)

Power Values

Standard Cell Gates

Synthesized Gate Level
Verilog Standard Cell Library

Figure 2-7: Power Analysis Steps

The synthesized model is then placed and routed using Cadence Design Encounter to

extract the appropriate parasitic values. The VCD file, the parasitic files, the synthesized

Verilog file and the standard-cell library are analyzed by Prime-time (formerly Prime power)

to calculate the power values. Prime-time is known to give power results within 10-12% to

 28

the real system [53]. The power values with the simulation time from Verilog-XL can be

multiplied together to get the total energy

CLAW
Executable

(ELF Format)
ELF Extractor

.text section

Text.txt

.data section
.rodata section

Data.txt

CLAW
Test Bench

CLAW
Synthesized

Verilog Processor

INSTRUCTION

DATA

PC

DATA ADDRESS
DURING A LOAD/STORE

Figure 2-8: Running an Executable on CLAW

 29

Chapter 3 Instruction-width optimization

It is known that all applications that are run on a system do not contain the same amount

of parallelism. Thus, one processor configuration cannot be used as a model for the optimal

energy and performance. Thus, there is a need for dynamically issue-width adaptive

processors. Large issue-width processors tend to introduce long wires which can increase

chip-power and decrease clock-frequency [60].

One promising approach is to divide certain components of a processor into smaller

chunks and place them close together. The components inside each chunk are connected by

fast links. The communication time between the chunks is relatively slow because the

distance is longer. This architecture is collectively called clustered architecture and each

“chunk” is called a cluster [40]. Traditionally, each cluster consists of a local register file and

a subset of function-units [50]. In order to gain the most optimum performance in a clustered

architecture, it is very important to keep the inter-cluster communication to a minimum [15]

[17] [22] [50].

The idea of clustered architecture has been used in superscalar processor for many years

[1] [17] [22]. Some VLIW DSP processors such as, TMS320C6x (by TI) [176], TigerSharc

(by Analog Devices) [166], Map 1000 (by Equator) have incorporated this implementation

[50]. VLIW architectures implement wide instruction words to allow issuing of multiple

instructions in software [38].

These architectures are inherently ideal for exploiting parallelism extracted by fine grain

compilers that analyze code beyond a basic block [8]. This gives VLIW machines a sufficient

 30

large “window size” to look for ways to parallelize the code. A clustered VLIW processor

tries to please both the communication delay and achieve a high IPC all for a low cost [15].

In this work, we created a clustered VLIW architecture and provide a mechanism to

dynamically shutoff unwanted or unused clusters with the help of a profiler by inserting

specialized shutoff instructions. In the next sub-section, we discuss our methodology of

modifying the instruction width at run-time. Section 3.2 describes how the clock-controller

dynamically gate unwanted units. Section 3.3 explains the next-PC calculation

implementation for our processor. In 3.4, we show how the instruction-scheduler inserts this

specialized instruction. We present our results using EEMBC benchmarks in section 3.5, and

conclude this chapter in section 3.6.

3.1 Dynamic Issue-Width Scalability

CLAW is flexible-enough to be able to shutoff clusters at any level. For this work, we

study three-levels of cluster scalability: function-level, treegion-level and basic-block level.

Shutting-off and turning-on the clusters are both done using a “shutoff” instruction. The first

cluster must remain turned-on the whole time since it holds the stack, frame and return

address information.

 Figure 3-1 illustrates the format of the shutoff instruction. The immediate field of this

instruction is a bit-vector that indicates which cluster has to be shutoff. For example, “shutoff

1111b” implies that cluster 1, 2, 3 and 4 must be shutoff, and the rest of the clusters (if

available) must be turned on. For the 32-bit ISA, up to 24 clusters can be controlled using

this shutoff instruction.

 31

Figure 3-1: Shutoff Instruction Format

The “shutoff” instruction has to be the first instruction of the bundle and must be put in

an empty bundle, that is, the rest of the instructions in the bundle must be NOP. This

instruction is decoded by the fetch unit and the appropriate clusters are clock-gated. The rest

of the bundle is ignored and the next bundle is fetched.

3.2 Pipeline Clock-Gating

In CLAW, the fetch unit partially decodes every instruction to see if a shutoff

instruction is fetched. If such an instruction is found, it then emits a signal to the clock-gating

unit to indicate that certain clusters need to be turned off (or turned on). In many previous

works, the clock gating is done only in a single stage. In some works such as [118] [97], they

suggest stalling the processor for ‘N’ cycles (where ‘N’ is the pipeline-depth) and issue a

broadcast to all the units. There are two major problems with this scenario. First, if the

number of shutoffs is not kept to a minimum, the processor stalls significant number of

times. Second, sending these broadcasts requires significant number of long wires, which can

potentially increase power.

To solve the two problems in the previous work, we created a cascaded clock-gating

circuit. Figure 3-2 shows the high-level block diagram of the clock gating circuit for a 4-

cluster CLAW processor. We implemented an override pin just in case the user does not want

to use the shutoff mechanism. There are three major components of our clock gating unit: the

 32

simple-gating unit, the propagating unit and the latching unit. The simple-gating unit accepts

the clock as the input and simply calculates whether the clock must be gated or not. Figure

3-3 shows the block-diagram of the simple-gating unit.

FE
TC

H
 U

N
IT

C
LU

S
TE

R
 1

C
LU

ST
ER

 2
C

LU
ST

ER
 3

C
LU

ST
ER

 4
CLOCK
GATING

UNIT

SHUTOFF SIGNALS

OVERRIDE

CLOCK

C3 CLK RR

MOP

C1 CLK EX

C1 CLK DECODE

C2 CLK RR

C2 CLK WB

C3 CLK DECODE

C3 CLK WB

C4 CLK WB

C4 CLK DECODE

C1 CLK WB

C2 CLK DECODE

C3 CLK EX

C4 CLK RR

C4 CLK EX

C2 CLK EX

C1 CLK RR

Figure 3-2: Overall Clock Gating Circuit Block Diagram

Figure 3-3: Clock Gating Logic

 33

The propagating unit creates a cascaded clock-signal that is send to the next units. Each

of these clocks has a phase shift of 1 cycle that is fed into each of the stages of the processor.

The latching unit holds the clock gating information given by the fetch unit. This unit ensures

that any external interference does not affect the clock signal. The clock signals can be

changed only by fetch unit with the help of an enable signal. Figure 3-4 shows an example of

cascaded clock output for a 2 Cluster CLAW. At 30ns, the fetch unit is requesting that the

second cluster to be shutoff, and keep the rest of the clusters on. We can see that

“gated_clk_1[1]” shuts off immediately. This is being fed into the decode stage. The rest of

the gated clocks appear to mimic the same behavior as gated_clk_1 but with 1 cycle delay

from its predecessor. At 50ns, ‘0’ was found on the “shutoff_bits” bus, the clock signal did

not change because the enable (shutoff_en) was low.

Figure 3-4: Cascaded CLK Output

The advantage of such a clock-gating circuit is that it doesn’t disrupt any instructions

that are in the pipeline during the previous cycles. Also, there is only one Multi-Op

performance penalty to shutting off clusters. Such techniques have been presented for

clocking multi-cycle function units (e.g. [67]), but this is the first time it has been applied to

 34

a general purpose processor. This complex clock-gating unit only increases the processor

area by 2.1% and did not cause any change in the frequency of the base-processor.

3.3 Next PC Calculation

For doing the appropriate next-PC calculations, we evaluated the different techniques

presented in section 1.1.5. Having a dedicated branch cluster for execution gives the

optimum performance compared to the other two schemes. Having a centralized scheme

seems to be the worst of all three. The branch replication scheme seems to add additional

complexity to the cluster and increase the dynamic code-size, which can have adverse effects

in terms of power consumption.

Some of the disadvantages of having a branch cluster are that the compiler must be

very capable in order to schedule all the branches to one certain cluster. Also, if we chose to

disable a certain number of clusters, the code might not perform as well as expected.

 In CLAW ISA, when a jump instruction occurs, the return address register (r9) is

automatically written with address of the next MOP after the jump. On the other hand,

branches do not have any other implicit tasks. This helped us come up with a hybrid scheme

to handle control-transfer instructions. Branches could be executed in any clusters as

necessary. Jumps were all assigned to cluster 1. This mechanism helped reduce the possible

congestion that could happen in branch cluster. At the same time, an explicit instruction is

not necessary to write the return address into the return address register, thus reducing code-

size.

 35

3.4 Instruction Scheduling and Shutoff Insertion

CLAW is a variable-width processor. The width can be varied with the feedback of the

architect, programmer and the user. In order to do this efficiently, we build such a processor

using a set of two issue clusters. In any clustered system, the biggest bottle-neck is the inter-

cluster communication. In order to reduce this effect, several scheduling algorithms have

been presented by previous researchers. We used the concept of scheduling the instructions

and assigning them in the same cycle called Unified-Assign and Schedule (UAS).

GCC provides several hooks that allow architects to manipulate and intercept the

ready-list at different stages of scheduling [39]. The UAS was attached to the

“TARGET_SCHED_FINISH_GLOBAL” hook. This hook is called immediately after the

treegions are created. Figure 3-5 shows the flow-diagram of the major steps involved in the

UAS implementation. A list of unscheduled RTL is taken from the Treegion scheduler and a

list of instructions that are ready in the current cycle is assembled. GCC does all the

scheduling at the RTL level. Fortunately, almost all RTL can be mapped 1-to-1 with the

CLAW OP in the machine description. Each instruction in this ready list is assigned to a

cluster is picked as per a priority function.

There are four different priority functions available in UAS, they are: sequential

placement, random placement, magnitude-weighted placement (MWP) and completion-

weighted placement (CWP). In sequential placement, the RTLs are assigned in a round-robin

fashion to each cluster. In Random placement, the RTLs are placed to a random cluster

chosen using a pseudo-random number generator (lrand48()). MWP schedules an RTL to the

same cluster as its predecessors. If the predecessors of the current RTL are assigned to two

 36

different clusters, either one can be its target. In CWP, the RTL is assigned to the same

cluster as the predecessor that takes the longest to complete. The advantage CWP has over

MWP is that since the current RTL has to wait till the latest of its predecessor to complete,

the holes in between can be used to schedule a copy instruction. These priority functions

have a direct control over the performance and the energy consumption of the processor. We

show the results of all four priority functions in the results section. For more detailed

explanation about UAS, the reader is referred to [34].

LIST OF UNSCHEDULED
OPS FROM TREEGION

SCHEDULER

READY LIST == NULL

READY_LIST = LIST OF OP
READY IN CURRENT

CYCLE

X = HIGHEST PRIORITY
OP FROM READY_LIST

PICK APPROPRIATE
CLUSTER (C) IN WHICH X

CAN BE SCHEDULED

X SCHEDULABLE IN
CLUSTER C ?

X = SCHEDULED
INSERT X IN

SCHEDULE_LIST WITH
APPROPRIATE CLUSTER

INFO

NO

YES

C == NULL

NO

NO

INCREMENT CYCLE
COUNT YES

YES

Figure 3-5: Design-Flow of UAS Algorithm on GCC

To make UAS more suitable for a length-adaptive processor, we slightly modified the

assignment-priority function. When an RTL can be assigned to multiple-clusters during

MWP and CWP scheme, the authors in [103] mention to randomly pick a cluster. We forced

our algorithm to choose cluster 1 (if it is an option) or a previously used cluster. This helped

us to potentially shutoff other clusters. Similarly, when a new cluster must be used, we again

 37

forced our algorithm to choose cluster 1 or a cluster that has been used previously. This

helped us isolate unused clusters for a longer period of time to save energy.

An additional challenge was encountered in the register allocation phase. The register

allocator in GCC tries to minimize assigning instructions to different register classes by

mapping dependent-instructions into the same register class. Even though this can reduce

additional cluster-usage, the register-allocator does not take cycle-time into account. To

overcome this problem, the register allocator’s mapping function (reg_class(..) function in

passes.c [39]) was replaced with a specialized hook function (added using a new hook called

“TARGET_MACHINE_DEPENDENT_REG_CLASS”) that will assign instructions as per

the UAS scheduler. All the modifications described will not affect any other gcc port, and

our gcc source-code can be configured for any other gcc-backend (e.g. x86) and function

without any difficulty.

Initially, the compiler inserts a shutoff instruction with ‘0’ as its immediate field

(indicating all clusters must be on) at the beginning of the basic-block or the beginning of the

function. The unique ID of the shutoff RTLs are stored in a data-structure along with the

basic-block number in which it was inserted. The information is used by the profiler

(integrated into GCC as an additional pass) to know which shutoff instruction must be

updated.

The CLAW profiler is executed right before the instructions are output as a final stage

in GCC compiler. This is the final stage where the RTLs are visible and are not moved

between basic blocks. The profiler scans the static code provided by the compiler to see if

there are any empty clusters. Figure 3-6 shows an example of an empty cluster: if for the

 38

duration of an entire basic-block (or function depending on the granularity) there exist a

common empty cluster, then the bit-vector for the appropriate shutoff instruction is updated.

Figure 3-6: Example of an Empty Cluster (marked in blue box)

Figure 3-7 shows the algorithm of our profiler to detect idle clusters to power-down

using the shutoff instruction for function-level and basic-block level shutoff insertion. Region

level shutoffs are a bit more complex and are detailed in section 3.5.2. The algorithm accepts

a block of instructions (BLK) as input. The profiler goes through every MOP to see if it can

find Cluster-Ops (COP) with only NOP, that is, an unused-cluster. If such a scenario is

noticed, the appropriate bit is set to ‘1’ in the ‘Unused’ array. M.count indicates the MOP

position in the BLK and C.count indicates COP position in the MOP M. This array is a two-

dimensional array with rows indicating the number of MOPs in the block (indicated by

BLK.MOP_Count) and the columns showing each cluster. This array must be dynamically

allocated, but it is not shown in the figure for simplicity.

 39

Figure 3-7: Cluster-Shutoff Algorithm

After stepping through all the MOPs in BLK, the profiler goes through the ‘Unused’

array to find if all the MOPs have common clusters that can be shutoff. This is done by

checking if the summation of all the 1’s in a column is equal to the number of MOPs in BLK.

The list of empty clusters is returned back to the profiler from this function using the

“Shutoff_Cluster_List” variable. The profiler examines this to set the appropriate bit in the

shutoff instruction. The profiler also displays the number of cases where all the clusters are

turned-on for analysis.

 40

3.5 Results

Sequential placement picks the appropriate target clusters in a round-robin fashion.

Random placement, assigns the instructions to the randomly chosen cluster. MWP assigns an

instruction to the same cluster as the instruction’s flow-dependent predecessors. In CWP

placement, the scheduler gives priority to the clusters that will be producing the instruction’s

operands relatively late in the schedule. CWP scans all the clusters which execute the

instructions that are dependent on the current instruction. The current instruction is assigned

to the cluster that produces its results the latest. The advantage of this scheme is that the copy

instructions are potentially easier to schedule without losing much cycle-time. In section we

show the base case results of all the CLAW configurations. This is then compared with the

different shutoff schemes mentioned in section 3.1

3.5.1 Base Results

Figure 3-8 shows the number of cycles required to execute these benchmarks in a 1-

cluster CLAW. Conven00 takes the longest number of cycles followed by dither, while ospf

seem to take the smallest. Figure 3-9, and Figure 3-10 shows the speed-up compared to one-

cluster for two-cluster and four-cluster CLAW machine. Routeloop is the most parallel

benchmark in the suite. Conven00 seem to be the least parallel of all the benchmarks.

 41

0

100

200

300

400

500

600

ai
fir

f0
1

co
nv

en
00

di
th

er

os
pf

pu
w

m
od

ro
ta

te

ro
ut

el
oo

ku
p

rs
pe

ed

tts
pr

k0
1

vi
te

rb
00

M
ill

io
ns

Cy
cl

es

Figure 3-8: Execution-time for 1-Cluster CLAW

0

0.5

1

1.5

2

2.5

3

3.5

ai
fir

f0
1

co
nv

en
00

di
th

er

os
pf

pu
w

m
od

ro
ta

te

ro
ut

el
oo

ku
p

rs
pe

ed

tts
pr

k0
1

vi
te

rb
00

A
ve

ra
ge

Sequential Random MWP CWP

Figure 3-9: Speedup of 2-Cluster CLAW over 1 Cluster Machine

 42

0

0.5

1

1.5

2

2.5

3

3.5

ai
fir

f0
1

co
nv

en
00

di
th

er

os
pf

pu
w

m
od

ro
ta

te

ro
ut

el
oo

ku
p

rs
pe

ed

tts
pr

k0
1

vi
te

rb
00

A
ve

ra
ge

Sequential Random MWP CWP

Figure 3-10: Speedup of 4 Cluster CLAW over 1 Cluster CLAW Machine

In a clustered architecture, it is necessary to keep the number of inter-cluster copy to a

minimum. Figure 3-11 and Figure 3-12 show the amount of copy instructions (in percentage)

in a two and four-cluster machine. CWP and MWP have virtually no copy instructions

(approximately 0.5% or less) when compared to random or sequential placement. These two

algorithms take the instructions and their dependencies into consideration, whereas random

and sequential placement, assigns the instructions ad-hoc.

 43

0%

5%

10%

15%

20%

25%

30%

ai
fir

f0
1

co
nv

en
00

di
th

er

os
pf

pu
w

m
od

ro
ta

te

ro
ut

el
oo

ku
p

rs
pe

ed

tts
pr

k0
1

vi
te

rb
00

Sequential Random MWP CWP

Figure 3-11: Percentage of Copy Instructions in 2-Cluster CLAW Machine

0%

5%

10%

15%

20%

25%

30%

ai
fir

f0
1

co
nv

en
00

di
th

er

os
pf

pu
w

m
od

ro
ta

te

ro
ut

el
oo

ku
p

rs
pe

ed

tts
pr

k0
1

vi
te

rb
00

Sequential Random MWP CWP

Figure 3-12: Percentage of Copy Instructions for 4-Cluster CLAW Machine

 44

The next step is to see the energy consumed by the benchmark for the different

CLAW machines with different number of clusters. Energy is used as a metric because it

takes into account the tightness of the schedule along with the average power consumption.

We believe that a processor that has slightly higher power dissipation, but executes a

program significantly faster is better than a processor that consumes less power while taking

longer to execute the same benchmark.

The static and dynamic energy values for a single cluster configuration are shown in

Figure 3-13. Figure 3-14 and Figure 3-15 show the dynamic energy values for two and four

cluster machine for the four placement types. OSPF is the smallest benchmark in the suite, so

it consumed the least energy. Conven00 is the largest benchmark in the set followed by

dither. Even though, ttsprk01 is the third-largest benchmark, it consumed ~30% more power

than conven00. Ttsprk01 contains more multiplication and division instructions than all the

benchmarks, and these two are power-intensive operations.

Sequential consumed the most energy since it has a significant amount of copy-

instructions. Similarly, MWP and CWP consumed the least amount of energy because it took

the benchmark into consideration during scheduling and emitted less copy instructions. The

energy consumption of MWP and CWP is identical in all the cases because, they both create

the same schedule for unit-latency instructions. In CLAW, all of the instructions, except the

MAC instructions, are unit latency instructions. MAC instructions are not output by the

compiler.

Figure 3-16 and Figure 3-17 show the static energy dissipation for 2-cluster and 4-

cluster CLAW, respectively. The static energy only contributes ~10-15% of the total energy

 45

in all cases. The static energy also increased for 4-cluster CLAW since we have a larger area

and a higher potential for idle wires.

0

50

100

150

200

250

300

ai
fir

f0
1

co
nv

en
00

di
th

er

os
pf

pu
w

m
od

ro
ta

te

ro
ut

el
oo

ku
p

rs
pe

ed

tts
pr

k0
1

vi
te

rb
00

m
ill

iJ
ou

le
s

Dynamic Energy Static Energy

Figure 3-13: Dynamic and Static Energy or 1 Cluster CLAW

 46

0

50

100

150

200

250

300

ai
fir

f0
1

co
nv

en
00

di
th

er

os
pf

pu
w

m
od

ro
ta

te

ro
ut

el
oo

ku
p

rs
pe

ed

tts
pr

k0
1

vi
te

rb
00

m
ill

iJ
ou

le
s

Sequential Random MWP CWP

Figure 3-14: Dynamic Energy Values for a 2-Cluster CLAW Processor

0

50

100

150

200

250

300

ai
fir

f0
1

co
nv

en
00

di
th

er

os
pf

pu
w

m
od

ro
ta

te

ro
ut

el
oo

ku
p

rs
pe

ed

tts
pr

k0
1

vi
te

rb
00

m
ill

ijo
ul

es

Sequential Random MWP CWP

Figure 3-15: Dynamic Energy Values for a 4-Cluster CLAW Processor

 47

0
5

10
15
20
25
30
35
40
45

ai
fir

f0
1

co
nv

en
00

di
th

er

os
pf

pu
w

m
od

ro
ta

te

ro
ut

el
oo

ku
p

rs
pe

ed

tts
pr

k0
1

vi
te

rb
00

m
ill

iJ
ou

le
s

Sequential Random MWP CWP

Figure 3-16: Static Energy Values for 2-Cluster CLAW Processor

0
5

10
15
20
25
30
35
40
45

ai
fir

f0
1

co
nv

en
00

di
th

er

os
pf

pu
w

m
od

ro
ta

te

ro
ut

el
oo

ku
p

rs
pe

ed

tts
pr

k0
1

vi
te

rb
00

m
ill

iJ
ou

le
s

Sequential Random MWP CWP

Figure 3-17: Static Energy Values for 4-Cluster CLAW Processor

3.5.2 Dynamic Length-Adaptivity

To study the energy savings by shutting off unused clusters, we inserted shutoff

instructions at the basic-block level and the function level for 2-Cluster and 4-Cluster

 48

configuration of the CLAW processor. Figure 3-18 shows the dynamic energy distribution

for 2 and 4 cluster CLAW. For ease of comparison, we also plotted the base values of the

energy values taken from Figure 3-14 through Figure 3-17. ‘

For the 2-Cluster CLAW, there is no dynamic energy difference at all. The profiler

did not find any significant opportunities to shutoff any clusters. For the 4 cluster CLAW,

majority of the programs only used 2 clusters, this helped shutoff the other 2 clusters

majority of the time, and thus save energy. Inserting the shutoff at the function-level did not

increase the code size significantly (< 0.1%). This did not cause any energy increase.

0

50

100

150

200

250

ai
fir

f0
1

co
nv

en
00

di
th

er

os
pf

pu
w

m
od

ro
ta

te

ro
ut

el
oo

ku
p

rs
pe

ed

tts
pr

k0
1

vi
te

rb
00

2 Cluster CLAW Base 2 Cluster CLAW With Cluster Shutoff
4 Cluster CLAW Base 4 Cluster CLAW After Cluster Shutoff

Figure 3-18: Dynamic Energy Distribution Function-Level Shutoff Insertion

The static energy distribution is shown in Figure 3-19. Since it is impossible to

physically shutoff flip-flops in a HDL based design, we have also provided the static power

differences as a data-label for all the static energy graphs from this point forward. The static

energy difference is within the threshold of the error-rate of Primetime. The main reason why

 49

we compared static-energy values is to see if the shutoff insertion blew up the static value.

For 2-Cluster CLAW the values barely changed. This again is due to the fact that the profiler

was unable to find any clusters to shutoff. For the 4 Cluster CLAW, two of the clusters were

shutoff for many of the benchmarks. This caused some idle wires, but this did not cause any

significant change. The static power for 2-cluster CLAW barely produced any change,

whereas a 7% increase was found in the 4-cluster processor. This increase translated to 0.7%

total-power increase. Please note that an asterisk (*) indicates a change that is between -0.5%

and 0.5%

*

**

*

6%9%

9%

9%

3%

4%

9%

4%

1%4%

7%

0

50

100

150

200

250

ai
fir

f0
1

co
nv

en
00

di
th

er

os
pf

pu
w

m
od

ro
ta

te

ro
ut

el
oo

ku
p

rs
pe

ed

tts
pr

k0
1

vi
te

rb
00

A
ve

ra
ge

M
ill

ijo
ul

es

2 Cluster CLAW Base 2 Cluster CLAW With Cluster Shutoff
4 Cluster CLAW Base 4 Cluster CLAW After Cluster Shutoff

Figure 3-19: Static Energy Distribution Function-Level Shutoff Insertion

Next, we looked at the dynamic energy distribution when the shutoff instruction was

inserted on the basic block (BB) level. Figure 3-20 shows our results. For the 2-Cluster case,

almost all the benchmarks did poorly. This is because, inserting a shutoff instruction at every

basic block level created a code-explosion. Recall that the shutoff OP is placed in a separate

 50

MOP with no other useful instructions. Our benchmarks, on average had 2-3 MOP per basic-

block. If the compiler was able to pack more instructions into each basic block, then we

could have achieved a better result. For 4 Cluster CLAW, similar code explosion did occur.

This code-explosion is overshadowed by the fact that almost always two of the four clusters

is always shutoff. This energy savings helped hide many of code-explosion problems.

0

50

100

150

200

250

300

ai
fir

f0
1

co
nv

en
00

di
th

er

os
pf

pu
w

m
od

ro
ta

te

ro
ut

el
oo

ku
p

rs
pe

ed

tts
pr

k0
1

vi
te

rb
00

M
ill

ijo
ul

es

2 Cluster CLAW Base 2 Cluster CLAW With Cluster Shutoff
4 Cluster CLAW Base 4 Cluster CLAW With Cluster Shutoff

Figure 3-20: Dynamic Energy Distribution BB-Level Shutoff Insertion

 51

1%1%

*1%

1%

*

*

1%

2%1%

*

7%7%

4%

9%

3%

6%8%

2%

2%8%

9%

0

50

100

150

200

250

ai
fir

f0
1

co
nv

en
00

di
th

er

os
pf

pu
w

m
od

ro
ta

te

ro
ut

el
oo

ku
p

rs
pe

ed

tts
pr

k0
1

vi
te

rb
00

A
ve

ra
ge

M
ill

ijo
ul

es

2 Cluster CLAW Base 2 Cluster CLAW With Cluster Shutoff
4 Cluster CLAW Base 4 Cluster CLAW With Cluster Shutoff

Figure 3-21: Static Energy Distribution BB-Level Shutoff Insertion

 Figure 3-21 shows the static energy distribution for basic-block level shutoff

insertion. The code-explosion did cause a problem here also, but since the static energy is

inherently low, it did not make a huge change in the overall system. The static power, on

average, increased by 1% and 7% for the two-cluster and four-cluster machines. This

translated to a 0.15% and 1.05% increase in total energy.

Looking at our 2-Cluster results in Figure 3-18 and the low-parallelism in these

benchmarks probed us to find an intermediate region to place our shutoff instructions. To

confirm our doubts, we looked at the assembly dump of the benchmarks. Figure 3-22 shows

an assembly output for called “WriteOut” function from puwmod01 benchmark for 2 cluster

CLAW.

 52

Figure 3-22: WriteOut function from Puwmod01

Figure 3-23 shows the control-flow graph and cluster usage of each basic block. GCC

puts the prologue and epilogue of each benchmark in a separate basic block and they are not

available for scheduling with other blocks. Thus, we have indicated them in as a separate

block with different color. We can see that only one of the five blocks is using two clusters.

When we insert the shutoffs at the function level, we are unable to shutoff any of the clusters

due to the effects of block 2. Similarly, if we insert shutoffs at the basic-block level, we have

added 5 extra MOP into the system which contributes to greater cycle-time.

 53

BLOCK 1
(CLUSTER USAGE: 1)

BLOCK 2
(CLUSTER USAGE: 1, 2

BLOCK 5
(CLUSTER USAGE: 1)

BLOCK 4
(CLUSTER USAGE: 1)

BLOCK 3
(CLUSTER USAGE: 1)

Figure 3-23: Control Flow Graph of WriteOut

 Treegions is a collection of basic blocks that have the same entry point and different

exit points. Figure 3-24 shows the control flow graph using treegions of the same program.

We investigated the possibility of inserting shutoffs at the head of each treegion to see if this

gave us an energy reduction. In our example function, we asked the processor to shutoff none

of the clusters at the head of treegion 1 and asked cluster 2 to be turned off during the

execution of treegions 2. It is important to note that a small trivial function is used in this

example to illustrate our idea. Such optimization is really geared for more complex functions

with treegions containing large number of basic-blocks.

 54

BLOCK 1
(CLUSTER USAGE: 1)

TREEGION 1

BLOCK 2 AND 3
(CLUSTER USAGE: 1, 2)

BLOCK 5
(CLUSTER USAGE: 1)

TREEGION 2

BLOCK 4
(CLUSTER USAGE: 1)

Figure 3-24: CFG using Treegions in WriteOut

We made another interesting observation about cluster usage and treegions. Figure

3-25 shows the CFG of treegions from the from the “ZTableLookup” function of ttsprk01

program, compiled for 4-Cluster CLAW. The prologue and epilogue are indicated in yellow

because it was not included in the scheduling. We can see that all treegions have the same

cluster usage. So, inserting a shutoff that performs the same operation at the head of every

basic block can be redundant. Thus, we created an extra step in our optimizer that will step

through all the treegions and remove any redundant shutoff instructions.

 55

Treegion 1
(Cluster Usage: 1)

Treegion 2
(Cluster Usage: 1)

Treegion 3
(Cluster Usage: 1)

Treegion 4
(Cluster Usage: 1)

Treegion 5
(Cluster Usage: 1)

Treegion 6
(Cluster Usage: 1)

EPILOGUE

PROLOGUE

Figure 3-25: CFG using Treegions for ZtableLookup in Ttsprk01

Inserting shutoffs at the function-level and basic-block level were trivial compared to

inserting them at the treegion-level. To get the information about each treegions, we created

several new data-structures to convey this information from the treegion-scheduler to the

profiler. Figure 3-26 shows the algorithm that calculates cluster usage for each treegion.

 56

Figure 3-26: Calculating Cluster Usage for Each Region

 In the first loop, we go through each RTL and extract its destination and source

registers. This information is used by the “Calculate_Cluster_Usage” function to calculate

the cluster usage of this RTL. For example, an RTL whose destination register is in Cluster 2

and source register in cluster 1 signifies that the instruction is using both cluster 1 and cluster

2. Each RTL is uniquely defined by a number called “Instruction Unique Identification

Number (UID).” This number remains unchanged for the lifetime of the function. We created

a new data-structure to hold the cluster-usage information of the RTL indexed by the UID.

 Second, we go through every basic-block in the function and find all the instructions

inside each basic block. We find the cluster-usage of each RTL inside the basic block from

the above-mentioned data-structure and “OR” them together to get the cluster-usage of the

 57

whole basic-block. Finally, we look at all the blocks inside a treegion, and then “OR” all of

their usage to gather the cluster-usage for each region.

 Next, we insert the shutoff RTL at all the head-node of each treegions. Figure 3-27

shows the algorithm used for this process. At first, we walk through all the RTL in the

function. When we find a basic-block head, we record its number and region in which it is

located. If this is a head-node, then we insert a shutoff RTL here. As mentioned in the

previous section that shutoff instruction contains an immediate value which is a bit-vector

that tells which clusters must be shutoff.

Figure 3-27: Shutoff Insertion at Treegion-level algorithm

 Using the algorithm in Figure 3-26, we computed the usage of each treegion. The

shutoff instruction requires the complement of this value. To compute this, we create a bit-

vector for the number of clusters available in the system, and then exclusive-OR that value

with the region-usage to get which clusters must be shutoff. This information is set as the

immediate value of the shutoff RTL and then it is inserted into the RTL-list.

 58

 We illustrated using an example in Figure 3-25 that there are cases were a treegion

and its predecessors all have the same usage. Thus, there is no need to have another shutoff

inserted after the predecessor. To remove such redundant shutoffs, we implemented the

algorithm illustrated in Figure 3-28.

Figure 3-28: Redundant Shutoff Removal Algorithm

 This algorithm first goes through all the treegions in the program and finds the head

basic-block. If the block does not have any predecessors, indicating that it is the first block of

the program, then the delete flag for this region (implemented as a array of Boolean values),

is set to false. If the block contains predecessors, then we initially assume we do not need this

shutoff RTL. Then the algorithm steps through all the predecessors of this block to see which

region they fall in. If any of these treegions have a different cluster usage than the current

block, then we set the delete-flag to false. The region-list is walked-through from the top-

down to recursively remove all the redundant shutoffs in the program.

In the algorithms shown in Figure 3-26, Figure 3-27 and Figure 3-28, we did not

explicitly use the word “treegion,” even though we used them for treegions. This is because

 59

they are not treegion-specific. If the architect wishes to insert shutoff instructions at a

different region-granularity (e.g. Superblocks), these algorithms can be used. We

demonstrated our work on a treegion scheduler because UAS is tightly-coupled with a

treegion-scheduler.

Figure 3-29 shows our dynamic energy values for 2 and 4-cluster CLAW when the

shutoffs were inserted at the treegion level and after removing the redundant shutoffs. For the

4-Cluster CLAW, inserting them at the region-level (with redundant shutoff removal) seems

to have gotten results very close to the function-level shutoffs. This is because for 4-Cluster

CLAW, the last 2 clusters seem to be idle most of the time. So inserting the shutoffs at the

function-level helps to gain good results without any code-explosion. For the 2 Cluster

CLAW, function-level seem to give no improvement, but when we inserts shutoffs at the

region level, the profiler was able to find holes in the system to give some energy reduction.

With the redundant shutoff removal, too much unnecessary shutoffs were not inserted, thus

reducing code-size.

 For highly-parallel benchmarks such as route lookup, the region-level shutoff insertion

achieved 9% energy reduction. For benchmarks with low-parallelism such as conven00 we

achieved a dynamic-energy reduction of 29%. On average, we were able to gain a 17%

energy reduction. Figure 3-30 shows the static energy distribution for the region-level shutoff

insertion. Static power, on average, increased by 1% and 7% for the two-cluster and 4-cluster

processor configurations. This translated to 0.15% and 1.05% of the total power change in

the processor. Static energy did not increase considerably. For the 4-Cluster CLAW, it is

very comparable to the function-level shutoff insertion. For 2-Cluster configuration, the static

 60

energy contributed on average, 1% increase in the total energy, but it is definitely was

shadowed by the dynamic-energy decrease.

0

50

100

150

200

250

ai
fir

f0
1

co
nv

en
00

di
th

er

os
pf

pu
w

m
od

ro
ta

te

ro
ut

el
oo

ku
p

rs
pe

ed

tts
pr

k0
1

vi
te

rb
00

M
ill

ijo
ul

es

2 Cluster CLAW Base 2 Cluster CLAW With Cluster Shutoff

4 Cluster CLAW Base 4 Cluster CLAW After Cluster Shutoff

Figure 3-29: Dynamic Energy Consumption for Region-Level Shutoff

*

* 1%

*

* * * * 1% * 1%7%

6% 2%

5%

7% 4%

3%

9% 9%

9% 7%

0

50

100

150

200

250

ai
fir

f0
1

co
nv

en
00

di
th

er

os
pf

pu
w

m
od

ro
ta

te

ro
ut

el
oo

ku
p

rs
pe

ed

tts
pr

k0
1

vi
te

rb
00

A
ve

ra
ge

M
ill

ijo
ul

es

2 Cluster CLAW Base 2 Cluster CLAW With Cluster Shutoff
4 Cluster CLAW Base 4 Cluster CLAW After Cluster Shutoff

Figure 3-30: Static Energy Consumption with Region-level Shutoff

 61

To provide a fair comparison with the treegion-level shutoff insertion with redundant

shutoff insertion, we inserted the shutoff operations at the basic block level and the applied

our redundant shutoff removal algorithm. Figure 3-31and Figure 3-32 shows the dynamic

and static energy distribution. For the 4-cluster implementation, the dynamic energy

reduction was very much comparable with the treegion-level insertion. For the 2-cluster

implementation, the treegion level was able to give, on average 10% more energy reduction

across the benchmarks. This is because basic-blocks in GCC are small and some adjacent

ones had different cluster utilization. Thus, a new MOP (with shutoff operation) had to be

inserted at the head of several basic block and the overhead incurred for shutting off and

turning on the clusters contributed to this increase. The static power increase was as same as

treegion-level shutoff, but the static energy increased a little due to the increase in code-size.

0

50

100

150

200

250

ai
fir

f0
1

co
nv

en
00

di
th

er

os
pf

pu
w

m
od

ro
ta

te

ro
ut

el
oo

ku
p

rs
pe

ed

tts
pr

k0
1

vi
te

rb
00

A
ve

ra
ge

M
ill

ijo
ul

es

2 Cluster CLAW Base 2 Cluster CLAW With Cluster Shutoff
4 Cluster CLAW Base 4 Cluster CLAW After Cluster Shutoff

Figure 3-31: Dynamic Energy Consumption with BB-level Shutoff with Redundant Shutoff Removal

 62

1%*1%****

*

**

1%

7%7%

4%9%

3%

5%7%

2%

2%7%

8%

0

50

100

150

200

250

ai
fir

f0
1

co
nv

en
00

di
th

er

os
pf

pu
w

m
od

ro
ta

te

ro
ut

el
oo

ku
p

rs
pe

ed

tts
pr

k0
1

vi
te

rb
00

A
ve

ra
ge

M
ill

ijo
ul

es

2 Cluster CLAW Base 2 Cluster CLAW With Cluster Shutoff
4 Cluster CLAW Base 4 Cluster CLAW After Cluster Shutoff

Figure 3-32: Static Energy Consumption with BB-level Shutoff with Redundant Shutoff Removal

3.6 Conclusion

In this section, we presented a dynamically-scalable clustered general purpose

processor. The processor-width was dictated by the compiler using a specialized instruction

to shutoff unused data-paths. We also presented a compiler-framework that is able to pack-

instructions into clusters and isolate unused clusters. The results were demonstrated using

EEMBC benchmarks.

We found that when the processor was over-designed for the application, simple

techniques such as function-level shutoffs is enough to achieve good energy reduction. When

this is not the case, a complex scheme such as a region-level shutoff scheme must be

implemented. The region-level scheme tried to keep the code-size from exploding yet

 63

provided a mechanism to squeeze out as much energy as possible from the processor.

 64

Chapter 4 Opcode Optimization

Instruction decoding is one of the essential steps in most traditional processors. It is

known that a decoder can consume up to 10% of the total power and energy inside a

processor [13]. A compiler (along with the assembler) is responsible for generating the

instructions that are fed into a decoder. For example, if a compiler (or assembler) is not able

to output an increment instruction, then the decoder will rarely have a chance to decode such

instructions. It is also known that a compiler tends to output certain instructions more than

others. In our experiments, we found add-immediate to be one of the most frequently

generated instructions.

Switching on a wire or port is the main cause of power dissipation. If we are able to

reduce switching between two adjacent events in a wire, then we are able save power and

energy. The Hamming distance is a simple yet powerful way to calculate the number of bit-

switches between two instructions. The Hamming distance between two instructions is found

by applying an XOR operation between two instructions and counting the resulting number

of set bits.

One possible way to reduce the switching activity is to schedule instructions that have

low hamming distance close to each other. This approach is not always possible and can

potentially degrade performance. Another solution is to find the instructions that are close to

each other and modify their opcodes such that the switching is reduced. Although modifying

the opcodes at run-time inside a processor is impossible, profiling a representative

 65

application and designing the opcodes appropriately can help reduce power dissipation and

energy consumption.

Table 4-1 shows two instructions from the aifirf01 benchmark that is encoded using the

original (CLAW) opcode. Table 4-2 shows our modification to the opcode (the opcode

modification is indicated in bold font). It is trivial to see that by a simple opcode-

reassignment, we are able to reduce hamming distance from 13 to 12.

Table 4-1: Original CLAW Encoding
 Instruction Assembled Output

1. l.movhi r17,0x107 1a 20 01 07

2. l.movlo r17, 0x9d50 2a 31 9d 50

Hamming Distance 13

Table 4-2: Encoded to Reduce Hamming Distance
 Instruction Assembled Output

1. l.movhi r17,0x107 1a 20 01 07

2. l.movlo r17, 0x9d50 3a 31 9d 50

Hamming Distance 12

In the next subsection, we explain the popular ways to encode instructions in today’s

embedded processors. Section 4.2 explains our opcode optimization algorithm in detail. In

section 4.3 we show the results of the optimization. We conclude this section in section 4.5.

 66

4.1 Popular ISA Encoding in Existing Embedded Systems

A common approach to encoding instructions, especially in RISC architectures is

called telescoping encoding [142]. This trend is followed by many embedded processor

architectures such as MIPS [108] and Atmel [167].

In telescoping encoding, two similar instructions of same type (e.g. Arithmetic

instructions) have the same primary opcode, and different secondary opcodes. There are two

approaches to decode instructions for such encoding: parallel or serial approach. Figure 4-1

and Figure 4-2 show how to decode an OR instruction using these approaches.

4 BITS
6 BITS

2 BITS

CONCATENATE

12 BITS
12 BITS1101 1100 0100

YES/NO

COMPARATOR

Figure 4-1: Parallel Approach to Decode an OR instruction

In the parallel approach, the opcode and sub-opcodes are compared in a single step. To

decode an OR instruction, the parallel approach takes 12 comparisons, regardless of a match.

In the serial approach, the primary opcode is compared, then if there is a match, the

 67

secondary opcode is compared. Such cascaded comparisons can introduce additional latches

into the system

Suppose that there are 1 million OR instructions in a benchmark. If the decoder is

written using a parallel approach, then to decode this instruction, there must be 12x1 million

comparisons. In the serial approach, in addition to 12x1 million comparisons, 6x1 million

additional latches are charged and discharged, which can consume significant amount of

energy.

4 BITS

6 BITS

2 BITS

CONCATENATE

6 BITS6 BITS00 0100

COMPARATOR

6 BITS

11 0111

YES/NO

VDD GND

GND

COMPARATOR

YES / NO
Figure 4-2: Serial Approach to Decode OR instruction

Not all instructions have multiple fields. For example, the “return from exception (rfe)”

instruction does not have a sub-opcode field. The unused bits in this instruction are left as

“don’t-cares.” An alarming observation is that many instructions that occur commonly in

several benchmarks have sub-opcode fields and instructions that rarely occur in a regular

program execution have no sub-opcode field. This can have a significant impact on energy.

 68

4.2 Methodology

In order to understand the code generated by the compiler, we took one application

(aifir01) as a training set and ran through our high-level CLAW simulator. Aifir01 is referred

to as the training benchmark, and the rest of the benchmarks are called the testing

benchmarks. We were surprised to see that the trace only had 70% coverage of the entire

ISA. After examining the machine description of the compiler, we found that only 80-85% of

the instructions in the ISA are represented. To see the general trend, we also examined the

GCC machine description of ARM and ATMEL. Similar percentage of coverage was seen in

the base machine description of these processors.

We were unable to create machine description to represent instructions such as

pipeline-synchronization. Similarly, there are some set of instructions that are used for

exception handling. It is known that exceptions happen rarely in a typical system, thus these

instructions are rarely executed when compared to all other instructions. But for all of the

above mentioned architectures, decoding of these rare instructions is straightforward and the

instructions that are commonly used have multiple-opcode fields, which can consume

additional time and power to decode.

To extract the instruction trace of the training benchmarks, a CLAW instruction-set

simulator was written in C++. To find adjacent instructions, Markov chains were created

from the instruction trace. In the beginning, two, three and four-instruction chains were

considered, but the three and four-instruction chains contributed minimally, thus we do not

discuss them in detail in this paper.

 69

To create the optimal opcode-distribution, the traces are analyzed using the algorithm

described in Figure 4-3. The function accepts the instruction-trace of the training benchmark

and a list of instructions the compiler is able to represent in its machine description.

Figure 4-3: Opcode Optimization Algorithm

This trace is then stepped through by another function that creates another list to hold

all the instructions that the current trace is able to represent. It holds all the instructions in

descending value of the instruction-type occurrence. This list is usually a subset of the GCC

represented traces.

 70

The instruction trace, along with the two lists, is fed into another function to prioritize

the opcodes. For example, if “ADD” is the highest occurring instruction in the training list,

then the priority transmitter will try and make sure the ADD instruction gets a unique

primary opcode and no sub-opcode.

When all the elements of the “Trace_Rep_Insns” list is visited, the optimizer visits all

the instructions that GCC is able to represent, not found in “Trace_Rep_Insns.” The rest of

instructions in the ISA are given primary and secondary opcode fields. This function outputs

the “Prio_Insn_Trace.”

Next, the Prio_Insn_Trace is analyzed to make sure adjacent instructions have the

lowest switching. This adjacent-instruction chain along with the “Prio_Insn_Trace” is sent to

a minimum-distance genetic algorithm similar to [128] that minimizes switching among the

adjacent instructions. This function gives an instruction template that contains information

about the placement of various components of the instruction.

This template is used to remap the instructions from the original CLAW encoding to

the new optimized encoding. Similarly, this template is used to remap all testing benchmark

to the newly optimized encoding. Figure 4-4 gives a flow-diagram for designing a new

opcode and how a new benchmark is remapped using the template of the new opcode

configuration.

Some operations such as addition, multiplication, bitwise operations, etc. are

commutative. In Table 4-3, we can see that when we switch register r2 in the second

instruction, we were able to reduce the total hamming distance between two instructions by

one.

 71

CLAW
BENCHMARK
EXECUTABLE CLAW

SIMULATOR

START ADDRESS

INSTRUCTION
TRACE

OPCODE
OPTIMIZATION
ALGORITHM

NEW OPCODES

STOP ADDRESS

OPCODE
REMAPPER

CLAW DECODER
GENERATOR

(ctrl.v)

ANY CLAW
BENCHMARK
EXECUTABLE

B.EXE

REMAPPED
EXECUTABLE

(B.EXE)

TRAINING
BENCHMARK

TESTING
BENCHMARK

Figure 4-4: Flow-Diagram of our Methodology

Table 4-3: Illustration of Distance Saved using Source Register Switching
 Instruction Assembled Inst.
First l.add r15,r13,r2 e1 f0 10 00
Second l.add r14,r2, r12 e1 a2 60 00
Hamming Distance 5

First l.add r15,r13,r2 e1 f0 10 00
Second (Switched) l.add r14,r12,r2 e1 ac 10 00
Hamming Distance 4

After profiling our benchmarks for possible register switching, we found that the

compiler, about 97-99% of the time (in all benchmarks), matched the source registers of the

instructions whenever possible. That is, it automatically performed the process explained in

table 4. We found very few cases where this was not true. Creating a stage in our analyzer to

do this did not cause any notable reduction in the energy consumption.

4.3 Results

The energy consumption was first measured for the single-cluster CLAW processor.

The entire benchmark was executed through the Verilog code. Even though, this method took

significant amount of time and resources, this was the only non-biased way to prove the

 72

accuracy of these techniques. Figure 4-5 shows the obtained base values for leakage and

dynamic energy.

In all benchmarks, static/leakage energy is approximately 10-15% of the dynamic

energy. Even-though static or leakage energy is considered a dominating factor in submicron

transistor sizes, their dominance is mainly in the caches and RAM, not in the processor core

[77]. Only the processor core was simulated, so static energy effects are low. Second, the

libraries we are using are regular VT (RVT) libraries. It has been proven in [116] that these

libraries are very low-leakage libraries. RVT libraries are suggested by ITRS as the most

suitable library for designing embedded systems.

Figure 4-5: Base Energy Values for the Benchmarks

It can be inferred from Figure 4-5 that the ospf benchmark consumed the least energy

and ttsprk01 consumed the most energy. This is because ospf is the smallest benchmark with

 73

2.3 million instructions. Conven00 is the largest benchmark in the set followed by dither.

Even though, ttsprk01 is the third-largest benchmark, it consumed ~30% more power than

conven00. Ttsprk01 contains more multiplication and division computations than all the

benchmarks, and these two units are power-intensive.

Each of the ten benchmarks are at one point used as a training benchmark. Then each

of the benchmark was tested on all the trained processors. The results are indicated in Table

4-4 and

Table 4-5. The benchmark on the horizontal axis is the training benchmark for the

genetic algorithm. A positive difference indicates a reduction in energy and a negative

difference indicates an increase in energy consumption. The highlighted fields show cases

were the training and testing benchmarks are the same. An asterisk was used to indicate a

change between -0.5% and 0.5%

Table 4-4: Percentage Dynamic Energy Reduction
 Aifirf01 Conven00 Dither Ospf Puwmod Rotate Routelkup Rspeed Ttsprk Viterb

Aifirf01 16% 1% 10% 14% * * 1% 3% 1% 1%

Conven00 2% 16% -1% 3% 2% * 2% 5% 5% 2%

Dither 4% 7% 16% * 3% 11% * 9% -1% -2%

Ospf 16% * 2% 19% 1% * * 4% * 2%

Puwmod 10% -2% 15% * 17% * 9% 12% 9% -6%

Rotate 6% * 11% 3% 8% 14% * 8% * *

Routelkup 2% * 4% 3% 4% 4% 14% 4% 4% *

Rspeed 4% 3% 2% 2% 4% 2% 6% 13% 4% 4%

Ttsprk01 7% 3% * * 1% -1% -1% -1% 9% -3%

Viterb00 -2% -1% -2% -4% -2% -2% -4% -2% -2% 16%

 74

Table 4-5: Percentage Static Energy Reduction

 Aifirf01 Conven00 Dither Ospf Puwmod Rotate Routelkup Rspeed Ttsprk Viterb

Aifirf01 * 1% * -1% -4% -2% * * * 1%

Conven00 7% 8% 8% 8% 8% 8% 8% 8% 8% 8%

Dither 2% 2% 2% 2% 2% 2% 2% 2% 2% 2%

Ospf -3% -3% -3% -3% -2% -2% -2% -2% -2% -2%

Puwmod -1% * -1% -1% -1% -1% -1% -1% -1% -1%

Rotate 6% 7% 7% 7% 7% 7% 7% 7% 7% 7%

Routelkup 7% 9% 9% 8% 8% 8% 8% 8% 8% 8%

Rspeed 4% * * -1% * * * * * *

Ttsprk01 -10% -1% -1% -1% -2% -2% -2% * -3% -2%

Viterb00 1% * * 2% * * * 2% 2% -1%

The first question that arose in our minds after looking at Table 4-4 is that since it is

well known that a decoder only contributes 10% of the total CPU energy, then how can an

energy reduction as high as 19% be seen in the trained CPU? To understand this question, the

timing diagram of the processor was examined at each stage namely: fetch, decode, register-

read, execute and write-back. Also other components of the processor such as the freeze unit

(also used to forward data between pipelines), store-buffer, ALU, memory-unit, multiply and

divide unit, and the exception handler were studied. Several debug runs were done with

$display statements to capture the bit-activity in the major buses inside the CPU components.

For the OSPF-optimized decoder, the processor achieved a 19% energy reduction for

OPSF. Figure 4-6 shows a pie chart that categorizes the major energy-saving contributors.

The decoder contributed for 11% of the 19% energy savings in OSPF. The fetch-unit

provided 3.5% and the instruction-busses and the other intermediate units provided for 2.5%

 75

of the 19% savings. The exception unit and the freeze-unit (also called stall-unit) provided

for 1% each. This trend was followed by all the benchmarks.

Decoder, 11%

Freeze Unit, 1%

Exception Unit, 1%

Fetch Unit, 3.50%

Buses and Other
Units, 2.50%

Figure 4-6: Dynamic Energy Savings in Each Unit of OSPF

To understand more about the characteristics of the benchmark a study of the

structure of the high-level C code was performed. Figure 4-7 shows the number of function-

calls that each of the benchmarks encounter during their execution. Function-calls are

important because during each function-call all registers used by the callee are saved on the

stack and then restored from the stack in the beginning and the termination of each call.

 76

Number of Function Calls made by EEMBC Benchmark

0

2000

4000

6000

8000

10000

12000

14000

16000

ai
fir

f0
1

co
nv

en
00

di
th

er

os
pf

pu
w

m
od

ro
ta

te

ro
ut

el
oo

ku
p

rs
pe

ed

tts
pr

k0
1

vi
te

rb
00

Nu
m

be
r o

f F
un

ct
io

n
Ca

lls

Figure 4-7: Dynamic Function-calls in Each Benchmark

In CLAW assembly, the only method to implement push and pop information into the

stack is by using a load-word or store-word to access the stack. After all loads or stores the

stack pointer (register r1) is incremented or decremented accordingly using an add-

immediate instruction, creating a common instruction chain for benchmarks high in stack

operations. When the dynamic trace of aifir01 was observed, there were a significant amount

of memory operations, which matches the results showing a high number of function calls.

Therefore, optimizing on the instruction chain for stack operations greatly reduces energy for

aifir01. Also, the benchmark calls a function called “GetInputValues” which loads a

significant amount of data from a global variable (inpVariableROM). To load from a global

variable, the 16 least significant bits of the variable are moved using the “movlo” instruction.

Then the 16 most significant bits are loaded into the register using a “movhi” instruction that

 77

loads its immediate value into the top 16 bits of a register. “Movhi” and “movlo” instructions

are analogous to the movw and movt instruction in the ARM architecture.

Dither and rotate operate on an image. Unlike aifir01, they do not refetch the image

every iteration. Instead, all necessary images are stored in a large array before the

“th_signal_start ()” function. Thus, they have significantly less function-calls than aifir01,

and therefore they do not benefit as much from the stack chain optimization. However, these

two benchmarks skip around inside an image, thus they have significant amount of branches

when compared to the other benchmarks. This explains why the optimized decoder for these

benchmarks performs well when executing the other benchmark.

It is popularly known that viterbi decoding is used to decode conventional codes in

communication systems. It is also well known that both convolutional encoding (conven00)

and viterbi decoders (viterb00) have a significant amount of shifts, adds and memory

operations. However, as per Table 4-4, an instruction-set that is optimized for one fails to

give a significant energy reduction on the other. Examining the instruction trace and the

high-level code reveals that conven00 performed all computations on 4-byte and 1 byte data

widths, that is, they had variables and data that were either “int” or “char.” Viterb00 did all

its computations on 2-byte data-width (“short”). CLAW has different instructions for each

data-size. Table 4-6 shows an example of loads for the 3 different data-set.

Thus, when trained using viterb00, most of the half-word instructions were given

smaller opcodes and the word-level and byte-level ones were given longer opcodes. The

opposite was done for conven00.

 78

Table 4-6: Different Load Instruction Types in CLAW
Data Type Load Inst. Meaning
1-Byte l.lbs Load data & sign-extend it to 1 byte-width
1-Byte l.lbz Load data & zero-extend it to 1 byte-width
2-Bytes l.lhs Load data & sign-extend it to 2-byte width
2-Bytes l.lhz Load data & zero-extend it to 2-byte width
4-Bytes l.lws Load data & sign-extend it to 4-byte width
4-Bytes l.lwz Load data & zero-extend it to 4-byte width

A further study to understand the results are to examine the number of instructions

required to meet the 50% coverage displayed Figure 4-8. This result indicates the diversity in

the benchmark. For example, ospf requires only 4 chains to get 50% coverage; this implies

that if another benchmark contains some of these chains then a good energy reduction can be

seen. Aifir01 and ospf have 2 chains in common that falls in this range. Thus, a high dynamic

energy reduction can be seen in ospf when the opcodes are optimized for aifir01.

Number of Chains Required to get a 50% Coverage in EEMBC
Benchmarks

0

2

4

6

8

10

12

14

16

aif
irf0

1

co
nv

en
00

dit
he

r
os

pf

pu
wmod

rot
ate

route
loo

ku
p

rsp
ee

d

tts
prk

01

vit
erb

00

Figure 4-8: Number of Distinct Instruction Chains achieving 50% coverage

 79

Both puwmod and rspeed were very computationally intensive. Even though, rspeed

had significantly more function-calls than puwmod, the dominating chains for both of them

were instructions such as add, rotate, extend etc. In these two benchmarks, chain-count was

distributed evenly among its chains. Therefore, it was hard to optimize for these benchmarks.

The advantage of such algorithms with several distinct chains is that they give some energy

reduction for most of the training set. Finally, routelookup also exhibited similar behavior.

But it had a lot more distinct chains than puwmod or rspeed. Thus, it was even harder to

analyze them and find an optimal opcode-encoding.

Many of the explanations thus far in this section apply primarily to dynamic energy.

Sub-threshold leakage is a dominating issue only in the memory hierarchy [77]. For this

work, memory was not modeled since it was unable to find a synthesizable memory that can

be interfaced with the CLAW Verilog core. Figure 4-5 shows that in CLAW, leakage energy,

on average, contribute only 10-15% of the total energy consumption. It can be seen from

Table 4-5 that leakage-energy tends to increase slightly when there some decrease in

dynamic-energy. This is because the primary way to reduce dynamic energy is to reduce

switching in the processor interconnects, which tends to give slight increase in leakage

energy. After further analysis of individual components of the processor, the increase in

leakage energy was in components where switching is greatly reduced: the decoder and the

instruction busses.

 80

4.4 Multi-cluster CLAW Configurations

The next step is to see if our algorithm can be applied to processors with larger issue-width. For this
work, we choose to apply our algorithm on the benchmarks compiled (using CWP as the priority scheme)

for the 2-Cluster and 4-Cluster CLAW machines. Table 4-7 shows the dynamic energy savings, and
Table 4-8 shows the static energy savings. Table 4-9 and Table 4-10 show the

dynamic and static energy savings for 4-Cluster CLAW. These values are compared with the

base-values shown in Figure 3-14, Figure 3-15, Figure 3-16 and Figure 3-17. Most of the

results scaled with the processor issue-width. There were a few changes (within 1%) when

we went from 1-Cluster to 2-Cluster, but going from 2-Cluster to 4-Cluster there is virtually

no change.

We can see that for all the benchmarks except Routelookup, the results scaled pretty

well. This is because most of the benchmarks do not have a very high parallelism, so the

same instructions that were adjacent in 1-cluster were more or less adjacent in the 2-Cluster

and 4-Cluster CLAW. Routelookup is the most parallel benchmark in our set, so its results

gave small difference. Secondly, even though we change the issue-width, the benchmark

remains the same. For example, let’s say a benchmark in the 1-cluster executable had 1000

addition operations. This number does not change when we go to a 4-Cluster machine.

Similarly, with the exception of copy operations, the instruction-types will also

remain the same. CWP does a good job avoiding copies, so this instruction does not

contribute heavily in the executable. Since the dynamic energy did not change much, the

static energy trends also remained the same.

Table 4-7: Percentage Dynamic Energy Reduction (2 Cluster CLAW)
 Aifirf01 Conven00 Dither Ospf Puwmod Rotate Routelkup Rspeed Ttsprk Viterb

 81

Aifirf01 14% 1% 10% 14% * * 1% 3% 1% 1%

Conven00 2% 15% -1% 3% 2% * 3% 5% 5% 2%

Dither 3% 7% 16% * 3% 11% 1% 9% -1% -2%

Ospf 16% * 2% 19% 1% * * 4% * 2%

Puwmod 10% -2% 14% * 17% * 9% 12% 9% -6%

Rotate 6% * 11% 3% 7% 14% * 8% * *

Routelkup 2% * 4% 4% 4% 4% 14% 3% 4% *

Rspeed 4% 3% 2% 2% 4% 2% 4% 13% 4% 4%

Ttsprk01 7% 3% * * 1% -1% -1% -1% 9% -3%

Viterb00 -2% -1% -2% -4% -2% -1% -4% -2% -2% 15%

Table 4-8: Percentage Static Energy Reduction (2 Cluster CLAW)

 Aifirf01 Conven00 Dither Ospf Puwmod Rotate Routelkup Rspeed Ttsprk Viterb

Aifirf01 * 1% * -1% -4% -2% * * * 1%

Conven00 7% 8% 8% 8% 8% 8% 8% 8% 8% 8%

Dither 2% 2% 2% 2% 2% 2% 2% 2% 2% 2%

Ospf -3% -3% -3% -3% -2% -2% -2% -2% -2% -2%

Puwmod -1% * -1% -1% -1% -1% -1% -1% -1% -1%

Rotate 6% 7% 7% 7% 7% 7% 7% 7% 7% 7%

Routelkup 7% 9% 9% 8% 8% 8% 8% 8% 8% 8%

Rspeed 4% * * -1% * * * * * *

Ttsprk01 -10% -1% -1% -1% -2% -2% -2% * -3% -2%

Viterb00 1% * * 2% * * * 2% 2% -1%

 82

Table 4-9: Percentage Dynamic Energy Reduction (4-Cluster CLAW)
 Aifirf01 Conven Dither Ospf Puwmod Rotate Routelkup Rspeed Ttsprk01 Viterb

Aifirf01 14% 1% 10% 14% * * 1% 3% 1% 1%

Conven00 2% 15% -1% 3% 2% * 3% 5% 5% 2%

Dither 3% 7% 16% * 3% 11% 1% 9% -1% -2%

Ospf 16% * 2% 19% 1% * * 4% * 2%

Puwmod 10% -2% 14% * 17% * 9% 12% 9% -6%

Rotate 6% * 11% 3% 7% 14% * 8% * *

Routelkup 2% * 4% 4% 4% 4% 14% 3% 4% *

Rspeed 4% 3% 2% 2% 4% 2% 4% 13% 4% 4%

Ttsprk01 7% 3% * * 1% -1% -1% -1% 9% -3%

Viterb00 -2% -1% -2% -4% -2% -1% -4% -2% -2% 15%

Table 4-10: Percentage Static Energy Reduction (4-Cluster CLAW)
 Aifirf01 Conven Dither Ospf Puwmod Rotate Routelkup Rspeed Ttsprk01 Viterb

Aifirf01 * 1% * -1% -4% -2% * * * 1%

Conven00 7% 8% 8% 8% 8% 8% 8% 8% 8% 8%

Dither 2% 2% 2% 2% 2% 2% 2% 2% 2% 2%

Ospf -3% -3% -3% -3% -2% -2% -2% -2% -2% -2%

Puwmod -1% * -1% -1% -1% -1% -1% -1% -1% -1%

Rotate 6% 7% 7% 7% 7% 7% 7% 7% 7% 7%

Routelkup 7% 9% 9% 8% 8% 8% 8% 8% 8% 8%

Rspeed 4% * * -1% * * * * * *

Ttsprk01 -10% -1% -1% -1% -2% -2% -2% * -3% -2%

Viterb00 1% * * 2% * * * 2% 2% -1%

 83

4.5 Conclusion

In this chapter, a technique to optimize the instruction-set based on a sample of the

workload for which the processor is designed is presented. The presented technique neither

causes any additional cycle-count nor increase the clock period of the base processor. The

only major hardware modification that is necessary is the instruction decoder. The newly

generated instruction-decoder can be swapped with the original without any further

modifications to the processor. We demonstrated this algorithm on 1-Cluster, 2-Cluster and

4-Cluster CLAW. We showed that results scaled as we increase the cluster-sizes.

This chapter shows that if the sample set is selected correctly, some energy reduction is

achieved by intelligently assigning opcodes and no performance is lost. When the training

and the testing application were the same, we achieved an average 17.2% energy reduction.

When the testing application and training application were different, a 9.4% energy reduction

was achieved. In addition, this technique also provides a loose-rubric to design software for

the particular processor. If the new software that is to be added to the system is designed in a

similar structure and contains similar characteristics (e.g. memory intensive vs.

computationally intensive or word-length vs. byte-length), there can be an energy reduction

with no performance loss.

 84

Chapter 5 Register-Sharing

Registers play a significant role in improving the instruction-level-parallelism (ILP) in

modern systems [11] [55] [150]. Large register-files, with the help of an optimal register

allocation scheme, can greatly reduce the amount of spill-code inserted in the program [8].

This can in turn reduce the memory traffic, thus reducing the number of execution cycles

necessary for the application.

To remove false dependences in dynamically scheduled processors, designers implement

rename map tables that match the architectural registers to physical registers [10] [13]. In

statically scheduled systems, these false dependencies are resolved by using tighter register

allocation schemes and/or a large register-file. In either case, there can be a huge amount of

pressure exerted on register-file [11].

Even though the idea of implementing large register-file is attractive for performance,

there can be setbacks in terms of energy or power dissipation, access time and chip area

[115]. It is known that register-file power dissipation accounts for about 10-20% of the

overall power dissipation [11] [55]. For example, in the Motorola M.CORE architecture, the

register-file energy consumption accounts for 16% of the total processor power and 42% of

the dual-path power [13].

 85

5.1 Preliminary Analysis

To benefit from register sharing, it is necessary to see if there is a large amount of

duplicate values in the register-file. Table 5-1 shows the percent of zero and duplicate writes

in a register-file from for different architectures with different register-file sizes.

It is apparent that there are a large number of duplicated values stored inside a register-

file. Therefore we investigated if a certain value was written repeatedly. Our analysis found

that ‘0’ was written at a greater frequency than any other values. It can be seen from Table

5-1 that there is a significant amount of zeros written into registers.

Table 5-1: Zero and Duplicate writes for different register file configurations
 ARM (Thumb Mode) 1-Cluster CLAW Simplescalar 2.0 IA-64 (Soft Float) IA-64 (Hard Float)

Benchmark Zero-
Write

Dupl. Write Zero-
Write

Dupl. Write Zero-
Write

Dupl.
Write

Zero-
Write

Dupl.
Write

Zero-
Write

Dupl.
Write

aifirf01 24% 43% 13% 46% 20% 67% 1% 5% 1% 5%
conven00 15% 48% 30% 49% 25% 48% 1% 7% 1% 7%
dither 8% 14% 8% 21% 10% 15% 2% 10% 2% 10%
puwmod 3% 25% 6% 39% 3% 30% 1% 9% 1% 10%
rotate 3% 17% 3% 23% 3% 17% 1% 10% 1% 11%
routelkup 5% 40% 7% 53% 5% 44% 1% 5% 1% 5%
rspeed01 4% 20% 21% 45% 3% 23% 1% 7% 1% 7%
ttsprk01 5% 28% 25% 53% 3% 39% 1% 8% 1% 8%
viterbi 11% 31% 12% 40% 7% 42% 1% 6% 1% 6%
ospf 6% 35% 19% 41% 3% 32% 1% 5% 1% 5%

5.2 Register Sharing Techniques

It is apparent from section 1.1.2 that power dissipation of the register-file is a highly

researched area. It is also visible that many register optimization techniques can greatly help

in improving the performance of the program. There are several different register sharing

techniques proposed in research in works such as [150] and [10]. In this investigation, we

pick two classes of register sharing structures: register map table [10] [150] and a register

map-vector [150]. Figure 5-1 explains the top-level block diagram of these two structures.

 86

Figure 5-1: Top-level block diagram of the map-table/map-vector

A register map-table is used to map certain architectural registers to other registers

that hold the certain values. As mentioned in section 5.1, there is a significant amount of ‘0’

values written into the register-file. We choose one architectural register (r0) that is

permanently set to zero, and any register whose value is zero is mapped to r0. The primary

advantage of this scheme is that we do not access the register-file for zero-writes. Secondly,

register pressure is potentially reduced.

The second approach is to use a map-vector to indicate which registers hold the zero

value. Each register is assigned a bit in the vector to indicate if its result is zero. If the

corresponding bit is set, then the register-file is not accessed. In our experiments, the map-

vector generally consumed about 30-40% less power than a map-table. As soon as we reach

the write-back stage, we know the register value along with the result to be written. If the

value written is zero then a bit is set in a map-table and the register-file is not accessed.

Otherwise the value is forwarded to the register-file and is written to the appropriate register.

To explain this further, we present a flowchart for these stages in Figure 5-2 and Figure 5-3.

 87

Figure 5-2: Flow-Diagram for the Writeback Stage

Figure 5-3: Flow-diagram of the Register-Read Stage

 88

5.3 Experiments and Terminology

To accurately portray register writes, we created synthetic-benchmarks with 1-million

register writes and 2-million register reads. Synthetic benchmarks were used to filter out

unwanted bias and to keep the study generic. It can be verified that similar trends can be

achieved by using commercial benchmarks. In each run, we increased the number of zeros by

a certain percentage. Throughout this paper, the number of zeros in the stream is given in

terms of percentage. It is worth mentioning that we only read registers that have already been

written (with the exception of the stack pointer and the return value register). We explain our

different writing schemes in Figure 5-4. Please note that in the figure, the number of writes

was reduced to 20 for the ease of explanation.

We also created sequences of zero writes into the register-file. These sequences of

writes are placed in different regions of the trace. For example a sequence 40-10 implies that

the first 10% of the register writes are non-zero values and the next 40% of the writes are

zeros. The remaining 50% of the values are non-zero writes. We take this model further and

break the zero sequence into intervals to see their effects. For example, for the experiment

40-40-10 implies that the first 40% (bold) of the writes are non-zeros, and then in the next

60%, the 40% zeros (underlined) are divided into intervals of 10%. In the next section we

explain the results of these distributions.

 89

Figure 5-4: Different Placements of Zero-Writes

5.4 Results

To understand the impact of the register-file size on power dissipation, we modeled a 32-bit

register-file of size 16, 32, 64, 128 and 256 registers. The percentage of zero-writes

(distributed randomly) is varied from 0-100% in intervals of 5%. Figure 5-5 to Figure 5-9

displays our findings.

In all cases, using a register-file with a map-table consumed more power than only

the register-file without any value sharing. We call this the “base” case. The map-vector

gives a power advantage when we have 20% and 45% of zeroes for the register-file size of

16 and 32, respectively. The map vector fails to provide a power-reduction for the 128 and

256 sized register-file. This is because the internal power of the cell dominates the overall

 90

power consumption for a larger register-file. For 64 entry file, the break-even point lies after

95%.

0.01

0.011

0.012

0.013

0.014

0.015

0.016

0.017

0.018

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

Percentage zero-writes

P
ow

er
(W

)

Base Map Vector Map Table

Figure 5-5: Power Dissipation for Random Register-Write (Reg. File Size = 16)

0.015

0.017

0.019

0.021

0.023

0.025

0.027

0.029

0.031

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

Percentage of Zero-Writes

Po
w

er
(W

)

Base Map Vector Map Table

Figure 5-6: Power Dissipation for Random Register-Write (Reg. File Size = 32)

 91

Next, we wanted to study the impact of register zero-write in sequences (seq.) placed

at different parts of the trace. We investigated for the most beneficial section of the trace to

schedule a chunk of zero-writes. The zero-writes were inserted at 10%, 40% and 80% of the

trace. The segment size was modeled from 10-80%, whenever applicable. Since the map-

table failed to provide any power reduction for the overall system, we do not investigate its

effects any further.

0.037

0.039

0.041

0.043

0.045

0.047

0.049

0.051

0.053

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

Percentage Zero Writes

P
ow

er
(W

)

Base Map Vector Map Table

Figure 5-7: Power Dissipation for random Register-Write (Reg. File Size = 64)

 92

0.072

0.074

0.076

0.078

0.08

0.082

0.084

0.086

0.088

0.09

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

Percentage Zero Writes

Po
w

er
(W

)

Base Map Vector Map Table

Figure 5-8: Power Dissipation for random Register-Write (Reg. File Size = 128)

0.14

0.145

0.15

0.155

0.16

0.165

0.17

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

Percentage Zero Writes

Po
w

er
(W

)

Base Map Vector Map Table

Figure 5-9: Power Dissipation for random Register-Write (Reg. File Size = 256)

 93

It can be seen from Figure 5-10 through Figure 5-14 that a slight power reduction is

achieved when zeros are placed in the beginning. This is due to a reduced amount of

switching in the ports and inside the registers, since everything is initialized to zero in the

beginning.

Now, we extend our previous results and divide these sequences into interval chains

(seq-int). For a given program, the compiler will typically be able to distribute five, 2% zero-

write chains more easily than a single 10% chain. The values of the intervals were chosen to

be 2%, 5%, and 10% respectively. These values were chosen because 2, 5 and 10 are

common divisors of 10, 40 and 80, thus allowing the results to be a fair comparison. Figure

5-15 through Figure 5-19 shows our results.

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

10
--1

0
10

--2
0

10
--3

0
10

--4
0

10
--6

0
10

--8
0

40
--1

0
40

--2
0

40
--3

0
40

--4
0

40
--5

0
80

--1
0

80
--2

0

Sequence (Percent Zero -- Location)

Po
w

er
(W

)

Base Map Vector

Figure 5-10: Power Dissipation for Sequential Writes (Reg. File Size = 16)

 94

0

0.005

0.01

0.015

0.02

0.025

0.03

10
--1

0
10

--2
0

10
--3

0
10

--4
0

10
--6

0
10

--8
0

40
--1

0
40

--2
0

40
--3

0
40

--4
0

40
--5

0
80

--1
0

80
--2

0

Sequence (Percent Zero -- Location)

Po
w

er
 (W

)

Base Map Vector

Figure 5-11: Power Dissipation for Sequential Writes (Reg. File Size = 32)

0.036

0.038

0.04

0.042

0.044

0.046

0.048

10
--1

0
10

--2
0

10
--3

0
10

--4
0

10
--6

0
10

--8
0

40
--1

0
40

--2
0

40
--3

0
40

--4
0

40
--5

0
80

--1
0

80
--2

0

Sequence (Percent Zeros -- Location)

Po
w

er
(W

)

Base Map Vector

Figure 5-12: Power Dissipation for Sequential Writes (Reg. File Size = 64)

 95

In the sequence interval distribution, the power dissipation for all cases is slightly

larger than the sequence case but lower than the random placement. The segment size did not

create a significant reduction in the power consumption. This is because the dynamic power

saved by the chunks did not offset the internal power, unlike the sequence placement. For a

large register-file, the internal power dominated, thus making the savings from these

techniques insignificant. When split into intervals, the starting placement did not cause any

major changes to the power reduction. We believe this is also due to the domination of the

internal power.

0.068

0.07

0.072

0.074

0.076

0.078

0.08

0.082

0.084

0.086

0.088

10--1
0

10--2
0

10--3
0

10
--4

0
10

--6
0

10
--8

0
40--1

0
40

--2
0

40
--3

0
40

--4
0

40--5
0

80--1
0

80
--2

0

Sequence (Percent Zeros -- Location)

P
ow

er
(W

)

Base Map Vector

Figure 5-13: Power Dissipation for Sequential Writes (Reg. File Size = 128)

 96

0.135

0.14

0.145

0.15

0.155

0.16

0.165

10
--1

0
10

--2
0

10
--3

0
10

--4
0

10
--6

0
10

--8
0

40
--1

0
40

--2
0

40
--3

0
40

--4
0

40
--5

0
80

--1
0

80
--2

0

Sequence (Percent Zeros -- Location)

Po
w

er
(W

)

Base Map Vector

Figure 5-14: Power Dissipation for Sequential Writes (Reg. File Size = 256)

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

10
--1

0--2

10
--1

0--5

10
--1

0--1
0

10
--4

0--2

10
--4

0--5

10
--4

0--1
0

10
--8

0--2

10
--8

0--5

10
--8

0--1
0

40
--1

0--2

40
--1

0--5

40
--1

0--1
0

40
--4

0--2

40
--4

0--5

40
--4

0--1
0

80
--1

0--2

80
--1

0--5

80
--1

0--1
0

Seq. Intervals (Pct Zeros -- Placement -- Seq. length)

P
ow

er
 (W

)

Base Map Vector

Figure 5-15: Power Dissipation for Seq-int writes (Reg. File Size = 16)

 97

0.0195

0.02

0.0205

0.021

0.0215

0.022

0.0225

0.023

10
--1

0--
2

10
--1

0--
5

10
--1

0--
10

10
--4

0--
2

10
--4

0--
5

10
--4

0--
10

10
--8

0--
2

10
--8

0--
5

10
--8

0--
10

40
--1

0--
2

40
--1

0--
5

40
--1

0--
10

40
--4

0--
2

40
--4

0--
5

40
--4

0--
10

80
--1

0--
2

80
--1

0--
5

80
--1

0--
10

Seq. Intervals (Pct Zero--Placement Pct -- Seq. Length)

Po
w

er
(W

)

32 Registers Base 32 Registers Map Vector

Figure 5-16: Power Dissipation for Seq-int writes (Reg. File Size = 32)

0.036

0.037

0.038

0.039

0.04

0.041

0.042

0.043

0.044

0.045

0.046

10
--1

0--2

10
--1

0--5

10
--1

0--1
0

10
--4

0--2

10
--4

0--5

10
--4

0--1
0

10
--8

0--2

10
--8

0--5

10
--8

0--1
0

40
--1

0--2

40
--1

0--5

40
--1

0--1
0

40
--4

0--2

40
--4

0--5

40
--4

0--1
0

80
--1

0--2

80
--1

0--5

80
--1

0--1
0

Seq. Intervals (Pct Zero--Placement Pct. -- Seq Length)

Po
w

er
(W

)

64 Registers Base 64 Registers Map Vector

Figure 5-17: Power Dissipation for Seq-int writes (Reg. File Size = 64)

 98

0.073

0.074

0.075

0.076

0.077

0.078

0.079

0.08

0.081

10--1
0--2

10--1
0--5

10
--1

0--1
0

10
--4

0--2

10
--4

0--5

10
--4

0--1
0

10
--8

0--2

10
--8

0--5

10--8
0--1

0

40
--1

0--2

40--1
0--5

40
--1

0--1
0

40
--4

0--2

40
--4

0--5

40
--4

0--1
0

80--1
0--2

80
--1

0--5

80
--1

0--1
0

Seq. Intervals (Pct Zero -- Placement Pct. -- Seq. length)

Po
w

er
(W

)

128 Registers Base 128 Registers Map Vector

Figure 5-18: Power Dissipation for Seq-int writes (Reg. File Size = 128)

0.135

0.14

0.145

0.15

0.155

0.16

0.165

10
--1

0--
2

10
--1

0--
5

10
--1

0--
10

10
--4

0--
2

10
--4

0--5

10
--4

0--
10

10
--8

0--
2

10
--8

0--
5

10
--8

0--
10

40
--1

0--
2

40
--1

0--
5

40
--1

0--
10

40
--4

0--
2

40
--4

0--
5

40
--4

0--
10

80
--1

0--
2

80
--1

0--
5

80
--1

0--
10

Seq. Intervals (Pct Zero -- Placement Pct. -- Seq. Length)

Po
w

er
(W

)

256 Registers Base 256 Registers Map Vector

Figure 5-19: Power Dissipation for Seq-int writes (Reg. File Size = 256)

 99

5.5 Conclusion

This study reveals several power dissipation patterns of the register-file. Adding these

structures can cause a power reduction only when there is a significant amount of zero-writes

present in the workload. Similarly, scheduling multiple zero-writes together, regardless of

the destination register, can give some power reduction for small register-file. Some power-

reduction can also be achieved if it is able to divide the common-value writes into intervals

than just placing them at random. It is best to make register-sharing structures configurable

so that the user can turn them off when they feel there isn’t enough common-value to provide

any power-benefit.

These techniques can be extended to a physical or an architectural register-file. The

impact of zero-writes on power dissipation can be useful in several ways. For example, a

compiler can use this information and schedule instructions that potentially have a zero-write

together and form chunks. In addition, the processor can gate a map-vector so that the

compiler or profiler can predict and communicate that the number of zero-write in the system

is low.

 100

Chapter 6 A Case study on IEEE 802.11n PHY

6.1 Motivation

CLAW is an ideal processor for embedded systems that support diverse, complex

applications. CLAW is capable of understanding this diversity inside an application and is

able minimize the overall energy required to execute the application. To find an ideal niche

for the CLAW processor, we explored new algorithms that fit these properties.

Communications, especially Wireless Local Area Networks (WLAN) is one of the

most developing fields today [110] [156] [144]. Most of the WLAN today use some flavor of

IEEE 802.11 standard [156] [110]. The previous standard, IEEE 802.11g operates at the

20MHz bandwidth. With the necessity of higher throughput and data-rates, IEEE

Communication society set up an IEEE 802.11 High-Throughput Study Group (HTSG) to

come up with a new standard for WLAN transmission [156], called IEEE 802.11n. A final

version of this standard is projected to be completed by November 2009.

One of the major findings of HTSG is the short comings of the current 802.11

Physical layer. They proposed a new multiple-input, multiple-output (MIMO) WLAN

scheme that is able to provide high throughput and data-rate. At present a third-draft of the

IEEE 802.11n standard is proposed [170].

One of the main advantages of high data-rate WLAN is that it makes

telecommunication systems more nomadic [110]. Many such nomadic systems use batteries

as the sole energy-source. Thus, reducing energy consumption is one of the compulsory

 101

requirements for such systems. To date, there has not been a single study that characterizes

the energy consumption of such systems using 802.11n.

In this chapter, we provide a model for the IEEE 802.11n transmitter and receiver, as

per the parameters mentioned in [170], using the C language. We implement these units

strictly per the standard and using the advice given by IEEE 802.11 experts in [144] [157]

[102] [3]. The authors of [102] have provided parameters for all the major components in

this standard to achieve the best performance and data-rate. They demonstrate using detailed

simulations that using certain parameters for the components can help achieve high data-rate.

These parameters are used in our algorithm. We then characterize these two units and

measure the energy consumed. Finally, we show how a dynamic length-adaptive processor

can provide an energy benefit without losing performance for the transmitter and receiver.

In the next section, we explain the individual components of the transmitter and

receiver. In Section 6.3, we show how the components are assembled to create a non-biased

model. We display our results in section 6.4 and conclude this chapter in section 6.5.

6.2 IEEE 802.11n Architecture

Figure 6-1 and Figure 6-2 shows the major components of the transmitter and receiver.

There are seven major components for the transmitter: forward-error correction transmitter

(FEC), interleaver, OFDM symbol mapper, MIMO transmitter, the inverse fast Fourier

transform (IFFT), and the digital to analog converter. The receiver complements the work of

the transmitter using these six components: analog to digital converter, fast Fourier-transform

(FFT), MIMO decoder, OFDM symbol demapper, de-interleaver and FEC decoder. In this

 102

work, we maintain all our work in the digital side, thus we do not model the analog to digital

or digital to analog conversion. In the next sub-sections, each of these components is

explained in detail.

FORWARD ERROR
CORRECTION

ENCODER

INTERLEAVER

OFDM SYMBOL
MAPPER

MIMO ENCODER

ANTENNA SELECTOR IFFTIFFT

DIGITAL TO ANALOG
CONVERTER

DIGITAL TO ANALOG
CONVERTER

DATA FROM THE
MAC UNIT

Figure 6-1: IEEE 802.11N Transmitter

 103

ANALOG TO DIGITAL
CONVERTER

ANALOG TO DIGITAL
CONVERTER FFTFFT MIMO DECODER

OFDM SYMBOL
DE-MAPPER

DE-INTERLEAVER

FORWARD ERROR
CORRECTION

DECODER

BIT-STREAM TO
MAC UNIT

Figure 6-2: IEEE 802.11N Receiver

6.2.1 FEC Transmitter and Decoder

Forward-error control is a system of error control, whereby the sender adds redundant

bits into the stream called error correction code. These code can be used to correct any errors

occurred during transmission of data though the channel. As per the past research, LDPC or

Convolutional Encoding can be used for FEC in IEEE 802.11N. For best performance,

authors of [102] advise the use of convolutional encoding. Figure 6-3 shows the block-

diagram of a convolutional transmitter. The incoming data is brought into the constraint

register one bit at a time and the output bits are generated by modulo-2 addition of the

required bits from the constraint register. As per their experiments, the best results can be

 104

achieved when the convolutional transmitter has a constraint length (K) of 7, and using the

generator polynomials 91 (1138) and 121 (1718).

Figure 6-3: Convolutional Transmitter [171]

The most popular algorithm to decode convolutional codes with constraint-length less

than 10 is the Viterbi Decoder [152]. Viterbi algorithm is a maximum-likelihood decoding of

data encoded using convolutional encoding. Thus, we used a Viterbi Decoder for decoding

these values. The value of K is also kept at 7.

6.2.2 Interleaving and De-interleaving
Errors in communication channels generally occur in burst. Interleaving is used to

remove effects of such bursty errors in the system. There are two different types of

interleaving: block-interleaving and convolutional interleaving. The IEEE 802.11n standard

[170] proposes using block-interleaving. Even though this is one of the required units of the

standard, as per [102], the array-size of this unit does not create any performance changes

 105

for a normal additive white-noise Gaussian channel (AWGN). Figure 6-4 shows the function

of block-interleaving.

Figure 6-4: Block Interleaving [137]

Block interleaving can be thought of as inserting a bit-stream horizontally, one-row at

a time, and then outputting them one-column at a time. De-interleaving complements this

approach. For a single-error correction, the number of rows in the matrix must be greater

than the constraint-length and the number of columns must overbound the expected burst

length [134]. To satisfy these two requirements, we chose a MxN array of 16x16.

6.2.3 OFDM Symbol Mapping

OFDM symbol mapping converts data by changing some aspect of the carrier-signal

or carrier-wave in response to the data-signal [134]. Authors of [102] experimented with

four schemes: Binary Phase-Shift Key (BPSK), Quadratic Phase-Shift Key (QPSK), 16-bit

Quadrature Amplitude Modulation (QAM) and 64-bit Quadrature Bit Modulation. The

authors demonstrate find that a 64-bit QAM with a code rate of ¾ seem to gives slightly-

better results than their predecessors.

 106

 QAM consists of two independently amplitude-modulated carriers in quadrature.

Each block of K-bits can be split into two blocks which use k/2 bit digital to analog

converters to provide required modulation voltages for the carriers. For more details about

QAM, the readers are referred to pg. 405-412 in [134]

6.2.4 MIMO Encoding and Decoding

 This section is the heart of IEEE 802.11N standard. This is the most-researched and

most agreed upon aspect of the standard. Almost all papers agree using Space-Time-Block

Coding (STBC) [102] [156] [170]. STBC is a scheme in which same information is

transmitted simultaneously on different antennas. Orthogonal codes are a specific case of

STBC which can be detected linearly at the receiver with simple operations.

Of all the space-time block-codes, the most popular scheme is the Alamouti Scheme by

Saivash Alamouti [102] [143] [162]. Alamouti scheme has a spatial rate of 1 and the received

data can be easily decoded. Alamouti scheme can be used for any number of receiver and

transmitter antennas, but the authors of [102] demonstrate that using a 2x2 scheme is the

most efficient and any scheme higher than this just adds extra complexity without any

significant performance improvement. In this section, we provide a brief overview of the

Alamouti scheme. For further explanation, the reader is referred to [3].

 107

Figure 6-5: Alamouti Scheme (2 Transmit and 2 Receiver Antennas) [3]

Figure 6-5 shows the Alamouti scheme for a 2-input, 2-output scheme. In this figure,

we are ignoring the FFT and IFFT steps for ease of explanation. Let’s suppose we want to

transfer the symbols So and S1 through the system. At time “T” we transmit S0 and S1 through

Antennas TX0 and TX1, respectively. At Time “T+τ”, where τ is the next cycle, we transmit

the negated complex conjugate of S1 and the complex conjugate of So through antennas TX0

and TX1. For ease of understanding, we have provided an example of all these three

 108

scenarios in Table 6-1. In Figure 6-5 the 4 channels conditions between the antennas are

represented by h1, h2, h3, and h4. We assume Additive White-Gaussian Noise (AWGN) is

added at the receiving end by some interference called (no, n1, n2, and n3).

Table 6-1: Three Transmission Scenarios Example
Symbol S a + bj

Complex Conjugate of S (S*) a - bj

Negated Complex Conjugate of S0 (-S*) -a + bj

The received signals are input into the combiner along with the estimations about the

channel characteristics from the channel estimator. This data is then passed into a maximum-

likelihood detector that detects the transmitted values: ŝ0 and ŝ 1.

6.2.5 Fast Fourier Transform

Fourier transform maps a time-series datum into the series of frequencies. When the

Fourier-transform is applied to a discrete series of inputs, we call it Discrete Fourier

Transform (DFT). DFT is very useful because they reveal the periodicities in the data along

with the relative-strengths of any periodic components. Fast-Fourier Transform (FFT) is a

special kind of DFT that reduces the required number of computations. For N points, FFT

reduces the algorithm complexity from O(2N2) to O(N log N). The authors of [170]

recommend using a radix-2 Decimation-in-time FFT algorithm.

6.3 Implementation
Since there was no public-source 802.11n benchmark available, the most challenging

part of performing such tests became the creation of a non-biased benchmark suite. We find

 109

that the best way to accomplish this is to assemble the algorithm using existing published

benchmark.

For convolutional transmitters and Viterbi decoders, we used the implementation

available in EEMBC telecommunications suite. QAM and Block-interleaver were

implemented using the algorithms given in [134] and [170]. For the FFT and iFFT, we again

extracted them from the fixed point FFT implementation available in EEMBC. For the FFT

algorithm, we had to recompute the constants that need to be multiplied by the data during

the course of the algorithm called twiddle factors. These values were computed using the

algorithm given in [30].

We were unable to find any public C-language implementation of STBC or the

Alamouti’s algorithm. The authors of [146] have implemented a Matlab version of this

algorithm and submitted to Mathworks. We used this algorithm and decided to convert it into

C-language.

The heart of the STBC algorithm is the matrix multiplication. The biggest advantage

of STBC and Alamouti scheme as per [3] [102] and [110] is that it is not very compute

intensive, when compared to its predecessors. Thus, we wanted to use a simple matrix

multiplication algorithm. DSPstone benchmarks [163] provide simple kernels of matrix

multiplications. We used this benchmark to do the matrix multiplication in our STBC

algorithm.

 110

6.4 Results

6.4.1 Instruction Distribution
One of the most important characteristics in any algorithm is the instruction-

distribution of the instruction-trace. Figure 6-6 and Figure 6-7 show this information for the

transmitter and receiver. NOP instruction accounted for 65% and 69% in the transmitter and

receiver, respectively. For pure VLIW machines, this is not uncommon since the compiler is

responsible for removing all the hazards by explicitly inserting NOP instructions. Since NOP

does not provide any insights to the basic algorithm, we have omitted the percentage of NOP

in Figure 6-6 and Figure 6-7. For example, when we discuss 22% addition instructions, it

means that 22% of all instructions excluding NOP, are additions.

0%

5%

10%

15%

20%

25%

l.a
dd

i
l.l

w
z

l.s
w

l.a
dd

l.e
xt

hs
l.l

bz
l.s

fn
e

l.b
f

l.m
ov

e
l.s

fn
ei

l.m
ul

l.c
op

y
l.l

hz l.s
h

l.m
ov

hi
l.m

ov
lo

l.s
ub l.s
b

l.b
nf

l.s
fe

qi
l.s

lli
l.l

hs
l.x

or

Figure 6-6: Dynamic Instruction Distribution of 802.11n Transmitter

 111

0%

5%

10%

15%

20%

25%

l.a
dd

i
l.a

dd l.b
f

l.l
w

z

l.s
fn

ei
l.b

nf
l.s

fn
e

l.s
h

l.c
op

y
l.l

hz
l.e

xt
hs

l.s
ub

l.l
hs

l.s
w

l.m
ul

.

l.s
fg

es
l.m

ov
hi

l.m
ov

lo
l.s

flt
s

l.s
ra

i l.j
l.m

ov
e

l.o
ri

Figure 6-7: Dynamic Instruction Distribution of 802.11n Receiver

In both the algorithms, the most dominating instruction after NOP is the add-immediate

instruction. The most common usage of this instruction by CLAW compiler is to increase

and decrease the stack size in the prologue and epilogue of a function. In the C code, there

were several areas where a constant-value, known at compile time, was added and/or

compared to some variable in the code. Such types of RTLs are generally converted to an

add-immediate instruction. Comparing the variables to these constant values is done using

the set-flag immediate instructions (sfnei, sfltsi, etc.).

In convolutional-transmitter and the Viterbi decoder, an array of data is passed into the

function to do the appropriate computation. This array is stored in the memory and accessed

 112

using a load and store instruction. The majority of the loads and stores instructions are

contributed by these two units. Similarly, block-interleaving is done by writing data into an

array in row-major format reading them out column-wise. De-interleaving step does the

opposite. Such tasks are again performed using store and load instructions.

“Movlo” and “Movhi” are a pair of instructions used to move a 32-bit value into a

register. These instructions are used to move address of a global variable or the address of a

function. In our benchmark, several variables are used for accessing data among functions.

Moving values to and from these variables required these instructions. Finally, Most of the

multiply instructions (a very power-hungry instruction) occurred inside the STBC algorithm.

6.4.2 Parallelism
The next important parameter is to see the amount of parallelism emitted by these two

algorithms. Table 6-2 shows and the Operations-Per-Cycle (OPC) and cycle-count for the

two algorithms.

Table 6-2: Parallelism Parameters
 Two Cluster Four Cluster

Operations Per Cycle 1.17 1.32
802.11n Transmitter Cycle-count 731824 541953

Operations Per Cycle 0.98 1.12
802.11n Receiver Cycle-Count 1299829 1137351

We can see that the algorithms are not very parallel. This is not surprising since as per

section 3.5.1, two of the three major algorithm used in our study (convolutional encoder and

the viterbi-decoder) achieve the low-parallelism. FFT algorithm is well-known for not

providing high-levels of parallelism in software. STBC transmitter has a very high-level of

parallelism. This is one of the main reasons for using Alamouti’s scheme to perform STBC

 113

[3] [102]. On the other hand, the STBC receiver has significant amount of serial

comparisons, which can reduce Operations-per-cycle (OPC). In addition, the decoding phase

takes significantly more instructions (thus, more execution cycles) than encoding. This is

why the cycle-count of the receiver is more than that of the transmitter.

6.4.3 Energy Consumption

From sections 6.4.1 and 6.4.2, we can hypothesize that there is a potential for energy

reduction using a dynamic length-adaptive processor. In addition, approximately 5-6

instructions seem to encompass the entire benchmark for both the algorithms. In this section,

we explore the combination of our Opcode optimization algorithm and dynamic cluster-

width reduction algorithms to see the energy reduction. Recall from section 3.5.2 that a

region-level cluster-shutoff seem to provide results comparable to function-level shutoff for

an over-designed machine, yet tries to squeeze out as much energy as possible from idle

clusters in an ideally-designed machine. Thus, in our study, we only consider treegion-based

shutoff insertion. Figure 6-8 and Figure 6-9 show the static and dynamic energy dissipation

for all the mentioned scenarios using 2 Cluster CLAW. The dominating energy component is

the dynamic energy. Static energy only contributed ~13% of the total energy, and the

dynamic energy contributed 87%.

The most power-hungry part in the transmitter is the STBC transmitter. This is because

of all the multiplication operands in the system. STBC unit consumed 47% of the total

dynamic energy. The convolutional transmitter and IFFT seem to consume energies at 23%

and 20% respectively. All the other units together attribute for 10% of the dynamic energy.

 114

In the receiver, the STBC receiver contributed 55% of the total dynamic energy. This is

because the unit is very computationally intensive and has significant amount of

multiplication operations. Viterbi and FFT each consumed 20% each. The rest of the units

were responsible for 5% of the total consumption.

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Transmitter Receiver Average

M
ill

ijo
ul

es

Base Opcode Optimization
Cluster Shutoff Op. Opt + Cluster Shutoff

Figure 6-8: Static Energy Dissipation for 2 Cluster CLAW

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Transmitter Receiver Average

M
ill

ijo
ul

es

Base Opcode Optimization
Cluster Shutoff Op. Opt + Cluster Shutoff

Figure 6-9: Dynamic Energy Dissipation for 2 Cluster CLAW

 115

Using the treegion-level cluster shutoff mechanism, a 29% dynamic-energy reduction

is seen in the transmitter. The receiver gave a 28% reduction in dynamic-energy. The shutoff

instruction contributed a 2.1% dynamic OP-size increase. The Opcode-optimization

algorithm seemed to provide an additional 10% reduction in dynamic energy in transmitter

and 12% reduction in the 802.11 Receiver. Using both the Opcode-optimization and the

cluster-shutoff, we were able to achieve a 34% and 37% energy reduction, respectively.

When the dynamic shutoff was performed, the static energy increased by 2% for the

transmitter and 5% for the 802.11n receiver. Opcode-optimization algorithm was able to

produce a 3% and 4% reduction in the transmitter and the receiver, respectively.

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

Transmitter Receiver Average

M
ill

ijo
ul

es

Base Opcode Optimization
Cluster Shutoff Op. Opt + Cluster Shutoff

Figure 6-10: Static Energy for 4 Cluster CLAW

Similar trends were achieved using a 4-Cluster CLAW machine. For example, STBC

was still the most energy hungry unit in the system. Figure 6-10 and Figure 6-11 shows the

static and dynamic energy dissipation for our results. Using the shutoff mechanism, we were

 116

able to achieve a dynamic energy reduction of 45% and 41% dynamic energy reduction in

the transmitter and receiver. Using the Opcode-optimization alone (without shutoff), a 9%

and 11% reduction in dynamic energy was seen. Using the Opcode optimization algorithm

with the shutoff, a 49% and 52% reduction in dynamic energy was seen in the transmitter and

receiver. Insertion of shutoff instructions caused a 1.7% and 2.2% dynamic OP-size increase.

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

Transmitter Receiver Average

M
ill

ijo
ul

es

Base Opcode Optimization
Cluster Shutoff Op. Opt + Cluster Shutoff

Figure 6-11: Dynamic Energy for 4 Cluster CLAW

6.5 Conclusion

In this section, we assembled and characterized the 802.11 physical layer transmitter

and receiver. These algorithms are then simulated on CLAW to find their energy

consumption. After this, we applied our novel energy-reduction schemes to try and extract

the most energy out of the application without any performance loss.

 117

We found that using our Opcode optimization algorithm along with dynamic cluster-

scaling seem to extract the most amount of energy from our applications. These two

algorithms are mutually exclusive as one’s effect does not directly affect the other. We were

able to gain a 30% reduction in two-cluster CLAW and a 55% reduction on 4 Cluster CLAW

using our techniques.

 118

Chapter 7 Conclusion and Future-Work

In this dissertation, we created a new paradigm of VLIW processors called Clustered

Length-Adaptable Processors (CLAW). These processors allow the compiler or the

programmer to insert specialized instructions that allow shutting off certain units and issue-

widths of the processor during runtime to reduce energy without sacrificing any performance.

This processor was created in hardware using the Verilog Hardware description language. A

GCC compiler-toolchain and an advanced energy efficient scheduler with a build-in shutoff

insertion profiler were implemented for producing executables for such architectures. One of

the biggest advantages of a length-adaptive processor is that now the processor could be

designed with a liberal view of future and upcoming algorithms without over-stressing about

the power and energy budget. Using a transistor level processor, we dispelled several

misconceptions that are existent today. We showed that an accurately characterized transistor

library (or cell library) is necessary to make valid power and energy judgments today.

In the second part of this dissertation, we provided methods to design the ISA

accordingly to provide energy reduction without any performance loss. These algorithms can

be applied to any embedded processor, and not specific to length-adaptive processors. We

showed that these algorithms provide an almost constant percentage energy reduction with

processor width scaling.

Third, we provided a power-model for popular register-sharing structures that were

thought of as methods to reduce energy during the register-read and register-write stages of

program execution. We showed that these models do not seem to achieve high-levels of

 119

power-reduction and must be used only when the user knows a priori that a significant

number of constant (and duplicate) values are being written into and read from the register

file.

Finally, we simulated the newly formulated 802.11n Physical layer specification and

analyzed its high-energy components. We then applied the proposed methods on this

algorithm to see its effects on reducing energy. We showed that significant amount of energy

could be reduced using our length-adaptive processor CLAW.

There are several further optimizations that can be done on CLAW to increase

performance as well as reduce energy. CLAW does not have a branch predictor and it is

becoming one of the most useful components as the algorithms get complex. One of the

popular ideas in VLIW systems are predicting branches using a compiler. It is beneficial to

see the effect of branch-prediction on energy.

We mentioned that GCC does not perform several high-level code optimizations. One

possible area of research would be to implement some of these algorithms into GCC to see its

effects on CLAW. We hypothesize that these optimizations can give larger regions for

CLAW aiding in greater optimization of the code.

Similarly, CLAW is a complete fixed-point processor, where floating point

computations are done in software. Floating point algorithms are gaining popularity among

embedded processors today. One possible study on CLAW would be to add a floating-point

unit into CLAW and see the tradeoffs of using hardware floating-point instructions. Another

area of research could be the energy and performance effects of our on caches or scratch-pad

memories.

 120

One of the major drawbacks on VLIW processor is the large static code-size due to

the insertion of NOP by the compiler to remove hazards. Compressed encoding [15] is a

solution to reduce this code-size increase. Unfortunately, this idea cannot be applied to a

dynamic length-adaptive processor. In Figure 2-4, we showed an ‘X’ after the tail instruction

indicator. This bit could be set to tell the processor that the next instruction in the cluster is a

NOP. The memory-controller can pad the appropriate slot with a NOP by reading this bit.

This potentially can reduce the static code-size by 50%.

Finally, CLAW, as a research toolset, provides a flexible framework to study the

energy effects of performance accelerator technique. This processor is representative of

popular processor today and has similar power, performance and energy effects. Such a

processor can be used to create accurate predictions that take into account both energy and

performance and create a robust embedded system for the demanding world today.

 121

References

 [1] T. V. Aa, M. Jayapala, R. Lauwereins, F. Catthoor, H. Corporaal, “Instruction
Buffering Exploitation for Low Energy VLIW with Instruction Clusters, ” Asian
Pacific Design and Automation Conference (ASPDAC), 27-30 January 2004

 [2] A. Aggarwal, M. Franklin, “An Empirical Study of the Scalability Aspects of

Instruction Distribution Algorithms for Clustered Processors, ” Proceedings of IEEE
International Symposium on Performance Analysis of Systems and Software (ISPASS
'01) , 2001

 [3] S. M. Alamouti, “A Simple Transmit Diversity Technique for Wireless

Communications,” IEEE Journal on Select Areas in Communications, Vol. 16, No. 8,
October 1998

 [4] A. Aleta, J. M. Cordina, J. Sanchez, A. Gonzalez, “Graph-Partitioning Based

Instruction Scheduling for Clustered Processors, ” Proceedings of the 34th annual
ACM/IEEE international symposium on Microarchitecture, 2001

 [5] A. Aleta, J. M. Cordina, A. Gonzalez, D. Kaeli, “Instruction Replication for Clustered

Microarchitectures,” Proceedings of the 36th International Symposium on
Microarchitecture, 2003

 [6] D. Albonesi, “Dynamic IPC/Clock Rate Optimizations,” Proceedings of the

International Symposium on Computer Architecture, 1998

 [7] M. G. Arnold, “A RISC Processor with Redundant LNS Instructions,” Proceedings of

the 9th EUROMICRO Conference on Digital System Design, 2006

 [8] J. L. Ayala, A. Veidenbaum, M. Lopez-Vallejo, “Power-Aware Compilation for

Register file energy reduction,” International Journal of Parallel Programming, Vol.
31, No. 6, 2003

 [9] R. Bahar, S. Manne¸”Power and Energy Reduction Via Pipeline Reduction,”

Proceedings of the International Symposium on Computer Architecture, 2001

 [10] S. Balakrishnan, G. S. Sohi, “Exploiting Value Locality in Physical Register Files,”

Proc. of. The Symposium on Microarchitecture, 2003

 [11] R. Balasubramonian, S. Dwarkadas, D. H. Albonesi, “Dynamically Managing the

Communication-Parallelism Trade-off in Future Clustered Processors,” Proceedings
of the 30th annual international symposium on Computer architecture, 2003

 122

 [12] R. Balasubramonian, “Cluster Prefetch: Tolerating On-Chip Wire Delays in Clustered

Microarchitectures, ” Proceedings of the 18th annual international conference on
Supercomputing, 2004

 [13] R. Balasubramonian, S. Dwarkadas, D. H. Albonesi, “Reducing the Complexity of

the Register File in Dynamic Superscalar Processors,” Proc. of the Intl. Symposium
on Microarchitecture, 2001

 [14] R. Balasubramonian, N. Muralimanohar, K. Ramani, V. Venkatachalapathy,

“Microarchitectural Wire Management for Performance and Power in Partitioned
Architectures,” Proceedings of the 11th International symposium of High-
Performance Computer Architecture, 2005

 [15] S. Banerjia, “Instruction Scheduling and Fetch Mechanisms for Clustered VLIW

Processors,” PhD. Thesis, Dept. of Electrical and Computer Engineering North
Carolina State University, 1998

 [16] A. Bechini, T. M. Conte, C. A. Prete, “Opportunities and Challenges in Embedded

Systems,” Proc. of the Intl. Symposium on Microarchitecture, August 2004

 [17] R. Bhargava, L. K. John, “Improving Dynamic Cache Assignment for Clustered

Trace Processors, ” The 30th Annual International Symposium on Computer
Architecture, June 9-11, 2003

 [18] S. Bhunia et al., “A Novel Low-Power Scan Design Technique using Supply Gating,”

Proceedings on IEEE International Symposium on Computer Design, 2001

 [19] A. Bona et al., “Energy Estimation and Optimization of Embedded VLIW Processors

based on Instruction Clustering,” Design and Automation Conference, pp. 886-891,
2002

 [20] A. Buyuktosunoglu et al. “An Adaptive Issue-Queue for reduced power at high-

performance,” Proceedings of the First International Power Aware Computer
Systems workshop, 2000

 [21] Z. Cai, J. Hao, P. H. Tan, S. Sun, P. S. Chin, “Efficient encoding for IEEE 802.11n

LDPC Codes,” Electronic Letters, Vol. 42, No. 25, December 2006

 [22] R. Canal, J. M. Parcerisa, A. Gonzalez, “A Cost Effective Clustered Architecture,”

Proceedings of the 1999 International Conference on Parallel Architectures and
Compilation Techniques, 1999

 123

 [23] R. Canal, J. M. Parcerisa, A Gonzalez, “Dynamic Cluster Assignment Mechanisms, ”
6th International Symposium on High Performance Computer Architecture, 2000

 [24] A. Capitianio, N. Dutt, A. Nicolau, “Partitioned Register Files for VLIWs: A

preliminary Analysis of Tradeoffs, ” In Proceedings of the 25th Annual International
Symposium on Microarchitecture (MICRO-25), pages 292-300, 1992

 [25] A. P. Chandrakasan, S. Sheng, R. Brodersen, “Low-Power CMOS digital Design,”

IEEE Journal of Solid State Circuits, vol. 27, pp. 473-484, 1992.

 [26] P. Chang, D. Marculescu, “Design and Analysis of a Low Power VLIW DSP Core,”

Proceedings of Emerging VLSI Technologies and Architectures, 2006

 [27] R. Chassaing, “DSP Application using C on the TMS320c6x DSK”, TI Press

 [28] B. Chatterjee, M. Sachdev, R. Krishnamurthy, “A CPL-based Dual Supply 32-bit

ALU for Sub 180nm CMOS technologies,” In Proceedings of the 2004 International
Symposium on Low Power Electronics and Design,” pp. 248-251, 2004

 [29] Y. Chen, H. Li, K. Roy and C. Koh, “Cascaded Carry Select Adder (C2SA): A New

structure for Low-Power CSA Design,” In Proceedings of the International
Symposium on Low Power Electronics and Design,” pp. 115-118, 2005

 [30] J. Chi, S. Chen, “AN EFFICIENT FFT TWIDDLE FACTOR GENERATOR,” Proc.

of the 12th European Signal Processing Conference, 2004.

 [31] M. Chu, K. Fan, S. Mahlke, “Region-Based Hierarchical Operation Partitioning for

Multicluster Processors, ” Proc. ACM PLDI 2003

 [32] M. L. Chu, K. C. Fan, R. A. Ravindran, S. A. Mahlke, “Cost-Sensitive Partitioning in

an Architecture Synthesis System for Multicluster Processors, ”, IEEE MICRO, May-
June 2004

 [33] N. Clark, Personal Conversation, Georgia Institute of Technology

 [34] N. Clark, et al., “OptimoDE: Programmable Accelarator Engines through

Retargetable Customization,” Hot-Chips, 2004

 [35] O. Colavin, D. Rizzo, “A Scalable Wide-Issue Clustered VLIW with a reconfigurable

interconnect,” CASES, pp. 148-158, 2003

 124

 [36] J. D. Collins, D. M. Tullsen, “Clustered Multithreaded Architectures – Pursuing Both
IPC and Cycle Time, ” Proceedings of the 18th International Parallel and Distributed
Processing Symposium, April 2004

 [37] J. Cong, A. Jagannathan, G. Reinmann, M. Romesis, “Microarchitecture Evaluation

with Physical Planning,” Proceedings of the Design and Automation Conference, pp.
32-35, June 2-6, 2003

 [38] T. M. Conte, S. Banerjia, S. Y. Larin, K. N. Menenzes, S. W. Sathye, “Instruction

Fetch Mechanisms for VLIW Architectures with Compressed Encodings, ”
Proceedings of the 29th Annual Symposium on Microarchitecture, Dec. 2-4, 1996

 [39] T. Conte, S. Sathaye, “Dynamic Rescheduling: A technique for object code

combatiability in VLIW Architectures,” Proceedings of the 28th Annual International
Symposium on Microarchitecture, (Ann Arbor, MI), Nov. 1995

 [40] J. M. Cordina, J. Sanchez, A. Gonzalez, “A Unified Modulo Scheduling and Register

Allocation Technique for Clustered Processors,” Proceedings of the 2001
International Conference on Parallel Architectures and Compilation Techniques,
November 2000

 [41] R. Daniels and R. Heath, Class Presentation, University of Texas at Austin

 [42] G. Davis, “Writing Reliable C/C++ system code: Nuts and Bolts,” TI Developer

Conference, 2007

 [43] J. R. Ellis. Bulldog: A Compiler for VLIW Architectures. The MIT Press, 1985

 [44] P. Faraboschi, Personal Conversation.

 [45] P. Faraboschi, G. Desoli, J. A. Fisher, “Clustered Instruction-Level Parallel

Processors,” Technical Report (HPL-98-2004), HP Laboratories Cambridge, 1998

 [46] P. Faraboschi, G. Brown, J. A. Fischer, “Lx: A Technology Platform for

Customizable VLIW Embedded Processing,” Proceedings of the International
Symposium on Computer Architecture, 2000.

 [47] M. M. Fernandes, J. Llosa, N. Topham, “Distributed Modulo Scheduling,”

Proceedings of the 5th International Symposium on High Performance Computer
Architecture, 1999

 125

 [48] J. Fischer, P. Faraboschi, G. Desoli, "Custom-Fit Processors: Letting Application
Define Architectures,“ Proceedings of the International Symposium on
Microarchitecture, pp. 324-335, 1996

 [49] W. L. Frekling, K. K. Parhi, “Low-Power FIR digital filters using Residue

Arithmetic,” The Proceedings of the 31st Asilomar Conference on Signals, Systems
and Computers, 1997

 [50] E. Gilbert, J. Sanchez, A. Gonzalez, “Local Scheduling Techniques for Memory

Coherence in a Clustered VLIW Processor with a Distributed Data Cache,”
Proceedings of the international symposium on Code generation and optimization:
feedback-directed and runtime optimization, 2003

 [51] E. Gilbert, J. Sanchez, A. Gonzalez, “Effective Instruction Scheduling Techniques for

an interleaved Cache Clustered VLIW Processor, ” Proceedings of the 35th annual
ACM/IEEE international symposium on Microarchitecture, Istanbul, Turkey, 2002

 [52] E. Gilbert, J. Sanchez, A. Gonzalez, “An Interleaved Cache Clustered VLIW

Processor, ” Proceedings of the 16th international conference on Supercomputing,
2002

 [53] R. Goering, “Synopsys launches more powerful power-analysis tool,” EE-times, 2000

 [54] J. Gonzalez, A. Gonzalez, “Dynamic Cluster Resizing,” International Conference on

Computer Design, 2003

 [55] R. Gonzalez, et al., “A Content Aware Integer Register File Organization,” Proc. Of

Intl. Symposium on Computer Architecture, 2004

 [56] S. Haga, N. Reeves, R. Barua, D. Marculescu, “Dynamic Functional Unit Assignment

for Low-Power,” Proceedings of the Design, Automation and Test in Europe
Conference, 2003

 [57] W. A. Hawanki, S. Banerjia, T. M. Conte, "Treegion scheduling for wide-issue

processors,” Proceedings of the International Symposium on Computer Architecture,
1998

 [58] J. L. Hennessey, D. A. Patterson, “Computer Architecture: A Quantitative

Approach,” 3rd Edition, Elsevier Inc., 2003,

 [59] R. Ho, K. W. Mai, M. A. Horowitz, “The Future of Wires,” Proceedings of the IEEE

Vol. 89, Number 4, pp. 490-504, April 2001

 126

 [60] M. Horowitz, W. Dally, “How Scaling will Change Processor Architecture,”
Proceedings on International Solid-State Circuit Conference, 2004

 [61] Z. Hu et al., “Microarchitectural Techniques for Power Gating of Execution Units,”

Proceedings of the International Symposium on Low Power Electronic Design, pp.
32-37, 2004

 [62] Z. Hu, M. Martonosi, “Reducing Register File Power Consumption by Exploiting

Value Lifetime Characteristics,” Workshop on Complexity Effective Design, 2000

 [63] A. Iyer, D. Marculescu, “Power Aware Microarchitecture using Resource Scaling,”

Design Automation and Test Conference of Europe, pp. 190-196, 2001

 [64] D. Jain, et al., “Automatically Customizing VLIW Architectures with Coarse Grained

Application specific Functional Units,” Proceedings on Software and Compiler for
Embedded Systems, 2004

 [65] M. K. Jain, et al., “Evaluating Register File Size in ASIP Design,” Proc. of 9th Intl.

Symposium on Hardware-Software Codesign, 2001

 [66] M. Jayapala, F. Barat, P. Op de Beeck, F. Catthoor, R. Lauwereins, “Low Energy

Clustered Instruction Fetch and Split Loop Cache Architecture For Long instruction
Word Processors, ” Proceedings of the workshop on Compilers and Operating
Systems for Low Power COLP'01, held in conjunction with PACT'01, Barcelona,
Spain, 8-12 September 2001

 [67] H. M. Jacobson, “Improved Clock-gating through Transparent Pipelining,”

Proceedings of the International Symposium on Low-Power Electronic Design, 2004

 [68] M. F. Jacome, G. de Vecinia, S. Pillai, “Clustered VLIW Architectures with

Predicated Switching,” DAC 2001, June 18-22, 2001

 [69] A. Johnstone, E. Scott, T. Womack, “Reverse Compliation for the Digital Signal

Processsing: A Working Example,” The Proceedings of the 33rd Hawaii International
Conference on System Sciences, 2000

 [70] D. Joseph, D. Grunwald, “Prefetching using Markov Predictors,” International

Symposium of Computer Architecture, vol 24, pp. 252-263, 1997

 [71] K. Kailas, K. Ebcioglu, A. Agrawala, “CARS: A New Code Generation Framework

for Clustered ILP Processors, ” Proceedings of the 7th International Symposium on
High Performance Computer Architecture, p.133-143, January, 2001

 127

 [72] A. Kalambur and M. J. Irwin, “An Extended Addressing Mode for Low-Power,”
Proceedings of the IEEE Symposium on Low Power Electronics, 1997

 [73] M. Keating et al., “Low-Power Methodologies Manual,” Springer Publishing, July

2007

 [74] S. Kim, J. Kim, “Low-power data representation,” Electronic Letters, Vol. 36, No. 11,

25th May 2000

 [75] S. Kim, J. Kim, “Opcode encoding for low-power instruction fetch,” Electronic

Letters, Vol. 35, No. 13, 24th June 1999

 [76] N. S. Kim, T. Mudge, “The Microarchitecture of a Low Power Register File,” Proc.

of the Intl. Symposium of Low-Power Elect. and Design (ISLPED), 2003

 [77] N. S. Kim, D. Blaauw, T. Mudge, K. Flautner, J. S. Hu, M. J. Irwin, M. Kandemir, V.

Narayanan, “Leakage Current: Moore’s Law meets Static Power,” IEEE Computer,
pp. 68-76, 2003.

 [78] H. Kim, J. E. Smith, “An Instruction Set and Microarchitecture for Instruction Level

Distributed Processing,” International Symposium on Computer Architecture, 2002.

 [79] U. Ko, P. T. Balsara, W. Lee, “Low-Power Design techniques for High-Performance

CMOS adders,” IEEE Transactions on VLSI Systems, Vol. 3, No. 2, June 1995

 [80] P. Koopman, “Embedded System Design Issues (Rest of the Story), ”Proceedings of

IEEE International Conference on Computer Design: VLSI in Computers and
Processors, ICCD’96”, pp. 310-317, Oct. 1996.

 [81] V. Krishnan, J. Torrellas, “A Clustered Approach to Multithreaded Processors, ” 12th

International Parallel Processing Symposium (IPPS), April 1998

 [82] W. Kuo, T. Hwang, A, Wu, “Decomposition of Instruction Decoder for Low-Power

Design,” Proceedings of the Design, Automation and Test Conference in Europe,
2004

 [83] D Lampret, “OpenRISC 1200 IP Core Specification,”, 2001

 [84] C. Lee, M. Potkonjak, W. H. Mangione-Smith, “Mediabench: a tool for evaluating

and synthesizing multimedia and communication systems,” International Symposium
of Microarchitecture, 1997

 128

 [85] J. Lee, S. Park, “Hardware Architecture Exploration of IEEE 802.1n Receiver using
SystemC Transaction Level Modelling,” Proc. Of International Conference on
Informatoin and Communication Technology, Feb. 2007

 [86] M. T, Lee, et al., “Power Analysis and Minimization Techniques for Embedded DSP

Software,” IEEE Trans. on VLSI Systems, Vol. 5, No. 1, 1997

 [87] H. Li et al., “Deterministic Clock Gating for Microprocessor Power Reduction,”

International Symposium on High-Performance Computer Architecture” 2002

 [88] T. Li, L. K. John, “Routine based OS-Aware Microprocessor Resource Adaptation

for Runtime Operating System Power Savings,” International Symposium on Low-
Power Electronic Design, 2003

 [89] Y. Luo et al., “Low Power Network Processor Design using Clock Gating,” Design

and Automation Conference, 2005

 [90] P. G. Lowney, S. M. Freudenberger, T. J. Karzes, W. D. Lichenstein, R. P. Nix, J. S.

O’Donnell, J. C. Ruttenberg, “The Multiflow Trace Scheduling Compiler,” The
Journal of Supercomputing, 1992

 [91] S. Manne, A. Klauser, D. Grunwald, "Pipeline Gating: Speculation Control for

Energy Reduction,“ International Symposum on Computer Architecture, 2001

 [92] P. Marcuello, A. Gonzalez, “Clustered Speculative Multithreaded Processors,”

Proceedings of the 13th international conference on Supercomputing, Rhodes,
Greece, 1999

 [93] R. E. Morley Jr., G. L. Engel, T. J. Sullivan, S. N. Natarajan, “VLSI Based Design of

a Battery-Operated Digital Hearing Aid,” International Conference on Acoustics,
Speech and Signal Processing, 1988

 [94] A. Moshovos, D. N. Pnevmatikatos, A. Baniasadi, “Slice Processors: An

Implementation of Operation based Prediction, ” Proceedings Of the International
Conference on Supercomputing, June 2001

 [95] S. Mukropadhyay et al. “Gate Leakage Reduction for Scaled Devices using Transistor

Stacking,” IEEE Transactions on VLSI, pp. 716-730, vol 11, No. 4, August 2003

 [96] N. Muralimanohar, R. Balasubramonian, “Interconnect Design Considerations for

Large NUCA Caches,” Proceedings of the International Symposium of Computer
Architecture, June 9-13, 2007

 129

 [97] R. Nagpal, Y. Srikant, “Compiler-Assisted Leakage Energy Optimization for
Clustered VLIW Architectures,” Proceedings of IEEE International Conference on
Embedded Software, 2006

 [98] D. Novillo, “GCC- An Architectural Overview, Current Status and Future

Directions,” Proceedings of the Linux Symposium, Vol. 2, July 19-22nd, 2006

 [99] E. Nystrom, A. E. Eichenberger, “Effective Cluster Assignment for Modulo

Scheduling, ” Proceedings of the 31st annual ACM/IEEE international symposium on
Microarchitecture, 1998

 [100] P. Oberoi, G. Sohi, “Out-of-Order Instruction Fetch using Multiple Sequencers,” The

2002 International Conference on Parallel Processing, Aug 18–21, 2002.

 [101] P. Oberoi, G. Sohi, “Parallelism in the Front-End, ” The 30th International

Symposium on Computer Architecture, June 9–11, 2003

 [102] A. M. Otefa, N. M. ElBoghdadly, E. A. Sourour, “Performance Analysis of 802.11N

Wireless LAN Physical Layer,” Proc. on International Conference on Information
and Communications Technology, 2007

 [103] E. Ozer, S. Banerjia, T. M. Conte, “Unified Assign and Schedule: A New approach to

Scheduling for Clustered Register File Microarchitectures,” Proceedings of the 31st
ACM/IEEE International Symposium of Microarchitectures, pp. 308-315, 1998

 [104] J. M. Parcerisa, “Design of Clustered Superscalar Architectures,” Doctor en

Informatica Thesis, Departament d’Arquitectura de Computadors, Universitat
Politècnica de Catalunya, April 2004

 [105] J. M. Parcerisa, A. Gonzalez, “Reducing Wire Delay Penalty through Value

Prediction, ” Proceedings of the 33rd annual ACM/IEEE international symposium on
Microarchitecture, 2000

 [106] J. M. Parcerisa, J. Sahuquillo, A. Gonzalez, J. Duato, “Oh-Chip Interconnects and

Instruction Steering Schemes for Clustered Microarchitectures,” IEEE Transactions
on Parallel and Distributed Systems, Vol. 16, No. 2, Feb 2005

 [107] J. M. Parcerisa, J. Sahuquillo, A. Gonzalez, J. Duato, “Efficient Interconnects for

Clustered Microarchitectures,” Proceedings of the International Conference on
Parallel Architectures and Compilation Techniques, 2002

 [108] D. A. Patterson, J. L. Hennessy, “Computer Organization and Design,” Morgan

Kauffman Publishers, 1998

 130

 [109] V. Paliouras, T. Stouraitis, “Logarithmic Number System for Low-Power

Arithmetic,” PATMOS, 2000

 [110] F. Palou, G. Fermenias, “Improving STBC performance in IEEE 802.11n using

group-orthogonal frequency diversity,” WCNC 2008

 [111] D. Parikh, K. Skadron, Y. Zhang, M. Barcella, M. R. Stan, “Power Issues Related to

Branch Prediction,” IEEE Transactions on Computers, 2004

 [112] G .G. Pechanek, S. Larin, T. Conte, “Any-size instruction abbreviation technique for
embedded DSPs,” 15th Annual IEEE international ASIC/SOC conference,” 2002

 [113] M. Pedram and A. Abdollahi, “Low-Power RT-level synthesis techniques: a tutorial,”

IEE Proceedings-Computer and Digital Techniques, Vol. 152, No. 3, May 2005

 [114] J. M. Perez and V. Fernandez, “Low-cost encoding of IEEE 802.11n,” Electronic

Letters, Feb. 2008

 [115] M. Pericas, et al., “An Optimized Front-end Physical Register File with Banking and

Writeback Filtering,” Workshop on Power-Aware Computer Systems, 2004

 [116] L. Pickup and S. Tyson, “Hot Chips? . . . Not!” Chip Design Magazine, pp. 26-29,

August/September 2004

 [117] S. Pillai, M. F. Jacome, “Compiler-Directed ILP Extraction for Clustered

VLIW/EPIC machines: Predication, Speculation and Modulo Scheduling, ”
Proceedings of the Design Automation and Test in Europe Conference and
Exhibition, 2003

 [118] M. Powell et al., “Gated-Vdd: A Circuit Technique to Reduce Leakage in Deep-

Micron Cache Memories,” International Symposium on Low Power Electronic
Design,” 2000

 [119] S. Rele, S. Pande, S. Onder, and R. Gupta, “Optimizing Static-Power dissipation by

function-units in Superscalar Processors,”Proc. of the International Conference on
Computer Construction, pp. 261-275, 2002

 [120] S. Rajagopalan, M. Vachharajani, S. Malik, “Handling Irregular ILP Within

Conventional VLIW Schedulers Using Artificial Resource Constraints, ” CASES
2000, November, 2000

 131

 [121] A. Ramirez, O. J. Santana, J. L. Larriba-Pey, M. Valero, “Fetching Instruction
Streams, ” Proceedings of the 35th annual ACM/IEEE international symposium on
Microarchitecture, 2002

 [122] K. Ramani, N. Muralimanohar, R. Balasubramonian, “Microarchitectural Techniques

to Reduce Interconnect Power in Clustered Processors,” 5th Workshop on Complexity-
Effective Design, June 2004.

 [123] N. Ramsey, J. W. Davidson, “Machine Description to build tools for embedded

systems,” Lecture Notes in Computer Science, Vol. 1474, 1998

 [124] N. Ranganathan, M. Franklin, “An Emperical Study of Decentralized ILP Execution

models,” The Proceedings of the 8th International conference on Architectural Suport
for Programming Languages and Operating Systems, pp. 272-281, October 1998.

 [125] B. R. Rau, J. A Fisher, “Instruction Level Parallel Processing: History, Overview and

Perspective,” The Journal of Supercomputing, Volume 7, October 1992

 [126] M. C. Rosier, T. M. Conte, “Treegion Instruction Scheduling for GCC,” Proceedings

of the GCC Developers Summit, 2006

 [127] E. Rotenberg, Q. Jacobson, Y. Sazeides, J. E. Smith. "Trace Processors". 30th

International Symposium on Microarchitecture, pp. 138-148, December 1997

 [128] Y. G. Saab, V. B. Rao, “Stochastic Evolution: A fast effective heuristic for some

generic layout problems,” Proceedings of 27th IEEE/ACM Design and Automation
Conference 1990

 [129] H. G. Sachs and S. Arya, “Instruction Cache Associative Crossbar Switch, ” US

Patent Application Number: 20030191923, Oct. 9, 2003

 [130] J. Sanchez, A. Gonzalez, “Modulo Scheduling for a Fully-Distributed Clustered

VLIW Architecture, ” Proceedings of the 33rd annual ACM/IEEE international
symposium on Microarchitecture, 2000

 [131] J. Sanchez, A. Gonzalez, “The Effectiveness of Loop Unrolling for Modulo

Scheduling in Clustered VLIW Architectures,” Proceedings of the Proceedings of the
2000 International Conference on Parallel Processing, 2000

 [132] M. A. Schuette, J. P. Shen, “An Instruction Level Performance Analysis of the

Multiflow TRACE 14/300,” Proceedings of the 24th Annual International Symposium
of Microarchitecture, Pg. 2-11, 1991

 132

 [133] A. Seznec, E. Toullec, O. Rochecouste, “Register Write Specialization Register Read
Specialization: A Path to Complexity-Effective Wide-Issue Superscalar Processors,”
Proceedings of the 35th ACM/IEEE Symposium on Microarchitecture, 2002

 [134] B. Sklar, “Digital Communications: Fundamentals and Applications,” Prentice Hall,

1999

 [135] A. N. Sloss, D. Symes, C. Wright, “ARM Systems Developer’s Guide,” Elsevier Inc.,

2004

 [136] G. Sohi, S. E. Breach, T. N. Vijaykumar, “Multiscalar Processors, ” Proceedings of

the 22nd Annual International Symposium on Computer Architectures, pages 414-
425, June22-24, 1995

 [137] W. Stallings, “Wireless Communication and Systems,” 2nd Edition, Prentice Hall,

2005

 [138] R. M. Stallman, “GCC Compiler Collection Internals for GCC 4.0.0,” Updated May

23, 2004, published by Free Software Foundation

 [139] J. E. Stine, Personal Conversation, Oklahoma State University

 [140] T. Stouraitis, V. Paliouras, “Considering the ALTERNATIVES in Low-Power

Design,” IEEE Circuits and Devices Magazine, vol. 17, issue 4, pp. 23-29, July 2001

 [141] C. Su, C. Tsui, A. Despain, “Saving Power in the Control Path of Embedded

Processors,” IEEE Conference on Design & Test of Computers, pp. 24-30, 1994

 [142] A. Tannenbaum, “Structured Computer Organization,” Pearson Education, 4th

Edition, 1998

 [143] V.Tarokh, H. Jafarkhani, A. R. Calderbank, “Space-Time Block Codes from

Orthogonal Designs,” IEEE Transactions on Information Theory, Vol. 45, No. 5, July
1999

 [144] V. Tarokh, H. Jafarkhani, A. R. Calderbank, “Space-Time Block coding for Wireless

Communications: Performance Results,” IEEE Journal on Selected Areas of
Communiations, Vol. 17, No. 3, March 1999

 [145] F. J. Taylor, “Residue Arithmetic: A Tutorial with Examples,” IEEE Computer

Magazine, vol. 17, issue 5, pp. 50-62, 1984.

 133

 [146] A. Terechko, E. L. Thenaff, M. Garg, J. von Eijndhoven, H. Corporaal, “Inter-cluster
Communication Models for Clustered VLIW Processors, ” Proceedings of the Ninth
International Symposium on High-Performance Computer Architecture, 2003

 [147] A. Terechko, “Clustered VLIW Architectures, A Quantative Approach,” PhD Thesis,

Technical University Eindhoven, 2007.

 [148] V. Tiwari, S. Malik, A. Wolfe, “Compilation Techniques for Low Energy: An

Overview.” IEEE Symposium on Low Power Electronics, 1994

 [149] V. Tiwari, S. Malik, A. Wolfe, M T. Lee, “Instruction Level Power Analysis and

Optimization of Software,” Journal of VLSI Signal processing, pp. 1-18, 1996

 [150] L. Tran, N. Nelson, F. Ngai, S. Dropsho, M. Huang, “Dynamically Reducing Pressure

on the Physical Register File through Simple Register Sharing,” Proc. of ISPASS,
2004

 [151] A. Varma, E. Debes, I. Kozintsev, B. Jacob, “Instruction-level power dissipation in

the Intel XScale Embedded Processor,” Proceedings of SPIE, March 2005

 [152] A. J. Viterbi, “Error Bounds for Convolutional Codes and an Asymptotically

Optimum Decoding Algorithm,” IEEE Transactions on Computers, 1967

 [153] Z. Vittorio, M. G. Sami, D. Sciuto, C. Silviano, “Power Estimation and Optimization

for VLIW-Based Embedded Systems,” Springer Publishing, 2003

 [154] L. Wehmeyer, et al., “Analysis of the Influence of Register File size on energy

consumption, code-size and execution time,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, Vol. 20, No. 11, November 2001

 [155] S. Woo, J. Yoon, J. Kim, “Low-Power Instruction Encoding Techniques,”

Proceedings of SOC Design Conference, 2001

 [156] Y. Xiao, “IEEE 802.11N: Enhancements for Higher Throughput in Wireless LANs,”

IEEE Wireless Communications, Dec. 2005

 [157] Y. Xiao, J. Rosdhal, “Throughput and Delay Limits of IEEE 802.11,” IEEE

Communication Letters, Vol. 6, No. 8, August 2002

 [158] J. Zalamea, J. Llosa, E. Ayguade, M. Valero, “Modulo Scheduling with Integrated

Register Spilling for Clustered VLIW Architectures,” Proceedings of the 34th Annual
ACM/IEEE International Symposium on Microarchitecture, 2001

 134

 [159] J. Zalamea, et al., ”Hierarchical Clustered Register File Organization for VLIW
Processors,” Proc. of the Intl. Parallel and Distributed Processing Symposium, 2003

 [160] S. Zarrabi, A. Baniasadi, “Performance Analysis of Clustered Processors, ” 2004

IEEE Canadian Conference in Electrical and Computer Engineering, May 2004

 [161] X. Zhao, Y. Ye, “Structure Configuration of Low-power register file using energy

model,” Proc. of the IEEE Asia-Pacific Conference on ASIC, 2002

 [162] L. Zheng, D. N. C. Tse, “Diversity and Multiplexing: A Fundamental Tradeoff in

Multiple-Antenna Channels,” IEEE Transactions on Information Theory, Vol. 49,
No. 5, May 2003

 [163] V. Zivojnovic, J. M. Verlarde, C. Schlager, H. Meyr,“DSPStone: A DSP-oriented

Benchmarking Methodology,“ Proc of International Conference on Signal
Processing Applications and Technology, 1994

 [164] V. Zyuban, P. Kogge, “The Energy Complexity of Register Files,” Proc. of ISLPED,

1998.

 [165] V. Zyuban, P. Kogge, “Inherently Lower-Power High-Performance Superscalar

Architectures,” IEEE Transactions on Computers, March 2001

 [166] “ADSP-TS101 TigerSHARC Processor Programming Reference,” Analog Devices,

Part Number: 82-001997-01, January 2003

 [167] “AVR32 Architecture Manual,” http://www.atmel.com, 321 Pages, Revision A,

Updated: 02/06

 [168] “EEMBC Benchmarks”, Embedded Microprocessor Benchmark Consortium,

http://www.eembc.org

 [169] “Fundamentals of Quadrature Amplitude Modulation,” Information Technology:

Transmission, Processing and Storage Book Series, Springer Publishing, ISBN: 978-
0-387-74885-6, 2008

 [170] “IEEE 802.11n Standard/D11: ‘Draft 3.0: IEEE Standard for Local Metrapolitan

network-specific requirements. Part 11: Wireless LAN Medium Access Control and
Physical Layer specifications: Enhancements for Higher Throughput,’” 2007

 [171] “IEEE 802.11a, Part 11: Wireless LAN Medium Access Control (MAC) and Physical

Layer (PHY) specifications: High-speed Physical Layer in the 5 GHz Band.”

 135

 [172] “Power PC 604 RISC Processor Technical Summary,” Motorola Inc. 1994

 [173] “SC 140 DSP Core Reference Manual, ” Motorola Inc., Literature Number:

MNSC140CORE/D, November 2001

 [174] “Standard Performance Evaluation Corporation (SPEC)”, http://www.spec.org

 [175] Tensilica Xtensa 7 (LX2), http://www.tensilica.com/products/xtensa/index.htm

 [176] “TMS320C6000 CPU and Instruction Set Reference Guide,” Texas Instruments,

Literature Number: SPRU189F, October 2000

 [177] “Tool Interface Standards: Executable and Linker Format, ” Version 1.2, 1995

 [178] “TINKER machine language manual,” Department of Electrical and Computer

Engineering, North Carolina State University, Raleigh, NC, 1995

