
ABSTRACT 

IYER, BALAJI VISWANATHAN. Length Adaptive Processors: A Solution for the 
Energy/Performance Dilemma in Embedded Systems. (Under the direction of Dr. Thomas M. 
Conte). 
 

Embedded-handheld devices are the predominant computing platform today. These 

devices are required to perform complex tasks yet run on batteries. Some architects use ASIC 

to combat this energy-performance dilemma. Even though they are efficient in solving this 

problem, an ASIC can cause code-compatibility problems for the future generations. Thus, it 

is necessary for a general purpose solution. Furthermore, no single processor configuration 

provides the best energy-performance solution over a diverse set of applications or even 

throughout the life of a single application. As a result, the processor needs to be adaptable to 

the specific workload behavior. Code-generation and code-compatibility are the biggest 

challenges in such adaptable processors.  

At the same time, embedded systems have fixed energy source such as a 1-Volt 

battery. Thus, the energy consumption of these devices must be predicted with utmost 

accuracy. A gross miscalculation can cause the system to be cumbersome for the user.  

 In this work, we provide a new paradigm of embedded processors called Dynamic 

Length-Adaptive Processors that have the flexibility of a general purpose processor with the 

specialization of an ASIC. We create such a processor called Clustered Length-Adaptive 

Word Processor (CLAW) that is able to dynamically modify its issue width with one VLIW 

instruction overhead. This processor is designed in Verilog, synthesized, DRC-checked, and 

placed and routed. Its energy and performance values are reported using industrial-strength 



transistor-level analysis tools to dispel several myths that were thought to be dominating 

factors in embedded systems.  

To compile benchmarks for the CLAW processor, we provide the necessary software 

tools that help produce optimized code for performance improvement and energy reduction, 

and discuss some of the code-generation procedures and challenges. 

Second, we try and understand the code-generator patterns of the compiler by 

sampling a representative application and design an ISA opcode-configuration that helps 

minimize the energy necessary to decode the instructions with no performance-loss. We 

discover that having a well designed opcode-configuration, not only reduces energy in the 

decoder by also other units such as the fetch and exception units. Moreover, the sizable 

amount of energy reduction can be achieved in a diverse set of applications. 

Next, we try to reduce the energy consumption and power-dissipation of register-read 

and register-writes by using popular common-value register-sharing techniques that are used 

to enhance performance. We provide a power-model for these structures based on the value 

localities of the application. Finally, we perform a case-study using the IEEE 802.11n PHY 

Transmitter and Decoder and identify its energy-hungry units. Then, we apply our techniques 

and show that CLAW is a solution for such hybrid complex algorithms for providing high-

performance while reducing the total energy. 
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Chapter 1 Motivation 
 

For the past decade portable handheld devices have gained significant popularity. These 

embedded devices are now required to perform several complex tasks that were once only 

attempted by high-performance systems [113] [147]. For example, a mobile-phone today 

sends and receives voice, captures images and video, maintains a daily-planner, sends and 

receives textual information, etc. Additionally, these devices must give high performance 

while executing these applications [16] [56] [79] [113] . In order to be easily portable, they 

must draw their power from a battery. Therefore, it is necessary for these embedded handheld 

devices to give comparable performance with a high-performance system, yet consume 

significantly less power and energy  [56] [79] [113]. 

To tackle this problem, designers have discovered two broad solutions. If the architect is 

aware of applications that are to be run on the system, then several processor optimizations 

can be done such as inserting specialized units to perform a certain task faster (for example, a 

unit that does discrete cosine transform for a image processing system), have specialized 

instruction widths, etc. These processors are called Application-Specific Integrated Circuits 

(ASIC). A well-designed ASIC can provide a significant performance boost while still 

consuming a low amount of power. On the other hand, when a new application is introduced 

into the system the ASIC must be re-designed, which can be prohibitively expensive and 

time-consuming.  
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In embedded systems, some applications are executed more frequently than others [147]. 

For example, in a music player such as iPod, the audio and video codec are executed more 

frequently than the calendar application. Engineers can take a general purpose processor that 

is able to execute a wide variety of application and tailor it for speeding up certain 

algorithms. These processors can provide high-performance and still consume less-energy. 

These tailored processors, unlike high-performance systems, are generally simpler and 

require significant help from the compiler for scheduling, branch-prediction and so-forth 

[16]. Sometimes, the availability of vast number of optimizing compilers, assemblers, etc. for 

such architecture is limited  [123]. Many embedded processor users are generally restricted to 

a single compiler. By understanding the trends of this compiler in code-generation and 

scheduling, one can optimize the appropriate processor units accordingly to greatly increase 

performance and reduce power dissipation. 

Even though such tailored processors seem to provide a flexible solution for embedded 

systems, diverse characteristics among embedded applications and diversity within an 

application make it impossible to select one processor configuration that is suitable for 

providing optimal energy-performance solution.  

Fisher, Faraboschi and Desoli in the year 1998 are the first researchers to understand this 

concept and they tried to design a processor based on the application characteristics [48]. 

After a few years, three more processors emerged that have tried to find this optimal 

configuration. They are Lx [46], OptimoDE [34] [175] and Tensilica Xtensa-7 [175] 
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processors. All these processors provide a static solution for finding this optimal ratio. When 

a new application is introduced the processor must be remanufactured to gain this optimum. 

In this dissertation, we provide a dynamic approach to reach this energy-performance 

optima.  This work illustrates a bottom-up approach to design a processor that will give the 

optimal energy-performance ratio by examining the compiler and the target application. We 

try to uncover some of the limitations the compiler imposes on the processor and propose to 

design (or modify) the processor accordingly. 

The processor is designed such that the binaries compiled using this code-generator is 

able to obtain the highest performance for the energy budget. The end result of this thesis is a 

circuit-level processor and an optimizing-compiler “couple” that tries to minimize power and 

energy consumed by the processor without any performance loss. The main areas focused in 

this work are ISA encoding optimization, register-sharing based on value locality, dynamic 

and static data-path modification, and a power-aware scheduling algorithm. 

In this work, energy is used as a metric because it is directly proportional to battery life 

and it is more dependent on the workload than the processor frequency. Similarly, when we 

speak of performance, we mean the number of cycles the program takes to execute in the 

processor. 

1.1 Related Work 
 

In this paper we discuss four different areas: opcode-optimization, register-sharing, 

dynamic instruction-width modification and instruction-scheduling. Section 1.1.1 discusses 
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the related work for opcode-optimization. Sections 1.1.2 and 1.1.3 discuss the related work 

for register-sharing and instruction-width modification. The previous work in instruction-

scheduling algorithms and branch handling are explained in sections 1.1.4 and 1.1.5. 

1.1.1 Opcode-Optimization 
 

Tiwari, Malik and Wolfe in  [148] and Tiwari, et al. in  [149] describe ways to reduce 

power by modifying the number of switching in software. They give a detailed description of 

instruction level power reduction techniques for a specific set of applications. We extend this 

idea to find some general power reduction schemes for a broad range of applications using 

one application as a training set. 

Kim and Kim in  [75] and, Woo, Yoon and Kim in [155] describe a method for 

reducing the Hamming distance between adjacent instructions. Unlike our work, they do not 

mention the effects of their modifications on the power dissipation of the decoder or the 

processor. They detail all of their work in switching activity, and neglect other metrics such 

as power consumption or the wire-length of a processor component such as the instruction 

decoder. Additionally, they do not analyze a single application or subset of applications, 

rather they sample all applications that are run on the system to find the optimal encoding. 

Varma et al. in [151] study the power reduction of switching in the register bus and the 

bypass logic for the Intel XScale embedded processor. They indicate that switching in the 

register port increased the instruction energy by 10%. Also, Haga et al. in [56] explore 

dynamically assigning function units to reduce switching. They present a 26% power 

reduction in the integer ALU. 
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In [112] Pechanek, Larin and Conte present a technique for entropy based encoding of 

the ISA. The primary focus of this work is variable size instructions which frequently occur 

in DSP architecture. Kalambur and Irwin in [72] study ways to reduce data fetch energy by 

adding an addressing mode for ALU instructions to access operands from memory. 

1.1.2 Register-Sharing  
 

Optimizing register-usage for improving performance has been studied for the past two 

decades. However the problems concerning power and heat dissipation in processors became 

a problem starting in the nineties. Zyuban and Kogge in  [164] study the power dissipation of 

an integer register-file. Their models express the power consumption of a register in terms of 

the number of read-write ports and issue width. Similarly, Zhao and Ye in [161] also provide 

models for finding power dissipation in register-file. 

Hu and Martonosi in [62] find that most read and write operations occur within a few 

cycles. They introduce a value aging buffer that saves recently-produced values so that the 

instructions requiring these values need not access them from register-file. They received a 

power reduction of 30% with less than a 5% performance loss. 

Kim and Mudge in [76] observed that only 0.1% of the cycles fully utilize a 16-bit read 

port. The aim of their work was to reduce the number of read ports, not the number of 

registers. They used a delay-writeback queue, an operation prefetch buffer and request 

queues. Their results showed a 22% reduction in energy per register access. 

Gonzalez et al. in [55] explained ways to share partial values between registers inside a 

register-file. They showed a 50% reduction in power consumption with 1.7% IPC loss. 
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Ayala, Veidenbaum and Lopez-Vallejo in [8] proposed ways to statically find periods where 

registers are not used and turn them off to reduce power. Using their method, they found a 

46% total energy reduction in the entire MiBench benchmark suite. 

Seznec, Toullec and Rouchecouste in [133] proposed that restricting certain function 

units to write and read only a subset of registers (clustering the processor) can reduce the 

access time by 33% and power by 50%. Jain et al. in [65] evaluates the register-file for an 

ASIP. They use ARM7TDMI as a test processor. It is shown from their research that there 

exists a high correlation between performance improvement and energy consumption. They 

also showed that a slight increase in the number of registers gives a huge amount of power 

reduction in ASIP (~50%). 

Balakrishnan and Sohi in [10] discussed using a map-table for reducing physical 

register pressure by sharing values such as ‘0’.  Tran et al. in [150] proposed a way to mark 

the reorder-buffer with one bit (this can be thought of as a bit-vector) to indicate if the 

instruction’s result was a zero. Tran et al. also discusses using a map-table as a possibility. 

These two papers are quoted extensively for value sharing inside the register-file to improve 

performance. However, these papers do not mention the power implications of these 

structures on the processor or the register file. We study their power effects and come up 

with a power-model for these structures. 

1.1.3 Application-Aware Processor Customization 
 

The idea of customizing a general-purpose processor for an application was first 

proposed by [48]. To our best knowledge, the only processors that provide flexibility and 
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adaptability like CLAW are the Lx [46], Tensilica Xtensa LX2 [175] and the OptimoDE 

processors [34]. Figure 1-1 shows the design process of Lx, OptimoDE, Tensilica and 

CLAW (assuming we are designing the processor to target programs A and B). The only 

major difference between OptimoDE and Tensilica is that OptimoDE allows the user to fully 

customize the instructions, while Tensilica uses a standardized ISA [33].  

Lx architects provide a framework that analyzes a benchmark (or a set of benchmarks) 

and design a processor with appropriate issue-width, function-units, etc. to maximize the 

processor performance using the appropriate energy budget. OptimoDE framework tries to 

analyze the source-code and provide hints to the user regarding the optimal issue-width, 

function-units, data-path sizes, etc. Standard function units are inserted by the tools, but 

custom-units must be hand-generated.  

The biggest drawback for Lx, Tensilica and OptimoDE is they are static approaches. 

Let’s assume we are trying to add a new application (‘C’) into the processors designed in 

Figure 1-1. As shown in Figure 1-2, the processors must be redesigned for optimal 

functioning, which can be expensive and time-consuming. This problem is overcome in 

CLAW by providing mechanisms to dynamically adapt issue-widths and function-unit sizes 

during compile-time.  
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Figure 1-1: OptimoDE, Tensilica, Lx and CLAW Design Flow 
 

 

  

Figure 1-2: Steps for adding new Application into OptimoDE, Tensilica, Lx and CLAW 
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To do the dynamic modification of issue width, the most successful method employed 

by several high-performance configurable processors is gating the clock for the unused units  

[61] [89] [97] [91] [118]. The granularity of a unit can be a specific gate [18], a function-unit  

[9] [118] [61] [67], processor-stage [63] [91] [87] [89], or an entire cluster  [97] [19]. Each of 

the methodologies described can be beneficial, depending on the application. The key 

question is at what part of the program must the gating occur so that optimal energy is 

consumed with virtually no performance degradation? We provide the answer to this using 

our CLAW software-framework.  

In the past, several super-scalar researchers have studied this problem. In out-of-order 

dynamic-scheduling processors, however, this problem is trivial because the processor has 

direct control of the scheduling. Buyuktosunoglu, et al. [20] provides an adaptive issue queue 

for reducing processor power. Albonesi [6] provides a methodology to dynamically shut off 

units and processor issue-widths in super-scalar processors to save power. S. Rele et al. in  

[119] have provided a mechanism to shutoff idle function-units in superscalar processors 

using a profiling compiler. Unfortunately, dynamic-scheduling processors are not energy-

efficient for embedded systems. As per our calculations and comparisons with [165], for the 

same transistor technology, the scheduling logic of a superscalar alone took more power than 

an entire VLIW processor of the same issue-width.  

Li and John [88] proposed a method to dynamically scale processor resources such as 

the reorder-buffer, load-store queue and the instruction-window on a super-scalar processor. 

They propose using specialized instructions inserted by the operating system. We incorporate 

this idea into our design, however, we insert specialized instructions using a profiling 
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compiler because many embedded systems may not have complex OS support, but a 

compiler is almost always available. 

1.1.4 Clustered Microarchitecture Scheduling 
 

The processor mentioned in this dissertation is a statically-scheduled processor whose 

instruction width can be modified with the feedback from the architect, the programmer and 

the user during runtime or compile-time. The most efficient method to accomplish this, in 

terms of energy and wire-scalability, is to combine several small-issue cores together to get the 

desired width [60]. We accomplish this by combining multiple clusters together to form the 

processor instruction-width. This section mainly presents the previous works encountered in 

the field of cluster-scheduling for VLIW machines. The major work discussed are: the Bottom-

Up-Greedy algorithm in the Bulldog Compiler [43], Limited-Connectivity VLIW [24], Unified 

Assign and Schedule [103] in the TINKER LEGO compiler, Combined Cluster Assignment, 

Register Allocation and instruction Scheduling (CARS) algorithm implemented in the 

Chameleon test-bed [71], and various cluster-scheduling algorithms for MultiVLIW by the 

researchers at University of Polytechnic at Catalunya (UPC) [4] [5] [40] [130] [131] [158]. For 

the rest of this paper, we collectively refer the work presented by UPC as MultiVLIW 

scheduling. 

One of the first works in scheduling for VLIW machines is the Bottom-Up-Greedy 

(BUG) algorithm in the Bulldog Compiler by Ellis [43]. This algorithm was implemented by 

Faraboschi, Desoli, and Fisher for a clustered architecture in [45]. BUG takes a data-

precedence graph (DPG) of a trace and recursively traverses it from the bottom to compute the 
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function unit and operand availability of each instruction. Using this information, BUG assigns 

the operations in a trace. After this, the list scheduler inserts communication operations into the 

schedule wherever necessary. 

Limited-connectivity VLIW (LC-VLIW) [24] focuses on partitioning code for a 

clustered machine that does not have full-connectivity between all clusters. This approach uses 

a multi-phase approach similar to [43]. The code is initially scheduled assuming the machine is 

a fully connected clustered VLIW machine. The code is then compacted locally to minimize 

the effect of inserted copy operations to the schedule. 

Unified-Assign and Schedule (UAS) [103] unlike [24] or [43], integrates the cluster-

assignment step into the instruction scheduler. The advantage of assigning and scheduling in 

the same phase is that the program’s control flow and data-flow information are available to 

make efficient cluster-assignment decision. This reduces several redundant copy instructions. 

The schedule of operations and the DPG of the list are passed into the scheduler (usually a list-

scheduler). Then the list is ordered based on a priority function. The inter-cluster buses are 

considered to be machine resources and are used within the scheduler when necessary. UAS 

claims to create a compact, efficient and nearly optimal schedule. 

Combined cluster Assignment, Register allocation and instruction Scheduling (CARS) 

algorithm [71] developed by Kailas, Ebcioglu and Agrawala tries to perform cluster-

assignment, instruction scheduling and register allocation in a single step. CARS takes a 

dependence flow graph (DFG) with nodes representing operations and directed edges 

representing data or control flow. The CARS algorithm, unlike UAS, considers registers as a 

resource during cluster scheduling. Even though CARS is an advanced algorithm and seem to 
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produce better results than UAS, we were unable to implement this algorithm because our 

compiler framework does not allow performing register allocation in the same cycle as 

instruction scheduling. Thus, we had to use UAS as our cluster scheduling algorithm of choice. 

There have been several works produced by researchers in UPC regarding cluster 

scheduling, that we collectively refer to as multiVLIW scheduling. The main difference 

between multiVLIW scheduling and UAS, BUG, LC-VLIW and CARS is that its major 

concentration is on cyclic code. Codina, Sanchez and Gonzalez in [40] present a methodology 

to perform modulo scheduling and register-allocation in a single phase. Their technique, on 

average, gave a 36% speedup on SPECfp95 benchmarks. 

Sanchez and Gonzalez in [131] show that loop-unrolling and assigning the unrolled 

loops to appropriate clusters in a single pass greatly reduces inter-cluster communication. 

Using this method, they showed that a 4 issue clustered processor was 3.6 times faster (cycle-

time) than a unified architecture. Sanchez and Gonzalez in [130] presented a modulo-

scheduling scheme for the multiVLIW architecture. This work, unlike [131] presents a 

distributed cache. The authors also reduced the amount of inter-cluster communication 

compared to a base unified cache system.  

Aleta, Codina, Sanchez and Gonzalez in [4] present ways to schedule loops in a 

clustered processor by examining the control-flow and data-flow graphs. The authors claim 

that this method helps them get a global view of the whole program, and thus they were able to 

produce a schedule that was 23% faster than their base case on SPECfp95 benchmarks. Aleta, 

Codina, Gonzalez and Kaeli in [5] take the same graph-based partition approach as in  [4]. 

Unlike  [4], the authors present heuristics to determine whether a part of the instructions can be 
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replicated in different clusters to reduce additional inter-cluster communication. The authors, 

on average, achieved 25% increase in IPC for a 4-cluster microarchitecture.  

Finally, Zalamea, Llosa, Ayguade and Valero in  [158] present a software-pipelining 

technique that performs instruction scheduling with reduced register requirements, register 

allocation, register-spilling and inter-cluster communication in a single step. They show that 

this algorithm is very scalable with respect to the number of clusters, communication busses 

and the communication latency. 

To our best knowledge, none of these work or their successors have considered power 

dissipation or energy consumption as a constraint. All of them concentrated solely on 

performance (in terms of instruction-per-cycle). We believe that using a scheduling algorithm 

for an embedded system that does not consider power dissipation or energy-consumption can 

be prohibitively expensive in terms of battery life. 

1.1.5 Next-PC Computation for Clustered Architectures 
 

From our literature survey, this is one of the least discussed topics. Several 

superscalar clustered architectures such as Balasubramonian in  [11] [12], Parcerisa et al. in  

[104] all advocate using a centralized scheme to handle branches.  

We found only one source that performed an in-depth study on next-pc computation 

for clustered VLIW architectures. Banerjia in [15] explains three ways to execute branches in 

a clustered architecture. The first approach is to dedicate a cluster to execute only branch 

operations. This cluster is called the branch cluster.  The branch cluster is generally closer to 

the I-Cache in order to reduce wire delays. The compiler must schedule all of the branches to 
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the branch cluster. The maximum branch taken penalty in this system is only the inter-cluster 

latency.  

The second approach is to utilize a centralized branch-handler. When a branch is 

executed, the branch arbitration logic must select from the appropriate result and broadcast 

the value of next PC to all the clusters. The branch taken penalty for this approach can be the 

sum of inter-cluster latency and the time taken to send an instruction from memory to 

execute stage.  

The third method is to replicate the branches and execute them in every cluster. This 

duplication can be done by the compiler or at the hardware level by the branch repair logic. 

This scheme achieves the same performance result as the branch cluster system. However, 

the clusters have become more complicated since each of the clusters must have additional 

components to execute the branches and do their normal computation. It can be argued that 

the branch computation is not as complex as many other forms of computation.  

1.2 Dissertation Layout 
Remainder of this dissertation is organized as follows. Chapter 2 explains the 

experimental framework along with the benchmark-set used in this work. This chapter also 

gives a brief overview of the CLAW architecture. Chapter 3 explains our dynamic issue-width 

modification methodology. In Chapter 4, we explain our low-energy opcode-optimization 

method. Our register-sharing idea is outlined in Chapter 5. We perform a case-study of CLAW 

on IEEE 802.11n physical layer algorithm and present our observations and results in Chapter 

6. We conclude this thesis and mention some future directions for this work in Chapter 7. 
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Chapter 2 Experimental Framework 

Precise energy and power analysis is necessary for embedded systems due to their sole 

reliability on batteries as an energy source. Underestimation of the required energy can make 

the user require to change or recharge the batteries frequently. Overestimation can cause the 

designer to put a larger battery, which can make the system larger or heavier. Either of these 

scenarios can make the system unattractive and cumbersome to use. 

 For precise power and energy analysis, it is necessary to use an accurate hardware-level 

model for the processor. Previous research suggest that designing in hardware through 

techniques such as layouts or HDL produces 14% better results than pure cycle-count studies 

and 24% better results than pure cycle-time studies [37]  [147].  For this work, we created a 

new processor partially based on OpenRISC ISA, written in Verilog HDL, and modified it 

into a scalable two-issue processor called Clustered Length Architecture Word processor 

(CLAW). In addition, we added multi-threading support. A two-issue processor was chosen 

because the applications we encountered had an IPC greater than one.  

The OpenRISC processor instruction-set is very representative of several embedded 

RISC architectures such as ARM [135], MIPS, Atmel [167], etc. To create executables to run 

on our processor, we created a GCC toolchain. Detailed information about our toolchain is 

given in section 2.5.  

In the next subsection, we introduce our processor-framework called CLAW. In section 

2.2 we discuss the top-level architecture of each cluster inside CLAW. Integrating multiple 

CLAW clusters are discussed in section 2.3. We discuss the multithreading support provided 
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by CLAW in section 2.4. The software toolset to produce executables for this processor is 

discussed in section 2.5. Benchmarks used for our experiments are explained in section 2.6. 

We conclude this chapter by discussing the analysis and simulation framework. 

2.1 The CLAW Architecture 

In this section, we explain the workings of a single-cluster CLAW. CLAW is a 32-bit 

load-store processor with a 5-stage pipeline and provides basic DSP capability. It is able to 

issue two instructions every cycle and can support up to eight simultaneous threads.  It is 

evolved from the Open Cores processor, OR1200.  

This architecture targets medium to high performance networking, embedded, 

automotive, and portable computer environments. CLAW is written entirely in Verilog and is 

simulated using the Cadence Verilog simulator. This processor is synthesized and analyzed 

using industrial-strength tools to provide accurate power, energy and performance values. 

To see if CLAW is representative of the popular embedded processors available today, 

we compare this processor with popular embedded processors available in the market. Figure 

2-1 shows a graphical comparison of the power delay product of major embedded processors. 

This metric is used as a valid comparison of processors in industry. We can see from the 

graph that the base case single cluster CLAW (using 90nm Artisan SAGE-X RVT library) is 

has one of the lowest power-delay product.   
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Figure 2-1: Power Delay Product of Some-Popular Embedded Processors 
 

2.2 Top-Level Architecture 

Figure 2-2 describes the top-level diagram of a single-cluster CLAW machine. CLAW 

is a very flexible processor for adding more execution units. Currently, we have an integer 

and execute unit (ALU), fixed-point multiply and accumulate unit (MAC), and load and store 

unit (LSU). Appropriate units can be added to the system without much complex 

modification to the processor. In the next subsections, we explain the different processor 

stages of CLAW. 
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Figure 2-2: CLAW Top-level Architecture 

2.2.1 Fetch Unit. 

CLAW is able to fetch two instructions every cycle. Both instructions are fetched in 

order from the memory (or instruction cache) and decoded simultaneously. When the 

instructions are fetched, the program-counter (PC) is updated with the next PC or the values 

from the previously resolved branches. The fetch unit does not predict any branch outcomes 

or targets. When a branch target is taken, all instructions in the fetch and decode stages are 

flushed from the pipeline and the appropriate new instructions are fetched. The fetched 

instructions are then sent to the decode unit. 

2.2.2 Decode (or Dispatch), Execution and Write Back Units 

When instructions are received from the fetch units, they are decoded in one cycle. 

After decoding them, they are sent to the registers to read the appropriate values. The general 

purpose register file has four read ports to help both instructions read simultaneously. The 
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instructions are then send to the execution units.  For the remainder of this document the 

general purpose register file will be referred to as the register file.  

Execution units in the CLAW processor consist of the ALU, MAC unit and the LSU. 

As discussed above, these units can be modified according to the processor’s application. 

The ALU is responsible for the five-types of 32-bit integer instructions: arithmetic, compare, 

logical, shift and rotate instructions. All integer instructions can be executed in one clock 

cycle.  

The MAC unit executes DSP MAC operations. MAC operations are 32x32 with 48-

bit accumulator. MAC unit is fully pipelined and can accept new MAC operations in each 

new cycle. Since the MAC unit is the very power-hungry unit, we have implemented a unit-

gating mechanism to this unit to save power. 

The LSU transfers all the data between the register file and the CPU’s internal bus. 

This is implemented as an individual execution unit so that stalls in memory does not affect 

the master pipeline if there is a data dependency. If the instruction requires any arithmetic 

operations, it is first sent to the ALU and then transferred back the LSU. 

The write back unit helps write data back to the register file. CLAW can have up to two 

instructions written back to the register file. In order to do simultaneous writes, the register 

files contain two write ports. However, two instructions cannot write to the same register 

location. The compiler is responsible for avoiding such hazards. More details about this is 

given in section 2.5.1.  
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2.3 Integrating Multiple Clusters 

We mentioned in the previous section that to increase issue-widths of the processor, we 

cluster several two-issue cores of CLAW together to the gain the desired issue-width. When 

clustering the processor, the major modification was in the fetch unit. Figure 2-3 shows the 

top-level diagram of 4-cluster CLAW architecture. The cache controller fetches the 

appropriate word for the current cycle. The cache controller routes the entire word to the 

fetch unit. The fetch unit then routes the appropriate instructions to each cluster. The 

instructions fed into the fetch unit are called Multi-cluster-Operands (MOP). The instructions 

sent to each cluster are called the Cluster-Operands (COP) and the two individual 

instructions executed by each cluster are each called an operand (OP).  

A MOP is synonymous to a IA-64 Instruction group. For a ‘N’ cluster machine, its 

MOP contains ‘N’ COPs. Each COP contains 2 OP. An OP is synonymous to a regular RISC 

instruction such as “ADD” or ‘LOAD-WORD.” The terms instruction and OP are used 

interchangeably in this document. The hierarchy of a MOP, COP and an OP for a 4-cluster 

CLAW is illustrated in Figure 2-4. The ‘T’ bit on each OP is used to signify if it is the last 

OP in a multi-op. This is used to by the memory controller to see when to stop fetching. The 

‘X’ bit is reserved for future use. 
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Figure 2-3: Clustered CLAW Block Diagram 
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Figure 2-4: CLAW Instruction Granularities 

 

2.3.1 Register-File Organization 
 

CLAW is a length-adaptive processor. The minimum number of clusters the machine 

must possess is one. The maximum number of clusters is not always predictable. The CLAW 
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designer must be able to add additional clusters into the system without the need to recompile 

existing programs. Thus, cluster 1 holds the program state.  Register ‘r1,’ ‘r2,’ and ‘r9’ are 

the stack pointer, frame-pointer and the return address registers, respectively. Function-

arguments are stored in register r3-r8. Any function-argument after the sixth one must be 

accessed through the stack.  

Callee-saved registers are restricted to cluster 1 to avoid unnecessary inter-cluster 

copies. To push a value into the stack, the value must reside inside a register-file of Cluster 1. 

Otherwise, an explicit copy-operation must be performed to copy the value into the register-

file of Cluster 1, and then push the value into the stack. The compiler is responsible for 

resolving such scenarios. Table 2-1 shows all the important registers in CLAW. 

Table 2-1: Register Functions 
Register Number(s) Function 
R0, R32, R64… Zero-Value Register 
R1 Stack-Pointer 
R2 Frame Pointer 
R3-R8 Function Arguments Register 
R9 Return Address Register 
R12, R14, R16 . . .  R30 Callee Saved Register 

 

2.4 Multithreading Architecture 

In addition to fetching two instructions a cycle, CLAW also supports up to 8 threads. 

Currently the processor fetches instructions from a new thread in round-robin fashion. The 

number of threads can be decreased by the designer during design-time. Figure 2-5 shows the 

multithreading architecture with two-thread support.  The methodology for the two-thread 
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support and eight-thread support are the same, but the figure is simplified to make the 

architecture more legible.  

 

Figure 2-5: CLAW Multithreading Flow-Diagram 
 

The fetch unit contains eight PC registers, one for each thread. This helps keep track 

of the program order. The threads are given a thread ID, ranging from 0 to 7 which is 

transmitted along with the instruction. The instructions are decoded or dispatched in the same 

way as a single threaded processor.  

Every thread has its own register file. When the instruction’s register values are read, 

the thread ID is checked and the values are fetched from the appropriate register file. During 

the write back stage, the data is transmitted back to the register file for writing along with its 

thread ID. The data is then written to the appropriate register file. For brevity, we are only 

using one-thread for our experiments. 
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2.5  Compiler Support for CLAW 

Instruction scheduling for CLAW is done completely in software. The compiler is 

responsible for eliminating all forms of hazards that can potentially cause unexpected results: 

write after write (WAW), read after write (RAW), and write after read (WAR).  

The compiler schedules two independent instructions every cycle. CLAW is unable to 

execute more than one branch a cycle; therefore the compiler schedules only one branch in a 

cycle, which is arbitrarily always the 2nd instruction. Implementing the capability to execute 

multiple branches in a clock cycle remains as future work.  

2.5.1 GCC toolchain for CLAW 

To successfully execute programs in CLAW, we created a GNU Compiler Collection 

(GCC) toolchain. GCC was picked as the compiler of choice because it is the most popular 

compiler in use today. Table 2-2 explains the different parts of the toolchain. The toolchain is 

able to produce valid executables for a 1, 2 or 4 cluster machines. 

Table 2-2: Toolchain Components 
Component Tool Version 
Assembler claw-as 2.11.92 
Archiver claw-ar 2.11.92 
Loader claw-ld 2.11.92 

Compiler claw-gcc 4.0.2 
OS Headers Linux 2.4 
C-Library uClibc 2.14 

2.6 Benchmarks 

In order to validate our experiments, we used a set of algorithms from the EEMBC 

benchmark set [168]. The EEMBC benchmark is considered the most representative set of 
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benchmarks that are used in embedded systems. Unlike several benchmark sets such as SPEC 

[174], or Mediabench [84], EEMBC software-engineers have chosen a set of kernels in the 

system. Figure 2-6 shows the structure of EEMBC benchmark. In the figure, performance-

data is collected only for the parts between “th_signal_start()” and “th_signal_finished()” 

(shaded in red). This way, the algorithm can be isolated in each benchmark. 

The EEMBC suite contains five distinct sets of benchmark sub-suites: automotive, 

consumer, networking, office-automation and telecommunications. Some algorithms are 

present in multiple benchmark suites. For this work, we chose the unique algorithms in the 

five suites. For example, if there are multiple implementations of FIR filter, we only choose 

one since the main concentration of the benchmark is the algorithm itself. Table 2-3 shows 

the 10 EEMBC benchmarks we chose to run on hardware. These benchmarks were free of 

system-calls in the actual benchmark task. The hardware simulation environment is unable to 

handle system calls. 

 
 

Figure 2-6: EEMBC Benchmark Structure 
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Table 2-3: EEMBC Benchmarks Description 
Benchmark Description 
aifir01 FIR Filter 
conven00 convolutional encoding 
Dither01 Floyd-Steinberg error diffusion Dithering Algorithm 
Ospf OSPF Dijikstra’s Algorithm 
puwmod01 Pulse Width Modulation Algorithm 
Rotate Image Rotation algorithm 
Routelookup Dijkstra’s Algorithm 
Rspeed01 Road Speed Calculation 
Ttsprk01 Tooth-to-Spark tests in automobiles 
Viterb01 Viterbi Decoder 

2.7 Analysis Framework 

Figure 2-7 illustrates the steps to capture power values from the processor. First, we 

take a behavioral model of the CLAW processor (written in Verilog), and synthesize it using 

the Cadence design analyzer with 90nm Artisan SAGE-X Physical-IP RVT library. The 

VDD for this library is 1V with 25°C operating temperature and typical operating conditions. 

To simulate benchmarks on CLAW, we use the Verilog-XL simulation system. We 

created a program that reads a CLAW executable file and extracts the text, read-only data 

(rodata) and read-write data region. These information are saved in “text.txt” and “data.txt.” 

During the fetch stage, the processor requests the appropriate instruction stored in the 

appropriate location through the icpu_adr_i bus. The test-bench reads this address and 

outputs the appropriate instruction from the text.txt through the icpu_dat_i bus. Similar 

procedure is done for the data information when the processor encounters a load/store 

instruction. This entire procedure is detailed in Figure 2-8. This step produces a VCD file 

used for calculating switching in the processor-wires. The simulator also outputs the number 

of clock-ticks required to simulate the benchmark.  
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Figure 2-7: Power Analysis Steps 
 

The synthesized model is then placed and routed using Cadence Design Encounter to 

extract the appropriate parasitic values. The VCD file, the parasitic files, the synthesized 

Verilog file and the standard-cell library are analyzed by Prime-time (formerly Prime power) 

to calculate the power values. Prime-time is known to give power results within 10-12% to 
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the real system [53]. The power values with the simulation time from Verilog-XL can be 

multiplied together to get the total energy 
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Figure 2-8: Running an Executable on CLAW 
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Chapter 3 Instruction-width optimization 
 

It is known that all applications that are run on a system do not contain the same amount 

of parallelism. Thus, one processor configuration cannot be used as a model for the optimal 

energy and performance. Thus, there is a need for dynamically issue-width adaptive 

processors. Large issue-width processors tend to introduce long wires which can increase 

chip-power and decrease clock-frequency [60]. 

One promising approach is to divide certain components of a processor into smaller 

chunks and place them close together. The components inside each chunk are connected by 

fast links. The communication time between the chunks is relatively slow because the 

distance is longer. This architecture is collectively called clustered architecture and each 

“chunk” is called a cluster [40]. Traditionally, each cluster consists of a local register file and 

a subset of function-units [50]. In order to gain the most optimum performance in a clustered 

architecture, it is very important to keep the inter-cluster communication to a minimum [15] 

[17] [22] [50]. 

The idea of clustered architecture has been used in superscalar processor for many years 

[1] [17] [22]. Some VLIW DSP processors such as, TMS320C6x (by TI) [176], TigerSharc 

(by Analog Devices) [166], Map 1000 (by Equator) have incorporated this implementation 

[50]. VLIW architectures implement wide instruction words to allow issuing of multiple 

instructions in software [38].  

These architectures are inherently ideal for exploiting parallelism extracted by fine grain 

compilers that analyze code beyond a basic block [8]. This gives VLIW machines a sufficient 
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large “window size” to look for ways to parallelize the code. A clustered VLIW processor 

tries to please both the communication delay and achieve a high IPC all for a low cost  [15]. 

In this work, we created a clustered VLIW architecture and provide a mechanism to 

dynamically shutoff unwanted or unused clusters with the help of a profiler by inserting 

specialized shutoff instructions. In the next sub-section, we discuss our methodology of 

modifying the instruction width at run-time. Section 3.2 describes how the clock-controller 

dynamically gate unwanted units. Section 3.3 explains the next-PC calculation 

implementation for our processor. In 3.4, we show how the instruction-scheduler inserts this 

specialized instruction. We present our results using EEMBC benchmarks in section 3.5, and 

conclude this chapter in section 3.6. 

3.1 Dynamic Issue-Width Scalability 
 

CLAW is flexible-enough to be able to shutoff clusters at any level. For this work, we 

study three-levels of cluster scalability: function-level, treegion-level and basic-block level. 

Shutting-off and turning-on the clusters are both done using a “shutoff” instruction. The first 

cluster must remain turned-on the whole time since it holds the stack, frame and return 

address information.  

 Figure 3-1 illustrates the format of the shutoff instruction. The immediate field of this 

instruction is a bit-vector that indicates which cluster has to be shutoff. For example, “shutoff 

1111b” implies that cluster 1, 2, 3 and 4 must be shutoff, and the rest of the clusters (if 

available) must be turned on. For the 32-bit ISA, up to 24 clusters can be controlled using 

this shutoff instruction. 
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Figure 3-1: Shutoff Instruction Format 
 

The “shutoff” instruction has to be the first instruction of the bundle and must be put in 

an empty bundle, that is, the rest of the instructions in the bundle must be NOP. This 

instruction is decoded by the fetch unit and the appropriate clusters are clock-gated. The rest 

of the bundle is ignored and the next bundle is fetched.  

3.2 Pipeline Clock-Gating 
 
In CLAW, the fetch unit partially decodes every instruction to see if a shutoff 

instruction is fetched. If such an instruction is found, it then emits a signal to the clock-gating 

unit to indicate that certain clusters need to be turned off (or turned on).  In many previous 

works, the clock gating is done only in a single stage. In some works such as  [118] [97], they 

suggest stalling the processor for ‘N’ cycles (where ‘N’ is the pipeline-depth) and issue a 

broadcast to all the units. There are two major problems with this scenario. First, if the 

number of shutoffs is not kept to a minimum, the processor stalls significant number of 

times. Second, sending these broadcasts requires significant number of long wires, which can 

potentially increase power. 

To solve the two problems in the previous work, we created a cascaded clock-gating 

circuit. Figure 3-2 shows the high-level block diagram of the clock gating circuit for a 4-

cluster CLAW processor. We implemented an override pin just in case the user does not want 

to use the shutoff mechanism. There are three major components of our clock gating unit: the 
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simple-gating unit, the propagating unit and the latching unit. The simple-gating unit accepts 

the clock as the input and simply calculates whether the clock must be gated or not. Figure 

3-3 shows the block-diagram of the simple-gating unit.  
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Figure 3-2: Overall Clock Gating Circuit Block Diagram 
 

 
Figure 3-3: Clock Gating Logic 
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The propagating unit creates a cascaded clock-signal that is send to the next units. Each 

of these clocks has a phase shift of 1 cycle that is fed into each of the stages of the processor. 

The latching unit holds the clock gating information given by the fetch unit. This unit ensures 

that any external interference does not affect the clock signal. The clock signals can be 

changed only by fetch unit with the help of an enable signal. Figure 3-4 shows an example of 

cascaded clock output for a 2 Cluster CLAW. At 30ns, the fetch unit is requesting that the 

second cluster to be shutoff, and keep the rest of the clusters on. We can see that 

“gated_clk_1[1]” shuts off immediately. This is being fed into the decode stage. The rest of 

the gated clocks appear to mimic the same behavior as gated_clk_1 but with 1 cycle delay 

from its predecessor. At 50ns, ‘0’ was found on the “shutoff_bits” bus, the clock signal did 

not change because the enable (shutoff_en) was low. 

 

Figure 3-4: Cascaded CLK Output 
 

The advantage of such a clock-gating circuit is that it doesn’t disrupt any instructions 

that are in the pipeline during the previous cycles. Also, there is only one Multi-Op 

performance penalty to shutting off clusters. Such techniques have been presented for 

clocking multi-cycle function units (e.g.  [67]), but this is the first time it has been applied to 
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a general purpose processor. This complex clock-gating unit only increases the processor 

area by 2.1% and did not cause any change in the frequency of the base-processor. 

3.3 Next PC Calculation 

For doing the appropriate next-PC calculations, we evaluated the different techniques 

presented in section 1.1.5. Having a dedicated branch cluster for execution gives the 

optimum performance compared to the other two schemes. Having a centralized scheme 

seems to be the worst of all three. The branch replication scheme seems to add additional 

complexity to the cluster and increase the dynamic code-size, which can have adverse effects 

in terms of power consumption. 

Some of the disadvantages of having a branch cluster are that the compiler must be 

very capable in order to schedule all the branches to one certain cluster. Also, if we chose to 

disable a certain number of clusters, the code might not perform as well as expected.  

 In CLAW ISA, when a jump instruction occurs, the return address register (r9) is 

automatically written with address of the next MOP after the jump. On the other hand, 

branches do not have any other implicit tasks. This helped us come up with a hybrid scheme 

to handle control-transfer instructions. Branches could be executed in any clusters as 

necessary. Jumps were all assigned to cluster 1. This mechanism helped reduce the possible 

congestion that could happen in branch cluster. At the same time, an explicit instruction is 

not necessary to write the return address into the return address register, thus reducing code-

size. 
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3.4 Instruction Scheduling and Shutoff Insertion 

CLAW is a variable-width processor. The width can be varied with the feedback of the 

architect, programmer and the user. In order to do this efficiently, we build such a processor 

using a set of two issue clusters. In any clustered system, the biggest bottle-neck is the inter-

cluster communication. In order to reduce this effect, several scheduling algorithms have 

been presented by previous researchers. We used the concept of scheduling the instructions 

and assigning them in the same cycle called Unified-Assign and Schedule (UAS). 

GCC provides several hooks that allow architects to manipulate and intercept the 

ready-list at different stages of scheduling [39]. The UAS was attached to the 

“TARGET_SCHED_FINISH_GLOBAL” hook. This hook is called immediately after the 

treegions are created. Figure 3-5 shows the flow-diagram of the major steps involved in the 

UAS implementation. A list of unscheduled RTL is taken from the Treegion scheduler and a 

list of instructions that are ready in the current cycle is assembled. GCC does all the 

scheduling at the RTL level. Fortunately, almost all RTL can be mapped 1-to-1 with the 

CLAW OP in the machine description. Each instruction in this ready list is assigned to a 

cluster is picked as per a priority function.  

There are four different priority functions available in UAS, they are: sequential 

placement, random placement, magnitude-weighted placement (MWP) and completion-

weighted placement (CWP). In sequential placement, the RTLs are assigned in a round-robin 

fashion to each cluster. In Random placement, the RTLs are placed to a random cluster 

chosen using a pseudo-random number generator (lrand48()). MWP schedules an RTL to the 

same cluster as its predecessors. If the predecessors of the current RTL are assigned to two 
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different clusters, either one can be its target. In CWP, the RTL is assigned to the same 

cluster as the predecessor that takes the longest to complete. The advantage CWP has over 

MWP is that since the current RTL has to wait till the latest of its predecessor to complete, 

the holes in between can be used to schedule a copy instruction. These priority functions 

have a direct control over the performance and the energy consumption of the processor. We 

show the results of all four priority functions in the results section. For more detailed 

explanation about UAS, the reader is referred to [34].  
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CLUSTER (C) IN WHICH X 
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X SCHEDULABLE IN 
CLUSTER C ?

X = SCHEDULED
INSERT X IN 

SCHEDULE_LIST WITH 
APPROPRIATE CLUSTER 

INFO

NO

YES

C == NULL

NO

NO

INCREMENT CYCLE 
COUNT YES

YES

 

Figure 3-5: Design-Flow of UAS Algorithm on GCC 
 

To make UAS more suitable for a length-adaptive processor, we slightly modified the 

assignment-priority function. When an RTL can be assigned to multiple-clusters during 

MWP and CWP scheme, the authors in  [103] mention to randomly pick a cluster. We forced 

our algorithm to choose cluster 1 (if it is an option) or a previously used cluster. This helped 

us to potentially shutoff other clusters. Similarly, when a new cluster must be used, we again 
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forced our algorithm to choose cluster 1 or a cluster that has been used previously. This 

helped us isolate unused clusters for a longer period of time to save energy. 

An additional challenge was encountered in the register allocation phase. The register 

allocator in GCC tries to minimize assigning instructions to different register classes by 

mapping dependent-instructions into the same register class. Even though this can reduce 

additional cluster-usage, the register-allocator does not take cycle-time into account. To 

overcome this problem, the register allocator’s mapping function (reg_class(..)  function in 

passes.c [39]) was replaced with a specialized hook function (added using a new hook called 

“TARGET_MACHINE_DEPENDENT_REG_CLASS”) that will assign instructions as per 

the UAS scheduler. All the modifications described will not affect any other gcc port, and 

our gcc source-code can be configured for any other gcc-backend (e.g. x86) and function 

without any difficulty. 

Initially, the compiler inserts a shutoff instruction with ‘0’ as its immediate field 

(indicating all clusters must be on) at the beginning of the basic-block or the beginning of the 

function. The unique ID of the shutoff RTLs are stored in a data-structure along with the 

basic-block number in which it was inserted. The information is used by the profiler 

(integrated into GCC as an additional pass) to know which shutoff instruction must be 

updated.  

The CLAW profiler is executed right before the instructions are output as a final stage 

in GCC compiler. This is the final stage where the RTLs are visible and are not moved 

between basic blocks. The profiler scans the static code provided by the compiler to see if 

there are any empty clusters. Figure 3-6 shows an example of an empty cluster: if for the 
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duration of an entire basic-block (or function depending on the granularity) there exist a 

common empty cluster, then the bit-vector for the appropriate shutoff instruction is updated.  

 

Figure 3-6: Example of an Empty Cluster (marked in blue box) 
 

Figure 3-7 shows the algorithm of our profiler to detect idle clusters to power-down 

using the shutoff instruction for function-level and basic-block level shutoff insertion. Region 

level shutoffs are a bit more complex and are detailed in section 3.5.2. The algorithm accepts 

a block of instructions (BLK) as input. The profiler goes through every MOP to see if it can 

find Cluster-Ops (COP) with only NOP, that is, an unused-cluster. If such a scenario is 

noticed, the appropriate bit is set to ‘1’ in the ‘Unused’ array. M.count indicates the MOP 

position in the BLK and C.count indicates COP position in the MOP M. This array is a two-

dimensional array with rows indicating the number of MOPs in the block (indicated by 

BLK.MOP_Count) and the columns showing each cluster. This array must be dynamically 

allocated, but it is not shown in the figure for simplicity. 
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Figure 3-7: Cluster-Shutoff Algorithm 
 

After stepping through all the MOPs in BLK, the profiler goes through the ‘Unused’ 

array to find if all the MOPs have common clusters that can be shutoff. This is done by 

checking if the summation of all the 1’s in a column is equal to the number of MOPs in BLK. 

The list of empty clusters is returned back to the profiler from this function using the 

“Shutoff_Cluster_List” variable. The profiler examines this to set the appropriate bit in the 

shutoff instruction. The profiler also displays the number of cases where all the clusters are 

turned-on for analysis. 
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3.5 Results 
 

Sequential placement picks the appropriate target clusters in a round-robin fashion. 

Random placement, assigns the instructions to the randomly chosen cluster. MWP assigns an 

instruction to the same cluster as the instruction’s flow-dependent predecessors. In CWP 

placement, the scheduler gives priority to the clusters that will be producing the instruction’s 

operands relatively late in the schedule. CWP scans all the clusters which execute the 

instructions that are dependent on the current instruction. The current instruction is assigned 

to the cluster that produces its results the latest. The advantage of this scheme is that the copy 

instructions are potentially easier to schedule without losing much cycle-time. In section we 

show the base case results of all the CLAW configurations. This is then compared with the 

different shutoff schemes mentioned in section 3.1 

3.5.1 Base Results 
 

Figure 3-8 shows the number of cycles required to execute these benchmarks in a 1- 

cluster CLAW. Conven00 takes the longest number of cycles followed by dither, while ospf 

seem to take the smallest. Figure 3-9, and Figure 3-10 shows the speed-up compared to one-

cluster for two-cluster and four-cluster CLAW machine. Routeloop is the most parallel 

benchmark in the suite. Conven00 seem to be the least parallel of all the benchmarks. 
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Figure 3-8: Execution-time for 1-Cluster CLAW 
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Figure 3-9: Speedup of 2-Cluster CLAW over 1 Cluster Machine 
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Figure 3-10: Speedup of 4 Cluster CLAW over 1 Cluster CLAW Machine 
 

In a clustered architecture, it is necessary to keep the number of inter-cluster copy to a 

minimum. Figure 3-11 and Figure 3-12 show the amount of copy instructions (in percentage) 

in a two and four-cluster machine. CWP and MWP have virtually no copy instructions 

(approximately 0.5% or less) when compared to random or sequential placement. These two 

algorithms take the instructions and their dependencies into consideration, whereas random 

and sequential placement, assigns the instructions ad-hoc.  
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Figure 3-11: Percentage of Copy Instructions in 2-Cluster CLAW Machine 
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Figure 3-12: Percentage of Copy Instructions for 4-Cluster CLAW Machine 
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The next step is to see the energy consumed by the benchmark for the different 

CLAW machines with different number of clusters. Energy is used as a metric because it 

takes into account the tightness of the schedule along with the average power consumption. 

We believe that a processor that has slightly higher power dissipation, but executes a 

program significantly faster is better than a processor that consumes less power while taking 

longer to execute the same benchmark. 

The static and dynamic energy values for a single cluster configuration are shown in 

Figure 3-13. Figure 3-14 and Figure 3-15 show the dynamic energy values for two and four 

cluster machine for the four placement types. OSPF is the smallest benchmark in the suite, so 

it consumed the least energy. Conven00 is the largest benchmark in the set followed by 

dither. Even though, ttsprk01 is the third-largest benchmark, it consumed ~30% more power 

than conven00. Ttsprk01 contains more multiplication and division instructions than all the 

benchmarks, and these two are power-intensive operations. 

Sequential consumed the most energy since it has a significant amount of copy-

instructions. Similarly, MWP and CWP consumed the least amount of energy because it took 

the benchmark into consideration during scheduling and emitted less copy instructions. The 

energy consumption of MWP and CWP is identical in all the cases because, they both create 

the same schedule for unit-latency instructions. In CLAW, all of the instructions, except the 

MAC instructions, are unit latency instructions. MAC instructions are not output by the 

compiler. 

Figure 3-16 and Figure 3-17 show the static energy dissipation for 2-cluster and 4- 

cluster CLAW, respectively. The static energy only contributes ~10-15% of the total energy 
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in all cases. The static energy also increased for 4-cluster CLAW since we have a larger area 

and a higher potential for idle wires. 
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Figure 3-13: Dynamic and Static Energy or 1 Cluster CLAW 
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Figure 3-14: Dynamic Energy Values for a 2-Cluster CLAW Processor 
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Figure 3-15: Dynamic Energy Values for a 4-Cluster CLAW Processor 
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Figure 3-16: Static Energy Values for 2-Cluster CLAW Processor 
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Figure 3-17: Static Energy Values for 4-Cluster CLAW Processor 

3.5.2 Dynamic Length-Adaptivity 
 

To study the energy savings by shutting off unused clusters, we inserted shutoff 

instructions at the basic-block level and the function level for 2-Cluster and 4-Cluster 
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configuration of the CLAW processor. Figure 3-18 shows the dynamic energy distribution 

for 2 and 4 cluster CLAW. For ease of comparison, we also plotted the base values of the 

energy values taken from Figure 3-14 through Figure 3-17. ‘ 

For the 2-Cluster CLAW, there is no dynamic energy difference at all. The profiler 

did not find any significant opportunities to shutoff any clusters. For the 4 cluster CLAW, 

majority of the programs only used 2 clusters, this helped shutoff the other 2 clusters 

majority of the time, and thus save energy. Inserting the shutoff at the function-level did not 

increase the code size significantly (< 0.1%). This did not cause any energy increase.  
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Figure 3-18: Dynamic Energy Distribution Function-Level Shutoff Insertion 
 

The static energy distribution is shown in Figure 3-19. Since it is impossible to 

physically shutoff flip-flops in a HDL based design, we have also provided the static power 

differences as a data-label for all the static energy graphs from this point forward. The static 

energy difference is within the threshold of the error-rate of Primetime. The main reason why 
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we compared static-energy values is to see if the shutoff insertion blew up the static value. 

For 2-Cluster CLAW the values barely changed. This again is due to the fact that the profiler 

was unable to find any clusters to shutoff. For the 4 Cluster CLAW, two of the clusters were 

shutoff for many of the benchmarks. This caused some idle wires, but this did not cause any 

significant change. The static power for 2-cluster CLAW barely produced any change, 

whereas a 7% increase was found in the 4-cluster processor. This increase translated to 0.7% 

total-power increase. Please note that an asterisk (*) indicates a change that is between -0.5% 

and 0.5% 
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Figure 3-19: Static Energy Distribution Function-Level Shutoff Insertion 
 

Next, we looked at the dynamic energy distribution when the shutoff instruction was 

inserted on the basic block (BB) level. Figure 3-20 shows our results. For the 2-Cluster case, 

almost all the benchmarks did poorly. This is because, inserting a shutoff instruction at every 

basic block level created a code-explosion. Recall that the shutoff OP is placed in a separate 
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MOP with no other useful instructions. Our benchmarks, on average had 2-3 MOP per basic- 

block. If the compiler was able to pack more instructions into each basic block, then we 

could have achieved a better result. For 4 Cluster CLAW, similar code explosion did occur. 

This code-explosion is overshadowed by the fact that almost always two of the four clusters 

is always shutoff. This energy savings helped hide many of code-explosion problems.  
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Figure 3-20: Dynamic Energy Distribution BB-Level Shutoff Insertion 
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Figure 3-21: Static Energy Distribution BB-Level Shutoff Insertion 
 

 Figure 3-21 shows the static energy distribution for basic-block level shutoff 

insertion. The code-explosion did cause a problem here also, but since the static energy is 

inherently low, it did not make a huge change in the overall system. The static power, on 

average, increased by 1% and 7% for the two-cluster and four-cluster machines. This 

translated to a 0.15% and 1.05% increase in total energy. 

Looking at our 2-Cluster results in Figure 3-18 and the low-parallelism in these 

benchmarks probed us to find an intermediate region to place our shutoff instructions. To 

confirm our doubts, we looked at the assembly dump of the benchmarks. Figure 3-22 shows 

an assembly output for called “WriteOut” function from puwmod01 benchmark for 2 cluster 

CLAW.  
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Figure 3-22: WriteOut function from Puwmod01 
 

Figure 3-23 shows the control-flow graph and cluster usage of each basic block. GCC 

puts the prologue and epilogue of each benchmark in a separate basic block and they are not 

available for scheduling with other blocks. Thus, we have indicated them in as a separate 

block with different color. We can see that only one of the five blocks is using two clusters.  

When we insert the shutoffs at the function level, we are unable to shutoff any of the clusters 

due to the effects of block 2. Similarly, if we insert shutoffs at the basic-block level, we have 

added 5 extra MOP into the system which contributes to greater cycle-time. 
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Figure 3-23: Control Flow Graph of WriteOut 
 

 Treegions is a collection of basic blocks that have the same entry point and different 

exit points. Figure 3-24 shows the control flow graph using treegions of the same program. 

We investigated the possibility of inserting shutoffs at the head of each treegion to see if this 

gave us an energy reduction. In our example function, we asked the processor to shutoff none 

of the clusters at the head of treegion 1 and asked cluster 2 to be turned off during the 

execution of treegions 2. It is important to note that a small trivial function is used in this 

example to illustrate our idea. Such optimization is really geared for more complex functions 

with treegions containing large number of basic-blocks. 



 

 54 

BLOCK 1
(CLUSTER USAGE: 1)

TREEGION 1

BLOCK 2  AND 3
(CLUSTER USAGE: 1, 2)

BLOCK 5
(CLUSTER USAGE: 1)

TREEGION 2

BLOCK 4
(CLUSTER USAGE: 1)

 

Figure 3-24: CFG using Treegions in WriteOut 
 

We made another interesting observation about cluster usage and treegions. Figure 

3-25 shows the CFG of treegions from the from the “ZTableLookup” function of ttsprk01 

program, compiled for 4-Cluster CLAW. The prologue and epilogue are indicated in yellow  

because it was not included in the scheduling. We can see that all treegions have the same 

cluster usage. So, inserting a shutoff that performs the same operation at the head of every 

basic block can be redundant. Thus, we created an extra step in our optimizer that will step 

through all the treegions and remove any redundant shutoff instructions.  
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Treegion 1
(Cluster Usage: 1)

Treegion 2
(Cluster Usage: 1)

Treegion 3
(Cluster Usage: 1)

Treegion 4
(Cluster Usage: 1)

Treegion 5
(Cluster Usage: 1)

Treegion 6
(Cluster Usage: 1)

EPILOGUE

PROLOGUE

 

Figure 3-25: CFG using Treegions for ZtableLookup in Ttsprk01 
 

Inserting shutoffs at the function-level and basic-block level were trivial compared to 

inserting them at the treegion-level. To get the information about each treegions, we created 

several new data-structures to convey this information from the treegion-scheduler to the 

profiler. Figure 3-26 shows the algorithm that calculates cluster usage for each treegion.  
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Figure 3-26: Calculating Cluster Usage for Each Region 
 
 In the first loop, we go through each RTL and extract its destination and source 

registers. This information is used by the “Calculate_Cluster_Usage” function to calculate 

the cluster usage of this RTL. For example, an RTL whose destination register is in Cluster 2 

and source register in cluster 1 signifies that the instruction is using both cluster 1 and cluster 

2.  Each RTL is uniquely defined by a number called “Instruction Unique Identification 

Number (UID).” This number remains unchanged for the lifetime of the function. We created 

a new data-structure to hold the cluster-usage information of the RTL indexed by the UID.  

 Second, we go through every basic-block in the function and find all the instructions 

inside each basic block. We find the cluster-usage of each RTL inside the basic block from 

the above-mentioned data-structure and “OR” them together to get the cluster-usage of the 
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whole basic-block.  Finally, we look at all the blocks inside a treegion, and then “OR” all of 

their usage to gather the cluster-usage for each region. 

 Next, we insert the shutoff RTL at all the head-node of each treegions. Figure 3-27 

shows the algorithm used for this process. At first, we walk through all the RTL in the 

function. When we find a basic-block head, we record its number and region in which it is 

located. If this is a head-node, then we insert a shutoff RTL here. As mentioned in the 

previous section that shutoff instruction contains an immediate value which is a bit-vector 

that tells which clusters must be shutoff.   

 

Figure 3-27: Shutoff Insertion at Treegion-level algorithm 
 

 Using the algorithm in Figure 3-26, we computed the usage of each treegion. The 

shutoff instruction requires the complement of this value. To compute this, we create a bit-

vector for the number of clusters available in the system, and then exclusive-OR that value 

with the region-usage to get which clusters must be shutoff. This information is set as the 

immediate value of the shutoff RTL and then it is inserted into the RTL-list. 
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 We illustrated using an example in Figure 3-25 that there are cases were a treegion 

and its predecessors all have the same usage. Thus, there is no need to have another shutoff 

inserted after the predecessor. To remove such redundant shutoffs, we implemented the 

algorithm illustrated in Figure 3-28.  

 

Figure 3-28: Redundant Shutoff Removal Algorithm 
 
 This algorithm first goes through all the treegions in the program and finds the head 

basic-block. If the block does not have any predecessors, indicating that it is the first block of 

the program, then the delete flag for this region (implemented as a array of Boolean values), 

is set to false. If the block contains predecessors, then we initially assume we do not need this 

shutoff RTL. Then the algorithm steps through all the predecessors of this block to see which 

region they fall in. If any of these treegions have a different cluster usage than the current 

block, then we set the delete-flag to false. The region-list is walked-through from the top-

down to recursively remove all the redundant shutoffs in the program. 

In the algorithms shown in Figure 3-26, Figure 3-27 and Figure 3-28, we did not 

explicitly use the word “treegion,” even though we used them for treegions. This is because 
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they are not treegion-specific. If the architect wishes to insert shutoff instructions at a 

different region-granularity (e.g. Superblocks), these algorithms can be used.  We 

demonstrated our work on a treegion scheduler because UAS is tightly-coupled with a 

treegion-scheduler. 

Figure 3-29 shows our dynamic energy values for 2 and 4-cluster CLAW when the 

shutoffs were inserted at the treegion level and after removing the redundant shutoffs. For the 

4-Cluster CLAW, inserting them at the region-level (with redundant shutoff removal) seems 

to have gotten results very close to the function-level shutoffs. This is because for 4-Cluster 

CLAW, the last 2 clusters seem to be idle most of the time. So inserting the shutoffs at the 

function-level helps to gain good results without any code-explosion. For the 2 Cluster 

CLAW, function-level seem to give no improvement, but when we inserts shutoffs at the 

region level, the profiler was able to find holes in the system to give some energy reduction. 

With the redundant shutoff removal, too much unnecessary shutoffs were not inserted, thus 

reducing code-size. 

 For highly-parallel benchmarks such as route lookup, the region-level shutoff insertion 

achieved 9% energy reduction. For benchmarks with low-parallelism such as conven00 we 

achieved a dynamic-energy reduction of 29%. On average, we were able to gain a 17% 

energy reduction. Figure 3-30 shows the static energy distribution for the region-level shutoff 

insertion. Static power, on average, increased by 1% and 7% for the two-cluster and 4-cluster 

processor configurations. This translated to 0.15% and 1.05% of the total power change in 

the processor. Static energy did not increase considerably. For the 4-Cluster CLAW, it is 

very comparable to the function-level shutoff insertion. For 2-Cluster configuration, the static 
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energy contributed on average, 1% increase in the total energy, but it is definitely was 

shadowed by the dynamic-energy decrease.  
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Figure 3-29: Dynamic Energy Consumption for Region-Level Shutoff 
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Figure 3-30: Static Energy Consumption with Region-level Shutoff 
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To provide a fair comparison with the treegion-level shutoff insertion with redundant 

shutoff insertion, we inserted the shutoff operations at the basic block level and the applied 

our redundant shutoff removal algorithm. Figure 3-31and Figure 3-32 shows the dynamic 

and static energy distribution. For the 4-cluster implementation, the dynamic energy 

reduction was very much comparable with the treegion-level insertion. For the 2-cluster 

implementation, the treegion level was able to give, on average 10% more energy reduction 

across the benchmarks. This is because basic-blocks in GCC are small and some adjacent 

ones had different cluster utilization. Thus, a new MOP (with shutoff operation) had to be 

inserted at the head of several basic block and the overhead incurred for shutting off and 

turning on the clusters contributed to this increase. The static power increase was as same as 

treegion-level shutoff, but the static energy increased a little due to the increase in code-size. 
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Figure 3-31: Dynamic Energy Consumption with BB-level Shutoff with Redundant Shutoff Removal 
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Figure 3-32: Static Energy Consumption with BB-level Shutoff with Redundant Shutoff Removal 

 

3.6 Conclusion 
 

In this section, we presented a dynamically-scalable clustered general purpose 

processor. The processor-width was dictated by the compiler using a specialized instruction 

to shutoff unused data-paths. We also presented a compiler-framework that is able to pack-

instructions into clusters and isolate unused clusters. The results were demonstrated using 

EEMBC benchmarks.  

We found that when the processor was over-designed for the application, simple 

techniques such as function-level shutoffs is enough to achieve good energy reduction. When 

this is not the case, a complex scheme such as a region-level shutoff scheme must be 

implemented. The region-level scheme tried to keep the code-size from exploding yet 
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provided a mechanism to squeeze out as much energy as possible from the processor. 
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Chapter 4 Opcode Optimization 

Instruction decoding is one of the essential steps in most traditional processors. It is 

known that a decoder can consume up to 10% of the total power and energy inside a 

processor [13]. A compiler (along with the assembler) is responsible for generating the 

instructions that are fed into a decoder. For example, if a compiler (or assembler) is not able 

to output an increment instruction, then the decoder will rarely have a chance to decode such 

instructions. It is also known that a compiler tends to output certain instructions more than 

others.  In our experiments, we found add-immediate to be one of the most frequently 

generated instructions.  

Switching on a wire or port is the main cause of power dissipation. If we are able to 

reduce switching between two adjacent events in a wire, then we are able save power and 

energy. The Hamming distance is a simple yet powerful way to calculate the number of bit-

switches between two instructions. The Hamming distance between two instructions is found 

by applying an XOR operation between two instructions and counting the resulting number 

of set bits.  

One possible way to reduce the switching activity is to schedule instructions that have 

low hamming distance close to each other. This approach is not always possible and can 

potentially degrade performance. Another solution is to find the instructions that are close to 

each other and modify their opcodes such that the switching is reduced. Although modifying 

the opcodes at run-time inside a processor is impossible, profiling a representative 
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application and designing the opcodes appropriately can help reduce power dissipation and 

energy consumption. 

Table 4-1 shows two instructions from the aifirf01 benchmark that is encoded using the 

original (CLAW) opcode. Table 4-2 shows our modification to the opcode (the opcode 

modification is indicated in bold font). It is trivial to see that by a simple opcode-

reassignment, we are able to reduce hamming distance from 13 to 12. 

Table 4-1: Original CLAW Encoding 
 Instruction Assembled Output 

1. l.movhi r17,0x107 1a 20 01 07 

2. l.movlo r17, 0x9d50 2a 31 9d 50 

Hamming Distance  13 

Table 4-2: Encoded to Reduce Hamming Distance 
 Instruction Assembled Output 

1. l.movhi r17,0x107 1a 20 01 07 

2. l.movlo  r17, 0x9d50 3a 31 9d 50 

Hamming Distance  12 

In the next subsection, we explain the popular ways to encode instructions in today’s 

embedded processors. Section 4.2 explains our opcode optimization algorithm in detail. In 

section 4.3 we show the results of the optimization. We conclude this section in section 4.5.  
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4.1 Popular ISA Encoding in Existing Embedded Systems 
 

A common approach to encoding instructions, especially in RISC architectures is 

called telescoping encoding [142]. This trend is followed by many embedded processor 

architectures such as MIPS [108] and Atmel [167].  

In telescoping encoding, two similar instructions of same type (e.g. Arithmetic 

instructions) have the same primary opcode, and different secondary opcodes. There are two 

approaches to decode instructions for such encoding: parallel or serial approach.  Figure 4-1 

and Figure 4-2 show how to decode an OR instruction using these approaches. 

 

4 BITS
6 BITS

2 BITS

CONCATENATE

12 BITS
12 BITS1101 1100 0100

YES/NO

COMPARATOR

 

Figure 4-1: Parallel Approach to Decode an OR instruction 
 

In the parallel approach, the opcode and sub-opcodes are compared in a single step. To 

decode an OR instruction, the parallel approach takes 12 comparisons, regardless of a match. 

In the serial approach, the primary opcode is compared, then if there is a match, the 
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secondary opcode is compared. Such cascaded comparisons can introduce additional latches 

into the system 

Suppose that there are 1 million OR instructions in a benchmark. If the decoder is 

written using a parallel approach, then to decode this instruction, there must be 12x1 million 

comparisons. In the serial approach, in addition to 12x1 million comparisons, 6x1 million 

additional latches are charged and discharged, which can consume significant amount of 

energy. 

4 BITS

6 BITS

2 BITS

CONCATENATE

6  BITS6 BITS00 0100

COMPARATOR

6 BITS

11 0111

YES/NO

VDD GND

GND

COMPARATOR

YES /  NO  
Figure 4-2: Serial Approach to Decode OR instruction 

 
 

Not all instructions have multiple fields. For example, the “return from exception (rfe)” 

instruction does not have a sub-opcode field. The unused bits in this instruction are left as 

“don’t-cares.” An alarming observation is that many instructions that occur commonly in 

several benchmarks have sub-opcode fields and instructions that rarely occur in a regular 

program execution have no sub-opcode field. This can have a significant impact on energy. 
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4.2 Methodology 

In order to understand the code generated by the compiler, we took one application 

(aifir01) as a training set and ran through our high-level CLAW simulator. Aifir01 is referred 

to as the training benchmark, and the rest of the benchmarks are called the testing 

benchmarks. We were surprised to see that the trace only had 70% coverage of the entire 

ISA. After examining the machine description of the compiler, we found that only 80-85% of 

the instructions in the ISA are represented. To see the general trend, we also examined the 

GCC machine description of ARM and ATMEL. Similar percentage of coverage was seen in 

the base machine description of these processors. 

We were unable to create machine description to represent instructions such as 

pipeline-synchronization. Similarly, there are some set of instructions that are used for 

exception handling. It is known that exceptions happen rarely in a typical system, thus these 

instructions are rarely executed when compared to all other instructions. But for all of the 

above mentioned architectures, decoding of these rare instructions is straightforward and the 

instructions that are commonly used have multiple-opcode fields, which can consume 

additional time and power to decode. 

To extract the instruction trace of the training benchmarks, a CLAW instruction-set 

simulator was written in C++. To find adjacent instructions, Markov chains were created 

from the instruction trace. In the beginning, two, three and four-instruction chains were 

considered, but the three and four-instruction chains contributed minimally, thus we do not 

discuss them in detail in this paper. 
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To create the optimal opcode-distribution, the traces are analyzed using the algorithm 

described in Figure 4-3. The function accepts the instruction-trace of the training benchmark 

and a list of instructions the compiler is able to represent in its machine description. 

 

 

Figure 4-3: Opcode Optimization Algorithm 
 

This trace is then stepped through by another function that creates another list to hold 

all the instructions that the current trace is able to represent. It holds all the instructions in 

descending value of the instruction-type occurrence. This list is usually a subset of the GCC 

represented traces.  
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The instruction trace, along with the two lists, is fed into another function to prioritize 

the opcodes. For example, if “ADD” is the highest occurring instruction in the training list, 

then the priority transmitter will try and make sure the ADD instruction gets a unique 

primary opcode and no sub-opcode.  

When all the elements of the “Trace_Rep_Insns” list is visited, the optimizer visits all 

the instructions that GCC is able to represent, not found in “Trace_Rep_Insns.” The rest of 

instructions in the ISA are given primary and secondary opcode fields. This function outputs 

the “Prio_Insn_Trace.” 

Next, the Prio_Insn_Trace is analyzed to make sure adjacent instructions have the 

lowest switching. This adjacent-instruction chain along with the “Prio_Insn_Trace” is sent to 

a minimum-distance genetic algorithm similar to [128] that minimizes switching among the 

adjacent instructions. This function gives an instruction template that contains information 

about the placement of various components of the instruction.  

This template is used to remap the instructions from the original CLAW encoding to 

the new optimized encoding. Similarly, this template is used to remap all testing benchmark 

to the newly optimized encoding. Figure 4-4 gives a flow-diagram for designing a new 

opcode and how a new benchmark is remapped using the template of the new opcode 

configuration. 

Some operations such as addition, multiplication, bitwise operations, etc. are 

commutative. In Table 4-3, we can see that when we switch register r2 in the second 

instruction, we were able to reduce the total hamming distance between two instructions by 

one. 
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Figure 4-4: Flow-Diagram of our Methodology 
 

Table 4-3: Illustration of Distance Saved using Source Register Switching 
 Instruction Assembled Inst. 
First l.add r15,r13,r2 e1 f0 10 00 
Second l.add r14,r2, r12 e1 a2 60 00 
Hamming Distance  5 
   
First  l.add r15,r13,r2 e1 f0 10 00 
Second (Switched) l.add r14,r12,r2 e1 ac 10 00 
Hamming Distance  4 
   

After profiling our benchmarks for possible register switching, we found that the 

compiler, about 97-99% of the time (in all benchmarks), matched the source registers of the 

instructions whenever possible. That is, it automatically performed the process explained in 

table 4. We found very few cases where this was not true. Creating a stage in our analyzer to 

do this did not cause any notable reduction in the energy consumption. 

4.3 Results 

The energy consumption was first measured for the single-cluster CLAW processor. 

The entire benchmark was executed through the Verilog code. Even though, this method took 

significant amount of time and resources, this was the only non-biased way to prove the 
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accuracy of these techniques. Figure 4-5 shows the obtained base values for leakage and 

dynamic energy. 

In all benchmarks, static/leakage energy is approximately 10-15% of the dynamic 

energy.  Even-though static or leakage energy is considered a dominating factor in submicron 

transistor sizes, their dominance is mainly in the caches and RAM, not in the processor core 

[77]. Only the processor core was simulated, so static energy effects are low.  Second, the 

libraries we are using are regular VT (RVT) libraries. It has been proven in [116] that these 

libraries are very low-leakage libraries. RVT libraries are suggested by ITRS as the most 

suitable library for designing embedded systems. 

 

Figure 4-5: Base Energy Values for the Benchmarks 
 

It can be inferred from Figure 4-5 that the ospf benchmark consumed the least energy 

and ttsprk01 consumed the most energy. This is because ospf is the smallest benchmark with 



 

 73 

2.3 million instructions. Conven00 is the largest benchmark in the set followed by dither. 

Even though, ttsprk01 is the third-largest benchmark, it consumed ~30% more power than 

conven00. Ttsprk01 contains more multiplication and division computations than all the 

benchmarks, and these two units are power-intensive. 

Each of the ten benchmarks are at one point used as a training benchmark. Then each 

of the benchmark was tested on all the trained processors. The results are indicated in Table 

4-4 and 

Table 4-5. The benchmark on the horizontal axis is the training benchmark for the 

genetic algorithm. A positive difference indicates a reduction in energy and a negative 

difference indicates an increase in energy consumption. The highlighted fields show cases 

were the training and testing benchmarks are the same. An asterisk was used to indicate a 

change between -0.5% and 0.5% 

Table 4-4: Percentage Dynamic Energy Reduction 
 Aifirf01 Conven00 Dither Ospf Puwmod Rotate Routelkup Rspeed Ttsprk  Viterb 

Aifirf01 16% 1% 10% 14% * * 1% 3% 1% 1% 

Conven00 2% 16% -1% 3% 2% * 2% 5% 5% 2% 

Dither 4% 7% 16% * 3% 11% * 9% -1% -2% 

Ospf 16% * 2% 19% 1% * * 4% * 2% 

Puwmod 10% -2% 15% * 17% * 9% 12% 9% -6% 

Rotate 6% * 11% 3% 8% 14% * 8% * * 

Routelkup 2% * 4% 3% 4% 4% 14% 4% 4% * 

Rspeed 4% 3% 2% 2% 4% 2% 6% 13% 4% 4% 

Ttsprk01 7% 3% * * 1% -1% -1% -1% 9% -3% 

Viterb00 -2% -1% -2% -4% -2% -2% -4% -2% -2% 16% 
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Table 4-5: Percentage Static Energy Reduction 

 Aifirf01 Conven00 Dither Ospf Puwmod Rotate Routelkup Rspeed Ttsprk  Viterb 

Aifirf01 * 1% * -1% -4% -2% * * * 1% 

Conven00 7% 8% 8% 8% 8% 8% 8% 8% 8% 8% 

Dither 2% 2% 2% 2% 2% 2% 2% 2% 2% 2% 

Ospf -3% -3% -3% -3% -2% -2% -2% -2% -2% -2% 

Puwmod -1% * -1% -1% -1% -1% -1% -1% -1% -1% 

Rotate 6% 7% 7% 7% 7% 7% 7% 7% 7% 7% 

Routelkup 7% 9% 9% 8% 8% 8% 8% 8% 8% 8% 

Rspeed 4% * * -1% * * * * * * 

Ttsprk01 -10% -1% -1% -1% -2% -2% -2% * -3% -2% 

Viterb00 1% * * 2% * * * 2% 2% -1% 

 

The first question that arose in our minds after looking at Table 4-4 is that since it is 

well known that a decoder only contributes 10% of the total CPU energy, then how can an 

energy reduction as high as 19% be seen in the trained CPU? To understand this question, the 

timing diagram of the processor was examined at each stage namely: fetch, decode, register-

read, execute and write-back. Also other components of the processor such as the freeze unit 

(also used to forward data between pipelines), store-buffer, ALU, memory-unit, multiply and 

divide unit, and the exception handler were studied. Several debug runs were done with 

$display statements to capture the bit-activity in the major buses inside the CPU components.  

For the OSPF-optimized decoder, the processor achieved a 19% energy reduction for 

OPSF. Figure 4-6 shows a pie chart that categorizes the major energy-saving contributors. 

The decoder contributed for 11% of the 19% energy savings in OSPF. The fetch-unit 

provided 3.5% and the instruction-busses and the other intermediate units provided for 2.5% 
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of the 19% savings. The exception unit and the freeze-unit (also called stall-unit) provided 

for 1% each. This trend was followed by all the benchmarks. 

Decoder, 11%

Freeze Unit, 1%

Exception Unit, 1%

Fetch Unit, 3.50%

Buses and Other 
Units, 2.50%

 

Figure 4-6: Dynamic Energy Savings in Each Unit of OSPF 
 

To understand more about the characteristics of the benchmark a study of the 

structure of the high-level C code was performed. Figure 4-7 shows the number of function-

calls that each of the benchmarks encounter during their execution. Function-calls are 

important because during each function-call all registers used by the callee are saved on the 

stack and then restored from the stack in the beginning and the termination of each call. 
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Number of Function Calls made by EEMBC Benchmark

0

2000

4000

6000

8000

10000

12000

14000

16000

ai
fir

f0
1

co
nv

en
00

di
th

er

os
pf

pu
w

m
od

ro
ta

te

ro
ut

el
oo

ku
p

rs
pe

ed

tts
pr

k0
1

vi
te

rb
00

Nu
m

be
r o

f F
un

ct
io

n 
Ca

lls

 

Figure 4-7: Dynamic Function-calls in Each Benchmark 
 

In CLAW assembly, the only method to implement push and pop information into the 

stack is by using a load-word or store-word to access the stack. After all loads or stores the 

stack pointer (register r1) is incremented or decremented accordingly using an add-

immediate instruction, creating a common instruction chain for benchmarks high in stack 

operations. When the dynamic trace of aifir01 was observed, there were a significant amount 

of memory operations, which matches the results showing a high number of function calls. 

Therefore, optimizing on the instruction chain for stack operations greatly reduces energy for 

aifir01.  Also, the benchmark calls a function called “GetInputValues” which loads a 

significant amount of data from a global variable (inpVariableROM). To load from a global 

variable, the 16 least significant bits of the variable are moved using the “movlo” instruction. 

Then the 16 most significant bits are loaded into the register using a “movhi” instruction that 
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loads its immediate value into the top 16 bits of a register. “Movhi” and “movlo” instructions 

are analogous to the movw and movt instruction in the ARM architecture. 

Dither and rotate operate on an image. Unlike aifir01, they do not refetch the image 

every iteration. Instead, all necessary images are stored in a large array before the 

“th_signal_start ()” function. Thus, they have significantly less function-calls than aifir01, 

and therefore they do not benefit as much from the stack chain optimization. However, these 

two benchmarks skip around inside an image, thus they have significant amount of branches 

when compared to the other benchmarks.  This explains why the optimized decoder for these 

benchmarks performs well when executing the other benchmark. 

It is popularly known that viterbi decoding is used to decode conventional codes in 

communication systems. It is also well known that both convolutional encoding (conven00) 

and viterbi decoders (viterb00) have a significant amount of shifts, adds and memory 

operations. However, as per Table 4-4, an instruction-set that is optimized for one fails to 

give a significant energy reduction on the other. Examining the instruction trace and the 

high-level code reveals that conven00 performed all computations on 4-byte and 1 byte data 

widths, that is, they had variables and data that were either “int” or “char.”  Viterb00 did all 

its computations on 2-byte data-width (“short”). CLAW has different instructions for each 

data-size. Table 4-6 shows an example of loads for the 3 different data-set. 

Thus, when trained using viterb00, most of the half-word instructions were given 

smaller opcodes and the word-level and byte-level ones were given longer opcodes. The 

opposite was done for conven00.  
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Table 4-6: Different Load Instruction Types in CLAW 
Data Type Load Inst. Meaning 
1-Byte l.lbs Load data & sign-extend it to 1 byte-width 
1-Byte l.lbz Load data & zero-extend it to 1 byte-width 
2-Bytes l.lhs Load data & sign-extend it to 2-byte width 
2-Bytes l.lhz Load data & zero-extend it to 2-byte width 
4-Bytes l.lws Load data & sign-extend it to 4-byte width 
4-Bytes l.lwz Load data & zero-extend it to 4-byte width 

 

A further study to understand the results are to examine the number of instructions 

required to meet the 50% coverage displayed Figure 4-8. This result indicates the diversity in 

the benchmark. For example, ospf requires only 4 chains to get 50% coverage; this implies 

that if another benchmark contains some of these chains then a good energy reduction can be 

seen. Aifir01 and ospf have 2 chains in common that falls in this range. Thus, a high dynamic 

energy reduction can be seen in ospf when the opcodes are optimized for aifir01. 
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Figure 4-8: Number of Distinct Instruction Chains achieving 50% coverage 
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Both puwmod and rspeed were very computationally intensive. Even though, rspeed 

had significantly more function-calls than puwmod, the dominating chains for both of them 

were instructions such as add, rotate, extend etc. In these two benchmarks, chain-count was 

distributed evenly among its chains. Therefore, it was hard to optimize for these benchmarks. 

The advantage of such algorithms with several distinct chains is that they give some energy 

reduction for most of the training set. Finally, routelookup also exhibited similar behavior. 

But it had a lot more distinct chains than puwmod or rspeed. Thus, it was even harder to 

analyze them and find an optimal opcode-encoding. 

Many of the explanations thus far in this section apply primarily to dynamic energy. 

Sub-threshold leakage is a dominating issue only in the memory hierarchy [77]. For this 

work, memory was not modeled since it was unable to find a synthesizable memory that can 

be interfaced with the CLAW Verilog core. Figure 4-5 shows that in CLAW, leakage energy, 

on average, contribute only 10-15% of the total energy consumption. It can be seen from  

Table 4-5 that leakage-energy tends to increase slightly when there some decrease in 

dynamic-energy. This is because the primary way to reduce dynamic energy is to reduce 

switching in the processor interconnects, which tends to give slight increase in leakage 

energy. After further analysis of individual components of the processor, the increase in 

leakage energy was in components where switching is greatly reduced: the decoder and the 

instruction busses. 
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4.4 Multi-cluster CLAW Configurations 
 

The next step is to see if our algorithm can be applied to processors with larger issue-width. For this 
work, we choose to apply our algorithm on the benchmarks compiled (using CWP as the priority scheme) 

for the 2-Cluster and 4-Cluster CLAW machines. Table 4-7 shows the dynamic energy savings, and  
Table 4-8 shows the static energy savings. Table 4-9 and Table 4-10 show the 

dynamic and static energy savings for 4-Cluster CLAW. These values are compared with the 

base-values shown in Figure 3-14, Figure 3-15, Figure 3-16 and Figure 3-17. Most of the 

results scaled with the processor issue-width. There were a few changes (within 1%) when 

we went from 1-Cluster to 2-Cluster, but going from 2-Cluster to 4-Cluster there is virtually 

no change. 

We can see that for all the benchmarks except Routelookup, the results scaled pretty 

well. This is because most of the benchmarks do not have a very high parallelism, so the 

same instructions that were adjacent in 1-cluster were more or less adjacent in the 2-Cluster 

and 4-Cluster CLAW. Routelookup is the most parallel benchmark in our set, so its results 

gave small difference. Secondly, even though we change the issue-width, the benchmark 

remains the same. For example, let’s say a benchmark in the 1-cluster executable had 1000 

addition operations. This number does not change when we go to a 4-Cluster machine. 

Similarly, with the exception of copy operations, the instruction-types will also 

remain the same. CWP does a good job avoiding copies, so this instruction does not 

contribute heavily in the executable. Since the dynamic energy did not change much, the 

static energy trends also remained the same. 

 

Table 4-7: Percentage Dynamic Energy Reduction ( 2 Cluster CLAW) 
 Aifirf01 Conven00 Dither Ospf Puwmod Rotate Routelkup Rspeed Ttsprk Viterb 
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Aifirf01 14% 1% 10% 14% * * 1% 3% 1% 1% 

Conven00 2% 15% -1% 3% 2% * 3% 5% 5% 2% 

Dither 3% 7% 16% * 3% 11% 1% 9% -1% -2% 

Ospf 16% * 2% 19% 1% * * 4% * 2% 

Puwmod 10% -2% 14% * 17% * 9% 12% 9% -6% 

Rotate 6% * 11% 3% 7% 14% * 8% * * 

Routelkup 2% * 4% 4% 4% 4% 14% 3% 4% * 

Rspeed 4% 3% 2% 2% 4% 2% 4% 13% 4% 4% 

Ttsprk01 7% 3% * * 1% -1% -1% -1% 9% -3% 

Viterb00 -2% -1% -2% -4% -2% -1% -4% -2% -2% 15% 

 
Table 4-8: Percentage Static Energy Reduction (2 Cluster CLAW) 

 Aifirf01 Conven00 Dither Ospf Puwmod Rotate Routelkup Rspeed Ttsprk  Viterb 

Aifirf01 * 1% * -1% -4% -2% * * * 1% 

Conven00 7% 8% 8% 8% 8% 8% 8% 8% 8% 8% 

Dither 2% 2% 2% 2% 2% 2% 2% 2% 2% 2% 

Ospf -3% -3% -3% -3% -2% -2% -2% -2% -2% -2% 

Puwmod -1% * -1% -1% -1% -1% -1% -1% -1% -1% 

Rotate 6% 7% 7% 7% 7% 7% 7% 7% 7% 7% 

Routelkup 7% 9% 9% 8% 8% 8% 8% 8% 8% 8% 

Rspeed 4% * * -1% * * * * * * 

Ttsprk01 -10% -1% -1% -1% -2% -2% -2% * -3% -2% 

Viterb00 1% * * 2% * * * 2% 2% -1% 
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Table 4-9: Percentage Dynamic Energy Reduction (4-Cluster CLAW) 
 Aifirf01 Conven Dither Ospf Puwmod Rotate Routelkup Rspeed Ttsprk01  Viterb 

Aifirf01 14% 1% 10% 14% * * 1% 3% 1% 1% 

Conven00 2% 15% -1% 3% 2% * 3% 5% 5% 2% 

Dither 3% 7% 16% * 3% 11% 1% 9% -1% -2% 

Ospf 16% * 2% 19% 1% * * 4% * 2% 

Puwmod 10% -2% 14% * 17% * 9% 12% 9% -6% 

Rotate 6% * 11% 3% 7% 14% * 8% * * 

Routelkup 2% * 4% 4% 4% 4% 14% 3% 4% * 

Rspeed 4% 3% 2% 2% 4% 2% 4% 13% 4% 4% 

Ttsprk01 7% 3% * * 1% -1% -1% -1% 9% -3% 

Viterb00 -2% -1% -2% -4% -2% -1% -4% -2% -2% 15% 

Table 4-10: Percentage Static Energy Reduction (4-Cluster CLAW) 
 Aifirf01 Conven Dither Ospf Puwmod Rotate Routelkup Rspeed Ttsprk01  Viterb 

Aifirf01 * 1% * -1% -4% -2% * * * 1% 

Conven00 7% 8% 8% 8% 8% 8% 8% 8% 8% 8% 

Dither 2% 2% 2% 2% 2% 2% 2% 2% 2% 2% 

Ospf -3% -3% -3% -3% -2% -2% -2% -2% -2% -2% 

Puwmod -1% * -1% -1% -1% -1% -1% -1% -1% -1% 

Rotate 6% 7% 7% 7% 7% 7% 7% 7% 7% 7% 

Routelkup 7% 9% 9% 8% 8% 8% 8% 8% 8% 8% 

Rspeed 4% * * -1% * * * * * * 

Ttsprk01 -10% -1% -1% -1% -2% -2% -2% * -3% -2% 

Viterb00 1% * * 2% * * * 2% 2% -1% 



 

 83 

4.5 Conclusion 
 

In this chapter, a technique to optimize the instruction-set based on a sample of the 

workload for which the processor is designed is presented.  The presented technique neither 

causes any additional cycle-count nor increase the clock period of the base processor. The 

only major hardware modification that is necessary is the instruction decoder. The newly 

generated instruction-decoder can be swapped with the original without any further 

modifications to the processor. We demonstrated this algorithm on 1-Cluster, 2-Cluster and 

4-Cluster CLAW. We showed that results scaled as we increase the cluster-sizes. 

This chapter shows that if the sample set is selected correctly, some energy reduction is 

achieved by intelligently assigning opcodes and no performance is lost. When the training 

and the testing application were the same, we achieved an average 17.2% energy reduction. 

When the testing application and training application were different, a 9.4% energy reduction 

was achieved. In addition, this technique also provides a loose-rubric to design software for 

the particular processor. If the new software that is to be added to the system is designed in a 

similar structure and contains similar characteristics (e.g. memory intensive vs. 

computationally intensive or word-length vs. byte-length), there can be an energy reduction 

with no performance loss. 
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Chapter 5 Register-Sharing 

Registers play a significant role in improving the instruction-level-parallelism (ILP) in 

modern systems  [11] [55] [150]. Large register-files, with the help of an optimal register 

allocation scheme, can greatly reduce the amount of spill-code inserted in the program [8]. 

This can in turn reduce the memory traffic, thus reducing the number of execution cycles 

necessary for the application. 

To remove false dependences in dynamically scheduled processors, designers implement 

rename map tables that match the architectural registers to physical registers [10] [13]. In 

statically scheduled systems, these false dependencies are resolved by using tighter register 

allocation schemes and/or a large register-file. In either case, there can be a huge amount of 

pressure exerted on register-file [11]. 

Even though the idea of implementing large register-file is attractive for performance, 

there can be setbacks in terms of energy or power dissipation, access time and chip area 

[115]. It is known that register-file power dissipation accounts for about 10-20% of the 

overall power dissipation [11] [55]. For example, in the Motorola M.CORE architecture, the 

register-file energy consumption accounts for 16% of the total processor power and 42% of 

the dual-path power [13].   
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5.1 Preliminary Analysis 

To benefit from register sharing, it is necessary to see if there is a large amount of 

duplicate values in the register-file. Table 5-1 shows the percent of zero and duplicate writes 

in a register-file from for different architectures with different register-file sizes. 

It is apparent that there are a large number of duplicated values stored inside a register-

file. Therefore we investigated if a certain value was written repeatedly. Our analysis found 

that ‘0’ was written at a greater frequency than any other values. It can be seen from Table 

5-1 that there is a significant amount of zeros written into registers.  

Table 5-1: Zero and Duplicate writes for different register file configurations 
 ARM (Thumb Mode) 1-Cluster CLAW Simplescalar 2.0 IA-64 (Soft Float) IA-64 (Hard Float) 

Benchmark Zero-
Write 

Dupl. Write Zero-
Write 

Dupl. Write Zero-
Write 

Dupl.  
Write 

Zero-
Write 

Dupl. 
Write 

Zero-
Write 

Dupl.  
Write 

aifirf01 24% 43% 13% 46% 20% 67% 1% 5% 1% 5% 
conven00 15% 48% 30% 49% 25% 48% 1% 7% 1% 7% 
dither 8% 14% 8% 21% 10% 15% 2% 10% 2% 10% 
puwmod 3% 25% 6% 39% 3% 30% 1% 9% 1% 10% 
rotate 3% 17% 3% 23% 3% 17% 1% 10% 1% 11% 
routelkup 5% 40% 7% 53% 5% 44% 1% 5% 1% 5% 
rspeed01 4% 20% 21% 45% 3% 23% 1% 7% 1% 7% 
ttsprk01 5% 28% 25% 53% 3% 39% 1% 8% 1% 8% 
viterbi 11% 31% 12% 40% 7% 42% 1% 6% 1% 6% 
ospf 6% 35% 19% 41% 3% 32% 1% 5% 1% 5% 

5.2 Register Sharing Techniques 

It is apparent from section 1.1.2 that power dissipation of the register-file is a highly 

researched area. It is also visible that many register optimization techniques can greatly help 

in improving the performance of the program. There are several different register sharing 

techniques proposed in research in works such as  [150] and [10]. In this investigation, we 

pick two classes of register sharing structures: register map table [10] [150] and a register 

map-vector [150]. Figure 5-1 explains the top-level block diagram of these two structures. 
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Figure 5-1: Top-level block diagram of the map-table/map-vector 
 

A register map-table is used to map certain architectural registers to other registers 

that hold the certain values. As mentioned in section 5.1, there is a significant amount of ‘0’ 

values written into the register-file. We choose one architectural register (r0) that is 

permanently set to zero, and any register whose value is zero is mapped to r0. The primary 

advantage of this scheme is that we do not access the register-file for zero-writes. Secondly, 

register pressure is potentially reduced. 

The second approach is to use a map-vector to indicate which registers hold the zero 

value. Each register is assigned a bit in the vector to indicate if its result is zero. If the 

corresponding bit is set, then the register-file is not accessed. In our experiments, the map-

vector generally consumed about 30-40% less power than a map-table. As soon as we reach 

the write-back stage, we know the register value along with the result to be written. If the 

value written is zero then a bit is set in a map-table and the register-file is not accessed. 

Otherwise the value is forwarded to the register-file and is written to the appropriate register. 

To explain this further, we present a flowchart for these stages in Figure 5-2 and Figure 5-3.  
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Figure 5-2: Flow-Diagram for the Writeback Stage 
        

 

Figure 5-3: Flow-diagram of the Register-Read Stage 
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5.3 Experiments and Terminology 

To accurately portray register writes, we created synthetic-benchmarks with 1-million 

register writes and 2-million register reads. Synthetic benchmarks were used to filter out 

unwanted bias and to keep the study generic. It can be verified that similar trends can be 

achieved by using commercial benchmarks. In each run, we increased the number of zeros by 

a certain percentage. Throughout this paper, the number of zeros in the stream is given in 

terms of percentage. It is worth mentioning that we only read registers that have already been 

written (with the exception of the stack pointer and the return value register). We explain our 

different writing schemes in Figure 5-4. Please note that in the figure, the number of writes 

was reduced to 20 for the ease of explanation. 

We also created sequences of zero writes into the register-file. These sequences of 

writes are placed in different regions of the trace. For example a sequence 40-10 implies that 

the first 10% of the register writes are non-zero values and the next 40% of the writes are 

zeros. The remaining 50% of the values are non-zero writes. We take this model further and 

break the zero sequence into intervals to see their effects. For example, for the experiment 

40-40-10 implies that the first 40% (bold) of the writes are non-zeros, and then in the next 

60%, the 40% zeros (underlined) are divided into intervals of 10%. In the next section we 

explain the results of these distributions. 
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Figure 5-4: Different Placements of Zero-Writes 

5.4 Results 

To understand the impact of the register-file size on power dissipation, we modeled a 32-bit 

register-file of size 16, 32, 64, 128 and 256 registers. The percentage of zero-writes 

(distributed randomly) is varied from 0-100% in intervals of 5%. Figure 5-5 to Figure 5-9 

displays our findings.  

In all cases, using a register-file with a map-table consumed more power than only 

the register-file without any value sharing.  We call this the “base” case. The map-vector 

gives a power advantage when we have 20% and 45% of zeroes for the register-file size of 

16 and 32, respectively. The map vector fails to provide a power-reduction for the 128 and 

256 sized register-file. This is because the internal power of the cell dominates the overall 
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power consumption for a larger register-file. For 64 entry file, the break-even point lies after 

95%.  
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Figure 5-5: Power Dissipation for Random Register-Write (Reg. File Size = 16) 
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Figure 5-6: Power Dissipation for Random Register-Write  (Reg. File Size = 32) 
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Next, we wanted to study the impact of register zero-write in sequences (seq.) placed 

at different parts of the trace. We investigated for the most beneficial section of the trace to 

schedule a chunk of zero-writes. The zero-writes were inserted at 10%, 40% and 80% of the 

trace. The segment size was modeled from 10-80%, whenever applicable. Since the map-

table failed to provide any power reduction for the overall system, we do not investigate its 

effects any further. 
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Figure 5-7: Power Dissipation for random Register-Write (Reg. File Size = 64) 
 



 

 92 

0.072

0.074

0.076

0.078

0.08

0.082

0.084

0.086

0.088

0.09

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

Percentage Zero Writes

Po
w

er
(W

)

Base Map Vector Map Table
 

Figure 5-8: Power Dissipation for random Register-Write (Reg. File Size = 128) 
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Figure 5-9: Power Dissipation for random Register-Write (Reg. File Size = 256) 
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It can be seen from Figure 5-10 through Figure 5-14 that a slight power reduction is 

achieved when zeros are placed in the beginning. This is due to a reduced amount of 

switching in the ports and inside the registers, since everything is initialized to zero in the 

beginning.  

Now, we extend our previous results and divide these sequences into interval chains 

(seq-int). For a given program, the compiler will typically be able to distribute five, 2% zero-

write chains more easily than a single 10% chain. The values of the intervals were chosen to 

be 2%, 5%, and 10% respectively. These values were chosen because 2, 5 and 10 are 

common divisors of 10, 40 and 80, thus allowing the results to be a fair comparison. Figure 

5-15 through Figure 5-19 shows our results. 
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Figure 5-10: Power Dissipation for Sequential Writes (Reg. File Size = 16) 
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Figure 5-11: Power Dissipation for Sequential Writes (Reg. File Size = 32) 
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Figure 5-12: Power Dissipation for Sequential Writes (Reg. File Size = 64) 
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In the sequence interval distribution, the power dissipation for all cases is slightly 

larger than the sequence case but lower than the random placement. The segment size did not 

create a significant reduction in the power consumption. This is because the dynamic power 

saved by the chunks did not offset the internal power, unlike the sequence placement. For a 

large register-file, the internal power dominated, thus making the savings from these 

techniques insignificant. When split into intervals, the starting placement did not cause any 

major changes to the power reduction. We believe this is also due to the domination of the 

internal power.  
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Figure 5-13: Power Dissipation for Sequential Writes (Reg. File Size = 128) 
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Figure 5-14: Power Dissipation for Sequential Writes (Reg. File Size = 256) 
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Figure 5-15: Power Dissipation for Seq-int writes (Reg. File Size = 16) 
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Figure 5-16: Power Dissipation for Seq-int writes (Reg. File Size = 32) 
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Figure 5-17: Power Dissipation for Seq-int writes (Reg. File Size = 64) 
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Figure 5-18: Power Dissipation for Seq-int writes (Reg. File Size = 128) 
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Figure 5-19: Power Dissipation for Seq-int writes (Reg. File Size = 256) 
 



 

 99 

5.5 Conclusion 

This study reveals several power dissipation patterns of the register-file. Adding these 

structures can cause a power reduction only when there is a significant amount of zero-writes 

present in the workload. Similarly, scheduling multiple zero-writes together, regardless of 

the destination register, can give some power reduction for small register-file. Some power-

reduction can also be achieved if it is able to divide the common-value writes into intervals 

than just placing them at random. It is best to make register-sharing structures configurable 

so that the user can turn them off when they feel there isn’t enough common-value to provide 

any power-benefit. 

These techniques can be extended to a physical or an architectural register-file. The 

impact of zero-writes on power dissipation can be useful in several ways. For example, a 

compiler can use this information and schedule instructions that potentially have a zero-write 

together and form chunks. In addition, the processor can gate a map-vector so that the 

compiler or profiler can predict and communicate that the number of zero-write in the system 

is low. 
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Chapter 6 A Case study on IEEE 802.11n PHY 
 

6.1 Motivation 
 

CLAW is an ideal processor for embedded systems that support diverse, complex 

applications. CLAW is capable of understanding this diversity inside an application and is 

able minimize the overall energy required to execute the application. To find an ideal niche 

for the CLAW processor, we explored new algorithms that fit these properties. 

Communications, especially Wireless Local Area Networks (WLAN) is one of the 

most developing fields today [110] [156] [144]. Most of the WLAN today use some flavor of 

IEEE 802.11 standard [156] [110]. The previous standard, IEEE 802.11g operates at the 

20MHz bandwidth. With the necessity of higher throughput and data-rates, IEEE 

Communication society set up an IEEE 802.11 High-Throughput Study Group (HTSG) to 

come up with a new standard for WLAN transmission [156], called IEEE 802.11n. A final 

version of this standard is projected to be completed by November 2009. 

One of the major findings of HTSG is the short comings of the current 802.11 

Physical layer. They proposed a new multiple-input, multiple-output (MIMO) WLAN 

scheme that is able to provide high throughput and data-rate. At present a third-draft of the 

IEEE 802.11n standard is proposed [170]. 

One of the main advantages of high data-rate WLAN is that it makes 

telecommunication systems more nomadic [110]. Many such nomadic systems use batteries 

as the sole energy-source. Thus, reducing energy consumption is one of the compulsory 



 

 101 

requirements for such systems. To date, there has not been a single study that characterizes 

the energy consumption of such systems using 802.11n. 

In this chapter, we provide a model for the IEEE 802.11n transmitter and receiver, as 

per the parameters mentioned in  [170], using the C language. We implement these units 

strictly per the standard and using the advice given by IEEE 802.11 experts in [144] [157] 

[102]  [3]. The authors of [102] have provided parameters for all the major components in 

this standard to achieve the best performance and data-rate. They demonstrate using detailed 

simulations that using certain parameters for the components can help achieve high data-rate. 

These parameters are used in our algorithm. We then characterize these two units and 

measure the energy consumed. Finally, we show how a dynamic length-adaptive processor 

can provide an energy benefit without losing performance for the transmitter and receiver.  

In the next section, we explain the individual components of the transmitter and 

receiver. In Section 6.3, we show how the components are assembled to create a non-biased 

model. We display our results in section 6.4 and conclude this chapter in section 6.5. 

6.2 IEEE 802.11n Architecture 
 

Figure 6-1 and Figure 6-2 shows the major components of the transmitter and receiver. 

There are seven major components for the transmitter: forward-error correction transmitter 

(FEC), interleaver, OFDM symbol mapper, MIMO transmitter, the inverse fast Fourier 

transform (IFFT), and the digital to analog converter.  The receiver complements the work of 

the transmitter using these six components: analog to digital converter, fast Fourier-transform 

(FFT), MIMO decoder, OFDM symbol demapper, de-interleaver and FEC decoder. In this 
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work, we maintain all our work in the digital side, thus we do not model the analog to digital 

or digital to analog conversion. In the next sub-sections, each of these components is 

explained in detail.  

FORWARD ERROR 
CORRECTION 

ENCODER

INTERLEAVER

OFDM SYMBOL 
MAPPER

MIMO ENCODER

ANTENNA SELECTOR IFFTIFFT

DIGITAL TO ANALOG 
CONVERTER

DIGITAL TO ANALOG 
CONVERTER

DATA FROM THE
MAC UNIT

 

Figure 6-1: IEEE 802.11N Transmitter 
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ANALOG TO DIGITAL 
CONVERTER

ANALOG TO DIGITAL 
CONVERTER FFTFFT MIMO DECODER

OFDM SYMBOL 
DE-MAPPER

DE-INTERLEAVER

FORWARD ERROR 
CORRECTION

DECODER

BIT-STREAM TO
MAC UNIT  

Figure 6-2: IEEE 802.11N Receiver 
 

6.2.1 FEC Transmitter and Decoder 
 

Forward-error control is a system of error control, whereby the sender adds redundant 

bits into the stream called error correction code. These code can be used to correct any errors 

occurred during transmission of data though the channel. As per the past research, LDPC or 

Convolutional Encoding can be used for FEC in IEEE 802.11N. For best performance, 

authors of  [102] advise the use of convolutional encoding. Figure 6-3 shows the block-

diagram of a convolutional transmitter. The incoming data is brought into the constraint 

register one bit at a time and the output bits are generated by modulo-2 addition of the 

required bits from the constraint register. As per their experiments, the best results can be 
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achieved when the convolutional transmitter has a constraint length (K) of 7, and using the 

generator polynomials 91 (1138) and 121 (1718). 

 

Figure 6-3: Convolutional Transmitter [171] 
 

The most popular algorithm to decode convolutional codes with constraint-length less 

than 10 is the Viterbi Decoder [152]. Viterbi algorithm is a maximum-likelihood decoding of 

data encoded using convolutional encoding. Thus, we used a Viterbi Decoder for decoding 

these values. The value of K is also kept at 7. 

6.2.2 Interleaving and De-interleaving 
Errors in communication channels generally occur in burst. Interleaving is used to 

remove effects of such bursty errors in the system. There are two different types of 

interleaving: block-interleaving and convolutional interleaving. The IEEE 802.11n standard 

[170] proposes using block-interleaving. Even though this is one of the required units of the 

standard, as per  [102], the array-size of this unit does not create any performance changes 
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for a normal additive white-noise Gaussian channel (AWGN).  Figure 6-4 shows the function 

of block-interleaving. 

 

Figure 6-4: Block Interleaving [137] 
 

Block interleaving can be thought of as inserting a bit-stream horizontally, one-row at 

a time, and then outputting them one-column at a time. De-interleaving complements this 

approach. For a single-error correction, the number of rows in the matrix must be greater 

than the constraint-length and the number of columns must overbound the expected burst 

length [134]. To satisfy these two requirements, we chose a MxN array of 16x16.  

6.2.3 OFDM Symbol Mapping 
 

OFDM symbol mapping converts data by changing some aspect of the carrier-signal 

or carrier-wave in response to the data-signal [134]. Authors of  [102] experimented with 

four schemes: Binary Phase-Shift Key (BPSK), Quadratic Phase-Shift Key (QPSK), 16-bit 

Quadrature Amplitude Modulation (QAM) and 64-bit Quadrature Bit Modulation. The 

authors demonstrate find that a 64-bit QAM with a code rate of ¾ seem to gives slightly-

better results than their predecessors. 
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 QAM consists of two independently amplitude-modulated carriers in quadrature. 

Each block of K-bits can be split into two blocks which use k/2 bit digital to analog 

converters to provide required modulation voltages for the carriers. For more details about 

QAM, the readers are referred to pg. 405-412 in  [134] 

6.2.4 MIMO Encoding and Decoding 
 
 This section is the heart of IEEE 802.11N standard. This is the most-researched and 

most agreed upon aspect of the standard. Almost all papers agree using Space-Time-Block 

Coding (STBC) [102] [156] [170]. STBC is a scheme in which same information is 

transmitted simultaneously on different antennas. Orthogonal codes are a specific case of 

STBC which can be detected linearly at the receiver with simple operations.  

Of all the space-time block-codes, the most popular scheme is the Alamouti Scheme by 

Saivash Alamouti [102] [143] [162]. Alamouti scheme has a spatial rate of 1 and the received 

data can be easily decoded. Alamouti scheme can be used for any number of receiver and 

transmitter antennas, but the authors of [102] demonstrate that using a 2x2 scheme is the 

most efficient and any scheme higher than this just adds extra complexity without any 

significant performance improvement. In this section, we provide a brief overview of the 

Alamouti scheme. For further explanation, the reader is referred to [3].  
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Figure 6-5: Alamouti Scheme (2 Transmit and 2 Receiver Antennas) [3] 
 

Figure 6-5 shows the Alamouti scheme for a 2-input, 2-output scheme. In this figure, 

we are ignoring the FFT and IFFT steps for ease of explanation. Let’s suppose we want to 

transfer the symbols So and S1 through the system. At time “T” we transmit S0 and S1 through 

Antennas TX0 and TX1, respectively. At Time “T+τ”, where τ is the next cycle, we transmit 

the negated complex conjugate of S1 and the complex conjugate of So through antennas TX0 

and TX1. For ease of understanding, we have provided an example of all these three 
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scenarios in Table 6-1. In Figure 6-5 the 4 channels conditions between the antennas are 

represented by h1, h2, h3, and h4. We assume Additive White-Gaussian Noise (AWGN) is 

added at the receiving end by some interference called (no, n1, n2, and n3). 

Table 6-1: Three Transmission Scenarios Example 
Symbol S a + bj 

Complex Conjugate of S (S*) a - bj 

Negated Complex Conjugate of S0 (-S*) -a + bj 

 

The received signals are input into the combiner along with the estimations about the 

channel characteristics from the channel estimator. This data is then passed into a maximum-

likelihood detector that detects the transmitted values: ŝ0 and ŝ 1.  

6.2.5 Fast Fourier Transform 
 

Fourier transform maps a time-series datum into the series of frequencies. When the 

Fourier-transform is applied to a discrete series of inputs, we call it Discrete Fourier 

Transform (DFT). DFT is very useful because they reveal the periodicities in the data along 

with the relative-strengths of any periodic components. Fast-Fourier Transform (FFT) is a 

special kind of DFT that reduces the required number of computations. For N points, FFT 

reduces the algorithm complexity from O(2N2) to O(N log N). The authors of  [170] 

recommend using a radix-2 Decimation-in-time FFT algorithm.  

6.3 Implementation 
Since there was no public-source 802.11n benchmark available, the most challenging 

part of performing such tests became the creation of a non-biased benchmark suite. We find 
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that the best way to accomplish this is to assemble the algorithm using existing published 

benchmark. 

For convolutional transmitters and Viterbi decoders, we used the implementation 

available in EEMBC telecommunications suite. QAM and Block-interleaver were 

implemented using the algorithms given in  [134] and [170]. For the FFT and iFFT, we again 

extracted them from the fixed point FFT implementation available in EEMBC. For the FFT 

algorithm, we had to recompute the constants that need to be multiplied by the data during 

the course of the algorithm called twiddle factors. These values were computed using the 

algorithm given in  [30]. 

We were unable to find any public C-language implementation of STBC or the 

Alamouti’s algorithm. The authors of  [146] have implemented a Matlab version of this 

algorithm and submitted to Mathworks. We used this algorithm and decided to convert it into 

C-language.  

The heart of the STBC algorithm is the matrix multiplication. The biggest advantage 

of STBC and Alamouti scheme as per [3] [102] and [110] is that it is not very compute 

intensive, when compared to its predecessors. Thus, we wanted to use a simple matrix 

multiplication algorithm. DSPstone benchmarks  [163] provide simple kernels of matrix 

multiplications. We used this benchmark to do the matrix multiplication in our STBC 

algorithm. 
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6.4 Results 

6.4.1 Instruction Distribution 
One of the most important characteristics in any algorithm is the instruction-

distribution of the instruction-trace. Figure 6-6 and Figure 6-7 show this information for the 

transmitter and receiver. NOP instruction accounted for 65% and 69% in the transmitter and 

receiver, respectively.  For pure VLIW machines, this is not uncommon since the compiler is 

responsible for removing all the hazards by explicitly inserting NOP instructions. Since NOP 

does not provide any insights to the basic algorithm, we have omitted the percentage of NOP 

in Figure 6-6 and Figure 6-7. For example, when we discuss 22% addition instructions, it 

means that 22% of all instructions excluding NOP, are additions. 
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Figure 6-6: Dynamic Instruction Distribution of 802.11n Transmitter 
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Figure 6-7: Dynamic Instruction Distribution of 802.11n Receiver 
 

In both the algorithms, the most dominating instruction after NOP is the add-immediate 

instruction. The most common usage of this instruction by CLAW compiler is to increase 

and decrease the stack size in the prologue and epilogue of a function. In the C code, there 

were several areas where a constant-value, known at compile time, was added and/or 

compared to some variable in the code. Such types of RTLs are generally converted to an 

add-immediate instruction. Comparing the variables to these constant values is done using 

the set-flag immediate instructions (sfnei, sfltsi, etc.).  

In convolutional-transmitter and the Viterbi decoder, an array of data is passed into the 

function to do the appropriate computation. This array is stored in the memory and accessed 
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using a load and store instruction. The majority of the loads and stores instructions are 

contributed by these two units. Similarly, block-interleaving is done by writing data into an 

array in row-major format reading them out column-wise.  De-interleaving step does the 

opposite. Such tasks are again performed using store and load instructions.  

“Movlo” and “Movhi” are a pair of instructions used to move a 32-bit value into a 

register. These instructions are used to move address of a global variable or the address of a 

function. In our benchmark, several variables are used for accessing data among functions. 

Moving values to and from these variables required these instructions. Finally, Most of the 

multiply instructions (a very power-hungry instruction) occurred inside the STBC algorithm.  

6.4.2 Parallelism 
The next important parameter is to see the amount of parallelism emitted by these two 

algorithms. Table 6-2 shows and the Operations-Per-Cycle (OPC) and cycle-count for the 

two algorithms.  

Table 6-2: Parallelism Parameters 
  Two Cluster Four Cluster 

Operations Per Cycle 1.17 1.32  
802.11n Transmitter Cycle-count 731824 541953 

Operations Per Cycle 0.98 1.12  
802.11n Receiver Cycle-Count 1299829 1137351 

 

We can see that the algorithms are not very parallel. This is not surprising since as per 

section 3.5.1, two of the three major algorithm used in our study (convolutional encoder and 

the viterbi-decoder) achieve the low-parallelism. FFT algorithm is well-known for not 

providing high-levels of parallelism in software. STBC transmitter has a very high-level of 

parallelism. This is one of the main reasons for using Alamouti’s scheme to perform STBC 
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[3] [102]. On the other hand, the STBC receiver has significant amount of serial 

comparisons, which can reduce Operations-per-cycle (OPC). In addition, the decoding phase 

takes significantly more instructions (thus, more execution cycles) than encoding. This is 

why the cycle-count of the receiver is more than that of the transmitter. 

6.4.3 Energy Consumption 
 

From sections 6.4.1 and 6.4.2, we can hypothesize that there is a potential for energy 

reduction using a dynamic length-adaptive processor. In addition, approximately 5-6 

instructions seem to encompass the entire benchmark for both the algorithms. In this section, 

we explore the combination of our Opcode optimization algorithm and dynamic cluster-

width reduction algorithms to see the energy reduction. Recall from section 3.5.2 that a 

region-level cluster-shutoff seem to provide results comparable to function-level shutoff for 

an over-designed machine, yet tries to squeeze out as much energy as possible from idle 

clusters in an ideally-designed machine. Thus, in our study, we only consider treegion-based 

shutoff insertion. Figure 6-8 and Figure 6-9 show the static and dynamic energy dissipation 

for all the mentioned scenarios using 2 Cluster CLAW. The dominating energy component is 

the dynamic energy.  Static energy only contributed ~13% of the total energy, and the 

dynamic energy contributed 87%. 

The most power-hungry part in the transmitter is the STBC transmitter. This is because 

of all the multiplication operands in the system. STBC unit consumed 47% of the total 

dynamic energy.  The convolutional transmitter and IFFT seem to consume energies at 23% 

and 20% respectively. All the other units together attribute for 10% of the dynamic energy.  
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In the receiver, the STBC receiver contributed 55% of the total dynamic energy. This is 

because the unit is very computationally intensive and has significant amount of 

multiplication operations. Viterbi and FFT each consumed 20% each. The rest of the units 

were responsible for 5% of the total consumption. 

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Transmitter Receiver Average

M
ill

ijo
ul

es

Base Opcode Optimization
Cluster Shutoff Op. Opt + Cluster Shutoff  

Figure 6-8: Static Energy Dissipation for 2 Cluster CLAW 
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Figure 6-9: Dynamic Energy Dissipation for 2 Cluster CLAW 
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Using the treegion-level cluster shutoff mechanism, a 29% dynamic-energy reduction 

is seen in the transmitter. The receiver gave a 28% reduction in dynamic-energy. The shutoff 

instruction contributed a 2.1% dynamic OP-size increase. The Opcode-optimization 

algorithm seemed to provide an additional 10% reduction in dynamic energy in transmitter 

and 12% reduction in the 802.11 Receiver. Using both the Opcode-optimization and the 

cluster-shutoff, we were able to achieve a 34% and 37% energy reduction, respectively.  

When the dynamic shutoff was performed, the static energy increased by 2% for the 

transmitter and 5% for the 802.11n receiver. Opcode-optimization algorithm was able to 

produce a 3% and 4% reduction in the transmitter and the receiver, respectively. 
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Figure 6-10: Static Energy for 4 Cluster CLAW 
 

Similar trends were achieved using a 4-Cluster CLAW machine. For example, STBC 

was still the most energy hungry unit in the system. Figure 6-10 and Figure 6-11 shows the 

static and dynamic energy dissipation for our results. Using the shutoff mechanism, we were 
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able to achieve a dynamic energy reduction of 45% and 41% dynamic energy reduction in 

the transmitter and receiver. Using the Opcode-optimization alone (without shutoff), a 9% 

and 11% reduction in dynamic energy was seen. Using the Opcode optimization algorithm 

with the shutoff, a 49% and 52% reduction in dynamic energy was seen in the transmitter and 

receiver. Insertion of shutoff instructions caused a 1.7% and 2.2% dynamic OP-size increase. 
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Figure 6-11: Dynamic Energy for 4 Cluster CLAW 
 

6.5 Conclusion 
 

In this section, we assembled and characterized the 802.11 physical layer transmitter 

and receiver. These algorithms are then simulated on CLAW to find their energy 

consumption. After this, we applied our novel energy-reduction schemes to try and extract 

the most energy out of the application without any performance loss. 
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We found that using our Opcode optimization algorithm along with dynamic cluster-

scaling seem to extract the most amount of energy from our applications. These two 

algorithms are mutually exclusive as one’s effect does not directly affect the other. We were 

able to gain a 30% reduction in two-cluster CLAW and a 55% reduction on 4 Cluster CLAW 

using our techniques. 
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Chapter 7 Conclusion and Future-Work 

In this dissertation, we created a new paradigm of VLIW processors called Clustered 

Length-Adaptable Processors (CLAW). These processors allow the compiler or the 

programmer to insert specialized instructions that allow shutting off certain units and issue-

widths of the processor during runtime to reduce energy without sacrificing any performance. 

This processor was created in hardware using the Verilog Hardware description language. A 

GCC compiler-toolchain and an advanced energy efficient scheduler with a build-in shutoff 

insertion profiler were implemented for producing executables for such architectures. One of 

the biggest advantages of a length-adaptive processor is that now the processor could be 

designed with a liberal view of future and upcoming algorithms without over-stressing about 

the power and energy budget. Using a transistor level processor, we dispelled several 

misconceptions that are existent today. We showed that an accurately characterized transistor 

library (or cell library) is necessary to make valid power and energy judgments today.  

In the second part of this dissertation, we provided methods to design the ISA 

accordingly to provide energy reduction without any performance loss. These algorithms can 

be applied to any embedded processor, and not specific to length-adaptive processors. We 

showed that these algorithms provide an almost constant percentage energy reduction with 

processor width scaling.  

Third, we provided a power-model for popular register-sharing structures that were 

thought of as methods to reduce energy during the register-read and register-write stages of 

program execution. We showed that these models do not seem to achieve high-levels of 
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power-reduction and must be used only when the user knows a priori that a significant 

number of constant (and duplicate) values are being written into and read from the register 

file.  

Finally, we simulated the newly formulated 802.11n Physical layer specification and 

analyzed its high-energy components. We then applied the proposed methods on this 

algorithm to see its effects on reducing energy. We showed that significant amount of energy 

could be reduced using our length-adaptive processor CLAW. 

There are several further optimizations that can be done on CLAW to increase 

performance as well as reduce energy. CLAW does not have a branch predictor and it is 

becoming one of the most useful components as the algorithms get complex. One of the 

popular ideas in VLIW systems are predicting branches using a compiler. It is beneficial to 

see the effect of branch-prediction on energy. 

We mentioned that GCC does not perform several high-level code optimizations. One 

possible area of research would be to implement some of these algorithms into GCC to see its 

effects on CLAW. We hypothesize that these optimizations can give larger regions for 

CLAW aiding in greater optimization of the code.  

Similarly, CLAW is a complete fixed-point processor, where floating point 

computations are done in software. Floating point algorithms are gaining popularity among 

embedded processors today. One possible study on CLAW would be to add a floating-point 

unit into CLAW and see the tradeoffs of using hardware floating-point instructions. Another 

area of research could be the energy and performance effects of our on caches or scratch-pad 

memories. 
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One of the major drawbacks on VLIW processor is the large static code-size due to 

the insertion of NOP by the compiler to remove hazards. Compressed encoding  [15] is a 

solution to reduce this code-size increase. Unfortunately, this idea cannot be applied to a 

dynamic length-adaptive processor. In Figure 2-4, we showed an ‘X’ after the tail instruction 

indicator. This bit could be set to tell the processor that the next instruction in the cluster is a 

NOP. The memory-controller can pad the appropriate slot with a NOP by reading this bit. 

This potentially can reduce the static code-size by 50%. 

Finally, CLAW, as a research toolset, provides a flexible framework to study the 

energy effects of performance accelerator technique. This processor is representative of 

popular processor today and has similar power, performance and energy effects. Such a 

processor can be used to create accurate predictions that take into account both energy and 

performance and create a robust embedded system for the demanding world today. 
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