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Technology Trends

e Trends

— Lower threshold voltages in deep sub-micron
technologies

€ increases leakage current (sub-threshold current)
€ increases static power dissipation

— Large fraction of die area occupied by on-chip caches
« 60% of StrongARM die area is cache




Circuit Support

« Circuit-level solution
— SRAM cells with low-leakage operating modes
— Insert transistors between V4 and Gnd rails

— Isolating cells from power rails puts them in sleep
mode (reduces leakage current)




Architectural Support

e Circuit-level technique must be controlled at the
architecture level

— Data stored in sleeping cell is unreliable or lost

— Maximize number of sleep-mode lines while
preserving performance
e Caches tradeoff efficiency for robustness
e Deactivate (put into sleep mode) unused cache lines
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Methods for Dynamically Deactivating Cache Lines

< Related Work
— DRI Cache [S-H Yang, et. al.]
= Deactivate large groups of cache lines

= Miss rate periodically compared to statically preset
miss bound

— Cache Line Decay [S. Kaxiras, et. al.]
e Deactivate individual lines after a preset decay time

e Per-application profiling required to determine best
miss bound and decay time




o
The Need for Adaptivity

 Per-benchmark cache line decay times, tuned to reduce
performance by no more than 4%

= 100 @ best decay time
o

E 80

o 60 |

N

S 40

x 20 ||
GE) 0

- L C o S 0N A X 4
> & S L %3 © Z
©

« Adaptive extensions to cache line decay
— Exploiting generational behavior [S. Kaxiras, et. al.]
— Adaptive mode control (our approach)




Adaptive Mode Control (AMC)

e Key idea
— Tags are always kept active
— Know what miss rate could be with all cache lines
active

— Actual miss rate can be made to precisely track
hypothetical miss rate




Adaptive Mode Control (AMC)

e Can distinguish between two types of misses
— Ildeal miss
e Tag miss
= Would have occurred in conventional cache
— Sleep miss
= Tag hit, cache line in sleep mode
e Extra miss introduced by sleep mode
e Control turn-off interval based on ratio of sleep
misses to ideal misses
— Increase turn-off interval if ratio too high
— Decrease turn-off interval if ratio too low
— Keep turn-off interval the same if ratio reasonable
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Outline

v Introduction

< AMC cache architecture

« Adaptive mechanism (control system)
« Simulation methodology

e Results

« Conclusions
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AMC Cache Architecture
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Significance of Turn-off Interval (GCR)
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Tag store
hit/miss
I

Adaptive Mechanism

active/sleep status
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How the control system works
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GCR Update Algorithm

« Performance factor (PF): target ratio of sleep misses to
Ideal misses

exchange for static power savings
e Algorithm

if ((sleep misses) < ((ideal misses)*0.5*PF)) {
decrease GCR: shift GCR right by one bit
}
else if ((sleep misses) > ((ideal misses)*1.5*PF)) {
increase GCR: shift GCR left by one bit
}
else {
do not change GCR
}

— Determines how many additional misses can be tolerated in
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Simulation Methodology

< A MIPS R10000-like, dynamically scheduled, 4-way
ISSue superscalar processor

e |nstruction and data caches
— 16 KB/32 KB/64 KB
— Direct-mapped and 4-way set-associative
— 64-byte blocks
e |-cache hit time =1 cycle; miss penalty 12 cycles
e D-cache hit time = 2 cycles; miss penalty 14 cycles
e AMC
- PF= %
— Sense interval = 1 million cycles
— LIC update interval = 2048 cycles
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% IPC degradation

AMC |-Cache Results
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Cache Line Turn-off Ratio
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AMC |-Cache Results (cont.)
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AMC D-Cache Results
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AMC D-Cache Results (cont.)
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AMC |-Cache and D-Cache Results

e AMC can be applied simultaneously to both the
Instruction cache and data cache

e 64kB 2-way I-cache and 64kB 4-way D-cache

— Turn-off ratios of 73% and 56% for I-cache and D-
cache, respectively

— Performance degradation is only 1.8%
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Conclusion

e Key idea: The tag store is always kept active

— Enables hypothetical performance without sleep mode
to be determined and used to control real performance

— Improvement over setting arbitrary and static
performance targets

e Proposed a control system that keeps the number of
sleep misses within a certain factor of ideal misses

< AMC is an effective means for improving static-
power-efficiency in caches while maintaining good
performance

« Uncovered interesting trends, e.g., higher
assoclativity yields lower turn-off ratios
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Power Analysis

e See companion technical report for detailed power
analysis
— EDP and other metrics

— Static and dynamic power analysis, including dynamic
overhead for additional L2 requests and dynamic plus
static overhead of LIC counters

— We used Compagqg 0.35um 21264 I-cache technology
— [H. Zhou, et. al., Technical Report, NCSU, Nov. 2000]
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Future Work

« Power analysis using projected technology data
e Compare with generational cache line decay approach

« Reducing power dissipation further
— Keep only partial tags active
= |[ncrease static power savings
— Exploit non-destructive sleep-mode circuit design
« [K. Noil, et. al., ISPLED, 1998]

= Eliminate dynamic power increase due to
refreshing sleep-mode data from L2 cache

= Eliminate dynamic power increase due to writing
dirty data to L2 before deactivating cache line
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