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Technology Trends

• Trends
– Lower threshold voltages in deep sub-micron 

technologies
u increases leakage current (sub-threshold current)
u increases static power dissipation

– Large fraction of die area occupied by on-chip caches
• 60% of StrongARM die area is cache
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Circuit Support

• Circuit-level solution
– SRAM cells with low-leakage operating modes
– Insert transistors between Vdd and Gnd rails
– Isolating cells from power rails puts them in sleep 

mode (reduces leakage current)
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Architectural Support

• Circuit-level technique must be controlled at the 
architecture level
– Data stored in sleeping cell is unreliable or lost
– Maximize number of sleep-mode lines while 

preserving performance
• Caches tradeoff efficiency for robustness
• Deactivate (put into sleep mode) unused cache lines
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Methods for Dynamically Deactivating Cache Lines

• Related Work
– DRI Cache [S-H Yang, et. al.]

• Deactivate large groups of cache lines
• Miss rate periodically compared to statically preset 

miss bound
– Cache Line Decay [S. Kaxiras, et. al.]

• Deactivate individual lines after a preset decay time

• Per-application profiling required to determine best 
miss bound and decay time
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• Per-benchmark cache line decay times, tuned to reduce 
performance by no more than 4%

• Adaptive extensions to cache line decay
– Exploiting generational behavior [S. Kaxiras, et. al.]
– Adaptive mode control (our approach)

The Need for Adaptivity
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Adaptive Mode Control (AMC)

• Key idea
– Tags are always kept active
– Know what miss rate could be with all cache lines 

active
– Actual miss rate can be made to precisely track 

hypothetical miss rate



8

Adaptive Mode Control (AMC)

• Can distinguish between two types of misses
– Ideal miss

• Tag miss
• Would have occurred in conventional cache

– Sleep miss
• Tag hit, cache line in sleep mode
• Extra miss introduced by sleep mode

• Control turn-off interval based on ratio of sleep 
misses to ideal misses
– Increase turn-off interval if ratio too high
– Decrease turn-off interval if ratio too low
– Keep turn-off interval the same if ratio reasonable
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Outline

á Introduction
• AMC cache architecture
• Adaptive mechanism (control system)
• Simulation methodology
• Results
• Conclusions
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AMC Cache Architecture
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Significance of Turn-off Interval (GCR)

first access evictedlast access

Too small: Prematurely 
de-activate lines, extra 
sleep misses

Too large: Don’t de-activate 
lines before eviction, lost 
power-savings opportunity

Good
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Adaptive Mechanism
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How the control system works

 

ideal misses  

target error = 
PF*(ideal misses) 

0.5*PF*(ideal misses) 

error > 1.5*PF*(ideal misses) 
{increase GCR} 

error < 0.5*PF*(ideal misses) 
{decrease GCR} 

error < 1.5*PF*(ideal misses) 
error > 0.5*PF*(ideal misses) 
{no change to GCR} 

increase GCR 

decrease GCR 

time 

 number of misses  
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GCR Update Algorithm

• Performance factor (PF): target ratio of sleep misses to 
ideal misses
– Determines how many additional misses can be tolerated in 

exchange for static power savings

• Algorithm

if ((sleep misses) < ((ideal misses)*0.5*PF)) {
decrease GCR: shift GCR right by one bit

} 
else if ((sleep misses) > ((ideal misses)*1.5*PF)) {  

increase GCR: shift GCR left by one bit
}
else {

do not change GCR
}
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Simulation Methodology

• A MIPS R10000-like, dynamically scheduled, 4-way 
issue superscalar processor

• Instruction and data caches
– 16 KB/32 KB/64 KB
– Direct-mapped and 4-way set-associative
– 64-byte blocks

• I-cache hit time = 1 cycle; miss penalty 12 cycles
• D-cache hit time = 2 cycles; miss penalty 14 cycles
• AMC

– PF =  ½
– Sense interval = 1 million cycles
– LIC update interval = 2048 cycles
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AMC I-Cache Results
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AMC I-Cache Results (cont.)
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AMC D-Cache Results
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AMC D-Cache Results (cont.)
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AMC I-Cache and D-Cache Results

• AMC can be applied simultaneously to both the 
instruction cache and data cache

• 64kB 2-way I-cache and 64kB 4-way D-cache
– Turn-off ratios of 73% and 56% for I-cache and D-

cache, respectively
– Performance degradation is only 1.8%
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Conclusion

• Key idea: The tag store is always kept active
– Enables hypothetical performance without sleep mode 

to be determined and used to control real performance
– Improvement over setting arbitrary and static 

performance targets

• Proposed a control system that keeps the number of 
sleep misses within a certain factor of ideal misses

• AMC is an effective means for improving static-
power-efficiency in caches while maintaining good 
performance

• Uncovered interesting trends, e.g., higher 
associativity yields lower turn-off ratios
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Power Analysis

• See companion technical report for detailed power 
analysis
– EDP and other metrics
– Static and dynamic power analysis, including dynamic 

overhead for additional L2 requests and dynamic plus 
static overhead of LIC counters

– We used Compaq 0.35µm 21264 I-cache technology

– [H. Zhou, et. al., Technical Report, NCSU, Nov. 2000]
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Future Work

• Power analysis using projected technology data
• Compare with generational cache line decay approach
• Reducing power dissipation further

– Keep only partial tags active
• Increase static power savings

– Exploit non-destructive sleep-mode circuit design
• [K. Noii, et. al., ISPLED, 1998]
• Eliminate dynamic power increase due to 

refreshing sleep-mode data from L2 cache
• Eliminate dynamic power increase due to writing 

dirty data to L2 before deactivating cache line
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