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Abstract 

Dynamic Optimization is an umbrella term that refers 
to any optimization of software that is performed after the 
initial compile time. It is a complementary optimization 
opportunity that may greatly improve performance on any 
computer system, but plays an especially important role in 
statically scheduled code. Several groups are working on 
developing dynamic optimization systems, yet the area of 
dynamic optimization algorithms can still benefit from 
further research. We introduce a lightweight algorithm 
that can be used in any modern dynamic optimizer to 
balance control flow and predication based on actual 
runtime behavior. In addition, we study the effectiveness of 
predicting overall runtime behavior based on a small 
sample size. Preliminary results show that if we skip the 
warm-up period of programs, profiles based on a small 
sample size of a particular run can be quite representative 
of overall runtime behavior (up to 98% correlation). This 
profile information can be used effectively in a number of 
dynamic optimizations. We found that our dynamic if-
conversion algorithm can use this collated profile data to 
incorporate actual branch misprediction rates into the if-
conversion decision process. This method acts as an 
effective means for balancing the results of static if-
conversion, achieving speedup values of up to 14.7%, and 
can be easily incorporated into modern dynamic 
optimizers. 

 

1. Introduction 

Dynamic Optimization refers to any program 
optimization performed after the initial compile time. 
While typically not designed as a replacement for static 
optimization, dynamic optimization is a complementary 
optimization opportunity that leverages information that is 
not available until runtime. Dynamic optimization opens 
the doors for machine and user-based optimizations 
without the need for original source code. 

The challenge of dynamic optimization rests mostly in 
the performance requirements for runtime optimization. 
The baseline goal of a dynamic optimization system is that 
the system must not slow a program down. While it may 
be the case that users will permit a slowdown if it is a one-
time occurrence and the performance of the system is 
improved to the extent that the average runtime over 
subsequent runs is improved, there is a more defined need 
for simple, low-overhead optimization algorithms that are 
specialized for runtime implementation. The overall goal 
of such algorithms would be to require minimal effort in 
order to produce runtime speedup. 

The purpose of this paper is to present a lightweight 
algorithm that can be implemented in modern dynamic 
optimizers.  Dynamic if-conversion is a term used in this 
paper to refer to the dynamic version of static if-
conversion. While not designed as a replacement for static 
if-conversion in any manner, dynamic if-conversion is a 
complementary, lightweight algorithm that can be used to 
effectively balance control flow and predication based on 
actual runtime behavior. The distinguishing feature of 
dynamic if-conversion is the fact that it takes into account 
the actual misprediction rate of a branch when deciding 
whether or not to convert it to a set of predicated 
instructions or reverse previously if-converted code. The 
algorithm is simple in order to allow for implementation in 
a system with stringent run-time overhead requirements. It 
was designed to be performed on architectures that support 
predication yet require static scheduling, such as EPIC and 
VLIW with predication architectures.  

The paper also delves into the tradeoffs involved in the 
time at which optimizations based on branch behavior are 
employed. Due to the high overhead of dynamic profiling, 
dynamic if-conversion can make use of sample dynamic 
profile information gathered near the beginning of 
program execution for the dynamic if-conversion decision 
process. The accuracy of the sample profile data for 
several sampling heuristics is studied in this paper. 

Several factors may lead to the decision to implement a 
dynamic optimization infrastructure. Often, decisions 
made by a static compiler are not well suited for the 



runtime behavior of the program. This may be due to a 
variance in the usage patterns of the client, a change or 
upgrade in hardware (such as the pipeline structure) since 
the initial compile time, or simply an overaggressive static 
compilation decision. The current software development 
cycle does not provide an opportunity for changing or 
correcting such decisions made by the static compiler. 
Dynamic optimization can provide this flexibility in the 
software development cycle. 

While most of the processors of the past rely on 
dynamic scheduling of instructions, an upcoming 
generation of processors contains a simpler processor core 
that relies on static scheduling. Scheduling programs once, 
and even before the program executes, increases the 
importance of accurate profile data. Inaccurate profiles 
result in poor scheduling decisions that will affect every 
run of a program [24]. Representative profile information 
is difficult to produce because of the large variance among 
users, and over time for the same user. This sheds doubt on 
the effectiveness of a unified set of profile data.  Using 
dynamic optimization, code can be rescheduled to better 
represent actual runtime behavior for every run of a 
program. 

Another justification for a dynamic optimization system 
concerns the large number of off-the-shelf software 
packages that are purchased every year. The varying level 
of compile technology available in the compilers used by 
software vendors has resulted in an unknown level of 
optimization in off-the-shelf software products. Consumers 
have no way of ensuring that high optimization levels are 
employed in the products they purchase. Dynamic 
optimization allows even the latest optimization 
technology to be introduced to existing software, therefore 
ensuring optimal performance. 

Yet another reason for choosing to implement dynamic 
optimization concerns processor upgrades within a 
processor family and cross-generation compatibility 
between processor families [5][6][24].  A program 
compiled for a given instruction-set architecture (ISA) can 
be run on any processor implementing that ISA. The 
program is only optimized, however, for execution on a 
processor with an identical execution pipeline, identical 
function units, and identical instruction availability. 
Variances in any of these attributes result in a program that 
is not employing the available functionality of the 
processor. Dynamic optimization provides for customized 
optimization for every processor within an ISA from a 
single executable. 

The remainder of the paper is organized as follows. 
Section 2 introduces some of the modern dynamic 
optimizers that could potentially employ dynamic if-
conversion, discusses the problems with implementing 
static-only if-conversion, and introduces the simulation 
environment that was used to obtain our results. A study of 
the optimal time to perform certain dynamic optimizations 

is discussed in Section 3 including a full description of two 
case studies into the matter. The dynamic if-conversion 
and reverse if-conversion algorithms and results are 
presented in Section 0. Finally, Section 5 concludes the 
paper and discusses future work. 

2. Background 

Many research groups are currently working on 
developing infrastructures for dynamic optimization in one 
of its many forms. Some groups work exclusively within a 
given ISA, gearing their optimizations toward 
reoptimizing for differing features of processors within a 
processor family or user behavior [4][9][17][24][28]. 
Others work between ISAs. In this case, the final product 
does the job of translating or emulating one instruction set 
on a different instruction-set architecture [6][11][14]. 

In this work, lightweight, dynamic algorithms that can 
be employed in any modern dynamic optimization system 
are introduced. A new dynamic optimization infrastructure 
is not proposed because the algorithms presented in this 
paper are well suited for implementation in the systems 
that currently exist. Because seamless integration of the 
algorithms with current infrastructures is expected, it is 
important to first become familiar with several dynamic 
optimization infrastructures that are under development in 
the research community. 

Dynamo, a dynamic optimization system created at 
Hewlett-Packard Laboratories is a native instruction 
interpreter that optimizes program fragments (executable 
program traces) and stores them in a software-based 
fragment cache at runtime [4]. Based in the HP-UX 
environment, Dynamo is transparent to a user, yet achieves 
notable program speedup even without the use of runtime 
optimizations. The base speedup is due to reduced 
instruction cache misses for hot program fragments found 
in the fragment cache. It is shown that programs originally 
compiled with level-2 optimization (-O2) running under 
the Dynamo dynamic optimization system perform as well 
as the same program compiled with level-4 optimization (-
O4) running without dynamic optimization [4]. 

Morph, a dynamic optimization system developed at 
Harvard University consists of several components that 
perform the tasks of observing program behavior and 
triggering optimization for Digital UNIX [28]. An 
extension to the back-end compiler produces a shared 
library containing useful information that may aid in later 
reoptimization. A Morph manager observes data gathered 
by a low-overhead profiling system built into Digital 
UNIX and decides when to invoke optimization. 

Researchers at the University of Washington have 
developed an infrastructure for dynamic compilation called 
DyC [9]. DyC consists of a declarative annotation 
language and corresponding compiler. DyC’s static 
compiler produces an executable that contains a combina-



tion of statically compiled code and a run-time specializer 
for the portions of code where dynamic com-pilation will 
occur. The run-time specializer allows code to be 
optimized for various instances of run-time variables. A 
dynamic template is created containing holes that will be 
filled in at dynamic compile time, once the runtime values 
are known. Custom dynamic compilers are implemented 
within the code itself, which trigger the dynamic 
compilation and throw away the corresponding template. 

Other research endeavors that may fall under the 
umbrella of dynamic optimization include, but aren’t 
limited to, DAISY [6] and Crusoe [14]. DAISY is a set of 
hardware features used to emulate code from existing 
architectures on VLIW and other ILP machines. Because 
code is dynamically translated and stored in a hardware-
based cache, dynamic optimizations may be applied to the 
cached code. Crusoe consists of a low-power VLIW 
processor and code-morphing software that performs the 
task of translating x86 code to the native instruction set on 
the fly. Dynamic optimizations are easily implemented in 
the code-morphing software. 

Each of the dynamic optimizers mentioned in this 
section would require minimal adjustment to employ the 
dynamic if-conversion algorithm presented later in the 
paper. The justification for implementing this runtime 
optimization requires an understanding of the limitations 
of the current practice of static-only if-conversion. 

2.1. The Problems With If-Conversion 

If-conversion replaces a branch and its control 
dependent paths with guarded (or predicated) execution 
[2][21]. Rather than evaluating a branch condition and 
conditionally executing only one control-dependent path, 
both paths are executed and predicates control which 
results are used. It is a means for converting control 
dependences into data dependences.  

 
BEFORE: 

(1) if (cond) Branch L1 
(2)  r2 = MEM[A] 
(3)  r1 = r2 + 1 
(4)  r0 = MEM[r1] 
(5) L1 : r9 = r3 + r4 
 

AFTER: 
(1) p1, p2’ = cond 
(2) r2 = MEM[A] <p2> 
(3) r1 = r2 + 1 <p2> 
(4) r0 = MEM[r1] <p2> 
(5) L1 : r9 = r3 + r4 

Figure 1. A standard if-conversion example. 

Much of the current research involving if-conversion is 
based on the work done at Hewlett-Packard Laboratories. 
Park and Schlansker present a basic if-conversion 
algorithm called the RK algorithm [21]. The R function 
specifies which instructions should be based on the same 

predicate value, while the K function indicates the 
conditions under which a predicate should be set to true.  

If-conversion avoids the penalty incurred when a 
branch is otherwise mispredicted. It is not a good idea to 
if-convert all branches; in certain instances, it is better to 
branch over a large set of instructions rather than 
conditionally executing them. If-conversion works best 
when attempts are made to reach a balance between 
control flow and predication [3]. Yet a perfect balance is 
not attainable at static compile time because little 
information is known about the actual behavior of a 
particular branch.   

Mahlke et al. introduced compiler support for 
predicated execution using the hyperblock [19]. The 
hyperblock is used to increase the scheduling scope by 
allowing the inclusion of speculative execution to 
predicated instructions while also allowing for selective 
inclusion of basic blocks based on frequency and size. 
Mahlke then studied the impact of predicated execution on 
branch prediction and discovered that 56% of dynamic 
branch mispredictions are eliminated with predication 
support [18]. Our work may be viewed as an extension of 
the work done by Mahlke into the dynamic domain. 

In addition, several other researchers have delved into 
if-conversion. One example is the work of Klauser et al. 
[15]. They describe a method for dynamically introducing 
predication to architectures that do not already support it. 
While their main objective was to provide hardware 
support for the dynamic introduction of predication into 
programs, our main goal is to use software and an ISA that 
already supports predication. 

2.2. Our Simulation Environment 

The results of this paper are obtained using an EPIC-
style execution-driven simulator operating on the 
SPECInt95 benchmarks using the reference inputs. The 
LEGO back-end compiler [10][16], which is based on the 
HPL PlayDoh Architecture [13], was used to schedule the 
benchmarks. Treegion scheduling [10] was used, 
combined with static if-conversion and most modern 
optimizations that would be present in an EPIC compiler 
such as loop unrolling, operation combining, aggressive 
list scheduling, upward and downward code motion, and 
support for multi-way branching. The branch predictor 
modeled is a hybrid predictor (with four hybrid counters) 
containing a PAS predictor (with 212 branch history 
registers, each containing 10-bits of history information 
and 2-bit prediction counters) and a Gshare predictor (with 
212 rows in the Gshare table, 10-bits of history and 2-bit 
prediction counters) [7][27]. The predictor has an average 
accuracy of 95% on the SPECInt95 benchmarks and a 
misprediction latency of 10 cycles [12]. 



3. Deciding When to Dynamically If-Convert 

A challenging aspect of dynamic optimization is 
deciding if and when to optimize a portion of code. 
Dynamic optimizations should be performed as soon as the 
profile information is available, yet it must be ensured that 
the profile information is indicative of overall program 
behavior. To further complicate the decision-making 
process, time should not be wasted optimizing rarely 
executed code. Instead, hot spots should be located in 
order to focus on optimizing active portions of code. These 
uncertainties warrant a study of the most favorable 
optimization opportunities. 

The dynamic if-conversion algorithm relies heavily on 
the misprediction rate of the branches during the current 
execution. Not only is it important to gather accurate 
branch misprediction rates, but the profile data must also 
be gathered early enough for the program to benefit from 
dynamic if-conversion. Because dynamic profiling might 
not be free (as in the case of Dynamo), the misprediction 
rate of a branch is sampled and dynamic if-conversion 
decisions are based on that sample rate. Therefore, an 
important question is: How representative of the overall 
misprediction rate is a sample misprediction rate? The 
answer to this question varies depending on the heuristic 
used to collect the statistics. 

3.1. Sampling Based on First N Occurrences 

One scheme for gathering sample misprediction data is 
fairly straightforward. The misprediction rate for the first n 
occurrences of a branch is tracked, then it is assumed that 
the behavior of that branch will follow the same trend in 
the future. Figure 2 shows the percent difference between 
sampled and full misprediction rates, averaged over all 
branches for the SPECInt95 benchmarks. 

The results in Figure 2 were determined by comparing 
the misprediction rate of various sample sizes (25, 50, 75, 
100, 125, 150) to the actual misprediction rate of each 
branch throughout the entire run. The sample sequences 
are successive outcomes of a particular branch taken at the 
beginning of program execution. 

The rates were viewed as a set of Bernoulli trials [8] 
and Bernoulli distributions were determined. A Bernoulli 
distribution is a means for representing a trial with two 
possible outcomes, in our case a misprediction or a correct 
prediction. Next, the two distributions – the overall 
outcome and the sample outcome, were compared using 
the Kolmogrov-Smirnov test [1]. A 99% confidence 
interval was chosen to determine the difference between 
the two distributions. 

Figure 2 shows that the average difference in the 
misprediction rate of the SPECInt95 benchmarks for a 
sample size of 25 branch occurrences, when compared to 
the overall behavior of the branch, is around 7%. This 

would equate to a misprediction rate of 17% in the sample 
run as compared to a 10% misprediction rate overall. If the 
sample size were increased to 150 branch occurrences, the 
average difference drops down to around 2%. 
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Figure 2. The mean difference between sample (first n 

occurrences) and actual misprediction rates. 
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Figure 3. Error values corresponding to a 99% 

confidence interval. 

A notable factor is that differences shown in Figure 2 
have a delta error value when compared to the behavior of 
a single branch because they are averaged over all 
branches. These error values are shown in Figure 3. The 
error values in Figure 3 encompass a 99% confidence 
interval. For example, we are 99% certain that a particular 
branch in the vortex benchmark will result in a 
misprediction rate within 4% +/- 7%, or between -3% and 
11% of the averages shown in Figure 2 (for a sample size 
of 25). Figure 3 allows us to calculate the worst-case 
scenario that can be expected when comparing sample 
misprediction rates to actual rates for any given branch.   

An important conclusion that can be drawn from Figure 
2 and Figure 3 is that choosing the first n branch 



occurrences as the sample for estimating overall branch 
misprediction rate can be quite inaccurate for small values 
of n such as 25 or 50. In the worse case, inaccuracies of up 
to 26% may be seen. Sample sizes of 75 or greater result in 
error values of less than 4% on average with an error of 
less than 4% (or between 0% and 8%). Yet as the sample 
size is increased, the benefits gained from dynamic 
optimizations are reduced because the point at which the 
optimizations are performed is delayed. 

3.2. Adaptive Warmup Exclusion 

Another approach for sampling misprediction rates 
involves recognizing an end-of-warm-up (confidence) 
condition and only then beginning to collect misprediction 
statistics. Section 3.1 described a sampling heuristic that 
compared the first n outcomes of a particular branch to its 
overall outcome statistics for the entire program duration. 
The problem with this approach is that the data was gather-
ed at the start of the program. The start of any program 
typically has a high misprediction rate as the branch 
predictors learn branch patterns. This behavior may not be 
representative of the entire program behavior because the 
misprediction rate of a particular branch often decreases 
notably after the warm-up period, as shown in Figure 4 for 
several hard-to-predict branches in SPECInt95. 
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Figure 4. The misprediction rate over time (in 

increments of 50 occurrences) for the first hard-to-
predict branch encountered for four benchmarks in 

SPECInt95. A branch is considered hard-to-predict if 
the final misprediction rate exceeds 30%. 

The adaptive warmup exclusion sampling heuristic 
attempts to recognize the stabilization of the branch 
predictors on a branch-by-branch basis. Only when a 
branch reaches the end of its warmup period does the 
profiling of misprediction statistics for the branch begin. 
Equation 1 describes the heuristic for detecting an end-of-
warmup condition. This equation attempts to recognize an 

end-of-warmup condition as the point at which the branch 
misprediction rate settles to within a threshold value (10% 
for example) of the previous rate. The results of testing 
this heuristic with a threshold value of 10% are shown in 
Figure 5. The graph shows us that by ignoring the warm-
up period of the branch predictors, our average sampling 
accuracy improves by 43% (dropping from 7% difference 
to 4% difference). 

 
 | PMISS_A – PMISS_B | < T (1) 

 
PMISS_A = last misprediction rate 
PMISS_B = this misprediction rate 

T = threshold 
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Figure 5. The mean difference between sample (first n 

occurrences ignoring warm-up period) and actual 
misprediction rate. 
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Figure 6. The effect of varying the warmup completion 

threshold value. 

Figure 6 shows the effect of holding the sample size at 
a single value (50 occurrences) and varying the threshold 
value from 10% to 5% 1% and 0.5%. As the graph 



indicates, varying the threshold value results in minimal 
changes to the mean difference between the sample and 
actual misprediction rate. Figure 7 shows the average 
number of branch occurrences required to trigger the end-
of-warmup condition.   
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Figure 7. Number of branch occurrences before 

reaching end-of-warmup condition. 

This study of the dynamic sampling heuristics provides 
insight into the effectiveness and accuracy of dynamic 
optimizations that are performed based on sampled 
statistics. If the sampling heuristic is inaccurate, any 
dynamic optimizations that make transformations based on 
sample data are likely to be inaccurate or unnecessary and 
may hurt overall program performance. 

4. The Dynamic If-Conversion Algorithm 

Dynamic optimizations may be classified as either 
heavyweight or lightweight [4]. Heavyweight 
optimizations make the largest impact on program perfor-
mance. Not surprisingly, heavyweight optimizations take 
the largest amount of time to perform, and therefore may 
not be feasible to perform at runtime. Lightweight optimi-
zations, on the other hand, can typically be performed at 
runtime with a minimal impact on overall performance.   

As mentioned earlier, dynamic if-conversion is a light-
weight, runtime equivalent of static if-conversion. It can be 
used to if-convert branches that are performing poorly 
during a particular run. It can also be used to ensure that if-
conversion is performed at all, as some compilers may not 
have employed static if-conversion at compile time. 

Dynamic if-conversion is based on a one-time 
opportunity for each control-flow sequence. Sample 
profile data is used to make one decision regarding 
dynamic if-conversion for a particular branch or predicated 
trace. While the algorithms may undo static if-conversion 
decisions, they do not undo dynamic if-conversion 
decisions. For example, static branches may be converted 
to dynamic predication and static predication may be 

converted to dynamic branches, but once converted no 
attempts are made to reverse the decision. Since no 
attempts to undo dynamic if-conversions are made, the 
machine state doesn’t risk becoming unstable due to 
continuous if-conversion and reverse if-conversion. 
Therefore, a bailout mechanism is unnecessary for this 
particular model. 

4.1. Dynamic Forward If-Conversion 

An opportunity for branch-to-predicate conversion, or 
dynamic forward if-conversion, lies in branches that 
exhibit hard-to-predict behavior. Actual branch behavior is 
not known until runtime, and it may vary from one run to 
the next [24]. A static decision whether or not to predicate 
sections of code will clearly be inferior to one that takes 
into account the current behavior of a branch during a 
particular run. 

Deciding when to dynamically convert a branch to a set 
of predicated instructions is a matter of estimating the 
cost-effectiveness of doing so. First of all, the branch must 
be a forward branch. This restriction is put in place 
because backward loops typically do not benefit from if-
conversion, as this would require completely unrolling the 
loop [3]. Not only are loops highly predictable, but they 
always require a branch before the epilog. This branch 
cannot be converted to predication. In the case of loop 
unrolling, the unrolled portions of a loop that end up 
benefiting from branch conversion become forward 
branches in the unrolling process. 

The second requirement is that a candidate branch must 
be on a hot path. The cost of converting a branch to 
predicated code is typically amortized over the subsequent 
uses of the section of code. Therefore, time and effort 
should not be wasted on a branch that is not likely to be 
encountered frequently.   
 
 PMISS ∗ LMISS  ≥  PHIT ∗ LHIT ∗ (1+error) (2) 
 
 PMISS = odds of mispredicting branch 
 LMISS = misprediction penalty 
 PHIT  = odds of correctly predicting branch 
 LHIT = cycles to execute predicated instructions 
 

Deciding whether or not to convert a branch to a set of 
predicates is a matter of comparing the average latency of 
either option. Equation 2 describes the dynamic if-
conversion decision. The left side of the equation estimates 
the average penalty for leaving the branch as is. The right 
side estimates the overall cost of removing the branch and 
predicating the following set of instructions. The error 
value mentioned in the right side of the equation 
compensates for the error involved in determining the 
branch misprediction rate as described in Section 3.1 and 
Section 3.2. Since only a sample of the misprediction rate 



has been gathered when Equation 2 is evaluated, the error 
term compensates for the error with a 99% confidence 
interval. 

Branches over very large sections of code will typically 
not be considered for forward if-conversion because the 
cost of executing all of the predicated instructions on the 
off path far outweighs the benefits of removing the branch 
misprediction penalty. In the case of IA-64, where the 
branch misprediction penalty is 10 cycles [12], most of the 
converted branches will have a target address that is within 
10 cycles of the branch instruction itself. Higher distances 
are permitted in the case of unusually high misprediction 
rates. The maximum value of the allowable branch 
distance is shown in Equation 3. 

 
 AT – AB > 0 (3) 
 AT – AB  <  LMISS ∗ PMISS ∗ SINSTR 

 

 AT = target address   AB = branch address 
 LMISS = miss penalty  PMISS = miss rate  
 SINSTR = instruction size 

 
The basic concept is that the latency of a few predicated 

instructions may be much smaller than the latency of a 
potential branch misprediction. And if a branch 

misprediction is likely to occur, it is better to convert that 
branch to predicated instructions. The potential for a 
branch misprediction is then eliminated and, often, the 
predicated instructions can be scheduled into the holes 
(NOPs) of the existing schedule.  

Figure 8 and Figure 9 show the speedup gained from 
employing dynamic if-conversion as well as the actual 
number of branches that were converted to predicates for 
SPECInt95. The overhead of dynamic if-conversion varies 
depending on the implementation details of the dynamic 
optimizer. The results were produced including an estimate 
of the additional overhead that dynamic if-conversion 
would incur over the base overhead of dynamic 
optimization.  

There was a great deal of variance in the number of 
branches converted (from 1 to 215) and the corresponding 
speedup (from 0.16% to 14.7%), yet no slowdown was 
detected. On average, 46 branches were converted to 
predicates for a speedup of 2.5%. Since 95% of 
SPECInt95 branches are predicted correctly using the 
PAS/Gshare predictor, dynamic if-conversion is designed 
to reduce the latency of 5% of mispredictions. Figure 10 
shows that on average, 25% of branch mispredictions are 
eliminated through the use of dynamic if-conversion. 
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Figure 8. Speedup resulting from dynamic if-conversion. 

1

215

102

5
20 9 6 14

46.17

0

50

100

150

200

250

compress gcc go ijpeg li m88ksim perl vortex average

N
um

be
r 

of
 b

ra
nc

he
s

 
Figure 9. Number of branches dynamically converted to predicates for SPECInt95. 
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Figure 10. Percentage of branch misprediction eliminated by dynamic if-conversion.

4.2. Dynamic Reverse If-Conversion 

While dynamic if-conversion is based on the notion that 
some branches were not converted to predicated 
instructions at compile time, the opposite scenario could 
also be true. The compiler may have converted certain 
basic blocks to sets of predicated instructions, yet those 
predicates may turn out to be quite biased for a given run. 
In this instance, it would be better if a branch guarded that 
basic block to allow those instructions to be skipped 
during execution. 

Dynamic predicate-to-branch conversion, or dynamic 
reverse if-conversion, converts sequences of predicated 
instructions that are guarded by biased predicates back into 
branches at runtime. The idea here is that the predicates 
guarding the instructions evaluate to true so rarely that it 
would be better to branch over the particular instructions 
rather than to leave them as predicated instructions. 

Equation 4 represents the dynamic reverse if-
conversion criteria. It is very similar to the branch-to-
predicate conversion algorithm in that it weighs the cost of 
each option – leaving the instructions as predicated 
instructions or converting them to branches. 

 
 PPRED’ ∗ LPRED  ≥  PMISS ∗ LMISS  (4) 
 
 PPRED’ = odds of false predicate 
 LPRED  = number of predicated cycles 
 PMISS = odds of mispredict 
 LMISS = misprediction penalty 
 

The left side of the equation calculates the penalty of 
leaving the instructions as a set of predicated instructions, 
while the right side attempts to predict the penalty of 
converting the predicates to a branch. The odds of 
misprediction are not known for a set of predicates 
because the branch predictor is not used for predicated 
instructions. Therefore, the average misprediction rate for 
the current branch predictor is used. 

Figure 11 and Figure 12 show the speedup achieved by 
employing the dynamic reverse if-conversion algorithm for 
SPECInt95 along with the number of predicate traces 
converted to branches for each benchmark. From the 
graphs, we see an average speedup of 5% for converting 
an average of 27 predicate traces back into branches. The 
speedup in Figure 11 results from removing relatively long 
sequences of instructions that had been guarded by a 
typically-false predicate. Rather than enduring the 
performance penalty of continually executing instructions 
that are predicated on a false predicate, the predication was 
converted to control flow, and a branch was placed before 
the instructions. This branch allowed the control flow to 
essentially skip over the offending instructions, resulting in 
the speedup seen in Figure 11. 

4.3. Possible Implementation 

Because the algorithms presented in this paper are 
lightweight, they can easily be implemented in a modern 
dynamic optimization system with small overhead. Since 
many dynamic optimizers already perform some sort of 
hot-path detection, we can be assured that time will not be 
wasted performing the optimizations on rarely executed 
instructions. 

While the algorithms do require some sort of profiling 
structure to be in place, they are not limited to a pure hard-
ware or software solution. The requirement could be filled 
using schemes ranging from the built-in performance moni-
tors planned for Itanium [12] to software structures such as 
the branch and trace counters in HP Labs’ Dynamo [4]. 

Furthermore, incorporating the dynamic if-conversion 
algorithms can improve the performance of other 
algorithms already in place. For example, when combining 
dynamic if-conversion with aggressive dynamic 
rescheduling, the performance is better than additive. 
Dynamic if-conversion creates many more optimization 
opportunities for rescheduling because there is much more 
flexibility in scheduling predicated instructions than 
control-flow sequences. 
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Figure 11. Speedup resulting from dynamic reverse if-conversion. 
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Figure 12. Actual number of predicates converted back to branches. 

5. Conclusion 

In this paper, an effective algorithm for incorporating 
dynamic if-conversion into a dynamic optimization system 
is introduced. We begin by determining an optimal means 
for tracking the misprediction rate of a branch and 
recognizing the need for dynamic if-conversion. As it turns 
out, if the warm-up period for a branch (defined as the time 
it takes for the branch misprediction rate to settle to a value 
within 1–10% of the previous value) is ignored, the error of 
our sample misprediction rates drops from 7% to 4% for a 
25-event sample. For larger sample sizes, the error drops 
below 2%. The accuracy of the sample misprediction rates 
is important because the rates form the basis of our 
dynamic if-conversion algorithms. 

Dynamic if-conversion was then introduced as a set of 
algorithms that take into account actual branch and 
predicate behavior to calculate the trade-offs of if-
conversion at a particular runtime instance. The algorithms 
are lightweight – they can be implemented with minimal 
impact on system performance, and they are universal – 
they can be implemented in any dynamic optimization 
system available without the need for specialized hardware. 
By simulating the algorithms on an EPIC-style machine 
employing the latest branch prediction scheme, speedup 
values of up to 14.7% were observed. 

This work opens the doors for many lightweight and 
heavyweight dynamic optimizations. This paper did not 
delve into dynamic rescheduling of dynamically if-
converted instructions. However, performance can 
potentially be improved if aggressive dynamic rescheduling 
were used in conjunction with dynamic if-conversion. This 
is an interesting concept that should be explored further. 

While this particular study focused on improving 
performance, a well-designed dynamic optimization system 
has great potential for venturing into other domains, such as 
power reduction or fault-tolerance. In the domain of power 
reduction, dynamic optimizations could be performed to 
lower the number of bit-flips between successive 
operations, thus reducing power use when necessary [26]. 
In the fault-tolerance domain, dynamic optimizations could 
insert recovery code for aggressive optimizations into the 
NOP slots of a schedule [23]. 
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