

A Lightweight Algorithm for Dynamic If-Conversion During Dynamic Optimization

 Kim M. Hazelwood Thomas M. Conte

Department of Electrical and Computer Engineering

North Carolina State University

{kim_hazelwood,conte}@ncsu.edu

Abstract

Dynamic Optimization is an umbrella term that refers
to any optimization of software that is performed after the
initial compile time. It is a complementary optimization
opportunity that may greatly improve performance on any
computer system, but plays an especially important role in
statically scheduled code. Several groups are working on
developing dynamic optimization systems, yet the area of
dynamic optimization algorithms can still benefit from
further research. We introduce a lightweight algorithm
that can be used in any modern dynamic optimizer to
balance control flow and predication based on actual
runtime behavior. In addition, we study the effectiveness of
predicting overall runtime behavior based on a small
sample size. Preliminary results show that if we skip the
warm-up period of programs, profiles based on a small
sample size of a particular run can be quite representative
of overall runtime behavior (up to 98% correlation). This
profile information can be used effectively in a number of
dynamic optimizations. We found that our dynamic if-
conversion algorithm can use this collated profile data to
incorporate actual branch misprediction rates into the if-
conversion decision process. This method acts as an
effective means for balancing the results of static if-
conversion, achieving speedup values of up to 14.7%, and
can be easily incorporated into modern dynamic
optimizers.

1. Introduction

Dynamic Optimization refers to any program
optimization performed after the initial compile time.
While typically not designed as a replacement for static
optimization, dynamic optimization is a complementary
optimization opportunity that leverages information that is
not available until runtime. Dynamic optimization opens
the doors for machine and user-based optimizations
without the need for original source code.

The challenge of dynamic optimization rests mostly in
the performance requirements for runtime optimization.
The baseline goal of a dynamic optimization system is that
the system must not slow a program down. While it may
be the case that users will permit a slowdown if it is a one-
time occurrence and the performance of the system is
improved to the extent that the average runtime over
subsequent runs is improved, there is a more defined need
for simple, low-overhead optimization algorithms that are
specialized for runtime implementation. The overall goal
of such algorithms would be to require minimal effort in
order to produce runtime speedup.

The purpose of this paper is to present a lightweight
algorithm that can be implemented in modern dynamic
optimizers. Dynamic if-conversion is a term used in this
paper to refer to the dynamic version of static if-
conversion. While not designed as a replacement for static
if-conversion in any manner, dynamic if-conversion is a
complementary, lightweight algorithm that can be used to
effectively balance control flow and predication based on
actual runtime behavior. The distinguishing feature of
dynamic if-conversion is the fact that it takes into account
the actual misprediction rate of a branch when deciding
whether or not to convert it to a set of predicated
instructions or reverse previously if-converted code. The
algorithm is simple in order to allow for implementation in
a system with stringent run-time overhead requirements. It
was designed to be performed on architectures that support
predication yet require static scheduling, such as EPIC and
VLIW with predication architectures.

The paper also delves into the tradeoffs involved in the
time at which optimizations based on branch behavior are
employed. Due to the high overhead of dynamic profiling,
dynamic if-conversion can make use of sample dynamic
profile information gathered near the beginning of
program execution for the dynamic if-conversion decision
process. The accuracy of the sample profile data for
several sampling heuristics is studied in this paper.

Several factors may lead to the decision to implement a
dynamic optimization infrastructure. Often, decisions
made by a static compiler are not well suited for the

runtime behavior of the program. This may be due to a
variance in the usage patterns of the client, a change or
upgrade in hardware (such as the pipeline structure) since
the initial compile time, or simply an overaggressive static
compilation decision. The current software development
cycle does not provide an opportunity for changing or
correcting such decisions made by the static compiler.
Dynamic optimization can provide this flexibility in the
software development cycle.

While most of the processors of the past rely on
dynamic scheduling of instructions, an upcoming
generation of processors contains a simpler processor core
that relies on static scheduling. Scheduling programs once,
and even before the program executes, increases the
importance of accurate profile data. Inaccurate profiles
result in poor scheduling decisions that will affect every
run of a program [24]. Representative profile information
is difficult to produce because of the large variance among
users, and over time for the same user. This sheds doubt on
the effectiveness of a unified set of profile data. Using
dynamic optimization, code can be rescheduled to better
represent actual runtime behavior for every run of a
program.

Another justification for a dynamic optimization system
concerns the large number of off-the-shelf software
packages that are purchased every year. The varying level
of compile technology available in the compilers used by
software vendors has resulted in an unknown level of
optimization in off-the-shelf software products. Consumers
have no way of ensuring that high optimization levels are
employed in the products they purchase. Dynamic
optimization allows even the latest optimization
technology to be introduced to existing software, therefore
ensuring optimal performance.

Yet another reason for choosing to implement dynamic
optimization concerns processor upgrades within a
processor family and cross-generation compatibility
between processor families [5][6][24]. A program
compiled for a given instruction-set architecture (ISA) can
be run on any processor implementing that ISA. The
program is only optimized, however, for execution on a
processor with an identical execution pipeline, identical
function units, and identical instruction availability.
Variances in any of these attributes result in a program that
is not employing the available functionality of the
processor. Dynamic optimization provides for customized
optimization for every processor within an ISA from a
single executable.

The remainder of the paper is organized as follows.
Section 2 introduces some of the modern dynamic
optimizers that could potentially employ dynamic if-
conversion, discusses the problems with implementing
static-only if-conversion, and introduces the simulation
environment that was used to obtain our results. A study of
the optimal time to perform certain dynamic optimizations

is discussed in Section 3 including a full description of two
case studies into the matter. The dynamic if-conversion
and reverse if-conversion algorithms and results are
presented in Section 0. Finally, Section 5 concludes the
paper and discusses future work.

2. Background

Many research groups are currently working on
developing infrastructures for dynamic optimization in one
of its many forms. Some groups work exclusively within a
given ISA, gearing their optimizations toward
reoptimizing for differing features of processors within a
processor family or user behavior [4][9][17][24][28].
Others work between ISAs. In this case, the final product
does the job of translating or emulating one instruction set
on a different instruction-set architecture [6][11][14].

In this work, lightweight, dynamic algorithms that can
be employed in any modern dynamic optimization system
are introduced. A new dynamic optimization infrastructure
is not proposed because the algorithms presented in this
paper are well suited for implementation in the systems
that currently exist. Because seamless integration of the
algorithms with current infrastructures is expected, it is
important to first become familiar with several dynamic
optimization infrastructures that are under development in
the research community.

Dynamo, a dynamic optimization system created at
Hewlett-Packard Laboratories is a native instruction
interpreter that optimizes program fragments (executable
program traces) and stores them in a software-based
fragment cache at runtime [4]. Based in the HP-UX
environment, Dynamo is transparent to a user, yet achieves
notable program speedup even without the use of runtime
optimizations. The base speedup is due to reduced
instruction cache misses for hot program fragments found
in the fragment cache. It is shown that programs originally
compiled with level-2 optimization (-O2) running under
the Dynamo dynamic optimization system perform as well
as the same program compiled with level-4 optimization (-
O4) running without dynamic optimization [4].

Morph, a dynamic optimization system developed at
Harvard University consists of several components that
perform the tasks of observing program behavior and
triggering optimization for Digital UNIX [28]. An
extension to the back-end compiler produces a shared
library containing useful information that may aid in later
reoptimization. A Morph manager observes data gathered
by a low-overhead profiling system built into Digital
UNIX and decides when to invoke optimization.

Researchers at the University of Washington have
developed an infrastructure for dynamic compilation called
DyC [9]. DyC consists of a declarative annotation
language and corresponding compiler. DyC’s static
compiler produces an executable that contains a combina-

tion of statically compiled code and a run-time specializer
for the portions of code where dynamic com-pilation will
occur. The run-time specializer allows code to be
optimized for various instances of run-time variables. A
dynamic template is created containing holes that will be
filled in at dynamic compile time, once the runtime values
are known. Custom dynamic compilers are implemented
within the code itself, which trigger the dynamic
compilation and throw away the corresponding template.

Other research endeavors that may fall under the
umbrella of dynamic optimization include, but aren’t
limited to, DAISY [6] and Crusoe [14]. DAISY is a set of
hardware features used to emulate code from existing
architectures on VLIW and other ILP machines. Because
code is dynamically translated and stored in a hardware-
based cache, dynamic optimizations may be applied to the
cached code. Crusoe consists of a low-power VLIW
processor and code-morphing software that performs the
task of translating x86 code to the native instruction set on
the fly. Dynamic optimizations are easily implemented in
the code-morphing software.

Each of the dynamic optimizers mentioned in this
section would require minimal adjustment to employ the
dynamic if-conversion algorithm presented later in the
paper. The justification for implementing this runtime
optimization requires an understanding of the limitations
of the current practice of static-only if-conversion.

2.1. The Problems With If-Conversion

If-conversion replaces a branch and its control
dependent paths with guarded (or predicated) execution
[2][21]. Rather than evaluating a branch condition and
conditionally executing only one control-dependent path,
both paths are executed and predicates control which
results are used. It is a means for converting control
dependences into data dependences.

BEFORE:

(1) if (cond) Branch L1
(2) r2 = MEM[A]
(3) r1 = r2 + 1
(4) r0 = MEM[r1]
(5) L1 : r9 = r3 + r4

AFTER:
(1) p1, p2’ = cond
(2) r2 = MEM[A] <p2>
(3) r1 = r2 + 1 <p2>
(4) r0 = MEM[r1] <p2>
(5) L1 : r9 = r3 + r4

Figure 1. A standard if-conversion example.

Much of the current research involving if-conversion is
based on the work done at Hewlett-Packard Laboratories.
Park and Schlansker present a basic if-conversion
algorithm called the RK algorithm [21]. The R function
specifies which instructions should be based on the same

predicate value, while the K function indicates the
conditions under which a predicate should be set to true.

If-conversion avoids the penalty incurred when a
branch is otherwise mispredicted. It is not a good idea to
if-convert all branches; in certain instances, it is better to
branch over a large set of instructions rather than
conditionally executing them. If-conversion works best
when attempts are made to reach a balance between
control flow and predication [3]. Yet a perfect balance is
not attainable at static compile time because little
information is known about the actual behavior of a
particular branch.

Mahlke et al. introduced compiler support for
predicated execution using the hyperblock [19]. The
hyperblock is used to increase the scheduling scope by
allowing the inclusion of speculative execution to
predicated instructions while also allowing for selective
inclusion of basic blocks based on frequency and size.
Mahlke then studied the impact of predicated execution on
branch prediction and discovered that 56% of dynamic
branch mispredictions are eliminated with predication
support [18]. Our work may be viewed as an extension of
the work done by Mahlke into the dynamic domain.

In addition, several other researchers have delved into
if-conversion. One example is the work of Klauser et al.
[15]. They describe a method for dynamically introducing
predication to architectures that do not already support it.
While their main objective was to provide hardware
support for the dynamic introduction of predication into
programs, our main goal is to use software and an ISA that
already supports predication.

2.2. Our Simulation Environment

The results of this paper are obtained using an EPIC-
style execution-driven simulator operating on the
SPECInt95 benchmarks using the reference inputs. The
LEGO back-end compiler [10][16], which is based on the
HPL PlayDoh Architecture [13], was used to schedule the
benchmarks. Treegion scheduling [10] was used,
combined with static if-conversion and most modern
optimizations that would be present in an EPIC compiler
such as loop unrolling, operation combining, aggressive
list scheduling, upward and downward code motion, and
support for multi-way branching. The branch predictor
modeled is a hybrid predictor (with four hybrid counters)
containing a PAS predictor (with 212 branch history
registers, each containing 10-bits of history information
and 2-bit prediction counters) and a Gshare predictor (with
212 rows in the Gshare table, 10-bits of history and 2-bit
prediction counters) [7][27]. The predictor has an average
accuracy of 95% on the SPECInt95 benchmarks and a
misprediction latency of 10 cycles [12].

3. Deciding When to Dynamically If-Convert

A challenging aspect of dynamic optimization is
deciding if and when to optimize a portion of code.
Dynamic optimizations should be performed as soon as the
profile information is available, yet it must be ensured that
the profile information is indicative of overall program
behavior. To further complicate the decision-making
process, time should not be wasted optimizing rarely
executed code. Instead, hot spots should be located in
order to focus on optimizing active portions of code. These
uncertainties warrant a study of the most favorable
optimization opportunities.

The dynamic if-conversion algorithm relies heavily on
the misprediction rate of the branches during the current
execution. Not only is it important to gather accurate
branch misprediction rates, but the profile data must also
be gathered early enough for the program to benefit from
dynamic if-conversion. Because dynamic profiling might
not be free (as in the case of Dynamo), the misprediction
rate of a branch is sampled and dynamic if-conversion
decisions are based on that sample rate. Therefore, an
important question is: How representative of the overall
misprediction rate is a sample misprediction rate? The
answer to this question varies depending on the heuristic
used to collect the statistics.

3.1. Sampling Based on First N Occurrences

One scheme for gathering sample misprediction data is
fairly straightforward. The misprediction rate for the first n
occurrences of a branch is tracked, then it is assumed that
the behavior of that branch will follow the same trend in
the future. Figure 2 shows the percent difference between
sampled and full misprediction rates, averaged over all
branches for the SPECInt95 benchmarks.

The results in Figure 2 were determined by comparing
the misprediction rate of various sample sizes (25, 50, 75,
100, 125, 150) to the actual misprediction rate of each
branch throughout the entire run. The sample sequences
are successive outcomes of a particular branch taken at the
beginning of program execution.

The rates were viewed as a set of Bernoulli trials [8]
and Bernoulli distributions were determined. A Bernoulli
distribution is a means for representing a trial with two
possible outcomes, in our case a misprediction or a correct
prediction. Next, the two distributions – the overall
outcome and the sample outcome, were compared using
the Kolmogrov-Smirnov test [1]. A 99% confidence
interval was chosen to determine the difference between
the two distributions.

Figure 2 shows that the average difference in the
misprediction rate of the SPECInt95 benchmarks for a
sample size of 25 branch occurrences, when compared to
the overall behavior of the branch, is around 7%. This

would equate to a misprediction rate of 17% in the sample
run as compared to a 10% misprediction rate overall. If the
sample size were increased to 150 branch occurrences, the
average difference drops down to around 2%.

0%

2%

4%

6%

8%

10%

12%

25 50 75 100 125 150

Sample Size

M
ea

n
D

if
fe

re
nc

e

compress go

ijpeg li

m88ksim perl

vortex gcc

average

Figure 2. The mean difference between sample (first n

occurrences) and actual misprediction rates.

0%

2%

4%

6%

8%

10%

12%

14%

16%

25 50 75 100 125 150
Sample Size

+/
- V

al
ue

compress go

ijpeg li

m88ksim perl

vortex gcc

average

Figure 3. Error values corresponding to a 99%

confidence interval.

A notable factor is that differences shown in Figure 2
have a delta error value when compared to the behavior of
a single branch because they are averaged over all
branches. These error values are shown in Figure 3. The
error values in Figure 3 encompass a 99% confidence
interval. For example, we are 99% certain that a particular
branch in the vortex benchmark will result in a
misprediction rate within 4% +/- 7%, or between -3% and
11% of the averages shown in Figure 2 (for a sample size
of 25). Figure 3 allows us to calculate the worst-case
scenario that can be expected when comparing sample
misprediction rates to actual rates for any given branch.

An important conclusion that can be drawn from Figure
2 and Figure 3 is that choosing the first n branch

occurrences as the sample for estimating overall branch
misprediction rate can be quite inaccurate for small values
of n such as 25 or 50. In the worse case, inaccuracies of up
to 26% may be seen. Sample sizes of 75 or greater result in
error values of less than 4% on average with an error of
less than 4% (or between 0% and 8%). Yet as the sample
size is increased, the benefits gained from dynamic
optimizations are reduced because the point at which the
optimizations are performed is delayed.

3.2. Adaptive Warmup Exclusion

Another approach for sampling misprediction rates
involves recognizing an end-of-warm-up (confidence)
condition and only then beginning to collect misprediction
statistics. Section 3.1 described a sampling heuristic that
compared the first n outcomes of a particular branch to its
overall outcome statistics for the entire program duration.
The problem with this approach is that the data was gather-
ed at the start of the program. The start of any program
typically has a high misprediction rate as the branch
predictors learn branch patterns. This behavior may not be
representative of the entire program behavior because the
misprediction rate of a particular branch often decreases
notably after the warm-up period, as shown in Figure 4 for
several hard-to-predict branches in SPECInt95.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 3 5 7 9 11 13 15 17 19 21 23

Increasing Time -->

M
is

pr
ed

ic
ti

on
 R

at
e

compress
gcc
li
perl

Figure 4. The misprediction rate over time (in

increments of 50 occurrences) for the first hard-to-
predict branch encountered for four benchmarks in

SPECInt95. A branch is considered hard-to-predict if
the final misprediction rate exceeds 30%.

The adaptive warmup exclusion sampling heuristic
attempts to recognize the stabilization of the branch
predictors on a branch-by-branch basis. Only when a
branch reaches the end of its warmup period does the
profiling of misprediction statistics for the branch begin.
Equation 1 describes the heuristic for detecting an end-of-
warmup condition. This equation attempts to recognize an

end-of-warmup condition as the point at which the branch
misprediction rate settles to within a threshold value (10%
for example) of the previous rate. The results of testing
this heuristic with a threshold value of 10% are shown in
Figure 5. The graph shows us that by ignoring the warm-
up period of the branch predictors, our average sampling
accuracy improves by 43% (dropping from 7% difference
to 4% difference).

 | PMISS_A – PMISS_B | < T (1)

PMISS_A = last misprediction rate
PMISS_B = this misprediction rate

T = threshold

0%

1%

2%

3%

4%

5%

6%

7%

25 50 75 100 125 150
Sample Size

M
ea

n
D

if
fe

re
nc

e

compress go
ijpeg li

m88ksim perl
vortex gcc

average

Figure 5. The mean difference between sample (first n

occurrences ignoring warm-up period) and actual
misprediction rate.

1.5%

2%

2.5%

3%

3.5%

4%

4.5%

10% 5% 1% 0.50%

Warmup Completion Threshold

E
rr

or

compress go
ijpeg li
m88ksim perl
vortex gcc
average

Figure 6. The effect of varying the warmup completion

threshold value.

Figure 6 shows the effect of holding the sample size at
a single value (50 occurrences) and varying the threshold
value from 10% to 5% 1% and 0.5%. As the graph

indicates, varying the threshold value results in minimal
changes to the mean difference between the sample and
actual misprediction rate. Figure 7 shows the average
number of branch occurrences required to trigger the end-
of-warmup condition.

0

100

200

300

400

500

co
mpr

es
s

gc
c go

ijp
eg li

m88
ks

im pe
rl

vo
rte

x

av
era

ge

 W
ar

m
up

 D
ur

at
io

n

10.0%

5.0%

1.0%

0.5%

Figure 7. Number of branch occurrences before

reaching end-of-warmup condition.

This study of the dynamic sampling heuristics provides
insight into the effectiveness and accuracy of dynamic
optimizations that are performed based on sampled
statistics. If the sampling heuristic is inaccurate, any
dynamic optimizations that make transformations based on
sample data are likely to be inaccurate or unnecessary and
may hurt overall program performance.

4. The Dynamic If-Conversion Algorithm

Dynamic optimizations may be classified as either
heavyweight or lightweight [4]. Heavyweight
optimizations make the largest impact on program perfor-
mance. Not surprisingly, heavyweight optimizations take
the largest amount of time to perform, and therefore may
not be feasible to perform at runtime. Lightweight optimi-
zations, on the other hand, can typically be performed at
runtime with a minimal impact on overall performance.

As mentioned earlier, dynamic if-conversion is a light-
weight, runtime equivalent of static if-conversion. It can be
used to if-convert branches that are performing poorly
during a particular run. It can also be used to ensure that if-
conversion is performed at all, as some compilers may not
have employed static if-conversion at compile time.

Dynamic if-conversion is based on a one-time
opportunity for each control-flow sequence. Sample
profile data is used to make one decision regarding
dynamic if-conversion for a particular branch or predicated
trace. While the algorithms may undo static if-conversion
decisions, they do not undo dynamic if-conversion
decisions. For example, static branches may be converted
to dynamic predication and static predication may be

converted to dynamic branches, but once converted no
attempts are made to reverse the decision. Since no
attempts to undo dynamic if-conversions are made, the
machine state doesn’t risk becoming unstable due to
continuous if-conversion and reverse if-conversion.
Therefore, a bailout mechanism is unnecessary for this
particular model.

4.1. Dynamic Forward If-Conversion

An opportunity for branch-to-predicate conversion, or
dynamic forward if-conversion, lies in branches that
exhibit hard-to-predict behavior. Actual branch behavior is
not known until runtime, and it may vary from one run to
the next [24]. A static decision whether or not to predicate
sections of code will clearly be inferior to one that takes
into account the current behavior of a branch during a
particular run.

Deciding when to dynamically convert a branch to a set
of predicated instructions is a matter of estimating the
cost-effectiveness of doing so. First of all, the branch must
be a forward branch. This restriction is put in place
because backward loops typically do not benefit from if-
conversion, as this would require completely unrolling the
loop [3]. Not only are loops highly predictable, but they
always require a branch before the epilog. This branch
cannot be converted to predication. In the case of loop
unrolling, the unrolled portions of a loop that end up
benefiting from branch conversion become forward
branches in the unrolling process.

The second requirement is that a candidate branch must
be on a hot path. The cost of converting a branch to
predicated code is typically amortized over the subsequent
uses of the section of code. Therefore, time and effort
should not be wasted on a branch that is not likely to be
encountered frequently.

 PMISS ∗ LMISS ≥ PHIT ∗ LHIT ∗ (1+error) (2)

 PMISS = odds of mispredicting branch
 LMISS = misprediction penalty
 PHIT = odds of correctly predicting branch
 LHIT = cycles to execute predicated instructions

Deciding whether or not to convert a branch to a set of
predicates is a matter of comparing the average latency of
either option. Equation 2 describes the dynamic if-
conversion decision. The left side of the equation estimates
the average penalty for leaving the branch as is. The right
side estimates the overall cost of removing the branch and
predicating the following set of instructions. The error
value mentioned in the right side of the equation
compensates for the error involved in determining the
branch misprediction rate as described in Section 3.1 and
Section 3.2. Since only a sample of the misprediction rate

has been gathered when Equation 2 is evaluated, the error
term compensates for the error with a 99% confidence
interval.

Branches over very large sections of code will typically
not be considered for forward if-conversion because the
cost of executing all of the predicated instructions on the
off path far outweighs the benefits of removing the branch
misprediction penalty. In the case of IA-64, where the
branch misprediction penalty is 10 cycles [12], most of the
converted branches will have a target address that is within
10 cycles of the branch instruction itself. Higher distances
are permitted in the case of unusually high misprediction
rates. The maximum value of the allowable branch
distance is shown in Equation 3.

 AT – AB > 0 (3)
 AT – AB < LMISS ∗ PMISS ∗ SINSTR

 AT = target address AB = branch address
 LMISS = miss penalty PMISS = miss rate
 SINSTR = instruction size

The basic concept is that the latency of a few predicated

instructions may be much smaller than the latency of a
potential branch misprediction. And if a branch

misprediction is likely to occur, it is better to convert that
branch to predicated instructions. The potential for a
branch misprediction is then eliminated and, often, the
predicated instructions can be scheduled into the holes
(NOPs) of the existing schedule.

Figure 8 and Figure 9 show the speedup gained from
employing dynamic if-conversion as well as the actual
number of branches that were converted to predicates for
SPECInt95. The overhead of dynamic if-conversion varies
depending on the implementation details of the dynamic
optimizer. The results were produced including an estimate
of the additional overhead that dynamic if-conversion
would incur over the base overhead of dynamic
optimization.

There was a great deal of variance in the number of
branches converted (from 1 to 215) and the corresponding
speedup (from 0.16% to 14.7%), yet no slowdown was
detected. On average, 46 branches were converted to
predicates for a speedup of 2.5%. Since 95% of
SPECInt95 branches are predicted correctly using the
PAS/Gshare predictor, dynamic if-conversion is designed
to reduce the latency of 5% of mispredictions. Figure 10
shows that on average, 25% of branch mispredictions are
eliminated through the use of dynamic if-conversion.

1.0078 1.0097 1.0133 1.0179
1.0069 1.0016 1.0016

1.0258

1.1477

1.00

1.04

1.08

1.12

1.16

compress gcc go ijpeg li m88ksim perl vortex average

Sp
ee

du
p

Figure 8. Speedup resulting from dynamic if-conversion.

1

215

102

5
20 9 6 14

46.17

0

50

100

150

200

250

compress gcc go ijpeg li m88ksim perl vortex average

N
um

be
r

of
 b

ra
nc

he
s

Figure 9. Number of branches dynamically converted to predicates for SPECInt95.

3.9%

18.7%
25.2%

7.2%7.2%
13.3% 11.1%

52.2%

87.7%

0%

20%

40%

60%

80%

100%

compress gcc go ijpeg li m88ksim perl vortex average

Figure 10. Percentage of branch misprediction eliminated by dynamic if-conversion.

4.2. Dynamic Reverse If-Conversion

While dynamic if-conversion is based on the notion that
some branches were not converted to predicated
instructions at compile time, the opposite scenario could
also be true. The compiler may have converted certain
basic blocks to sets of predicated instructions, yet those
predicates may turn out to be quite biased for a given run.
In this instance, it would be better if a branch guarded that
basic block to allow those instructions to be skipped
during execution.

Dynamic predicate-to-branch conversion, or dynamic
reverse if-conversion, converts sequences of predicated
instructions that are guarded by biased predicates back into
branches at runtime. The idea here is that the predicates
guarding the instructions evaluate to true so rarely that it
would be better to branch over the particular instructions
rather than to leave them as predicated instructions.

Equation 4 represents the dynamic reverse if-
conversion criteria. It is very similar to the branch-to-
predicate conversion algorithm in that it weighs the cost of
each option – leaving the instructions as predicated
instructions or converting them to branches.

 PPRED’ ∗ LPRED ≥ PMISS ∗ LMISS (4)

 PPRED’ = odds of false predicate
 LPRED = number of predicated cycles
 PMISS = odds of mispredict
 LMISS = misprediction penalty

The left side of the equation calculates the penalty of
leaving the instructions as a set of predicated instructions,
while the right side attempts to predict the penalty of
converting the predicates to a branch. The odds of
misprediction are not known for a set of predicates
because the branch predictor is not used for predicated
instructions. Therefore, the average misprediction rate for
the current branch predictor is used.

Figure 11 and Figure 12 show the speedup achieved by
employing the dynamic reverse if-conversion algorithm for
SPECInt95 along with the number of predicate traces
converted to branches for each benchmark. From the
graphs, we see an average speedup of 5% for converting
an average of 27 predicate traces back into branches. The
speedup in Figure 11 results from removing relatively long
sequences of instructions that had been guarded by a
typically-false predicate. Rather than enduring the
performance penalty of continually executing instructions
that are predicated on a false predicate, the predication was
converted to control flow, and a branch was placed before
the instructions. This branch allowed the control flow to
essentially skip over the offending instructions, resulting in
the speedup seen in Figure 11.

4.3. Possible Implementation

Because the algorithms presented in this paper are
lightweight, they can easily be implemented in a modern
dynamic optimization system with small overhead. Since
many dynamic optimizers already perform some sort of
hot-path detection, we can be assured that time will not be
wasted performing the optimizations on rarely executed
instructions.

While the algorithms do require some sort of profiling
structure to be in place, they are not limited to a pure hard-
ware or software solution. The requirement could be filled
using schemes ranging from the built-in performance moni-
tors planned for Itanium [12] to software structures such as
the branch and trace counters in HP Labs’ Dynamo [4].

Furthermore, incorporating the dynamic if-conversion
algorithms can improve the performance of other
algorithms already in place. For example, when combining
dynamic if-conversion with aggressive dynamic
rescheduling, the performance is better than additive.
Dynamic if-conversion creates many more optimization
opportunities for rescheduling because there is much more
flexibility in scheduling predicated instructions than
control-flow sequences.

1.1193

1.0000

1.0840

1.0401
1.0553

1.0420
1.0505

1.0131

1.00

1.02

1.04

1.06

1.08

1.10

1.12

1.14

compress go ijpeg li m88ksim perl vortex average

Sp
ee

du
p

Figure 11. Speedup resulting from dynamic reverse if-conversion.

3

121

0 3

2218
28 27.86

0

30

60

90

120

150

compress go ijpeg li m88ksim perl vortex average

P
re

di
ca

te
 T

ra
ce

s

Figure 12. Actual number of predicates converted back to branches.

5. Conclusion

In this paper, an effective algorithm for incorporating
dynamic if-conversion into a dynamic optimization system
is introduced. We begin by determining an optimal means
for tracking the misprediction rate of a branch and
recognizing the need for dynamic if-conversion. As it turns
out, if the warm-up period for a branch (defined as the time
it takes for the branch misprediction rate to settle to a value
within 1–10% of the previous value) is ignored, the error of
our sample misprediction rates drops from 7% to 4% for a
25-event sample. For larger sample sizes, the error drops
below 2%. The accuracy of the sample misprediction rates
is important because the rates form the basis of our
dynamic if-conversion algorithms.

Dynamic if-conversion was then introduced as a set of
algorithms that take into account actual branch and
predicate behavior to calculate the trade-offs of if-
conversion at a particular runtime instance. The algorithms
are lightweight – they can be implemented with minimal
impact on system performance, and they are universal –
they can be implemented in any dynamic optimization
system available without the need for specialized hardware.
By simulating the algorithms on an EPIC-style machine
employing the latest branch prediction scheme, speedup
values of up to 14.7% were observed.

This work opens the doors for many lightweight and
heavyweight dynamic optimizations. This paper did not
delve into dynamic rescheduling of dynamically if-
converted instructions. However, performance can
potentially be improved if aggressive dynamic rescheduling
were used in conjunction with dynamic if-conversion. This
is an interesting concept that should be explored further.

While this particular study focused on improving
performance, a well-designed dynamic optimization system
has great potential for venturing into other domains, such as
power reduction or fault-tolerance. In the domain of power
reduction, dynamic optimizations could be performed to
lower the number of bit-flips between successive
operations, thus reducing power use when necessary [26].
In the fault-tolerance domain, dynamic optimizations could
insert recovery code for aggressive optimizations into the
NOP slots of a schedule [23].

6. Acknowledgments

This research was supported through equipment and
cash donations from Hewlett-Packard Company and an
NSF CAREER award. We would like to thank the TINKER
research group and the independent reviewers for feedback
on earlier versions of this paper. We also wish to thank the
developers of the many tools necessary for simulating an
EPIC-style machine – Sergei Larin for Yula, a rebel-to-C

code generator; Matt Jennings for his instruction scheduler;
Chao-ying Fu for his instruction tracer that served as the
backbone of our simulations.

7. References

[1] Allen, A.O. Probability, Statistics, and Queueing Theory
with Computer Science Applications. 2nd Edition. Harcourt
Brace Jovanovich, Boston. 1990.

[2] Allen, J.R., K. Kennedy, C. Porterfield, and J. Warren.
“Conversion of Control Dependence to Data Dependence.”
Proc. of the 10th ACM Symposium on Principles of
Programming Languages, 1983, pp. 177-189.

[3] August, D., W. Hwu and S. Mahlke. “A Framework for
Balancing Control Flow and Predication.” Proc. of the
Thirtieth Annual IEEE/ACM International Symposium on
Microarchitecture, 1997, pp. 92-103.

[4] Bala, Vasanth, E. Duesterwald, S. Banerjia. “Dynamo: A
Transparent Dynamic Optimization System.” Proc. of the
ACM SIGPLAN ’00 Conference on Programming Language
Design and Implementation, 2000, pp. 1-12.

[5] Conte, T.M. and S.W. Sathaye. “Dynamic Rescheduling: A
Technique for Object Code Compatibility in VLIW
Architectures.” Proc. of the 28th Annual International
Symposium on Microarchitecture, 1995, pp. 208-218.

[6] Ebcioglu, K. and E. Altman. “DAISY: Dynamic
Compilation for 100% Architectural Compatibility.” Proc. of
the 24th Annual International Symposium on Computer
Architecture, 1996, pp. 26-37.

[7] Evers M., P. Chang and Y. Patt. “Using Hybrid Branch
Predictors to Improve Branch Prediction Accuracy in the
Presence of Context Switches.” Proc. of the 23rd Annual
International Symposium on Computer Architecture, 1996,
pp. 3-11.

[8] Gonick, Larry and Woollcott Smith. The Cartoon Guide to
Statistics. HarperPerennial. New York. 1993.

[9] Grant, Brian, M. Philipose, M. Mock, C. Chambers and S.
Eggers. “DyC: An Expressive Annotation-Directed Dynamic
Compiler for C.” Technical Report UW-CSE-97-03-03.
University of Washington. 1999.

[10] Havanki, W.A., S. Banerjia and T. M. Conte, “Treegion
Scheduling for Wide-Issue Processors.” Proc. of the 4th
International Symposium on High-Performance Computer
Architecture. 1998, pp. 266-276.

[11] How FX!32 Works. White Paper. Available at
http://www.digital.com/amt/fx32/fx-white.html

[12] IA-64 Application Developer’s Architecture Guide. Intel
Corporation. May 1999.

[13] Kathail, V., Schlansker, M., Rau, B. “HPL PlayDoh
Architecture Specification.” Hewlett-Packard Laboratories
Technical Report, February 1994.

[14] Klaiber, Alexander. “The Technology Behind Crusoe
Processors: Low-Power x86-Compatible Processors
Implemented with Code Morphing Software.” Transmeta
Corporation. January 2000.

[15] Klauser, A., T. Austin, D. Grunwald, B. Carter. “Dynamic
Hammock Predication for Non-predicated Instruction Set
Architectures.” Proc. of Parallel Architectures and
Compilation Techniques, 1998, pp. 278 - 285.

[16] The LEGO Compiler. Available for download at
http://www.tinker.ncsu.edu/LEGO

[17] Leone, Mark and Dybvig, R. Kent. “Dynamo: A Staged
Compiler Architecture for Dynamic Program Optimization.”
Technical Report #490, Department of Computer Science,
Indiana University. 1997.

[18] Mahlke, S., R. Hank, R. Bringmann, J. Gyllenhaal, D.
Gallagher, W. Hwu. “Characterizing the Impact of Pred-
icated Execution on Branch Prediction.” Proc. of the 27th
Annual International Symposium on Microarchitecture,
1994, pp. 217 - 227.

[19] Mahlke, S, D. Lin, W. Chen, R. Hank, R. Bringmann.
“Effective Compiler Support for Predicated Execution Using
the Hyperblock.” Proc. of the 25th annual Inter-national
Symposium on Microarchitecture, 1992, pp. 45 - 54.

[20] Mahlke, Scott. Exploiting Instruction-Level Parallelism in
the Presence of Conditional Branches. Ph.D. thesis,
Department of Electrical and Computer Engineering,
University of Illinois at Urbana-Champaign, 1996.

[21] Park, J.C.H. and M. Schlansker, “On Predicated Execution.”
Technical Report HPL-91-58, Hewlett-Packard Software
Systems Laboratory, May 1991.

[22] Romer, T., G. Voelker, D. Lee, A. Wolman, W. Wong, H.
Levy, B. Bershad, B. Chen, “Instrumentation and Optimi-
zation of Win32/Intel Executables Using Etch.” Proc. of the
USENIX Windows NT Workshop, 1997, pp. 1 – 7.

[23] Rotenberg, Eric. “AR-SMT: A Microarchitectural Approach
to Fault Tolerance in Microprocessors.” Proc. of the 29th
Fault-Tolerant Computing Symposium, June 1999, pp. 84-91.

[24] Sathaye, Sumedh. Evolutionary Compilation for Object
Code Compatibility and Performance. Ph.D. thesis,
Department of Electrical and Computer Engineering, North
Carolina State University, Raleigh, NC, 1998.

[25] Smith, Michael D. “Overcoming the Challenges to
Feedback-Directed Optimization.” Proc. of the ACM
SIGPLAN Workshop on Dynamic and Adaptive Compilation
and Optimization, January 2000.

[26] Toburen, Mark. Power Analysis and Instruction Scheduling
for Reduced di/dt in the Execution Core of High-
Performance Microprocessors. Master's Thesis. Department
of Electrical and Computer Engineering, North Carolina
State University, Raleigh, NC, August 1999.

[27] Yeh, Tse-Yu and Yale N. Patt. “Two-level Adaptive Train-
ing Branch Prediction.” Proc. of the 24th Annual Inter-
national Symposium on Microarchitecture, 1991, pp. 51 - 61.

[28] Zhang, Xiaolan, Z. Wang, N. Gloy, J. Chen and M. Smith.
“System Support for Automatic Profiling and Optimization.”
Proc. of the Sixteenth ACM Symposium on Operating
Systems Principles, 1997, pp. 15 - 26.

