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Abstract
During the last 15 years, embedded systems have
grown in complexity and performance to rival desktop
systems. The architectures of these systems present
unique challenges to processor microarchitecture, in-
cluding instruction encoding and instruction fetch pro-
cesses. This paper presents new techniques for reduc-
ing embedded system code size without reducing func-
tionality. This approach is to extract the pipeline de-
coder logic for an embedded VLIW processor in
software at system development time. The code size re-
duction is achieved by Huffman compressing or tailor
encoding the ISA of the original program. Some inter-
esting results were found. In particular, the degree of
compression for the ROM doesn’t translate into an im-
provement in instructions delivered per cycle. Experi-
ments found that when the missprediction penalty of the
added Huffman decoder stage was taken into account,
a Tailored ISA approach produced higher perform-
ance. Methods that compress the entire operation using
Huffman encodings, and decompress at ICache hit time
still achieved a median performance advantage, while
providing higher ROM size savings. All results were
generated by an optimizing compiler and tool suite,
and presented for an encoding similar to the Intel/HP
IA-64 architecture.

1 Introduction
The importance of embedded systems (ES) today is

easy to underestimate. During the last 15 years ESes
have grown rapidly in complexity and performance to a
point where they now rival the design challenges of
desktop systems. For example, ESes have a set of con-
tradictory requirements: ESes are expected to occupy
small physical space (e.g., low package count), be inex-
pensive, highly reliable-- and yet they are asked to take
on more and more complex functions. The specific ar-
chitectures of these systems present unique challenges
to processor microarchitecture, including instruction
encoding and the instruction fetch processes. This pa-
per presents new techniques for reducing embedded

system size and, indirectly, power consumption, with-
out reducing functionality.

A standard approach to building an ES is by using
an ASIC. On such a system, all code is stored in a
ROM and an on-chip commercial core processor is used
(see Figure 1). One problem with this approach is that,
with the growth in device functionality, the ROM size
multiplies. Soon it becomes the major cost defining
factor and bottleneck for instruction fetch (IFetch)
[1,3,14,27,28]. In addition, the code ROM is often im-
plemented on a separate chip, which involves familiar
difficulties associated with remote IFetch and off-die
power consumption. The challenge is to reduce the size
of the ROM without sacrificing functionality and per-
formance of the system. Several prior approaches to this
problem have either defined new instruction-set archi-
tectures (e.g., the ARM Thumb [25] or SGI MIPS16
[26]) or defined compression schemes without taking
the impact on IFetch into account (e.g., IBM CodePack
[9], Cooper and McIntosh [11]). (One notable exception
involves inferring subroutines from normal code se-
quences [14].) In contrast, this paper takes a unified,
compiler-driven approach to the problem. It presents
both code compression schemes and their correspond-
ing instruction fetch mechanisms. All results are gener-
ated using an optimizing compiler built for the task by
the authors.

With the growth of ES application complexity far
beyond familiar embedded DSP applications, the tradi-
tional ways of hand coding and optimizing have be-
come less and less effective and increasingly time con-
suming. The market requirements for a short design
cycle become a limiting factor. A practical way to use a
high-level programming language while maintaining
optimal target code quality is needed [3]. For example,
the TI 320C6xxx series of DSP processors are success-
ful in large part due to the vendor-supplied optimizing
compiler. This paper follows this trend by focusing on
compiler-driven code design for ES applications. Since
an ES is likely to execute a code base throughout its life
span, the compiler can generate an efficient custom-
tailored instruction set architecture (ISA) in addition to



optimizing the code. In this study the ISA is optimized
for space and cache performance, but it could also be
improved for power consumption, branch/data predic-
tion accuracy, or other purposes.
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Figure 1. Traditional ASIC Embedded System organiza-
tion.

This paper introduces a novel, unified approach to
solving code size issue together with the IFetch mecha-
nism. We use the natural flexibility of the ASIC ap-
proach to reduce the ROM size significantly (e.g., a
20% to 75% size reduction) without impacting the
performance of the system. On the contrary, some in-
creases (5-10%) in performance have been achieved
compared to an uncompressed implementation. We also
reduce the memory bus usage, which promise savings
in power consumption.
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Figure 2. Proposed approach to Embedded System design.

Another element of this work involves the use of
VLIW architectures for ESes, similar to the commercial
TI DSP processors [27]. In general, VLIW seems to be
a natural fit since many of the traditional VLIW prob-
lems are not applicable to ESes. There is almost no
code compatibility problem between generations. Sim-
pler hardware leads to higher performance and lower
power consumption when compared to an equivalent
issue-width superscalar architecture. Since extensive
information is available about the dynamic behavior of
the program, high quality schedules can be produced by
the compiler. The challenges are in static code size and
effective IFetch. The object code size difference be-
tween a VLIW and Superscalar is reduced by using the
zero-NOP encoding [7] and by restricting code dupli-

cation in the compiler to RISC-like levels. IFetch issues
have been discussed [7,8] elsewhere and are extended
in this paper.

What makes the approach in this paper possible is
the fact that many ESes use a PLA as a decoder for the
core processor, which in turn can be reprogrammed to
decode a custom ISA. The decoder’s structure is pro-
duced by the compiler, which has all the information
needed. The overall structure of such a system is pre-
sented in Figure 2. Thus the compiler plays a role in
dictating not only the ROM contents, but also the core
processor decoder logic.

The rest of this paper is organized as follows. Sec-
tion 2 describes code compression. In Section 3, the
IFetch tradeoffs are analyzed. Sections 4 and 5 propose
specific ways to implement an ICache. Section 6 dis-
cusses previous studies and their relation to this paper,
and Section 7 concludes the work.

2 Tailored Encoding and Compression
techniques

Traditionally, there are two general approaches to
reduction of program size. One is the reduction of the
number of assembly operations in the code
[8,11,12,14,26], and the other is the reduction of the
operation size [1,9,27,28]. Generally, these two ap-
proaches both try to increase the entropy of the code,
but in different ways. This means that applying both of
them to the same code often will not result in better
compression. This paper concentrates on reducing the
operation size. A separate study will consider VLIW ES
IFetch mechanisms for operation reduction techniques.

There are two possibilities to reduce operation size:
tailor the ISA or compress the code. The tailored ISA is
a new encoding which is generated for one particular
program/application, and best fits it’s characteristics.
After decoding of a tailored operation, the internal
processor signals are obtained. The compression of
code takes an existing encoding, and, according to the
static frequencies of elements in the source code, de-
termines the best way to pack it. Theoretically the for-
mer should yield better performance (e.g., no interme-
diate decompression needed), while the latter yields a
smaller code size. This paper finds that this intuition
holds even when the improved instruction cache per-
formance from caching compressed code is taken into
account.

2.1 Target Architecture Description
Our experiments are based on the TEPIC (TINKER

EPIC) Embedded architecture [10]. It is a 40 bit version
of the HP PlayDoh VLIW machine specification [20]
adapted for ES. (It is interesting to note that this en-



coding is very similar to the recently announced In-
tel/HP IA-64 ISA.) For the core processor, we assume a
6 issue machine with 4 units that can execute any in-
struction except for memory access and 2 universal
units (including memory accesses). The register files
are fixed to 32 GPRs, 32 FPRs and 32 predicate regis-
ters. The encoding formats for operations are shown in
the Appendix. This encoding is known as Zero-nop [7]
encoding and was designed to hide code expansion as-
sociated with VLIWs. RISC-like ops are combined into
VLIW multiops (MOPs) during instruction scheduling.
By use of some additional fields (i.e., the tail bit)
TEPIC does not have to store NOPs. We use the LEGO
optimizing compiler [6], which employs standard op-
timizations and global instruction scheduling using
Treegions [4,5,6] to schedule and optimize the code. A
modified version of the TINKER assembler is used to
generate custom encodings as well as the synthesizeable
Verilog for the decoders (where applicable, e.g., for
tailored ISAs). The output is runnable code that is
emulated via the TINKER YULA emulation tool. An-
notations are added by the compiler to emit an instruc-
tion address trace for cache simulations (these annota-
tions are not included when determining instruction
addresses or performing compression).

2.2 Compression techniques
In general, compression circumstances for embed-

ded systems are favorable, since the entire code image
is available statically for the compression algorithm. A
fast PLA-based hardware decoder is used for decom-
pression. The main issue is the complexity, and there-
fore size, of the decoder. There are several potential
compression algorithms to choose from. For this envi-
ronment, Huffman algorithm [2] produces near optimal
results. It also allows fast decompression at reasonable
real estate price [17,18]. For similar reasons, it was
used in several previous studies [1,9].

Integer ALU Operation

Integer Compare-to-Predicate Operation
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1    1     2             5  5                 5              2      8                              5            1             5
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1    1     2            5   5                  5             2            3               5                             5          1            5
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Figure 3. Stream Based Huffman Alphabet.

We consider three different ways to compose the
input alphabet for the Huffman algorithm. First is the
traditional byte-based method [1,2]. The code segment
is considered as a stream of bytes and compressed ac-
cordingly. As we will see shortly this method produces
the smallest decoding table and the simplest decoder.
Second is the stream-based approach. The idea behind
this approach is that certain fields in an instruction en-
coding exhibit more repetitive patterns when taken as
independent compression streams than when combined
with other fields (see Figure 3 and Table 2 in Appen-
dix). For example the OpType/OpCode fields of the
TEPIC instruction are set to ‘INT_OpType and
ADD_OpCode’ very often. The same is true for the
predicate field, which is most of the time is set to ‘true’.
According to this observation, alphabet streams are
fixed at certain operation field boundaries, as shown in
Figure 3.

The last approach to alphabet composition is to con-
sider the whole Op as a compression unit. This method
produces the largest decoding table but has the greatest
potential for compression. This result becomes more
understandable when one examines the generated
Huffman codes. Even with a large number of dictionary
entries, the size of the popular ADD instruction often
went down from 40 to 6 bits, and none of the codes ex-
ceed the original op size. In contrast, the maximum de-
gree of compression of either stream approach is the
sum of the maximum compression of all four streams,
which easily exceeds 6 bits in most cases.

The important observation is that combining two or
more compression strategies does not yield better com-
pression, since we are approaching entropy limit of the
program. One additional detail of Huffman compres-
sion involves symbol length. For some inputs, Huffman
will produce very long output codes that are incompati-
ble with IFetch hardware. The compiler keeps track of
such events and either alternates the compression proc-
ess (similar to the Bounded Huffman code described by
Wolfe [1], where some additional encoding is used) or
substitutes the rare instruction with an equivalent group
of more common ones (e.g. strength reduction).

2.3 Tailored Encoding
The idea behind Tailored encoding is to give the op

as much space as it needs but not to compress it other-
wise. This method still gets significant space savings
compared to the original ISA, but avoids decompres-
sion entirely. As the tailor-encoded instruction is de-
coded the core processor’s internal signals are obtained
directly. In this study, the Verilog code for the decoder
is produced by the compiler and used to configure the
PLA.



Tailored encoding generation is straightfor-
ward. If the program uses less than eight floating-point
operations, the FP OpCode field only needs three bits.
Similarly, after register allocation, if no more than four

registers of some type are live at the same time in some
source position, it needs only two bits, etc. The result is
an uncompressed, but compact version of the original
program (see Figure 4). While forming a tailored ISA,
some enhancement is possible for decoding. For in-
stance, if every instruction has its Tail bit, OpType and
OpCode fields in a fixed position (and possibly of a
fixed size), it significantly simplifies decoding (no
search needed). The compiler looks for opportunities
like this when it generates the tailored ISA.

The comparison between all methods is presented in
Figure 5 for the code segment only (see Section 3.3 be-
low). Six stream configurations where considered, and
the best two are shown in the Figure 5.

Figure 5. Different Compression Techniques com-
parison (code segment only).

In general, the choice of best possible stream encoding
is an exponential time task. The encodings presented
here were selected for the smallest code size (stream_1)

and for the smallest decoder (stream) among considered
variations. Also presented is byte-wise compression,
which views the image as a byte stream with no other
intelligence. This is in contrast to Full, which com-
presses the image on an operation by operation level
(40b each). Note the remarkable code size reduction
with the Full compression scheme (30% of original size
on average). But, as we will see in Section 3.4, it pro-
duces a very large decoder, which in turn might prevent
the use of it as the primary compression algorithm. The
tailored ISA approach produces code on the order of
64% of the original size, which can have favorable re-
sults for very little additional hardware overhead. Both
of these results neglect the address target table, which is
discussed in Section 3.3 below. It adds approximately
15.5% to the image size. The impact of the IFetch
mechanisms for both schemes are considered below.

3 Instruction Fetch Organization
A significant component of this paper is the joint

consideration of encoding and IFetch organization. The
fact that the ICache holds compressed instructions in-
creases its capacity and, as result, the overall through-
put. This leads us to a paradoxical conclusion that we
can improve overall performance of the system by ap-
plying a compression technique even though more work
must be done to interpret the code. The down side of
this is that cache control needs to be designed differ-
ently to handle compressed instructions. On the positive
side, the cache data path design is not dependent on any
particular encoding. This makes modular core proces-
sor design possible.

3.1 Program Layout
Let us define a block as a sequence of instructions

guaranteed (or likely to be) executed sequentially once
we start execution of the first instruction in the block.
The simplest example of a block is the Basic Block
(single entry and single exit point). More sophisticated
examples are a sequence of basic blocks with no side
entrances (like Superblocks [21] or Fisher-style Traces
[15]). Let us consider the simplest type for now, the ba-
sic block (BB). A BB can be treated as an atomic unit
of instruction fetch (see Figure 6).

This implies that the cache can be accessed initially
for the first op in the BB. After this, the cache can then
supply ops in a streaming fashion until the end of the
BB is reached. Then the next BB is predicted. This is a
valid approach for the following reasons. First, control
transfer can only occur to the first op of a BB. Second,
a BB should always be executed from the beginning to
the end unless an interrupt has occurred, and even then
its execution will be completed after the interrupt has

Figure 4. Tailored Encoding Example

a) Original ADD Operation

T  S   OPT  OPCODE PREDICATE

1    1     2             5  5                 5              2      8                              5            1             5

   Src1        Src 2        BHWX         Reserved                          Dest       L1  
390

b) Tailored  ADD Operation

T   S  OPCODE

1    1           6     5              5              2                           5                 1

   Src1        Src 2        BHWX               Dest                L1  
250

c) Original Store Operation

T  S   OPT  OPCODE PREDICATE

1    1     2             5  5                 5              2           2        11                                    1            5

   Src1        Src 2        BHWX  TCS          Reserved                              L1  
390

d) Tailored Store Operation

T    OPT  OPCODE

1        2           5  4                 1               1                 5

   Src1        Src 2        L1               Dest              
180
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been handled (here subroutine calls are considered to be
branches that end a BB). All the necessary NextPC
computations local to the block are done within the
cache and are hidden for the processor core as long as
correct VLIW group is forwarded to the decoder every
cycle.

{  A
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BB_1:
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{  E
    F
    G  }

BB_2: {  X
    Y  }
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Figure 6. Atomic Block structure

Use of more complicated blocks is a matter of per-
formance, not correctness. If the block is allowed to
have side exits, we should guarantee that they are not
taken frequently (or we will over-pollute the ICache).
This is true for superblocks and Fisher-style traces,
which are formed at compilation with the use of profile
information. But it is also true that for complex blocks
some additional invalidation mechanism is needed.
However, in this study we only consider BBs. (Note
however that the code is scheduled by first building
trees of basic blocks (i.e., treegions), then decomposed
into basic blocks after scheduling.)

3.3 Address space considerations
A critical issue for execution of any compressed

program is the change in branch target addresses. Some
kind of translation must be done. One solution is to
convert the original branch targets to the compressed
ones at compilation. It could be done in two passes:
first, new code layout and new target addresses are gen-
erated (with enough space left for later ‘plug in’ of new
targets in relative branches), then on the second pass,
new addresses are inserted into the target slots and
jump tables are updated. This method better fits tailored
ISAs than compressed ones because compressed code
with new targets will have to be recompressed with
certain restrictions (or branch instructions should re-
main uncompressed) while the tailored code stays un-
compressed naturally.

Another solution to the branch target problem is to
leave the original target addresses the way they are (just
compress them along with the rest of the code) and
provide a dynamic translation mechanism at run time.
This approach is very well known in general purpose
computing for mapping of virtual address space to the
physical one via the TLB. Similar hardware, named

Cache Lookaside Buffer (CLB), is also employed in
studies by Wolfe, et al. [1,16] and proven to be effec-
tive. We use a similar approach to map the original ad-
dress space to the compressed one with compiler aid.
The hardware is called the Address Translation Buffer
(ATB) and the static table is the Address Translation
Table (ATT). The ATB holds pairs of addresses, which
maps the original address space to the compressed one
along with information to aid decoding and Next PC
computation. The ATT has one entry per each block. It
is generated by the compiler and stored in code memory
in compressed form. Portions of it are uploaded to the
ATB as needed. Due to the normally high spatial local-
ity, the ATB has a very low level of contention and the
ATT has small static size (see Figure 7). In general, the
ATT adds approximately 15.5% to the size of the
ROM.

The additional information in the ATB includes the
number of memory lines that need to be fetched in or-
der to get the whole block and the number of ops in the
block (or simply the number of VLIW groups in the
block). (For simplicity, we will refer to VLIW groups as
MultiOps or MOPs for the remainder of the paper).
Each MOP is encoded as a collection of ops. This is
done by using a dedicated tail bit in every op, which is
set only for the last op in a MOP [7]. At run time the
ATB provides the following information: the address of
the requested block in compressed memory, the PC of
the last op in the block, and the predicted PC of the
following block. This is enough to fetch blocks in pipe-
lined fashion.

Figure 7. ATB Characteristics. Total code Size.

The next issue in this category is ROM access. The
vast majority of modern memory systems support only
byte or word aligned accesses. This puts some, but not
critical, limitations on code placement in a compressed
stream. We address this by aligning the first op of a
block to byte boundaries. All consecutive ops are se-
quentially placed in memory.
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3.4 Instruction cache design
The instruction cache is a critical element of any

high performance system and especially important for
this study. The main ICache tradeoff in a compressed
system is what address space it belongs to. In other
words, whether it holds compressed or uncompressed
ops. Most of the researchers [1,8,9] uncompress their
instructions prior to putting them into the ICache but a
compressed cache is able to hold several times more
instructions than an uncompressed one. The only prob-
lem is that some work must be performed at the hit
path, which potentially increases the branch misspre-
diction penalty (if the cache is pipelined) or stretches
the cycle time. However, since the height of the cache
can be reduced now with no loss in performance, cycle
time stretch is less likely.

The next issue is the NextPC calculation. A cache
that supports a zero NOP encoding employs a NextPC
calculation mechanism [7,8] that is applicable to this
study as well. Let us differentiate the NextPC within a
block and the NextPC of the next block. The NextPC
within a block does not need to be predicted since by
definition we are going to fetch the block till the end,
but rather can be locally calculated with dedication of
some additional hardware [8]. This hardware (along
with access pattern) varies with placement and invali-
dation policy. If a block is atomically (sequentially)
placed in the cache, intermediate instruction accesses
do not have to be checked for validity (we only check
against the provided LastPC to determine when the
block ends). This will be called the restricted placement
model.
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In a VLIW processor, all ops in a MOP must be is-
sued together. If pieces of the block are allowed to be
scattered around the storage, we need to generate an
intermediate PC for each MOP, and locally ‘reaccess’
the cache to check if we have the valid data present. In
the latter case, all additional information (individual
MOP length, for instance) could be extracted from the
fetched block during miss repair time. In the tailored
ISA approach, this is especially easy to do since the size

of all ops of the same type and code is the same, and
location of this information are fixed within an op (see
Section 2.3). For the compressed encoding approach,
this information might be generated by the compiler
and stored with the ATT in compressed form. Never-
theless, in the current study, we use the restricted
placement model. The Next PC of the next block is the
more traditional branch target problem. It needs to be
dynamically predicted if we want to achieve full capac-
ity for the IFetch pipeline. This prediction is more im-
portant if sophisticated IFetch is used. In the current
study, we coupled the branch prediction table with the
ATB. This means that for every block entry, there is
one branch predictor with taken/not-taken and target
address prediction information. It predicts the outcome
of the last instruction of the block (which by definition
is often a branch). To predict the outcome of the
branch, a two-bit saturating counter is used [13]. To
predict the target address, the ‘last-target address’ (if
branch predicted taken), or next sequential address
(otherwise) predictor is used. Theoretically more com-
plex branch predictors could be used (e.g., gshare or
PAs Yeh/Patt predictor) since likely there will be sev-
eral cycles to access the prediction unless the code has
multiple sequential branches with no other computation
in between.

The baseline cache that was selected for this study is
the Banked Cache we described in [7,8]. Originally de-
signed to fetch variable length MOPs, it fits all the re-
quirements outlined earlier in this section. The struc-
ture of it is depicted in Figure 8. The storage of the
cache is separated into two banks, similar to the one in
the Intel Pentium processor [19]. The bank line size is
equal to the maximum size MOP, which in turn is pro-
portional to the issue width of the processor core. A
MOP can begin at arbitrary locations and span two
cache blocks but still can be extracted in one reference
to the bank storage. Two blocks are brought down to
the alignment stage on cache hit-- the block that was
referenced by the PC, and the next sequential block. If
the beginning of a MOP resides in Bank1 at index N,
the next sequential block is taken from Bank0, index
N+1. The MOP is guaranteed to be within these two
cache blocks. Then the alignment hardware scans ops
for Tail bits (which mark boundaries of a MOP), and
extracts the MOP. NextPC is locally computed in par-
allel with the alignment stage. More details on the
baseline Banked Cache design can be found in [7,8].

3.5 Decoding complexity
Since, in the case of code compression, we choose to

place decoding on the critical path of the IFetch
mechanism, it should be made as efficient as possible.



In essence it is now a critical factor for the compression
algorithm’s selection. As we mentioned before, the
compiler generates a Verilog description of the decoder
that is used to program the PLA (after possible optimi-
zation). In the case of the Tailored encoding, this
problem is somewhat less critical. Decoding of tailored
instructions is a part of the processor pipeline. Never-
theless, compared to the traditional fixed-size-op de-
coder, it is more complex.

             

‘0 ’

‘1 ’

‘0 ’

‘1 ’
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k
m

Figure 9. The Huffman Tree decoder structure

As a method of comparison of the Huffman decoder
size (a simplified cost function), we can evaluate the
complexity of a corresponding Huffman tree. If we
imagine the structure presented in Figure 9 (where n is
the longest Huffman code size, k is the number of en-
tries in the Huffman dictionary and m is the longest
dictionary entry size), it is possible to derive an equa-
tion to estimate the worst case decoder complexity. It is
not intended to suggest real hardware implementation,
only as a criterion for evaluation. The worst case num-
ber of elements (transistors) in a Huffman decoder can
be expressed as follows:

This equation assumes multiplexer implementation us-
ing CMOS transmission gates (TG) (two transistors per
multiplexer) and accounts for the fact that the first row
passes constants and needs only one transistor to oper-
ate. Elements to form inverters are included as well.
Assuming this model, we can evaluate complexity of
the various Huffman decoders (see Figure 10). This
Figure in conjunction with Table 1 allows us clearly to
see the tradeoff between decoder complexity and degree
of compression. The best compression algorithm
(Huffman Full) yields the largest decoder size. This re-
lationship is not necessarily linear. Byte-wise compres-
sion yields an intermediate degree of code size (72% of
the original image size) yet has the smallest decoder
(See Figure 5). The worst Huffman compression
scheme, Stream, achieves approximately 75% of the
original image size, yet has a significant decoder com-
plexity. The reason is the limited input width and dic-
tionary size of Byte-wise compression.

Practical implementations of the Huffman decoder

in hardware have been proposed in two studies [17,18].
Both are strongly dependent on implementation
(MPEG-2 decompression for example), but generally
can achieve 300-600 Mbit/sec for a table with 114 dic-
tionary entries and codes in the range of 1 to 16 bits.
The real-estate budget ranges from 10,000 to 28,000

transistors. This data allows an assumption for the time
needed to decompress the code. For the 20-50ns cycle
times typical in embedded processors, we can assume
that a decoding of 40 bits (the op size in the baseline
TEPIC architecture) is practical. Therefore, it is as-
sumed that one op could be decoded in a cycle (or we
can say that the time to decode one op defines the cycle
time). Note that all these assumptions are only relevant
for Compressed encodings, and do not apply to Tailored
encoding.

4 The ICache design for Compressed En-
coding

The implementation of the ICache for compression
is designed to lessen the impact of decompression time
on the IFetch rate. One block is decompressed at a time
and is held in a buffer, which is accessed in parallel
with (but has priority over) the main cache. This buffer
is organized as a small fully associative cache. In gen-
eral, the whole structure could be seen as two-level
ICache, where decoding is done at miss time of the L1
cache and the buffer is in essence an "L0" cache. The
main cache storage is organized as the Banked Cache
described in Section 3.4. It has double bank storage and
an alignment network to guarantee fetch of a whole
MOP in pipelined fashion. Coupled with the ATB, it is
accessed only for the first op in a BB and keeps sup-
plying MOPs until the end of the block when the next
block’s address is predicted. The size of the L0 buffer
was set at 32 op entries (160 bytes). From our experi-
ments there are indications that tight, frequently exe-
cuted loops (like DSP kernels) fit into the buffer com-
pletely, which will result in equivalent performance to
an uncompressed cache. In addition, some researchers
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[23] indicate that similar organization might contribute
significantly to low-power design, since the buffer
cache filters out power-consuming accesses to the
larger L1 cache. The structure of the whole system is
depicted in Figure 11. The pipeline stages are outlined
on the diagram and detailed cycle count assumptions
can be found in the Table 2 of the Appendix. To

summarize, the differences of this cache from the base-
line cache are: an additional pipeline stage on the hit
path (decompressor), the L0 buffer, and the different
(restricted) placement policy.
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Figure 12. The ICache for Tailored encoding

5 The ICache Design for the Tailored ISA
The objectives for the tailored ISA cache are quite

different from the compressed encoding cache: ops are
stored in a form ready for consumption by the core de-
coder. However, it also uses the Banked Cache as its
core design element. The key difference is the logic in
the miss path which is responsible for extraction and
placement of MOPs in the storage. It also plays the role
of prefetch engine to guarantee that a whole block is
residing in the cache according to the restricted place-

ment policy. If parts of a block are overwritten, it takes
care of invalidating the rest of it. The overall organiza-
tion is shown in Figure 12. The hit path (similarly to
the Banked Cache) has only one extra stage for align-
ment of ops. The main difference from the baseline is
an extra stage on the miss path and a different place-
ment policy. Branch prediction is still used (associated
with the ATB) to ensure high pipeline utilization. For a
detailed summary of all the performance penalty as-
sumptions, please refer to the Appendix.

For the experiments we chose moderately sized
caches on scale suitable for an embedded system:
16KB, 2-way set associative. The baseline requires a
block size that is a multiple of the TEPIC 40bit op size,
so its effective size is slightly larger: 20KB, 2-way set
associative. All results are summarized in Figure 13.
The metric is a measure of instructions (operations) de-
livered per cycle. The issue width for the core is six op-
erations. The average for the “Ideal” is limited by per-
fect cache and branch predictor performance. “Base” is
for uncompressed code, whereas “Compressed” uses the
Full op compression scheme and “Tailored” is for Tai-
lored ISAs. It is particularly interesting to note that
both Compressed and Tailored exceed Base on average,
although Compressed does worse than Base for several
benchmarks (compress, go, ijpeg and m88ksim). This is
due to the higher missprediction/miss repair penalties
for Compressed compared with Tailored.

The next interesting result is the amount of bus
traffic due to instruction cache misses. It is one of the
defining factors for power consumption, especially if
the ROM is placed on a separate die. In the experi-
ments, power is modeled by counting the number of
transactions on the memory bus when bits are flipped.
The summary is shown in Figure 14. The results track
the degree of compression and show savings for Tai-
lored and Compressed over Base. This is because each
of the compression schemes brings in more instructions
for a given number of bit flips.

One interpretation of the combined results of Fig-
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ures 10, 13-14, is that Tailored ISA encodings have
more advantages than are otherwise obvious from the
degree of compression data in Figure 5. Because they
do not require an added decoder (as opposed to Huff-
man-based schemes), there is a net savings in the proc-
essor core that can be significant. What is more inter-
esting is that, although Tailored achieves a lower over-

all cache utilization, the missing extra cycle of branch
missprediction penalty more than makes up for this ab-
sence in overall performance.

6 Previous work in depth
In the past there were several similar studies in this

area [1,8,9,11,16], as mentioned in the introduction. In
several works by Wolfe, et al. [1,16], a technique to
execute compressed programs on embedded RISC ar-
chitectures was studied. Besides diversity in target ar-
chitecture, the difference from the current study is in
the unified approach to compression. While using the
Huffman algorithm, one common histogram was built
for a set of all experimental benchmarks and only a
byte-based alphabet was considered. The goal was to
create a single encoding for a fixed architecture. This is
important when building a general-purpose system but
less important for embedded applications. Code is un-
compressed on the miss path, but the study does not
discuss ICache/IFetch design issues.

Industrial solutions include the IBM CodePack
[9], the ARM Thumb [25] and the SGI MIPS16 [26].
The first uses Huffman compression, while the latter
two provide special compact subsets of the original
ISA. Subset ISAs reduce flexibility, which ultimately
results in increased op count and causes slower running
applications. CodePack also has the disadvantage of
keeping the ICache uncompressed, with the conse-
quences described earlier in this study.

Cooper and McIntosh [11] spend most of their effort
reorganizing code at the assembly level via suffix-tree
code compression. They reported very moderate com-
pression levels (5-15% reduction). A series of work by

Fraser, et al. [8,12] considers elaborate compression
algorithms on assembly level code with the same lack
of attention to IFetch. The experimental results in this
paper show that neglecting IFetch performance may
lead to incorrect conclusions about the appropriate
scheme to implement.

An interesting study by Liao, et al. [14] employs an
effective compression algorithm (External Pointer
Model by Storer and Szymanski [22]) on assembly level
code with an average of 30% code size reduction. Two
implementations, software-only and ‘call-dictionary’
are considered. Both increase the number of branches
in the code and (reportedly insignificantly) the op
count. Also due to high granularity, some opportunities
for compression are missed, and as with CodePack,
IFetch uses decompression at miss time.

7 Conclusions
In this paper we have presented a novel approach to

reduction of both static and dynamic program size. This
approach is to extract the pipeline decoder logic for an
embedded processor in software at system development
time. The code size reduction is achieved by Huffman
compressing or tailor encoding the ISA of the original
program. This paper also details the design of IFetch
mechanisms for these compression schemes and dis-
cusses their performance and cost. Some interesting re-
sults were found. In particular, the degree of compres-
sion for the ROM doesn’t necessarily translate into an
improvement in instructions delivered per cycle. Ex-
periments found that when the missprediction penalty
of the added Huffman decoder stage was taken into ac-
count, a Tailored ISA approach produced higher per-
formance. Nevertheless, pipeline performance is not
always the central goal of embedded systems. Methods
like the Full op compression scheme that operates at
ICache hit time still achieved median performance ad-
vantage over the baseline, while providing significant
ROM size savings.

Future work will include consideration of different
compression schemes beyond Huffman, the effects of
more elaborate branch prediction mechanisms, and us-
age of complex blocks as fetch units.
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Appendix

Base Tailored Compressed
Next Block Cache Hit Buffer Hit 1cycle 1cycle 1cycle
prediction Buffer Miss 1cycle 1cycle 1+(n-1)
Correct Cache Miss Buffer Hit 1+(n-1) 2+(n-1) 1cycle

Buffer Miss 1+(n-1) 2+(n-1) 3+(n-1)
Next Block Cache Hit Buffer Hit 2cycles 2cycles 1cycle
prediction Buffer Miss 2cycles 2cycles 2+(n-1)
Incorrect Cache Miss Buffer Hit 8+(n-1) 9+(n-1) 1cycle

Buffer Miss 8+(n-1) 9+(n-1) 10+(n-1)

Table 1. Cache study cycle count assumptions summary. Note that Base and Tailored do not employ a buffer,
which is why Buffer Hit/Miss have no effect

Legend: T  – tail bit to assist Zero-Nop encoding;
S – Speculative bit, marking speculated instruction;
OPT, OPCODE – Type and Code of the operation;
Srcx,Destx – Souce and destination fields;
BHWX – Byte/Half-word/Word/Double-word operand types;
LU – Lower/Upper part of a register is being accessed;

Table 2. Summary of the baseline TEPIC ISA.

Integer ALU Operation

Integer Compare-to-Predicate Operation

T  S   OPT  OPCODE PREDICATE

1    1     2             5  5                 5              2      8                              5            1             5

T   S  OPT   OPCODE PREDICATE

1    1     2            5   5                  5             2            3               5                             5          1            5

   Src1        Src 2        BHWX         Reserved                          Dest       L1

   Src1         Src2         BHWX    D1        Reserved                 Dest       L1

390

Integer Load Immediate Operation

T   S  OPT   OPCODE PREDICATE

1    1     2            5 20                 5          1            5

   Src1                       Dest        L1

Floatin Point Operation

T   S  OPT   OPCODE PREDICATE

1    1     2            5   5                  5            1                    6                      3              5          1            5

   Src1         Src2         S/D           Reserved             tssL/U     Dest       L1

Load Operation

T   S  OPT   OPCODE PREDICATE

1    1     2            5   5                 2         2       1        2               3               5           5          1             5

   Src1       BHWX  SCS  Res   TCS           Reserved  Lat      Dest      Rsv

Store Operation

T   S  OPT   OPCODE PREDICATE

1    1     2            5   5                  5             2            2                       11                               1            5

   Src1         Src2         BHWX    TCS               Reserved                      L1

Branch Operation

T   S  OPT   OPCODE PREDICATE

1    1     2            5   5                  5                  16 5

   Src1        Counter                  Reserved


