
Tree Traversal Scheduling: A Global Scheduling Tree Traversal Scheduling: A Global Scheduling
Technique for VLIW/EPIC ProcessorsTechnique for VLIW/EPIC Processors

TINKER Research Group
Department of Electrical & Computer Engineering
North Carolina State University

Huiyang Zhou
Matt Jennings (BOPS Inc.)

Tom Conte

2

Presentation OutlinePresentation Outline

• Introduction
• Tree Traversal Scheduling (TTS) Algorithm
• Efficient Data Flow Analysis in TTS
• Simulation Methodology
• Results
• Conclusions

3

IntroductionIntroduction

• Global Scheduling
– Arrange the order of the instructions to minimize the

execution time and maintain the program semantics.
– Schedule instructions beyond the basic block scope.
– Containing two phases in Treegion framework:

• Treegion formation & treegion scheduling

• Treegion
– A single-entry / multiple-exit nonlinear region with CFG

forming a tree (i.e., no merge points and back-edges in a
treegion)

– Basic scheduling unit in tree traversal scheduling (TTS)

4

IntroductionIntroduction

• Treegion Formation
– Treegion is formed only based on the program CFG.

BB1

BB2 BB3

BB4 BB5

BB6

BB7

Treegion 1

Treegion 2

Treegion 3

5

IntroductionIntroduction

– Treegion enlarge optimization: tail duplication at merge
points

– Treegion formation algorithm [W. A. Havanki, et.al. HPCA-
4]

BB1

BB2 BB3

BB4 BB5

BB6

BB7

BB6’

BB7’

BB7’’

Treegion 1

6

IntroductionIntroduction

• Treegion Attributes
– Only depending on the topology of the program’s CFG,

which makes it suitable for dynamic optimization
– Containing multiple execution paths

• Potential to speedup multiple paths
• Large scheduling scope for ILP extraction
• High resource utilization for wide issue processors

• LEGO: the ILP research compiler developed by Tinker
Research Group at N. C. State University

www.tinker.ncsu.edu

7

YULA (code generator)

Profile studio
profiler (arc, block, path) / trace annotator

Cluster assigner

WELD: Treegion based multithread

Iterative modulo scheduler

I- & D-
cache

Branch
Predictor

VLIW/EPIC
Processor Timing Simulator

LEGO IR
library

generic opt
support

Global Scheduler

IR file I/O

C (inline
emulation)

analysis
routines

Jointly developed by:
Prof. Tom Conte

and his students

Intermediate code:
Elcor compatible
PlayDoh semantics
CFG-based

Register allocator

Munger
high-level IR to low-level IR translation

Classical Optimization

MDES2
machine desc

library

LEGO Front-end

Treegion formation

8

Tree Traversal Scheduling AlgorithmTree Traversal Scheduling Algorithm

• Objective
– Speedup each execution path in a treegion
– If profile information is available, speedup up each path

based on its execution frequency

• Common Scheduling techniques
– List scheduling
– Renaming
– Speculative code motion

9

Speculation in a treegionSpeculation in a treegion

• Over-aggressive speculation
– May cause the delay to non-speculative instructions due to

the contention of machine resources

• Over-conservative speculation
– The operation latencies are not hidden enough. Less a

problem for wide issue processors

Cycle n: add r5,r6,1 add r7, r8, r6

Cycle n+1: add r11, r8, r10 ld r9, r10,5

Cycle n+2: br bb2, r5>100

Sch_Time ALU/BR ALU/LD

Average execution time: 4 cycles

1: add r5, r6, 1
2: br bb2, r5 > 100

3: add r7, r8, r6
4: add r11, r8, r10

5: ld r9, r10, 5

80 20

Basic block 2Basic block 1

10

Speculation in TTSSpeculation in TTS
• Solve over-aggressive speculation by a cycle based

scheduling with prioritizing the instructions according to:
(a) Execution frequency
(b) Exit count [Deitrich, et.al., MCIRO29] heuristic to

resolve ties from (a), and
(c) Data dependence height to resolve ties from (b)

• Allow early schedule of branches even with downward
code motion

Cycle n: add r5,r6,1 add r7, r8, r6

Cycle n+1: br bb2, r5>100 add r11,r8,r10

Cycle n+2: (ld r9, r10,5)

Sch_Time ALU/BR ALU/LD

Average execution time: 3 + 2*0.2 = 3.4 cycles

1: add r5, r6, 1
2: br bb2, r5 > 100

3: add r7, r8, r6
4: add r11, r8, r10

5: ld r9, r10, 5

80 20

Basic block 2Basic block 1

11

TTS AlgorithmTTS Algorithm

• Step 1. Construct the control/data dependence graph and
perform instruction ordering.

• Step 2. Cycle scheduling of the instructions in a treegion
a. For each cycle, select the candidate operation according to

the order of Step 1.
b. If machine resource is available for the candidate operation,

check for whether the scheduling of the candidate is
speculative.

c. For the speculative code motion, check whether the
renaming is necessary to support the speculation.

d. If the candidate is a branch operation, downward code
motion and multiway branch transformation may result.

12

Scheduling of Branches in TTSScheduling of Branches in TTS

current_block
current_op

if p, br

current_block
current_op: if p1, br1

if p2, br2candidate_op

Inst i: add r2, r3, 1
Inst i+1: ld r4, r2

current_block current_op: if p2, br2 if p1, br1

Inst i:
Inst i+1:

Inst i:
Inst i+1:

Inst i:
Inst i+1:

Inst i:
Inst i+1:

13

Logic View of TTS Logic View of TTS

1. For a treegion, sort the basic blocks according to a depth-first traversal
order with the child block selected with highest execution frequency.

2. Start list scheduling at the root basic block.

3. During the scheduling of a basic block, consider speculation for
instructions dominated by this basic block.

4. After scheduling the block-ending branch, traverse to the next basic
block and go back to 3.

BB1

BB2 BB3

BB4 BB5

BB7

80 20

60 20

10 50

BB6

•Traversal order:
BB1, BB2, BB4, BB7, BB6, BB5, BB3

•High resource utilization from speculation
of dominated instructions.

•Reducing resource contention: e.g., when
scheduling BB4, the instructions in BB5 will
not compete for the resources.

14

Incremental Data Flow Analysis in TTSIncremental Data Flow Analysis in TTS

• Motivation
– The data flow analysis (liveness, reaching definition)

obsolete due to code motions in TTS.
– Recalculation takes too much computation time
– Solution: incremental update (not accurate but conservative)

• Data flow analysis based on different categories of
renaming (based on the renaming scope)
– Speculation without renaming
– Speculation with local renaming
– Speculation with renaming with a copy
– Speculation with global renaming

15

Data flow analysis for speculative code motion Data flow analysis for speculative code motion
without renamingwithout renaming

• Example

• Incremental update
– liveness is extended for the destination operand and added to

each edge that the instruction traverse
– Conservative liveness may cause unnecessary renaming (most of

them are simple to process)
– No changes in reaching definitions

add r1, r2, r3 (*)

edge 1 edge 2

Live(edge 1) = {…} Live(edge 2) = {r2, r3,…}

add r1, r2, r3

edge 1 edge 2

Live(edge 1) = {…} Live(edge 2) = {r2, r3,…} ∪ {r1}

current_block current_block

16

Data flow analysis for speculative code motion with Data flow analysis for speculative code motion with
local renaminglocal renaming

• Local renaming is used when the renaming scope is within the
treegion

• Incremental update
– No change to liveness and reaching definitions

add r1, r2, r3 (*)

edge 1 edge 2
Live(edge 2) = {r2, r3,…}

add r10, r1, 1

add r3, r2, r1 add r2, r1, r3

r1 liver1 live

r1 not live
r1 not live

r1 not live

r1 live

add rk, r2, r3

edge 1 edge 2
Live(edge 2) = {r2, r3,…}

add r10, r1, 1

add r3, r2, rk add r2, rk, r3

r1 liver1 live

r1 not liver1 not liver1 not live

r1 live

r1 not live r1 not live

current_block current_blockadd r1, r7, r8
add r1, r7, r8

edge 3
edge 4

edge 3
edge 4

17

Data flow analysis for speculative code motion with Data flow analysis for speculative code motion with
renaming with a copyrenaming with a copy

• Renaming with a copy is used when the operand to be renamed is live
outside the treegion and there is a ‘merge’ problem.

• Incremental update
– No change in liveness and accurate update of reaching definition

ld r1, r2, 5 (*)

edge 1 edge 2
Live(edge 2) = {r2, r3,…}

r1 liver1 live

r1 not liver1 not live
r1 live

r1 live

ld rk, r2, 5

edge 1 edge 2
Live(edge 2) = {r2, r3,…}

r1 liver1 live

r1 not live
r1 not live

r1 live

r1 live

r1 live
r1 live

copy r1,rk

add r3, r2, r1 add r3, r2, rk

mul r3, r2, r1 mul r3, r2, r1

current_block
current_block

add r1, r7, r8 add r1, r7, r8

18

Data flow analysis for speculative code motion with Data flow analysis for speculative code motion with
global renamingglobal renaming

• Global renaming is used when the renaming scope is beyond the
treegion and there is no merge problem

• Update
– Recalculate the liveness at procedural scope. No changes in reaching

definitions.

ld r1, r2, 5 (*)

edge 1 edge 2
Live(edge 2) = {r2, r3,…}

r1 liver1 live

r1 liver1 liver1 not live

r1 not live

r1 not live

add r3, r2, r1

add r3, r2, r1

ld rk, r2, 5

edge 1 edge 2

rk liverk live

rk liverk liverk not live

rk not live

rk not live

add r3, r2, rk

add r3, r2, rk

current_block current_block

r1 not live add r1, r7, r8

r1 live

rk not live add rk, r7, r8

rk live

19

Data flow analysis for downward code motionData flow analysis for downward code motion

• Result from the early schedule of block-
ending branches

• Incremental update
– For each downward moved instruction, add its source operands

into liveness set and remove the its destination operand from
liveness set.

– Processed in reverse program order

add r1, r2, r3

br bb1, if p1 (*)

r1 not live r1 live

add r1, r1, 1

current_block

add r1, r2, r3

br bb1, if p1

r1 not live r2, r3 live

add r1, r1, 1

current_block

edge 1 edge 2

edge 1 edge 2

Block 1

Block 2

Block 1

Block 2

20

VLIW/EPIC Processor Model SpecificationVLIW/EPIC Processor Model Specification

G-share style Multi-way branch prediction [Menezes, et. al., PACT’97, Hoogerbrugge,
PACT’00]
Branch prediction table: 214 entries;
Branch target buffer: 214 entries/8-way/LRU
Branch misprediction penalty: 10 cycles

Branch
Predictor:

Size/Associativity/Replacement: 64KB/4-way/LRU
Line size: 32 bytes
Miss Penalty: 14 cycles

D-cache

Compressed (zero-nop) and two banks with 32KB each bank (Direct Mapped) [Conte et.
Al, MICRO29].
Line size: 16 operations with 4 bytes each operation.
Miss latency: 12 cycles

I-cache

Dispatch/Issue/Retire bandwidth: 8;
Universal function units: 8;
Operation latency: ALU, ST, BR: 1 cycle; LD, floating-point (FP) add/subtract: 2 cycles;
FP multiply/divide: 3 cycles

Execution

Specification

21

Speedup ResultsSpeedup Results

• Speedup with ideal I-cache, D-cache, and branch predictor

Speedups over BB scheduling

1
1.1
1.2
1.3
1.4
1.5
1.6
1.7

compress gcc go ijpeg li m88ksim perl vortex A-mean

Lineartree Speedup Treegion Speedup

22

Speedup ResultsSpeedup Results

• Speedup with realistic I- & D- cache, Branch Predictor

Speedups over BB scheduling

1

1.1

1.2

1.3

1.4

1.5

compress gcc go ijpeg li m88ksim perl vortex A-mean

Lineartree Speedup Treegion Speedup

23

DD--Cache PerformanceCache Performance

D-cache access increase over BB scheduled code

1

1.1

1.2

1.3

1.4

1.5

1.6

compress gcc go ijpeg li m88ksim perl vortex A-mean

D-cache access increase of treegion scheduling D-cache access increase of linear tree scheduling

D-cache penalties over BB scheduled code

0.8
0.9

1
1.1
1.2
1.3
1.4
1.5
1.6

compress gcc go ijpeg li m88ksim perl vortex A-mean

D-cache penalties of treegion D-cache penalties of linear tree

24

II--Cache PerformanceCache Performance
code size increase of treegion scheduling

1
1.2
1.4
1.6
1.8

2
2.2
2.4
2.6
2.8

3

compress gcc go ijpeg li m88ksim perl vortex A-mean

I-cache access increase of treegion scheduling

0.65

0.7

0.75

0.8

0.85

0.9

0.95

compress gcc go ijpeg li m88ksim perl vortex A-mean

25

ConclusionConclusion

• Significant speedup from tree traversal scheduling

• To fully take advantage of load speculation, the stall-on-
use technique should be used in the in-order pipeline.

• Fewer multi-ops as a result of TTS results in fewer I-cache
accesses while code expansion due to treegion formation
usually introduces higher miss rates

26

Contact InformationContact Information

Huiyang Zhou hzhou@eos.ncsu.edu

Matt Jennings MattJ@bops.com

Tom Conte conte@eos.ncsu.edu

TINKER Research Group
North Carolina State University
www.tinker.ncsu.edu

