

Reverse State Reconstruction for Sampled Microarchitectural Simulation
Paul D. Bryan Michael C. Rosier Thomas M. Conte

Center for Efficient, Secure and Reliable Computing (CESR)

North Carolina State University, Raleigh, NC 27695
{pdbryan, mcrosier, conte}@ncsu.edu

Abstract
 For simulation, a tradeoff exists between speed and
accuracy. The more instructions simulated from the workload,
the more accurate the results — but at a higher cost. To
reduce processor simulation times, a variety of techniques
have been introduced. Statistically sampled simulation is one
method that mitigates the cost of simulation while retaining
high accuracy. A contiguous group of instructions, called a
cluster, is simulated and then a fast type of simulation is used
to skip to the next group. As instructions are skipped, non-
sampling bias is introduced and must be removed for accurate
measurements to be taken.
 In this paper, the Reverse State Reconstruction warm-up
method is introduced. While skipping between clusters, the
data necessary for reconstruction are recorded. Later, these
data are scanned in reverse order so that processor state can be
approximated without functionally applying every skipped
instruction. By trading storage for speed, the proposed
method introduces the concept of on-demand state
reconstruction for sampled simulations. Using this technique,
the method isolates ineffectual instructions from the skipped
instructions without the use of profiling. Compared to
SMARTS [19], Reverse State Reconstruction achieves a
maximum and average speedup ratio of 2.45 and 1.64,
respectively, with minimal sacrifice to accuracy (less than
0.3%).

1. Introduction
 Contemporary research and development of computer
architecture relies heavily on simulation. Whether designing a
new system, or characterizing an existing one, simulation
provides crucial insights regarding cycle behavior. Although
necessary, cycle-accurate simulation of modern processor
designs is extremely time consuming. It can take weeks or
even months simulating a workload that can be executed in
hardware within minutes. Given that simulation is a
bottleneck, many researchers have devised methods to reduce
the simulation time.
 Various techniques exist to reduce the cycle-accurate
simulation time. The criteria under which the instructions are
selected varies according to the technique, but they all strive to
run only a small subset of the workload to save time. Often
researchers will execute small, arbitrary pieces of the
workloads under inspection. Although dramatically faster
than simulating the entire benchmark, the peril of selecting

arbitrary pieces is that inferences potentially can be made on
code that is unrepresentative of the entire execution. Other
techniques, such as SimPoint [17], inform the user which
instructions to execute up to some maximum threshold.
Another common approach to limit the total number of
simulated instructions involves statistical sampling of the
workload. Sampled simulation can be accomplished via
systematic sampling or random sampling. In systematic
sampling, a metric is used to determine the instructions that
will be executed. In random sampling, every instruction has
the same chance of being selected.
 Random sampling is the most accurate sampling
technique for large populations. However, it is cost-
prohibitive to select individual instructions at random for
simulation. Consequently, cluster sampling, which is a less
accurate but more cost-effective technique, is often used
instead. In cluster sampling, contiguous groups of elements
are selected at random intervals from the population. When
relating this technique to sampled processor simulation, the
elements are instructions and the population is the workload
being simulated. Each of these randomly chosen clusters is
then simulated in order to estimate any attribute desired by the
user. In terms of statistics nomenclature, each of these
clusters is called a “sampling unit” and the collection of
clusters is called the sample. The larger the sample, the more
likely the estimates obtained from that sample will be correct.
However, as the sample size increases, so does the simulation
time. Conversely, a sample that is too small can lead to
inaccurate estimates. Care must be taken to select an
appropriate sampling regimen. A sampling regimen simply
defines the number of clusters and the size of the clusters for a
particular workload.

Figure 1: Cluster Sampling
 Figure 1 depicts the general composition of a sampled
simulation. After the cluster size and number of clusters has
been selected, the starting positions of each cluster are
randomly generated. Execution consists of three phases: hot,
cold, and warm. Hot simulation refers to the complete cycle-
accurate simulation of the system. The pipeline, memory

1901-4244-1081-9/07/$25.00 ©2007 IEEE

hierarchy, branch predictor, etc., are all simulated within the
hot phase. Generally, hot execution consists of normal system
simulation. Once the cluster has finished, execution continues
in the cold phase. The cold phase consists of simple
functional simulation. The purpose of cold simulation is to
ensure correct architectural and functional memory state. At
some point prior to the next cluster, the warm execution phase
begins. In warm execution, data are functionally applied to
high-state microarchitectural elements, such as the branch
predictor and cache hierarchy. Functional simulation
continues as in the cold phase but the elements are not as
rigorously modelled as in the hot phase. The purpose of warm
execution is to warm-up the state of the processor before
measurements are taken from the next cluster.
 Many algorithms have been proposed to reconstruct the
processor state in warm execution. These algorithms are
commonly referred to as warm-up methods. SMARTS [19],
MRRL [7], and BLRL [5] are examples of current widely used
warm-up methods.
 This paper introduces a new warm-up method called
Reverse State Reconstruction. While skipping between
clusters, there are many instructions that do not affect the final
processor state immediately prior to the next cluster. If these
instructions can be isolated, they can be omitted during warm
simulation with no adverse affect on sampling accuracy. The
Reverse State Reconstruction algorithm reconstructs the state
of the cache and branch predictors by iterating through the
skip-region trace in reverse order and judiciously applying
updates as needed. Unlike other techniques, such as BLRL
[5], no analysis is performed between clusters except for
logging the needed information for reconstruction. Using this
algorithm, a novel concept of on-demand state reconstruction
is introduced to achieve 64% speedup compared to SMARTS,
while still passing confidence interval tests.

2. Related Work
 The sampling of workloads has been used in a number of
architectural simulation applications. Originally, sampling
was applied to cache simulation [2],[6],[10],[20] and was later
extended to the simulation of processors [4],[11],[16]. Most
instances utilize some derivative of cluster sampling but other
forms, such as stratified sampling [13] and set sampling
[6],[9],[12], have been used with success. In stratified
sampling, the population is classified into groups and elements
from each group are chosen to be included in the sample.
 Two different types of sampling are possible for caches:
time sampling [3],[6],[10],[20] and set sampling [6],[9],[12].
Time sampling involves the extraction of time-contiguous
memory references from different locations in an address
trace. Set sampling is a form of stratified sampling when
applied to caches and involves the inspection of particular
cache sets. Thus, the memory references that affect chosen
sets are not necessarily temporally adjacent.
 Whenever sampling is used, a sample estimate is affected
primarily by two kinds of error: sampling bias and non-
sampling bias [8]. Sampling bias occurs when sampling units
chosen from the population are unrepresentative of the entire

population. A properly chosen sampling regimen will have
small sampling bias. Technically, non-sampling bias is
defined as any bias other than sampling bias. More
specifically, non-sampling bias can be described as the
difference in state between the sampled simulator and the full
simulator at the start of a given cluster. For example, if 20
million instructions were skipped between two clusters, the
state of the processor would be much different than if the
skipped instructions had been simulated. The difference in
state is commonly referred to as the cold-start problem. In the
previous section, it was stated that warm-up methods are used
to warm processor state before the next cluster is executed.
These warm-up methods are used to reduce non-sampling bias
so accurate measurements can be obtained from the clusters.
 Many different approaches have been used to remove
non-sampling bias from sampled simulation. Laha, et al., [10]
took sampling units immediately following context switches
to ensure consistent state. By assuming the cache contents are
flushed after a context switch for small caches, the contents
are empty and therefore identical to the full execution trace.
For larger cache designs, the idea of primed cache sets was
introduced by Fu, et al. [6] and Laha, et al. [10]. Once the
execution of a new cluster begins, a set in the cache is
considered primed after it has been filled with unique
references. Only information gathered from primed sets are
used to record measurements. The Reverse State
Reconstruction algorithm for cache warm-up is similar to the
notion of a primed set. Before a cache set is simulated in the
next cluster, its state must first be reconstructed. Other warm-
up techniques proposed by Wood, et al. [20] use probability to
distinguish misses at the beginning of a cluster between
compulsory and cold-start misses.
 Of all of the warm-up methods, perhaps the most accurate
in removing non-sampling bias is SMARTS [19], proposed by
Wunderlich, et al. When skipping instructions between
clusters, the entire skip region of instructions is executed in a
warm phase. Thus, every branch and memory operation is
functionally applied to the branch predictor and cache
hierarchy. The SMARTS warm-up policy has been applied in
cache simulations [2] and to processor simulations [3],[4].
The SMARTS, or full functional, warm-up method is
extremely accurate, but at a cost. SMARTS is heavy-handed
because many instructions within the skip region do not affect
the final state prior to the next cluster. The Reverse State
Reconstruction algorithm is able to dynamically isolate and
remove such ineffectual instructions to realize faster
simulation times than SMARTS.
 Because SMARTS is demanding in terms of simulation
time, other warm-up methods have been proposed that
approximate the SMARTS accuracy at a lower cost. Haskins,
et al. [7] proposed the Memory Reference Reuse Latency
(MRRL) algorithm for warm-up. MRRL profiles the skip
regions in between clusters (see Figure 1) to determine the
number of pre-cluster instructions to execute for a given
percentage warm-up. This work was later extended by
Eeckhout, et al. [5] with the Boundary Line Reuse Latency
(BLRL) algorithm. Unlike MRRL, BLRL only considers

191

memory references from instructions that originate in the
cluster. In this study, cluster and pre-cluster pairs are profiled
for memory references. Only references in the pre-cluster that
affect memory operations in the cluster are applied to the
cache. The Reverse State Reconstruction algorithm proposed
in this paper, unlike the aforementioned techniques, requires
no profiling or analysis of skip region instructions. Although
effective, the MRRL and BLRL techniques pin down the
cluster locations and require profiling analysis whenever the
cluster positions are changed.
 One widely popular approach used in lieu of statistical
sampling was proposed by Sherwood, et al. [17]. This
technique, called SimPoint, analyzes the frequency at which
basic blocks are executed within a workload. From this
heuristic, SimPoint identifies a region or set of regions that
can be simulated to approximate the entire program behavior.
This technique is hardware independent. While effective,
critics of SimPoint note that the heuristic by which the regions
are selected utilizes systematic sampling. Since the
probability of selection is not random, statistical tests such as
the confidence interval cannot be used. An extension to
SimPoint, called Variance SimPoint [15], has been introduced
to calculate error bounds for sampled clusters. Such error
bounds can be calculated if SimPoint selects clusters of
execution at random.

3. Reverse State Reconstruction
 While skipping between clusters, many instructions do
not affect the processor state immediately prior to the next
cluster. For example, cache blocks generated by memory
operations at the beginning of the skip region will likely be
overwritten by those at the end. If such instructions can be
identified, they can safely be omitted during warm execution
with no adverse affects on sampling accuracy.
 The Reverse State Reconstruction algorithm reconstructs
the state of the cache and branch predictors by iterating
through the logged skip-region trace in reverse order and
judiciously applying updates as needed. Once a cluster is
finished, cold-phase execution continues to the next cluster
boundary. During this phase, certain instructions are logged
from the functional simulator. Branch information is saved
for reconstruction of the branch predictor, and memory
operations are saved for the caches. To minimize the storage
requirements of the algorithm, data are kept only for the
current cluster of execution. When the current cluster finishes,
any saved information is discarded to accommodate data in the
next skip region. The contributions of this technique are
threefold:

1. The proposed method isolates ineffectual instructions
from skip regions between clusters without the use of
profiling.

2. The proposed method achieves a maximum and average
speedup ratio of 2.45 and 1.64, respectively, over
SMARTS with minimal sacrifice to accuracy (less than
0.3%).

3. By trading storage for speed, the proposed method
introduces the concept of on-demand state
reconstruction for sampled simulations.

The two most important elements to warm-up in sampled
processor simulation are the branch predictor and cache
hierarchy. The following sections describe how these pieces
are reconstructed.

3.1. Cache Reconstruction
 Cache reconstruction begins by logging memory
operations during cold simulation. During logging, the state
of the cache is left stale. A stale cache contains the same data
that was present after the execution of the previous cluster.
The current PC, next PC, the address of the data or instruction,
and two Boolean values specifying the entry type (instruction
or data) and reference type (load or store) are buffered.
Immediately before the next cluster, the reference stream is
scanned in reverse order and the cache state is updated.
Temporal locality is exploited by applying updates to the
cache for only those references that would have affected the
final state. References that occurred at the beginning of the
skip region, which subsequently are evicted by future
references, can be safely removed from warm-up. Redundant
references (i.e., references to data already reconstructed in the
cache) can also be ignored since their effect on the set has
already been processed. Each cache block contains a bit that
indicates if it has been reconstructed. These bits are cleared
before the logged data are used to warm the cache. Whenever
a cache block is reconstructed, its associated reconstructed bit
is set.
 For each logged reference, a lookup is performed to
determine if its corresponding set has been reconstructed.
Remember that since the logged data are processed in reverse
order, redundant accesses to a reconstructed set actually
occurred earlier and can be ignored. If the set has been
reconstructed, then all subsequent accesses can be ignored. If
not, then the reference is classified as present or absent. If
present, the LRU bits are updated only if they are stale. If
absent, the reference is inserted into the least recently used
stale block. After deciding where the block should be placed,
the LRU bits of the reconstructed blocks are assigned in
ascending order. The first reconstructed block of a set is
assigned the most recently used reference. Additional unique
references reconstructed into the same set are assigned
increasing LRU values. The last reconstructed block of a set
is assigned the least recently used reference.
 As the logged trace is consumed, sets within the cache are
reconstructed. References to reconstructed blocks can be
safely ignored because they do not affect the final cache state.
During cache reconstruction, updates are applied to both the
L1 and L2 caches. For caches with WTNA policies, the block
is allocated even if the access is a write to avoid history
looking for a previous read.
 Studies of this technique show it can sufficiently
approximate the cache state without functionally simulating
the cache for every reference in the skip region. Despite the
buffering of the data reference stream during functional

192

simulation, it has been shown that reducing the total number
of updates to the cache results in faster simulation times.
 Figure 2 shows an example of the reverse cache
reconstruction algorithm. In this figure, the number above the
cache block indicates its LRU value. The letter R indicates
that the block has been reconstructed. In this example, a
forward reference stream E, A, F, C is applied to a particular
cache set. Two columns are used to show how the reverse
trace algorithm approximates regular cache simulation for a
particular cache set. The left column shows normal cache
simulation. As the references are applied on the left, the least
recently used element is evicted from the cache, and replaced
by the incoming reference. The newly placed reference is the
most recently used element, and the LRU bits of the other
blocks in the set are updated. After all accesses have been
applied, the final state of the cache set is shown.

Figure 2: Reverse reconstruction of an individual cache line.

 On the right column of Figure 2, the details of the reverse
cache reconstruction method are shown. The LRU bits for
stale elements are used to determine the way of the inserted
block. Reconstructed blocks are placed into the least recently
used stale element. The set is searched for the maximum LRU
value for all reconstructed blocks. If no blocks have been
reconstructed, the newly reconstructed block becomes the
most recently used. If blocks have been reconstructed, the
LRU values will increase. The last reconstructed block
becomes the least recently used. As shown in Figure 2,
Reverse Trace Cache Reconstruction can closely approximate
normal cache simulation.

3.2. Branch Predictor Reconstruction

 Branch Predictor reconstruction involves state repair in
the prediction tables, branch target buffer (BTB), and return
address stack (RAS). Branch predictor reconstruction begins
by logging branch information during cold simulation.
Buffered data includes the current PC, next PC, branch
outcome, and other accounting information relevant to
determine the final branch effects. This includes the
instruction opcode, source register, and any instruction flags.
A BTB element in the branch predictor is reconstructed using
the address logged during functional simulation. BTB

reconstruction is accomplished similar to the cache
reconstruction since the BTB can be viewed as a direct
mapped cache indicating the taken branch target.
 Unlike cache reconstruction, the branch predictor is
updated on-demand in the next cluster of execution.
Specifically, as branches are encountered in the next cluster,
the branch predictor is probed to determine if the entry has
been reconstructed. If the entry has been reconstructed, then
execution in the cluster continues as normal. If not, the entry
is first reconstructed before hot execution continues. During
the traversal, branches that reference entries that are not
relevant to the current entry (i.e., branches that do not index
into the same entry) also are reconstructed. By reconstructing
other branches in this manner, the logged data does not need
to be rescanned from the beginning for each uniquely indexed
branch. Because a Gshare predictor is used, the global history
register must first be reconstructed using the last n branches of
the skip-region trace (where n is the width of the global
history register). Once the global history register has been
reconstructed, branch entries can be accurately determined.
Like cache reconstruction, the contents of the branch predictor
are left stale prior to reconstruction.
 Figure 3 shows the normal operation of a 2-bit saturating
counter entry indexed within a branch predictor. Each counter
value indicates a prediction state. When an instruction is
retired, the initial prediction is updated with its outcome.
Taken branches cause the counter to increment, and not taken
branches cause the counter to decrement. Since the 2-bit
counter has a limited number of values, usually only a small
amount of history is needed to approximately reconstruct a
particular branch predictor entry. In other words, the logged
branch history can be used to sufficiently isolate the exact
counter value, or narrow the counter value to a set of possible
states.
 During reconstruction, a series of possible states are
tracked for each prediction table entry. Initially, the set of
possible states includes all possible counter values: 0, 1, 2, or
3. As references to the same entry are encountered, a reverse
branch history is generated. Remember that the reverse
branch history field in the table constitutes that branch history
for a particular set in the reverse order. Therefore, the first
outcome in the reverse history was the last outcome for that
branch table entry in the skip region. The logged branch
history is searched until the counter state for the branch can be
determined or until the history has been consumed. Rather
than performing this computation at execution time, a table
was built a priori so that reconstruction can be implemented
through a table lookup.

193

Figure 3: Prediction of Branch Counters

 Figure 3 shows several examples of how the reverse
branch histories isolated for a particular entry can be used to
infer a branch counter or set of branch counters. If the last
three consecutive outcomes for a particular branch entry are
taken, or not taken, then the exact counter state can be
determined. No matter what the original counter state, three
taken branches in a row will cause the counter state to become
three, and three not taken branches will cause the counter state
to become zero (see cases 1 and 2 in Figure 3). Furthermore,
if these patterns exist anywhere within the branch history, then
the exact counter state can also be determined (see case 3 in
Figure 3). However, the branch history does not always yield
an exact counter state. Case 3 shows some instances where
the exact state cannot be inferred. In this instance, the
outcome is predicted based on the remaining set of possible
states. If the branch is biased in one direction (taken or not
taken) the predictor is set to the weak form. If three states
exist, the middle state is predicted. For example, if the
remaining possible states include strongly not taken, weakly
not taken, and weakly taken, then the state of weakly not taken
is predicted. No more than three states can exist for an entry
that has a history of one branch. If no history for a branch is
produced, then the counter value is left stale.
 Reconstruction of a finite size return address stack is
accomplished through the following algorithm. Whenever a
pop is encountered in the reverse history, a single counter is
incremented. If a push is encountered, and the counter is
equal to zero, the next PC is placed at the end of the RAS.
Otherwise, whenever a push is seen, the counter is
decremented. Once the return address stack has been filled,
reconstruction is complete. Figure 4 shows an example of a
forward and a reverse call sequence. The numbers next to the
reverse call sequence indicate the counter value after the
push/pop has been processed.

4. Experimental Framework
 The model used in this study is an execution-driven
simulator based on SimpleScalar [1]. Unlike trace-driven
simulation, the processor model fetches instructions from a
compiled binary. The front end of the processor can fetch and
dispatch eight instructions per cycle, and can issue and retire
four instructions per cycle. The model includes eight
universal function units that are fully pipelined. The

maximum number of in flight instructions is 64. The issue
queue size is 32, and there is a load-store queue of 64
elements. The pipeline depth is seven stages. The minimum
branch miss-prediction penalty is five cycles. The processor
frequency is assumed to be 2 GHz. The branch predictor is a
64K entry Gshare with an eight-entry return address stack.
The BTB consists of 4K entries. Architectural checkpoints
are utilized to allow the processor to speculatively execute
beyond eight branches.

Figure 4: Reverse RAS reconstruction

 A substantive memory hierarchy is modelled within the
simulator. The first level data cache is 4-way and contains 32
KB with a 64-byte line size. The first level instruction cache
is also 4-way and contains 64 KB with a 64-byte line size.
The instruction and data caches are implemented using a
write-through no-write allocate policy. The second level
cache is 8-way and contains 1 MB with a 64-byte line size,
and is implemented using a write-back write-allocate policy.
A bus model also is incorporated in order to emulate
arbitration, contention, and transfer delay between the levels
of memory. The first level bus is shared between the first
level data and instruction caches, and connects the first level
caches to the second level cache. The first level bus has a
width of 16 bytes and operates at 1GHz. The second level bus
connects the second level cache to main memory, has a width
of 32 bytes, and operates at 2 GHz.
 The model includes both a functional and a timing
simulator. The functional simulator is useful for many
reasons. First, the functional simulator is used to validate the
results of the timing simulator. If the timing simulator
attempts to commit a wrong value, the functional simulator
will assert an error. However, in the context of sampled
simulation, the functional simulator has additional uses.
Second, as instructions in the dynamic stream are skipped
(either in cold or warm simulation), the functional simulator
retains valid architectural state. When hot execution
continues in the next cluster, the values of the registers
contained in the functional simulator are copied to the timing
simulator.
 For processor simulations, the standard performance
metric is IPC, which is measured as the number of instructions

194

retired per execution cycle. The Reverse Trace
Reconstruction algorithm described above was tested against a
number of other techniques for accuracy, speed, and statistical
confidence.

5. Experimental Results

 Experiments were conducted using the SPEC2000
benchmarks. Integer benchmarks used include gcc, mcf,
parser, perl, vortex, vpr, and twolf. Floating point
benchmarks used include ammp and art. The first six billion
instructions from each benchmark were simulated with
reference input sets. Table 1 shows the true IPC of each
benchmark simulated during experimentation. The true IPC
was used to serve as a baseline for comparison to the various
sampling techniques. Sampling regimens were constructed for
each workload and are included in the table. All sampling
techniques from each compared benchmark utilize the
specified sampling regimen. The starting positions of each
cluster were then randomly generated according to a uniform
distribution. The same starting cluster positions were used for
each sampling algorithm (except SimPoint) to keep the
sampling bias constant.

Table 1. True IPC and sampling regimen data for each workload
 Using this framework, a number of different techniques
were compared to measure the effectiveness of non-sampling
bias removal. As discussed previously, non-sampling bias is
caused by the loss of state information during skipped periods.
After a cluster is executed and instructions are skipped, the
potential for state loss is high and likely will affect the
performance of the next cluster. State in a processor is kept in
a number of areas including: the scheduling queues, the
reorder buffer, the functional unit pipelines, the branch
prediction hardware, instruction caches, data caches,
load/store queues, and control transfer instruction queues.
 Each warm-up method or policy was then passed through
a 95% confidence interval test in order to determine if it
correctly predicted the true IPC. The standard deviation SIPC

and standard error S IPC for a cluster sampling design is given
by,

,,
1

)(
1

2

cluster

IPC
IPC

cluster

N

i

sample
IPC

i
IPC

IPC N
S

S
N

S

cluster

=
−

−
=

∑
=

µµ

where µ
i
IPC is the mean IPC for the ith cluster in the sample.

The estimated standard error is used calculate the error

bounds and confidence interval. Using the properties of the
normal distribution, the 95% confidence interval is given by

µ
sample
IPC ± 1.96 SIPC, where the error bound is ±1.96SIPC. A

confidence interval of 95% implies that 95 out of 100 sample
estimates may be expected to fit into this interval. Moreover,
for a well-designed sample, the true mean of the population
may also be expected to fall within this range. Low standard
errors imply relatively small variation in repeated estimates
and consequently result in higher precision. For each warm-
up policy, the relative error was calculated as follows:

true
IPC

sample
IPC

true
IPCIPCRE

µ
µµ −

=)(,

where µ
true
IPC is the true population mean IPC, and µ

sample
IPC is

the IPC estimate obtained from the sample. Relative error

relies on µ
true
IPC from a full-trace simulation of each test

benchmark.
 Table 2 shows the various warm-up methods used during
experimentation. In no warm-up, no state repair techniques
were used in the skip region. After the execution of a cluster,
the caches and branch predictor were left stale. In the fixed
period warm-up method, a specified percentage of the skip
regions immediately prior to the next cluster were used for
warm-up. Three variations of SMARTS warm-up were also
conducted. The first two consisted of selectively warming
only the cache hierarchy or branch predictor. These
simulations were used to determine the accuracy of the
Reverse Trace Reconstruction algorithms when selectively
applied to the cache and branch predictor alone. The third
variant of SMARTS warmed both the cache and branch
predictor for comparison when the reverse trace algorithm
also warms the cache and branch predictor. All warm-up
methods requiring percentage parameters were conducted
using 20, 40, and 80 percent. Finally, a detailed comparison
with SimPoint also was performed.

Table 2: Warm-up method experiments
 Each of the tested warm-up methods were compared
based on accuracy, speed, and statistical confidence. Because
the data were too voluminous to compare each individual
benchmark, the average performance for each technique was
analyzed. Specific workloads will be discussed in greater
detail. For the interested reader, all data used to create the
graphs are included in the appendix.
 Figure 5 shows the relative error and simulation time
results for all simulations that selectively warm-up only the
cache. As shown, the Reverse Trace Cache Reconstruction

195

algorithm performs closely to SMARTS cache warm-up. The
average relative error for SMARTS cache is 3.1%, while the
reverse cache warm-up is approximately 3.3%. Although the
simulation times for cache warm-up are highly similar, the
simulation times vary significantly. Full functional simulation
of the cache in the skip region takes an average of 1443
seconds, while the 20% reverse cache warm-up takes 1086
seconds. By applying the last 20% of the memory references
to the cache hierarchy a speedup ratio of 1.41 was achieved
for cache warm-up. For these simulations, gcc had the largest
speedup ratio of 1.93 while parser had the smallest speedup
ratio of 1.03. Therefore, reverse cache reconstruction at 20%
always reduced simulation time when compared to SMARTS.
As the warm-up percentages increased, the speedup ratio was
degraded. At 40 and 80 percent, the speedup ratios are 1.27
and 1.05, respectively. At 40%, most workloads performances
were improved, but mcf exhibits degradation in simulation
speed with a speedup ratio of 0.97. At 80%, all workloads
show speedup except mcf, parser, and vortex.
 Little additional benefit was obtained by executing more
than 20% of the logged cache data. This is consistent with
temporal locality, such that the cache blocks at the beginning
of the skip-region will be evicted by subsequent references.
 Figure 6 shows the relative error and simulation time
results for all simulations that selectively warm-up only the
branch predictor. As shown, the Reverse Trace Branch
Predictor Reconstruction algorithm performs similarly to
SMARTS. Both the reverse algorithm and SMARTS warm-
up achieve an average relative error of 22.3 and 22.2 percent,
respectively. However, the average speedup ratio of the
reverse technique over SMARTS branch prediction warm-up
is 1.48. Gcc exhibits the highest speedup ratio of 2.26, while
mcf has the lowest of 1.10.
 As shown in Figures 5 and 6, the cache hierarchy has the
greatest impact on non-sampling bias for sampled simulation.
Warming the branch predictor alone produced an average
relative error of 23% while warming the cache alone produced
an average relative error of 3.1%. Although it may seem
advantageous to only warm the cache structures in sampled
simulation, non-sampling bias produced by cold state in the
branch predictor is sufficient to cause many simulations to fail
the confidence interval tests (see appendix).
 Figure 7 shows the relative error and simulation time
results for all simulations that incorporated both the cache and
branch predictor in warm-up. No warm-up had the least
overhead of all techniques, and thus had the lowest simulation
time but produced the highest error at 23%. Of the remaining
techniques, SMARTS had the lowest error at 0.9%, but had
the highest simulation time. Reverse Trace Reconstruction
achieved speedup ratios of 1.64, 1.51, and 1.25 for 20, 40, and
80 percent, respectively. At 20 and 40 percent, all workloads
executed faster using the proposed algorithm than SMARTS.
At 80 percent, mcf was the only workload that suffered in
simulation time with a speedup ratio of 0.918.

0.028

0.029

0.03

0.031

0.032

0.033

0.034

0.035

R
el

at
iv

e
Er

ro
r

R$ (20%) R$ (40%) R$ (80%) R$ (100%) S$

0

200

400

600

800

1000

1200

1400

1600

1800

Si
m

ul
at

io
n

tim
e

(s
)

R$ (20%) R$ (40%) R$ (80%) R$ (100%) S$

Figure 5: Cache warm-up only

0.21

0.215

0.22

0.225

0.23
R

el
at

iv
e

Er
ro

r
RBP SBP

0

200

400

600

800

1000

1200

1400

Si
m

ul
at

io
n

tim
e

(s
)

RBP SBP

Figure 6: Branch Prediction warm-up only

 Fixed period simulations performed highly similar to the
proposed methods at the specified percentages. At 20%, fixed
period has a lower simulation time. However, as the
percentages increase to 40 and 80% the reverse techniques run
faster. One explanation is that all accounting information
necessary for reconstruction is logged in the skip region,
regardless of the warm-up percentage. As the reconstruction

196

percentages increase, the data buffering cost are amortized
over the reconstruction time.
 Figure 8 shows the relative error and simulation time
results for the Reverse State Reconstruction compared to
SMARTS warm-up. At 20% warm-up, the average relative
error with respect to SMARTS for all simulated workloads is
0.3%. At 20% warm-up the minimum and maximum relative
errors with respect to SMARTS are 0.01% and 1.9%,
respectively. Since SMARTS is the most accurate, it is
expected that SMARTS should have the lowest error. The
average behavior for the tested workloads is shown in Figure
7. Figure 8 shows these results by individual benchmark. As
expected, the simulation time increases as the specified warm-
up percentage increases. Figure 9 shows the average relative
error and simulation times for SimPoint with the Reverse
Trace State Reconstruction at 20%. In order to fairly compare
SimPoint with sampled simulation, a variety of different
interval sizes were incorporated. All SimPoint comparisons
were conducted utilizing multiple simulation points (30), at
varying interval sizes. SimPoint v3.2 [17] was used in these
experiments.

0

0.05

0.1

0.15

0.2

0.25

R
el

at
iv

e
Er

ro
r

R$BP (20%) R$BP (40%) R$BP (80%)
R$BP (100%) S$BP FP (20%)
FP (40%) FP (80%) None

0

500

1000

1500

2000

2500

Si
m

ul
at

io
n

tim
e

(s
)

R$BP (20%) R$BP (40%) R$BP (80%)
R$BP (100%) S$BP FP (20%)
FP (40%) FP (80%) None

Figure 7: Cache and Branch Prediction warm-up

 SimPoint allows the user to specify an interval size that
defines the granularity at which basic block vector profiling is
conducted. Originally, an interval size of 50K was selected in
order to keep the number of instructions in hot execution
constant. As shown below, SimPoint produces an average
error of 20% when an interval size of 50K is used. One reason
for this is that not all SimPoint variants incorporate warm-up
while skipping to the next simulation point, or cluster.
Without warm-up, measurements taken from small clusters are
greatly affected by non-sampling bias. Therefore, SMARTS
warm-up was incorporated into the SimPoint simulations. In

50K-SMARTS, the SMARTS warm-up policy was used to
warm-up processor state while skipping instructions to the
next simulation point indicated by SimPoint. As shown
below, the error rate dropped to 8% when warm-up was
included.

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

ammp art gcc mcf parser perl twolf vortex vpr

R
el

at
iv

e
Er

ro
r

R$BP (20%) R$BP (40%) R$BP (80%) R$BP (100%) S$BP

0

500

1000

1500

2000

2500

3000

3500

4000

ammp art gcc mcf parser perl twolf vortex vpr

S
im

ul
at

io
n

tim
e

(s
)

R$BP (20%) R$BP (40%) R$BP (80%) R$BP (100%) S$BP

Figure 8: Reverse State Reconstruction vs SMARTS

 Although an interval size of 50K was selected for sample
size consistency, the authors of SimPoint do not suggest such
a small interval size. As a result, the interval size was
increased to 10M. Using a 10M-interval size, the relative
error of SimPoint was 4.2%. For symmetry, SMARTS warm-
up with an interval size of 10M was also performed, and had
an average error of 5.9%. With an interval size of 50K the
introduction of a warm-up method helped simulation
accuracy. However, with an interval size of 10M its accuracy
was degraded. No conclusions can be drawn from the
addition of warm-up to the SimPoint method.
 At the lowest interval size, SimPoint was faster than
sampled simulation, but at a higher cost in accuracy.
Increasing the interval size increased the accuracy, but at a
high simulation cost. The Reverse Trace Reconstruction
algorithm had an average relative error of 1.7%
 All warm-up methods were then tested for statistical
confidence (see appendix). Using a 95% confidence interval,
the variability of each sample was tested to determine if it
could correctly predict the actual IPC. At 20% warm-up, the
reverse trace reconstruction correctly predicted the true IPC
for seven of the nine workloads. The remaining two also were
predicted at 80%.

197

0

0.05

0.1

0.15

0.2

0.25
R

el
at

iv
e

Er
ro

r

50K 50K-SMARTS 10M 10M-SMARTS R$BP (20%)

0

500

1000

1500

2000

2500

Si
m

ul
at

io
n

tim
e

(s
)

50K 50K-SMARTS 10M 10M-SMARTS R$BP (20%)

Figure 9: SimPoint comparison

6. Conclusion

 In this paper, a new Reverse State Reconstruction warm-
up method was introduced for sampled simulation. Using this
method, considerable speedups were achieved relative to
SMARTS, with negligible accuracy loss. Maximum and
average speedup ratios of 2.45 and 1.64, respectively, were
obtained with an accuracy loss of less than 0.3%. By
recording data while skipping instructions, processor state can
be reconstructed on-demand rather than naively applying
every memory addresses and branch instructions functionally.
From the experiments conducted in this study, it is shown that
ineffectual instructions can be selectively removed from
warm-up to reduce simulation time.

7. Acknowledgements

We would like to thank Dr. Suleyman Sair, one of the original
contributors to SimPoint, for insights regarding SimPoint
evaluation.

8. References
[1] Burger, D. C., and Austin, T. M. The Simplescalar Toolset,

version 2.0. Computer Architecture News, 25(3):13-25, June
1997.

[2] Conte, T. M., Hirsch, M. A., and Hwu, W. W. Combining Trace
Sampling With Single Pass Methods for Efficient Cache
Simulation. IEEE Transactions on Computers, vol. C-47, no. 6,
Jun. 1998.

[3] Conte, T. M. Systematic computer architecture prototyping.
PhD thesis, Department of Electrical and Computer
Engineering, University of Illinois, Urbana, Illinois, 1992.

[4] Conte, T. M., Hirsch, M. A., and Menezes, K. N. Reducing
State Loss for Effective Trace Sampling of Superscalar
Processors. In Proc of the 1996 International Conference on
Computer Design, (Austin, TX), Oct. 1996.

[5] EeckHout, L., Luo, Y., Bosschere, K. D., and John, L. K.
BLRL: Accurate and Efficient Warmup for Sampled Processor
Simulation. The Computer Journal, 2005 Oxford University
Press. Vol. 48 (4). 2005. pp. 451-459.

[6] Fu, J. W. C., and Patel, J. H. Trace driven simulation using
sampled traces. In Proc. 27th Hawaii Int’l. Conf. on System
Sciences, (Maui, HI), Jan. 1994.

[7] Haskins, J. W., and Skadron, K. Memory Reference Reuse
Latency: Accelerated Sampled Microarchitecture Simulation.
In Proc of the 2003 IEEE International Symposium on
Performance Analysis of Systems and Software, pp. 195-203,
Mar. 2003.

[8] Henry, G. T. Practical sampling. Newbury Park, CA: Sage
Publications, 1990.

[9] Kessler, R. E., Hill, M. D., and Wood, D. A. A comparison of
trace-sampling techniques for multi-megabyte caches. IEEE
Trans. Comput., vol. C-43, pp. 664–675, June 1994.

[10] Laha, S., Patel, J. A., and Iyer, R. K. Accurate low-cost methods
for performance evaluation of cache memory systems. IEEE
Trans. Comput., vol. C-37, pp. 1325–1336, Feb. 1988.

[11] Lauterbach, G. Accelerating architectural simulation by parallel
execution. In Proc. 27th Hawaii Int’l. Conf. on System
Sciences, (Maui, HI), Jan. 1994.

[12] Lui, L., and Peir, J. Cache sampling by sets. IEEE Trans.
VLSI Systems, vol. 1, pp. 98-105, June 1993.

[13] Mangione-Smith, W. H., Abraham, S. G., and Davidson, E. S.
Architectural vs Delivered Performance of the IBM RS/6000
and the Astronautics ZS-1. In Proc. 24th Hawaii International
Conference on System Sciences, January 1991.

[14] McCall, J. C. H. Sampling and statistics handbook for research.
Ames, Iowa: Iowa State University Press, 1982.

[15] Perelman, E., Hamerly G., and Calder, B. Picking Statistically
Valid and Early Simulation Points. In the International
Conference on Parallel Architectures and Compilation
Techniques, September 2003.

[16] Poursepanj. The PowerPC performance modeling methodology.
Communications ACM, vol. 37, pp. 47–55, June 1994.

[17] Sherwood, T., Perelman, E., Hamerly, G., and Calder, B.
Automatically Characterizing Large Scale Program Behavior.
In the 10th International Conference on Architectural Support
for Programming Languages and Operating Systems, October
2002.

[18] Wenisch, T. F, Wunderlich, R. E., Falsafi, B., and Hoe, J. C.
Simulation Sampling with Live-Points. IEEE International
Symposium on Performance Analysis of Systems and Software,
Mar. 2006.

[19] Wunderlich, R. E., Wenish, T. F, Falsafi, B., and Hoe, J. C.
SMARTS: Accelerating Microarchitecture Simulation via
Rigorous Statistical Sampling. Proc. 30th ISCA, 2003.

[20] Wood, D. A., Hill, M. D., and Kessler, R. E. A model for
estimating trace-sample miss ratios. In Proc. ACM
SIGMETRICS ’91 Conf. on Measurement and Modeling of
Comput. Sys., pp. 79–89, May 1991.

198

Appendix
Relative Error

ammp art gcc mcf parser perl twolf vortex vpr AVG
FP (20%) 0.0035 0.02 0.0032 0.0386 0.0402 0.0226 0.0094 0.0114 0.0162 0.0184
FP (40%) 0.0037 0.0037 0.0041 0.0364 0.021 0.0203 0.0082 0.0066 0.0164 0.0134
FP (80%) 0.0038 0.0009 0.006 0.0361 0.0101 0.0011 0.007 0.0039 0.0173 0.0096
None 0.0025 0.1665 0.2001 0.1472 0.4764 0.0897 0.4836 0.1795 0.3267 0.2302
S$ 0.0202 0.0125 0.0397 0.0302 0.0625 0.0107 0.0517 0.0126 0.0347 0.0305
SBP 0.0188 0.1574 0.1804 0.1525 0.4554 0.083 0.4648 0.1696 0.3176 0.2222
S$BP 0.0037 0.0009 0.0063 0.036 0.0085 0.0032 0.0054 0.0026 0.0168 0.0093
R$ (20%) 0.0194 0.0118 0.0383 0.037 0.0919 0.0106 0.058 0.0028 0.0344 0.0338
R$ (40%) 0.0197 0.0287 0.0392 0.0365 0.074 0.008 0.0574 0.008 0.0345 0.034
R$ (80%) 0.0197 0.0319 0.041 0.0359 0.0644 0.0052 0.0561 0.0106 0.0357 0.0334
R$ (100%) 0.0197 0.0321 0.0413 0.0356 0.0623 0.0105 0.0545 0.0118 0.0352 0.0337
RBP 0.0186 0.1635 0.1907 0.1382 0.4597 0.0781 0.4691 0.1716 0.3189 0.2232
R$BP (20%) 0.0029 0.0003 0.0055 0.0423 0.0429 0.0221 0.0123 0.0125 0.0169 0.0175
R$BP (40%) 0.0033 0.0171 0.0067 0.0421 0.0224 0.019 0.0105 0.0072 0.0168 0.0161
R$BP (80%) 0.0033 0.0203 0.0086 0.0414 0.0119 0.005 0.0095 0.0046 0.0178 0.0136
R$BP (100%) 0.0033 0.0206 0.009 0.0411 0.0095 0.0002 0.0078 0.0035 0.0173 0.0125
Time

ammp art gcc mcf parser perl twolf vortex vpr AVG
FP (20%) 759.35 632 1336.1 2331.6 953.45 1004.1 911.33 809.54 653.31 1043.4
FP (40%) 934.81 780.96 1717.6 3046.3 1210 1256.4 1142 1060.5 862.36 1334.5
FP (80%) 1336.7 1030.3 2354.5 4012.7 1785.5 1762.8 1616.1 1436.3 1217.8 1839.2
None 548.4 523.65 913.86 1631.9 700.78 803.7 650.43 637.25 542.16 772.46
S$ 1199.8 1016.5 1899.1 2773.4 1292.5 1428.8 1254.4 1188 936.63 1443.2
SBP 945.11 646.44 1806.8 2435 1361.1 1302.3 1234.2 1012.4 926.27 1296.6
S$BP 1603.5 1181.4 1508.8 3235.8 3338.5 2038.3 1874.4 1662.2 1419.7 1984.7
R$ (20%) 792.56 681.95 979.64 2664.4 1246.8 1064.6 892.36 804.75 643.2 1085.6
R$ (40%) 896.78 765.98 1205.8 2830.1 1105.5 1115.6 983.88 955.88 731.06 1176.7
R$ (80%) 1136.9 997.38 1285 3240 1428.9 1342.3 1134.8 1294.9 833.27 1410.4
R$ (100%) 1244.5 925.12 1493.3 3429.2 1734 1535.9 1229.6 1276.1 919.3 1531.9
RBP 650.84 505.1 800.77 2203.7 867.04 845.74 769.1 653.87 558.01 872.68
R$BP (20%) 905.82 697.58 1076.4 3023.1 1360.5 1141.6 1018.4 930.69 735.63 1210
R$BP (40%) 984.67 807.6 1196.6 3116.9 1461.6 1263.3 1122.1 1049.9 817.94 1313.4
R$BP (80%) 1251 928.69 1428.6 3523.9 2068.9 1496.9 1270.5 1305.5 944.81 1579.9
R$BP (100%) 1368.4 976.37 1544.5 3683.7 2396.4 1656 1346.2 1410.5 1003.8 1709.5

Confidence tests
ammp art gcc mcf parser perl twolf vortex vpr

FP (20%) yes yes yes yes no no yes yes yes
FP (40%) yes yes yes yes no no yes yes yes
FP (80%) yes yes yes yes yes yes yes yes yes
None yes no no no no no no no no
S$ yes yes no yes no no no yes no
SBP yes no no no no no no no no
S$BP yes yes yes yes yes yes yes yes yes
R$ (20%) yes yes no yes no no no yes no
R$ (40%) yes yes no yes no yes no yes no
R$ (80%) yes yes no yes no yes no yes no
R$ (100%) yes yes no yes no no no yes no
RBP yes no no yes no no no no no
R$BP (20%) yes yes yes yes no no yes yes yes
R$BP (40%) yes yes yes yes no no yes yes yes
R$BP (80%) yes yes yes yes yes yes yes yes yes
R$BP (100%) yes yes yes yes yes yes yes yes yes

SimPoint Relative Error

ammp art mcf gcc parser perl twolf vortex vpr AVG
50K 0.0215 0.0406 0.0923 0.2569 0.4103 0.2278 0.3408 0.1537 0.3262 0.2078
50K-SMARTS 0.2171 0.3206 0.0435 0.0235 0.0565 0.0226 0.0057 0.0636 0.0037 0.0841
10M 0.0485 0.003 0.0066 0.0246 0.0521 0.2308 0.0035 0.0117 0.0052 0.0429
10M-SMARTS 0.0485 0.008 0.0066 0.0193 0.1205 0.2303 0.0612 0.0121 0.0258 0.0591

SimPoint time
ammp art mcf gcc parser perl twolf vortex vpr AVG

50K 501 856 850 1030 925 491 594 545 429 691.22
50K-SMARTS 1841 1119 3497 2576 3007 1451 1680 1561 1303 2003.9
10M 2686 1535 9389 2548 1444 979 669 1254 1026 2392.2
10M-SMARTS 3549 2179 12154 4421 3191 2205 1245 2279 1954 3686.3

199

