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Abstract 
 For simulation, a tradeoff exists between speed and 
accuracy.  The more instructions simulated from the workload, 
the more accurate the results — but at a higher cost.  To 
reduce processor simulation times, a variety of techniques 
have been introduced.  Statistically sampled simulation is one 
method that mitigates the cost of simulation while retaining 
high accuracy.  A contiguous group of instructions, called a 
cluster, is simulated and then a fast type of simulation is used 
to skip to the next group.  As instructions are skipped, non-
sampling bias is introduced and must be removed for accurate 
measurements to be taken. 
 In this paper, the Reverse State Reconstruction warm-up 
method is introduced.  While skipping between clusters, the 
data necessary for reconstruction are recorded.  Later, these 
data are scanned in reverse order so that processor state can be 
approximated without functionally applying every skipped 
instruction.  By trading storage for speed, the proposed 
method introduces the concept of on-demand state 
reconstruction for sampled simulations.  Using this technique, 
the method isolates ineffectual instructions from the skipped 
instructions without the use of profiling.  Compared to 
SMARTS [19], Reverse State Reconstruction achieves a 
maximum and average speedup ratio of 2.45 and 1.64, 
respectively, with minimal sacrifice to accuracy (less than 
0.3%). 
 
1. Introduction 
 Contemporary research and development of computer 
architecture relies heavily on simulation.  Whether designing a 
new system, or characterizing an existing one, simulation 
provides crucial insights regarding cycle behavior.  Although 
necessary, cycle-accurate simulation of modern processor 
designs is extremely time consuming.  It can take weeks or 
even months simulating a workload that can be executed in 
hardware within minutes.  Given that simulation is a 
bottleneck, many researchers have devised methods to reduce 
the simulation time.   
 Various techniques exist to reduce the cycle-accurate 
simulation time.  The criteria under which the instructions are 
selected varies according to the technique, but they all strive to 
run only a small subset of the workload to save time.  Often 
researchers will execute small, arbitrary pieces of the 
workloads under inspection.  Although dramatically faster 
than simulating the entire benchmark, the peril of selecting 

arbitrary pieces is that inferences potentially can be made on 
code that is unrepresentative of the entire execution.  Other 
techniques, such as SimPoint [17], inform the user which 
instructions to execute up to some maximum threshold.  
Another common approach to limit the total number of 
simulated instructions involves statistical sampling of the 
workload.  Sampled simulation can be accomplished via 
systematic sampling or random sampling.  In systematic 
sampling, a metric is used to determine the instructions that 
will be executed.  In random sampling, every instruction has 
the same chance of being selected. 
 Random sampling is the most accurate sampling 
technique for large populations.  However, it is cost-
prohibitive to select individual instructions at random for 
simulation.  Consequently, cluster sampling, which is a less 
accurate but more cost-effective technique, is often used 
instead.  In cluster sampling, contiguous groups of elements 
are selected at random intervals from the population.  When 
relating this technique to sampled processor simulation, the 
elements are instructions and the population is the workload 
being simulated.  Each of these randomly chosen clusters is 
then simulated in order to estimate any attribute desired by the 
user.  In terms of statistics nomenclature, each of these 
clusters is called a “sampling unit” and the collection of 
clusters is called the sample.  The larger the sample, the more 
likely the estimates obtained from that sample will be correct.  
However, as the sample size increases, so does the simulation 
time.  Conversely, a sample that is too small can lead to 
inaccurate estimates.  Care must be taken to select an 
appropriate sampling regimen.  A sampling regimen simply 
defines the number of clusters and the size of the clusters for a 
particular workload. 

Figure 1: Cluster Sampling 
 Figure 1 depicts the general composition of a sampled 
simulation.  After the cluster size and number of clusters has 
been selected, the starting positions of each cluster are 
randomly generated.  Execution consists of three phases: hot, 
cold, and warm.  Hot simulation refers to the complete cycle-
accurate simulation of the system.  The pipeline, memory 
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hierarchy, branch predictor, etc., are all simulated within the 
hot phase.  Generally, hot execution consists of normal system 
simulation.  Once the cluster has finished, execution continues 
in the cold phase.  The cold phase consists of simple 
functional simulation.  The purpose of cold simulation is to 
ensure correct architectural and functional memory state.  At 
some point prior to the next cluster, the warm execution phase 
begins.  In warm execution, data are functionally applied to 
high-state microarchitectural elements, such as the branch 
predictor and cache hierarchy.  Functional simulation 
continues as in the cold phase but the elements are not as 
rigorously modelled as in the hot phase.  The purpose of warm 
execution is to warm-up the state of the processor before 
measurements are taken from the next cluster.     
 Many algorithms have been proposed to reconstruct the 
processor state in warm execution.  These algorithms are 
commonly referred to as warm-up methods.  SMARTS [19], 
MRRL [7], and BLRL [5] are examples of current widely used 
warm-up methods.   
 This paper introduces a new warm-up method called 
Reverse State Reconstruction.  While skipping between 
clusters, there are many instructions that do not affect the final 
processor state immediately prior to the next cluster.  If these 
instructions can be isolated, they can be omitted during warm 
simulation with no adverse affect on sampling accuracy.  The 
Reverse State Reconstruction algorithm reconstructs the state 
of the cache and branch predictors by iterating through the 
skip-region trace in reverse order and judiciously applying 
updates as needed.  Unlike other techniques, such as BLRL 
[5], no analysis is performed between clusters except for 
logging the needed information for reconstruction.  Using this 
algorithm, a novel concept of on-demand state reconstruction 
is introduced to achieve 64% speedup compared to SMARTS, 
while still passing confidence interval tests. 
 
2.   Related Work 
 The sampling of workloads has been used in a number of 
architectural simulation applications.  Originally, sampling 
was applied to cache simulation [2],[6],[10],[20] and was later 
extended to the simulation of processors [4],[11],[16].  Most 
instances utilize some derivative of cluster sampling but other 
forms, such as stratified sampling [13] and set sampling 
[6],[9],[12], have been used with success.  In stratified 
sampling, the population is classified into groups and elements 
from each group are chosen to be included in the sample.   
 Two different types of sampling are possible for caches:  
time sampling [3],[6],[10],[20] and set sampling [6],[9],[12].  
Time sampling involves the extraction of time-contiguous 
memory references from different locations in an address 
trace.  Set sampling is a form of stratified sampling when 
applied to caches and involves the inspection of particular 
cache sets.  Thus, the memory references that affect chosen 
sets are not necessarily temporally adjacent. 
 Whenever sampling is used, a sample estimate is affected 
primarily by two kinds of error: sampling bias and non-
sampling bias [8].  Sampling bias occurs when sampling units 
chosen from the population are unrepresentative of the entire 

population.  A properly chosen sampling regimen will have 
small sampling bias.  Technically, non-sampling bias is 
defined as any bias other than sampling bias.  More 
specifically, non-sampling bias can be described as the 
difference in state between the sampled simulator and the full 
simulator at the start of a given cluster.  For example, if 20 
million instructions were skipped between two clusters, the 
state of the processor would be much different than if the 
skipped instructions had been simulated.  The difference in 
state is commonly referred to as the cold-start problem.  In the 
previous section, it was stated that warm-up methods are used 
to warm processor state before the next cluster is executed.  
These warm-up methods are used to reduce non-sampling bias 
so accurate measurements can be obtained from the clusters. 
 Many different approaches have been used to remove 
non-sampling bias from sampled simulation.  Laha, et al., [10] 
took sampling units immediately following context switches 
to ensure consistent state.  By assuming the cache contents are 
flushed after a context switch for small caches, the contents 
are empty and therefore identical to the full execution trace.  
For larger cache designs, the idea of primed cache sets was 
introduced by Fu, et al. [6] and Laha, et al. [10].  Once the 
execution of a new cluster begins, a set in the cache is 
considered primed after it has been filled with unique 
references.  Only information gathered from primed sets are 
used to record measurements.  The Reverse State 
Reconstruction algorithm for cache warm-up is similar to the 
notion of a primed set.  Before a cache set is simulated in the 
next cluster, its state must first be reconstructed.  Other warm-
up techniques proposed by Wood, et al. [20] use probability to 
distinguish misses at the beginning of a cluster between 
compulsory and cold-start misses. 
 Of all of the warm-up methods, perhaps the most accurate 
in removing non-sampling bias is SMARTS [19], proposed by 
Wunderlich, et al.  When skipping instructions between 
clusters, the entire skip region of instructions is executed in a 
warm phase.  Thus, every branch and memory operation is 
functionally applied to the branch predictor and cache 
hierarchy.  The SMARTS warm-up policy has been applied in 
cache simulations [2] and to processor simulations [3],[4].  
The SMARTS, or full functional, warm-up method is 
extremely accurate, but at a cost.  SMARTS is heavy-handed 
because many instructions within the skip region do not affect 
the final state prior to the next cluster.  The Reverse State 
Reconstruction algorithm is able to dynamically isolate and 
remove such ineffectual instructions to realize faster 
simulation times than SMARTS.   
 Because SMARTS is demanding in terms of simulation 
time, other warm-up methods have been proposed that 
approximate the SMARTS accuracy at a lower cost.  Haskins, 
et al. [7] proposed the Memory Reference Reuse Latency 
(MRRL) algorithm for warm-up.  MRRL profiles the skip 
regions in between clusters (see Figure 1) to determine the 
number of pre-cluster instructions to execute for a given 
percentage warm-up.  This work was later extended by 
Eeckhout, et al. [5] with the Boundary Line Reuse Latency 
(BLRL) algorithm.  Unlike MRRL, BLRL only considers 
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memory references from instructions that originate in the 
cluster.  In this study, cluster and pre-cluster pairs are profiled 
for memory references.  Only references in the pre-cluster that 
affect memory operations in the cluster are applied to the 
cache.  The Reverse State Reconstruction algorithm proposed 
in this paper, unlike the aforementioned techniques, requires 
no profiling or analysis of skip region instructions.  Although 
effective, the MRRL and BLRL techniques pin down the 
cluster locations and require profiling analysis whenever the 
cluster positions are changed. 
 One widely popular approach used in lieu of statistical 
sampling was proposed by Sherwood, et al. [17].  This 
technique, called SimPoint, analyzes the frequency at which 
basic blocks are executed within a workload.  From this 
heuristic, SimPoint identifies a region or set of regions that 
can be simulated to approximate the entire program behavior.  
This technique is hardware independent.  While effective, 
critics of SimPoint note that the heuristic by which the regions 
are selected utilizes systematic sampling.  Since the 
probability of selection is not random, statistical tests such as 
the confidence interval cannot be used.  An extension to 
SimPoint, called Variance SimPoint [15], has been introduced 
to calculate error bounds for sampled clusters.  Such error 
bounds can be calculated if SimPoint selects clusters of 
execution at random. 
 
3.   Reverse State Reconstruction 
 While skipping between clusters, many instructions do 
not affect the processor state immediately prior to the next 
cluster.  For example, cache blocks generated by memory 
operations at the beginning of the skip region will likely be 
overwritten by those at the end.  If such instructions can be 
identified, they can safely be omitted during warm execution 
with no adverse affects on sampling accuracy.   
 The Reverse State Reconstruction algorithm reconstructs 
the state of the cache and branch predictors by iterating 
through the logged skip-region trace in reverse order and 
judiciously applying updates as needed.  Once a cluster is 
finished, cold-phase execution continues to the next cluster 
boundary.  During this phase, certain instructions are logged 
from the functional simulator.  Branch information is saved 
for reconstruction of the branch predictor, and memory 
operations are saved for the caches.  To minimize the storage 
requirements of the algorithm, data are kept only for the 
current cluster of execution.  When the current cluster finishes, 
any saved information is discarded to accommodate data in the 
next skip region.  The contributions of this technique are 
threefold: 

1. The proposed method isolates ineffectual instructions 
from skip regions between clusters without the use of 
profiling. 

2. The proposed method achieves a maximum and average 
speedup ratio of 2.45 and 1.64, respectively, over 
SMARTS with minimal sacrifice to accuracy (less than 
0.3%). 

3. By trading storage for speed, the proposed method 
introduces the concept of on-demand state 
reconstruction for sampled simulations. 

The two most important elements to warm-up in sampled 
processor simulation are the branch predictor and cache 
hierarchy.  The following sections describe how these pieces 
are reconstructed. 
 
3.1. Cache Reconstruction 
   Cache reconstruction begins by logging memory 
operations during cold simulation.  During logging, the state 
of the cache is left stale.  A stale cache contains the same data 
that was present after the execution of the previous cluster.  
The current PC, next PC, the address of the data or instruction, 
and two Boolean values specifying the entry type (instruction 
or data) and reference type (load or store) are buffered.  
Immediately before the next cluster, the reference stream is 
scanned in reverse order and the cache state is updated.  
Temporal locality is exploited by applying updates to the 
cache for only those references that would have affected the 
final state.  References that occurred at the beginning of the 
skip region, which subsequently are evicted by future 
references, can be safely removed from warm-up.  Redundant 
references (i.e., references to data already reconstructed in the 
cache) can also be ignored since their effect on the set has 
already been processed.  Each cache block contains a bit that 
indicates if it has been reconstructed.  These bits are cleared 
before the logged data are used to warm the cache.  Whenever 
a cache block is reconstructed, its associated reconstructed bit 
is set. 
 For each logged reference, a lookup is performed to 
determine if its corresponding set has been reconstructed.  
Remember that since the logged data are processed in reverse 
order, redundant accesses to a reconstructed set actually 
occurred earlier and can be ignored.  If the set has been 
reconstructed, then all subsequent accesses can be ignored.  If 
not, then the reference is classified as present or absent.  If 
present, the LRU bits are updated only if they are stale.  If 
absent, the reference is inserted into the least recently used 
stale block.  After deciding where the block should be placed, 
the LRU bits of the reconstructed blocks are assigned in 
ascending order.  The first reconstructed block of a set is 
assigned the most recently used reference.  Additional unique 
references reconstructed into the same set are assigned 
increasing LRU values.  The last reconstructed block of a set 
is assigned the least recently used reference. 
 As the logged trace is consumed, sets within the cache are 
reconstructed.  References to reconstructed blocks can be 
safely ignored because they do not affect the final cache state.  
During cache reconstruction, updates are applied to both the 
L1 and L2 caches.  For caches with WTNA policies, the block 
is allocated even if the access is a write to avoid history 
looking for a previous read. 
 Studies of this technique show it can sufficiently 
approximate the cache state without functionally simulating 
the cache for every reference in the skip region.  Despite the 
buffering of the data reference stream during functional 
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simulation, it has been shown that reducing the total number 
of updates to the cache results in faster simulation times. 
 Figure 2 shows an example of the reverse cache 
reconstruction algorithm.  In this figure, the number above the 
cache block indicates its LRU value.  The letter R indicates 
that the block has been reconstructed.  In this example, a 
forward reference stream E, A, F, C is applied to a particular 
cache set.  Two columns are used to show how the reverse 
trace algorithm approximates regular cache simulation for a 
particular cache set.  The left column shows normal cache 
simulation.  As the references are applied on the left, the least 
recently used element is evicted from the cache, and replaced 
by the incoming reference.  The newly placed reference is the 
most recently used element, and the LRU bits of the other 
blocks in the set are updated.  After all accesses have been 
applied, the final state of the cache set is shown. 

Figure 2: Reverse reconstruction of an individual cache line. 

 On the right column of Figure 2, the details of the reverse 
cache reconstruction method are shown.  The LRU bits for 
stale elements are used to determine the way of the inserted 
block.  Reconstructed blocks are placed into the least recently 
used stale element.  The set is searched for the maximum LRU 
value for all reconstructed blocks.  If no blocks have been 
reconstructed, the newly reconstructed block becomes the 
most recently used.  If blocks have been reconstructed, the 
LRU values will increase.  The last reconstructed block 
becomes the least recently used.  As shown in Figure 2, 
Reverse Trace Cache Reconstruction can closely approximate 
normal cache simulation. 
 

3.2. Branch Predictor Reconstruction 

 Branch Predictor reconstruction involves state repair in 
the prediction tables, branch target buffer (BTB), and return 
address stack (RAS).  Branch predictor reconstruction begins 
by logging branch information during cold simulation.  
Buffered data includes the current PC, next PC, branch 
outcome, and other accounting information relevant to 
determine the final branch effects.  This includes the 
instruction opcode, source register, and any instruction flags.  
A BTB element in the branch predictor is reconstructed using 
the address logged during functional simulation.  BTB 

reconstruction is accomplished similar to the cache 
reconstruction since the BTB can be viewed as a direct 
mapped cache indicating the taken branch target. 
 Unlike cache reconstruction, the branch predictor is 
updated on-demand in the next cluster of execution.  
Specifically, as branches are encountered in the next cluster, 
the branch predictor is probed to determine if the entry has 
been reconstructed.  If the entry has been reconstructed, then 
execution in the cluster continues as normal.  If not, the entry 
is first reconstructed before hot execution continues.  During 
the traversal, branches that reference entries that are not 
relevant to the current entry (i.e., branches that do not index 
into the same entry) also are reconstructed.  By reconstructing 
other branches in this manner, the logged data does not need 
to be rescanned from the beginning for each uniquely indexed 
branch.  Because a Gshare predictor is used, the global history 
register must first be reconstructed using the last n branches of 
the skip-region trace (where n is the width of the global 
history register).  Once the global history register has been 
reconstructed, branch entries can be accurately determined.  
Like cache reconstruction, the contents of the branch predictor 
are left stale prior to reconstruction. 
 Figure 3 shows the normal operation of a 2-bit saturating 
counter entry indexed within a branch predictor.  Each counter 
value indicates a prediction state.  When an instruction is 
retired, the initial prediction is updated with its outcome.  
Taken branches cause the counter to increment, and not taken 
branches cause the counter to decrement.  Since the 2-bit 
counter has a limited number of values, usually only a small 
amount of history is needed to approximately reconstruct a 
particular branch predictor entry.  In other words, the logged 
branch history can be used to sufficiently isolate the exact 
counter value, or narrow the counter value to a set of possible 
states.  
 During reconstruction, a series of possible states are 
tracked for each prediction table entry.  Initially, the set of 
possible states includes all possible counter values: 0, 1, 2, or 
3.  As references to the same entry are encountered, a reverse 
branch history is generated.  Remember that the reverse 
branch history field in the table constitutes that branch history 
for a particular set in the reverse order.  Therefore, the first 
outcome in the reverse history was the last outcome for that 
branch table entry in the skip region.  The logged branch 
history is searched until the counter state for the branch can be 
determined or until the history has been consumed.  Rather 
than performing this computation at execution time, a table 
was built a priori so that reconstruction can be implemented 
through a table lookup. 
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Figure 3: Prediction of Branch Counters 

 Figure 3 shows several examples of how the reverse 
branch histories isolated for a particular entry can be used to 
infer a branch counter or set of branch counters.  If the last 
three consecutive outcomes for a particular branch entry are 
taken, or not taken, then the exact counter state can be 
determined.  No matter what the original counter state, three 
taken branches in a row will cause the counter state to become 
three, and three not taken branches will cause the counter state 
to become zero (see cases 1 and 2 in Figure 3).  Furthermore, 
if these patterns exist anywhere within the branch history, then 
the exact counter state can also be determined (see case 3 in 
Figure 3).  However, the branch history does not always yield 
an exact counter state.  Case 3 shows some instances where 
the exact state cannot be inferred.  In this instance, the 
outcome is predicted based on the remaining set of possible 
states.  If the branch is biased in one direction (taken or not 
taken) the predictor is set to the weak form.  If three states 
exist, the middle state is predicted.  For example, if the 
remaining possible states include strongly not taken, weakly 
not taken, and weakly taken, then the state of weakly not taken 
is predicted.  No more than three states can exist for an entry 
that has a history of one branch.  If no history for a branch is 
produced, then the counter value is left stale. 
 Reconstruction of a finite size return address stack is 
accomplished through the following algorithm.  Whenever a 
pop is encountered in the reverse history, a single counter is 
incremented.  If a push is encountered, and the counter is 
equal to zero, the next PC is placed at the end of the RAS.  
Otherwise, whenever a push is seen, the counter is 
decremented.  Once the return address stack has been filled, 
reconstruction is complete.  Figure 4 shows an example of a 
forward and a reverse call sequence.  The numbers next to the 
reverse call sequence indicate the counter value after the 
push/pop has been processed. 

4. Experimental Framework 
 The model used in this study is an execution-driven 
simulator based on SimpleScalar [1].  Unlike trace-driven 
simulation, the processor model fetches instructions from a 
compiled binary.  The front end of the processor can fetch and 
dispatch eight instructions per cycle, and can issue and retire 
four instructions per cycle.  The model includes eight 
universal function units that are fully pipelined.  The 

maximum number of in flight instructions is 64.  The issue 
queue size is 32, and there is a load-store queue of 64 
elements.  The pipeline depth is seven stages.  The minimum 
branch miss-prediction penalty is five cycles.  The processor 
frequency is assumed to be 2 GHz.  The branch predictor is a 
64K entry Gshare with an eight-entry return address stack.  
The BTB consists of 4K entries.  Architectural checkpoints 
are utilized to allow the processor to speculatively execute 
beyond eight branches. 
 

Figure 4:  Reverse RAS reconstruction 

 A substantive memory hierarchy is modelled within the 
simulator.  The first level data cache is 4-way and contains 32 
KB with a 64-byte line size.  The first level instruction cache 
is also 4-way and contains 64 KB with a 64-byte line size.  
The instruction and data caches are implemented using a 
write-through no-write allocate policy.  The second level 
cache is 8-way and contains 1 MB with a 64-byte line size, 
and is implemented using a write-back write-allocate policy.  
A bus model also is incorporated in order to emulate 
arbitration, contention, and transfer delay between the levels 
of memory.  The first level bus is shared between the first 
level data and instruction caches, and connects the first level 
caches to the second level cache.  The first level bus has a 
width of 16 bytes and operates at 1GHz.  The second level bus 
connects the second level cache to main memory, has a width 
of 32 bytes, and operates at 2 GHz.  
 The model includes both a functional and a timing 
simulator.  The functional simulator is useful for many 
reasons.  First, the functional simulator is used to validate the 
results of the timing simulator.  If the timing simulator 
attempts to commit a wrong value, the functional simulator 
will assert an error.  However, in the context of sampled 
simulation, the functional simulator has additional uses.  
Second, as instructions in the dynamic stream are skipped 
(either in cold or warm simulation), the functional simulator 
retains valid architectural state.  When hot execution 
continues in the next cluster, the values of the registers 
contained in the functional simulator are copied to the timing 
simulator. 
 For processor simulations, the standard performance 
metric is IPC, which is measured as the number of instructions 

194



 

retired per execution cycle.  The Reverse Trace 
Reconstruction algorithm described above was tested against a 
number of other techniques for accuracy, speed, and statistical 
confidence. 

5. Experimental Results 

 Experiments were conducted using the SPEC2000 
benchmarks.  Integer benchmarks used include gcc, mcf, 
parser, perl, vortex, vpr, and twolf.  Floating point 
benchmarks used include ammp and art.  The first six billion 
instructions from each benchmark were simulated with 
reference input sets.  Table 1 shows the true IPC of each 
benchmark simulated during experimentation.  The true IPC 
was used to serve as a baseline for comparison to the various 
sampling techniques.  Sampling regimens were constructed for 
each workload and are included in the table.  All sampling 
techniques from each compared benchmark utilize the 
specified sampling regimen.  The starting positions of each 
cluster were then randomly generated according to a uniform 
distribution.  The same starting cluster positions were used for 
each sampling algorithm (except SimPoint) to keep the 
sampling bias constant. 

Table 1. True IPC and sampling regimen data for each workload 
  Using this framework, a number of different techniques 
were compared to measure the effectiveness of non-sampling 
bias removal.  As discussed previously, non-sampling bias is 
caused by the loss of state information during skipped periods.  
After a cluster is executed and instructions are skipped, the 
potential for state loss is high and likely will affect the 
performance of the next cluster.  State in a processor is kept in 
a number of areas including: the scheduling queues, the 
reorder buffer, the functional unit pipelines, the branch 
prediction hardware, instruction caches, data caches, 
load/store queues, and control transfer instruction queues. 
 Each warm-up method or policy was then passed through 
a 95% confidence interval test in order to determine if it 
correctly predicted the true IPC.  The standard deviation SIPC 

and standard error S IPC  for a cluster sampling design is given 
by, 
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bounds and confidence interval. Using the properties of the 
normal distribution, the 95% confidence interval is given by 

µ
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IPC ± 1.96 SIPC, where the error bound is ±1.96SIPC. A 

confidence interval of 95% implies that 95 out of 100 sample 
estimates may be expected to fit into this interval.  Moreover, 
for a well-designed sample, the true mean of the population 
may also be expected to fall within this range.  Low standard 
errors imply relatively small variation in repeated estimates 
and consequently result in higher precision.  For each warm-
up policy, the relative error was calculated as follows: 
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true
IPC is the true population mean IPC, and µ
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IPC  is 

the IPC estimate obtained from the sample. Relative error 

relies on µ
true
IPC  from a full-trace simulation of each test 

benchmark. 
 Table 2 shows the various warm-up methods used during 
experimentation.  In no warm-up, no state repair techniques 
were used in the skip region.  After the execution of a cluster, 
the caches and branch predictor were left stale.  In the fixed 
period warm-up  method, a specified percentage of the skip 
regions immediately prior to the next cluster were used for 
warm-up.  Three variations of SMARTS warm-up were also 
conducted.  The first two consisted of selectively warming 
only the cache hierarchy or branch predictor.  These 
simulations were used to determine the accuracy of the 
Reverse Trace Reconstruction algorithms when selectively 
applied to the cache and branch predictor alone.  The third 
variant of SMARTS warmed both the cache and branch 
predictor for comparison when the reverse trace algorithm 
also warms the cache and branch predictor.  All warm-up 
methods requiring percentage parameters were conducted 
using 20, 40, and 80 percent.  Finally, a detailed comparison 
with SimPoint also was performed. 

Table 2: Warm-up method experiments 
 Each of the tested warm-up methods were compared 
based on accuracy, speed, and statistical confidence.  Because 
the data were too voluminous to compare each individual 
benchmark, the average performance for each technique was 
analyzed.  Specific workloads will be discussed in greater 
detail.  For the interested reader, all data used to create the 
graphs are included in the appendix. 
 Figure 5 shows the relative error and simulation time 
results for all simulations that selectively warm-up only the 
cache.  As shown, the Reverse Trace Cache Reconstruction 

195



 

algorithm performs closely to SMARTS cache warm-up.  The 
average relative error for SMARTS cache is 3.1%, while the 
reverse cache warm-up is approximately 3.3%.  Although the 
simulation times for cache warm-up are highly similar, the 
simulation times vary significantly.  Full functional simulation 
of the cache in the skip region takes an average of 1443 
seconds, while the 20% reverse cache warm-up takes 1086 
seconds.  By applying the last 20% of the memory references 
to the cache hierarchy a speedup ratio of 1.41 was achieved 
for cache warm-up.  For these simulations, gcc had the largest 
speedup ratio of 1.93 while parser had the smallest speedup 
ratio of 1.03.  Therefore, reverse cache reconstruction at 20% 
always reduced simulation time when compared to SMARTS.  
As the warm-up percentages increased, the speedup ratio was 
degraded.  At 40 and 80 percent, the speedup ratios are 1.27 
and 1.05, respectively.  At 40%, most workloads performances 
were improved, but mcf exhibits degradation in simulation 
speed with a speedup ratio of 0.97.  At 80%, all workloads 
show speedup except mcf, parser, and vortex. 
 Little additional benefit was obtained by executing more 
than 20% of the logged cache data.  This is consistent with 
temporal locality, such that the cache blocks at the beginning 
of the skip-region will be evicted by subsequent references. 
 Figure 6 shows the relative error and simulation time 
results for all simulations that selectively warm-up only the 
branch predictor.  As shown, the Reverse Trace Branch 
Predictor Reconstruction algorithm performs similarly to 
SMARTS.  Both the reverse algorithm and SMARTS warm-
up achieve an average relative error of 22.3 and 22.2 percent, 
respectively.  However, the average speedup ratio of the 
reverse technique over SMARTS branch prediction warm-up 
is 1.48.  Gcc exhibits the highest speedup ratio of 2.26, while 
mcf has the lowest of 1.10. 
 As shown in Figures 5 and 6, the cache hierarchy has the 
greatest impact on non-sampling bias for sampled simulation.  
Warming the branch predictor alone produced an average 
relative error of 23% while warming the cache alone produced 
an average relative error of 3.1%.  Although it may seem 
advantageous to only warm the cache structures in sampled 
simulation, non-sampling bias produced by cold state in the 
branch predictor is sufficient to cause many simulations to fail 
the confidence interval tests (see appendix). 
 Figure 7 shows the relative error and simulation time 
results for all simulations that incorporated both the cache and 
branch predictor in warm-up.  No warm-up had the least 
overhead of all techniques, and thus had the lowest simulation 
time but produced the highest error at 23%.  Of the remaining 
techniques, SMARTS had the lowest error at 0.9%, but had 
the highest simulation time.  Reverse Trace Reconstruction 
achieved speedup ratios of 1.64, 1.51, and 1.25 for 20, 40, and 
80 percent, respectively.  At 20 and 40 percent, all workloads 
executed faster using the proposed algorithm than SMARTS.  
At 80 percent, mcf was the only workload that suffered in 
simulation time with a speedup ratio of 0.918. 
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Figure 5: Cache warm-up only 
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Figure 6: Branch Prediction warm-up only 

 Fixed period simulations performed highly similar to the 
proposed methods at the specified percentages.  At 20%, fixed 
period has a lower simulation time.  However, as the 
percentages increase to 40 and 80% the reverse techniques run 
faster.  One explanation is that all accounting information 
necessary for reconstruction is logged in the skip region, 
regardless of the warm-up percentage.  As the reconstruction 
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percentages increase, the data buffering cost are amortized 
over the reconstruction time. 
 Figure 8 shows the relative error and simulation time 
results for the Reverse State Reconstruction compared to 
SMARTS warm-up.  At 20% warm-up, the average relative 
error with respect to SMARTS for all simulated workloads is 
0.3%.  At 20% warm-up the minimum and maximum relative 
errors with respect to SMARTS are 0.01% and 1.9%, 
respectively.  Since SMARTS is the most accurate, it is 
expected that SMARTS should have the lowest error.  The 
average behavior for the tested workloads is shown in Figure 
7.  Figure 8 shows these results by individual benchmark.  As 
expected, the simulation time increases as the specified warm-
up percentage increases. Figure 9 shows the average relative 
error and simulation times for SimPoint with the Reverse 
Trace State Reconstruction at 20%.  In order to fairly compare 
SimPoint with sampled simulation, a variety of different 
interval sizes were incorporated.  All SimPoint comparisons 
were conducted utilizing multiple simulation points (30), at 
varying interval sizes.  SimPoint v3.2 [17] was used in these 
experiments. 
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Figure 7: Cache and Branch Prediction warm-up 

 SimPoint allows the user to specify an interval size that 
defines the granularity at which basic block vector profiling is 
conducted.  Originally, an interval size of 50K was selected in 
order to keep the number of instructions in hot execution 
constant.  As shown below, SimPoint produces an average 
error of 20% when an interval size of 50K is used.  One reason 
for this is that not all SimPoint variants incorporate warm-up 
while skipping to the next simulation point, or cluster.  
Without warm-up, measurements taken from small clusters are 
greatly affected by non-sampling bias.  Therefore, SMARTS 
warm-up was incorporated into the SimPoint simulations.  In 

50K-SMARTS, the SMARTS warm-up policy was used to 
warm-up processor state while skipping instructions to the 
next simulation point indicated by SimPoint.  As shown 
below, the error rate dropped to 8% when warm-up was 
included. 
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Figure 8: Reverse State Reconstruction vs SMARTS 

 Although an interval size of 50K was selected for sample 
size consistency, the authors of SimPoint do not suggest such 
a small interval size.  As a result, the interval size was 
increased to 10M.  Using a 10M-interval size, the relative 
error of SimPoint was 4.2%.  For symmetry, SMARTS warm-
up with an interval size of 10M was also performed, and had 
an average error of 5.9%.  With an interval size of 50K the 
introduction of a warm-up method helped simulation 
accuracy.  However, with an interval size of 10M its accuracy 
was degraded.  No conclusions can be drawn from the 
addition of warm-up to the SimPoint method. 
 At the lowest interval size, SimPoint was faster than 
sampled simulation, but at a higher cost in accuracy.  
Increasing the interval size increased the accuracy, but at a 
high simulation cost.  The Reverse Trace Reconstruction 
algorithm had an average relative error of 1.7% 
 All warm-up methods were then tested for statistical 
confidence (see appendix).  Using a 95% confidence interval, 
the variability of each sample was tested to determine if it 
could correctly predict the actual IPC.  At 20% warm-up, the 
reverse trace reconstruction correctly predicted the true IPC 
for seven of the nine workloads.  The remaining two also were 
predicted at 80%. 
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Figure 9: SimPoint comparison 

6.   Conclusion 

 In this paper, a new Reverse State Reconstruction warm-
up method was introduced for sampled simulation.  Using this 
method, considerable speedups were achieved relative to 
SMARTS, with negligible accuracy loss.  Maximum and 
average speedup ratios of 2.45 and 1.64, respectively, were 
obtained with an accuracy loss of less than 0.3%.  By 
recording data while skipping instructions, processor state can 
be reconstructed on-demand rather than naively applying 
every memory addresses and branch instructions functionally.  
From the experiments conducted in this study, it is shown that 
ineffectual instructions can be selectively removed from 
warm-up to reduce simulation time. 

7.   Acknowledgements 

We would like to thank Dr. Suleyman Sair, one of the original 
contributors to SimPoint, for insights regarding SimPoint 
evaluation. 

8.   References 
[1] Burger, D. C., and Austin, T. M.  The Simplescalar Toolset, 

version 2.0.  Computer Architecture News, 25(3):13-25, June 
1997. 

[2] Conte, T. M., Hirsch, M. A., and Hwu, W. W.  Combining Trace 
Sampling With Single Pass Methods for Efficient Cache 
Simulation.  IEEE Transactions on Computers, vol. C-47, no. 6, 
Jun. 1998. 

[3] Conte, T. M. Systematic computer architecture prototyping. 
PhD thesis, Department of Electrical and Computer 
Engineering, University of Illinois, Urbana, Illinois, 1992. 

[4] Conte, T. M., Hirsch, M. A., and Menezes, K. N.  Reducing 
State Loss for Effective Trace Sampling of Superscalar 
Processors.  In Proc of the 1996 International Conference on 
Computer Design, (Austin, TX), Oct. 1996. 

[5] EeckHout, L., Luo, Y., Bosschere, K. D., and John, L. K.  
BLRL: Accurate and Efficient Warmup for Sampled Processor 
Simulation.  The Computer Journal, 2005 Oxford University 
Press. Vol. 48 (4). 2005. pp. 451-459. 

[6] Fu, J. W. C., and Patel, J. H. Trace driven simulation using 
sampled traces. In Proc. 27th Hawaii Int’l. Conf. on System 
Sciences, (Maui, HI), Jan. 1994. 

[7] Haskins, J. W., and Skadron, K.  Memory Reference Reuse 
Latency: Accelerated Sampled Microarchitecture Simulation.  
In Proc of the 2003 IEEE International Symposium on 
Performance Analysis of Systems and Software, pp. 195-203, 
Mar. 2003. 

[8] Henry, G. T. Practical sampling. Newbury Park, CA: Sage 
Publications, 1990. 

[9] Kessler, R. E., Hill, M. D., and Wood, D. A. A comparison of 
trace-sampling techniques for multi-megabyte caches. IEEE 
Trans. Comput., vol. C-43, pp. 664–675, June 1994. 

[10] Laha, S., Patel, J. A., and Iyer, R. K. Accurate low-cost methods 
for performance evaluation of cache memory systems. IEEE 
Trans. Comput., vol. C-37, pp. 1325–1336, Feb. 1988.  

[11] Lauterbach, G. Accelerating architectural simulation by parallel 
execution.  In Proc. 27th Hawaii Int’l. Conf. on System 
Sciences, (Maui, HI), Jan. 1994. 

[12] Lui, L., and Peir, J.  Cache sampling by sets.  IEEE Trans.  
VLSI Systems, vol. 1, pp. 98-105, June 1993. 

[13] Mangione-Smith, W. H., Abraham, S. G., and Davidson, E. S.  
Architectural vs Delivered Performance of the IBM RS/6000 
and the Astronautics ZS-1.  In Proc. 24th Hawaii International 
Conference on System Sciences, January 1991. 

[14] McCall, J. C. H. Sampling and statistics handbook for research. 
Ames, Iowa: Iowa State University Press, 1982. 

[15] Perelman, E., Hamerly G., and Calder, B.  Picking Statistically 
Valid and Early Simulation Points. In the International 
Conference on Parallel Architectures and Compilation 
Techniques, September 2003. 

[16] Poursepanj. The PowerPC performance modeling methodology. 
Communications ACM, vol. 37, pp. 47–55, June 1994. 

[17] Sherwood, T., Perelman, E., Hamerly, G., and Calder, B.  
Automatically Characterizing Large Scale Program Behavior.  
In the 10th International Conference on Architectural Support 
for Programming Languages and Operating Systems, October 
2002. 

[18] Wenisch, T. F, Wunderlich, R. E., Falsafi, B., and Hoe, J. C.  
Simulation Sampling with Live-Points.  IEEE International 
Symposium on Performance Analysis of Systems and Software, 
Mar. 2006. 

[19] Wunderlich, R. E., Wenish, T. F, Falsafi, B., and Hoe, J. C.  
SMARTS: Accelerating Microarchitecture Simulation via 
Rigorous Statistical Sampling.  Proc. 30th ISCA, 2003. 

[20] Wood, D. A., Hill, M. D., and Kessler, R. E. A model for 
estimating trace-sample miss ratios. In Proc. ACM 
SIGMETRICS ’91 Conf. on Measurement and Modeling of 
Comput. Sys., pp. 79–89, May 1991. 

198



 

Appendix
Relative Error

ammp art gcc mcf parser perl twolf vortex vpr AVG
FP (20%) 0.0035 0.02 0.0032 0.0386 0.0402 0.0226 0.0094 0.0114 0.0162 0.0184
FP (40%) 0.0037 0.0037 0.0041 0.0364 0.021 0.0203 0.0082 0.0066 0.0164 0.0134
FP (80%) 0.0038 0.0009 0.006 0.0361 0.0101 0.0011 0.007 0.0039 0.0173 0.0096
None 0.0025 0.1665 0.2001 0.1472 0.4764 0.0897 0.4836 0.1795 0.3267 0.2302
S$ 0.0202 0.0125 0.0397 0.0302 0.0625 0.0107 0.0517 0.0126 0.0347 0.0305
SBP 0.0188 0.1574 0.1804 0.1525 0.4554 0.083 0.4648 0.1696 0.3176 0.2222
S$BP 0.0037 0.0009 0.0063 0.036 0.0085 0.0032 0.0054 0.0026 0.0168 0.0093
R$ (20%) 0.0194 0.0118 0.0383 0.037 0.0919 0.0106 0.058 0.0028 0.0344 0.0338
R$ (40%) 0.0197 0.0287 0.0392 0.0365 0.074 0.008 0.0574 0.008 0.0345 0.034
R$ (80%) 0.0197 0.0319 0.041 0.0359 0.0644 0.0052 0.0561 0.0106 0.0357 0.0334
R$ (100%) 0.0197 0.0321 0.0413 0.0356 0.0623 0.0105 0.0545 0.0118 0.0352 0.0337
RBP 0.0186 0.1635 0.1907 0.1382 0.4597 0.0781 0.4691 0.1716 0.3189 0.2232
R$BP (20%) 0.0029 0.0003 0.0055 0.0423 0.0429 0.0221 0.0123 0.0125 0.0169 0.0175
R$BP (40%) 0.0033 0.0171 0.0067 0.0421 0.0224 0.019 0.0105 0.0072 0.0168 0.0161
R$BP (80%) 0.0033 0.0203 0.0086 0.0414 0.0119 0.005 0.0095 0.0046 0.0178 0.0136
R$BP (100%) 0.0033 0.0206 0.009 0.0411 0.0095 0.0002 0.0078 0.0035 0.0173 0.0125  
Time

ammp art gcc mcf parser perl twolf vortex vpr AVG
FP (20%) 759.35 632 1336.1 2331.6 953.45 1004.1 911.33 809.54 653.31 1043.4
FP (40%) 934.81 780.96 1717.6 3046.3 1210 1256.4 1142 1060.5 862.36 1334.5
FP (80%) 1336.7 1030.3 2354.5 4012.7 1785.5 1762.8 1616.1 1436.3 1217.8 1839.2
None 548.4 523.65 913.86 1631.9 700.78 803.7 650.43 637.25 542.16 772.46
S$ 1199.8 1016.5 1899.1 2773.4 1292.5 1428.8 1254.4 1188 936.63 1443.2
SBP 945.11 646.44 1806.8 2435 1361.1 1302.3 1234.2 1012.4 926.27 1296.6
S$BP 1603.5 1181.4 1508.8 3235.8 3338.5 2038.3 1874.4 1662.2 1419.7 1984.7
R$ (20%) 792.56 681.95 979.64 2664.4 1246.8 1064.6 892.36 804.75 643.2 1085.6
R$ (40%) 896.78 765.98 1205.8 2830.1 1105.5 1115.6 983.88 955.88 731.06 1176.7
R$ (80%) 1136.9 997.38 1285 3240 1428.9 1342.3 1134.8 1294.9 833.27 1410.4
R$ (100%) 1244.5 925.12 1493.3 3429.2 1734 1535.9 1229.6 1276.1 919.3 1531.9
RBP 650.84 505.1 800.77 2203.7 867.04 845.74 769.1 653.87 558.01 872.68
R$BP (20%) 905.82 697.58 1076.4 3023.1 1360.5 1141.6 1018.4 930.69 735.63 1210
R$BP (40%) 984.67 807.6 1196.6 3116.9 1461.6 1263.3 1122.1 1049.9 817.94 1313.4
R$BP (80%) 1251 928.69 1428.6 3523.9 2068.9 1496.9 1270.5 1305.5 944.81 1579.9
R$BP (100%) 1368.4 976.37 1544.5 3683.7 2396.4 1656 1346.2 1410.5 1003.8 1709.5  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Confidence tests
ammp art gcc mcf parser perl twolf vortex vpr

FP (20%) yes yes yes yes no no yes yes yes
FP (40%) yes yes yes yes no no yes yes yes
FP (80%) yes yes yes yes yes yes yes yes yes
None yes no no no no no no no no
S$ yes yes no yes no no no yes no
SBP yes no no no no no no no no
S$BP yes yes yes yes yes yes yes yes yes
R$ (20%) yes yes no yes no no no yes no
R$ (40%) yes yes no yes no yes no yes no
R$ (80%) yes yes no yes no yes no yes no
R$ (100%) yes yes no yes no no no yes no
RBP yes no no yes no no no no no
R$BP (20%) yes yes yes yes no no yes yes yes
R$BP (40%) yes yes yes yes no no yes yes yes
R$BP (80%) yes yes yes yes yes yes yes yes yes
R$BP (100%) yes yes yes yes yes yes yes yes yes

 
SimPoint Relative Error

ammp art mcf gcc parser perl twolf vortex vpr AVG
50K 0.0215 0.0406 0.0923 0.2569 0.4103 0.2278 0.3408 0.1537 0.3262 0.2078
50K-SMARTS 0.2171 0.3206 0.0435 0.0235 0.0565 0.0226 0.0057 0.0636 0.0037 0.0841
10M 0.0485 0.003 0.0066 0.0246 0.0521 0.2308 0.0035 0.0117 0.0052 0.0429
10M-SMARTS 0.0485 0.008 0.0066 0.0193 0.1205 0.2303 0.0612 0.0121 0.0258 0.0591

SimPoint time
ammp art mcf gcc parser perl twolf vortex vpr AVG

50K 501 856 850 1030 925 491 594 545 429 691.22
50K-SMARTS 1841 1119 3497 2576 3007 1451 1680 1561 1303 2003.9
10M 2686 1535 9389 2548 1444 979 669 1254 1026 2392.2
10M-SMARTS 3549 2179 12154 4421 3191 2205 1245 2279 1954 3686.3
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