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Abstract

Recent superscalar processors issue four instructions
per cycle. These processors are also powered by
highly-parallel superscalar cores. The potential per-
formance can only be exploited when fed by high in-
struction bandwidth. This task is the responsibility of
the instruction fetch unit. Accurate branch prediction
and low I-cache miss ratios are essential for the e�-
cient operation of the fetch unit. Several studies on
cache design and branch prediction address this prob-
lem. However, these techniques are not su�cient.
Even in the presence of e�cient cache designs and
branch prediction, the fetch unit must continuously
extract multiple, non-sequential instructions from the
instruction cache, realign these in the proper order,
and supply them to the decoder. This paper explores
solutions to this problem and presents several schemes
with varying degrees of performance and cost. The
most-general scheme, the collapsing bu�er, achieves
near-perfect performance and consistently aligns in-
structions in excess of 90% of the time, over a wide
range of issue rates. The performance boost provided
by compiler optimization techniques is also investi-
gated. Results show that compiler optimization can
signi�cantly enhance performance across all schemes.
The collapsing bu�er supplemented by compiler tech-
niques remains the best-performing mechanism. The
paper closes with recommendations and suggestions
for future.
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1 Introduction

The recent MIPS R10000, Sun UltraSPARC and
AMD K5 superscalar processors issue four in-
structions per cycle, with higher issue rates ex-
pected [1],[2],[3]. These processor designs employ
multiple functional units and aggressive hardware
scheduling to extract parallelism in the instruction
stream. Next generation superscalar processors will
most likely employ multithreading to further enhance
parallelism. These highly parallel execution cores
must be fed by su�cient instruction bandwidth, re-
quiring optimized fetch unit design.
Fetching of instructions is constrained by three ma-

jor factors: instruction cache performance, taken or
indirect branches in the fetch stream, and instruction
alignment. The design of the instruction cache has
received much attention [4],[5],[6]. This body of work
includes compiler techniques to enhance instruction
cache performance [4],[7],[8]. The combined e�ect of
this work is to lessen the impact of instruction cache
misses on fetch bandwidth. Branch prediction is the
second factor that constrains fetching. Several re-
cent studies address the accuracy of branch predic-
tion [9],[10],[11]. But branch prediction alone is not
su�cient to deliver high fetch bandwidth. Even when
branches are predicted accurately, the fetch unit must
extract multiple, non-sequential instructions from the
instruction cache in one cycle. The layout of instruc-
tions in the cache often frustrates this task. For high
instruction bandwidth at high issue rates, the fetch
unit must realign instructions in the predicted order,
then pass the instructions on to the decode and exe-
cution units. Thus the third constraint on instruction
fetch is due to the alignment of instructions in cache
blocks. This problem is just emerging as issue rates
increase beyond two instructions per cycle. This pa-
per develops several solutions to the alignment prob-
lem.
Several approaches to high-bandwidth instruction
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fetch have been implemented for commercial pro-
cessors. Most decouple the instruction fetch unit
from the execution unit via queues, and allow the
fetch unit to speculate beyond branches [1],[12]. This
decoupling reduces the impact of more-complicated
(and higher-latency) instruction fetch hardware. In
addition to this, the six instruction per cycle IBM
POWER2 architecture employs an instruction cache
with eight, independently-addressable banks [13].
This fetch unit can align many instruction sequences,
but is limited by the POWER2's static branch pre-
diction mechanism, which is known to have lower
performance than dynamic schemes. The recently-
announced AMD superscalar 29K addresses this lim-
itation by embedding prediction and branch target
address information in the cache array to enable a
taken branch to be resolved without penalty [3]. How-
ever, this scheme cannot handle short branches within
a cache block (e.g., hammocks), or multiple branches
in one fetch, both of which are encountered frequently
for integer code.
This paper presents several schemes of increasing

complexity that address the instruction alignment
problem. Implementation details are discussed for
all the schemes. All comparisons are based on simu-
lated results of the IPC for three microarchitectures.
The results show that the most-complex scheme,
the collapsing bu�er, e�ciently handles short for-
ward branches and many cases of multiple branches.
It achieves performance near the theoretical upper
bound for a highly-parallel, 12 instruction issue mi-
croarchitecture. The e�ects of compiler optimiza-
tions on the performance of the schemes is also stud-
ied. The pro�le-driven code reordering optimization
is found to be highly successful, signi�cantly enhanc-
ing the performance of all schemes. A second opti-
mization, nop insertion for branch target alignment,
produces mixed results, suggesting this optimization
plays only a secondary e�ect. The data is used to sug-
gest several approaches for instruction fetch design at
high issue rates.
The remainder of this paper is organized into three

sections. The following section presents the machine
model, the experimental technique, and other related
assumptions employed in this study. This is followed
by a discussion of the lower and upper bounds for in-
struction alignment performance. These bounds are
termed sequential and perfect alignment, respectively.
The designs and performance of the proposed hard-
ware schemes are then discussed. The e�ect of com-
piler optimization is analyzed to �nd a balance be-
tween hardware and software solutions. The paper
closes with recommendations and suggestions for fu-
ture work in this area.

2 Experimental setup

The results that follow are presented for all six
SPECint92 benchmarks, three additional integer
benchmarks (mpeg play, bison, and flex), and six
SPECfp92 benchmarks. The benchmarks were com-
piled using GCC with the compiler options \-O
-fschedule-insn." The latter option invokes a dag-
based local scheduler. Experiments with this option
show that it marginally enhances parallelism. All ex-
periments were run using HP 9000/735-class work-
stations. The instruction set used for pipeline simu-
lation is a simpli�ed version of GCC's intermediate
code captured after PA-RISC-speci�c register alloca-
tion but before �nal code generation. Instructions are
encoded using a �xed, 32-bit format.
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Figure 1: Structure of simulated microarchitecture.

Traces were captured using the spike tracing tool
and then fed into a processor simulation. This simula-
tion assumes a full-Tomasulo, out-of-order execution
microarchitecture, depicted in Figure 1. Three ver-
sions of the microarchitecture are discussed in this pa-
per, and their parameters are summarized in Table 1.
All three versions have a scheduling window that re-
solves dependencies and implements Tomasulo-style
renaming via tags. Entries in this window corre-
spond to generic reservation stations. This window
also serves to decouple the fetch unit from the execu-



tion unit, allowing the fetch unit to speculate ahead
in the instruction stream. Speculative execution of
more than one predicted conditional branch is sup-
ported via the precise interrupt facility (see below).
The three classes of microarchitectures support dif-
fering degrees of speculation, in proportion to their
issue rates. For example, the PI4 microarchitecture
issues four instructions per cycle. Experiments with
the degree of speculation showed that speculative ex-
ecution beyond two branches was required to keep
the pipeline full. Similarly, the PI8 architecture sup-
ports speculation beyond four, and the PI12 supports
speculation beyond six branches.
Independent instructions are �red from the window

into the execution core, which is composed of �xed-
point units (FXUs), 
oating-point units (FPUs),
branch units, and the data cache interface. Access
to the data cache is through load units and a store
bu�er. Data cache misses are not explicitly modeled
in the simulator. The PI4 model has two �xed-point
units (FXU's), two 
oating-point units (FPU's), and
two branch units. The PI8 model is similar, but
scaled by doubling its resources to create a more par-
allel microarchitecture. The issue rate is increased to
eight instructions per cycle. The PI12 model follows
this design pattern, with an issue rate of 12 instruc-
tions per cycle.
Completing instructions are distributed via result

buses. The number of result buses equals the total
number of function units, so that bus contention sel-
dom occurs. Two register �les are maintained: the
Messy register �le and the Future register �le. The
former is used for out-of-order execution. If used
without augmentation, the microarchitecture would
be limited to imprecise interrupts. This is remedied
using a reorder bu�er [13]. The chief performance
metric is instructions retired per cycle (IPC), which is
the number of instructions leaving the reorder bu�er
(i.e., retiring) per simulated execution cycle.
All three microarchitectures have direct-mapped

instruction caches. The cache block size is calculated
so that a block holds the maximum issue rate of in-
structions. PI4 has size 16B, PI8 has size 32B, and
PI12 has size 64B blocks. The cache sizes are also
scaled with issue rate: 32KB (PI4), 64KB (PI8), and
128KB (PI12).
A branch-target bu�er employing a 2-bit counter

predictor is used for this study. The bu�er is direct-
mapped and has 1024 entries, comparable to com-
mercial BTB designs (e.g., 512 entries for the Pen-
tium [14], or 256/512 entries for the decoupled Pow-
erPC 604 BTB [15]). Branch target addresses are
also cached in the BTB for each entry. The BTB
is interleaved into multiple banks with an interleave

Table 1: Machine model parameters: PI4, PI8, and
PI12.

PI4 Machine model

Issue rate 4 instructions/cycle
Window queue 16 entries
Instruction cache 32KB, dir. mapped, 16B blocks
Fixed-point unit 2, with latency = 1 cycle
Floating-point unit 2, with latency = 2 cycles
Branch unit 2, with latency = 1 cycle
Speculation Speculates beyond 2 branches

PI8 Machine model

Issue rate 8 instructions/cycle
Window queue 24 entries
Instruction cache 64KB, dir. mapped, 32B blocks
Fixed-point unit 4, with latency = 1 cycle
Floating-point unit 4, with latency = 2 cycles
Branch unit 4, with latency = 1 cycle
Speculation Speculates beyond 4 branches

PI12 Machine model

Issue rate 12 instructions/cycle
Window queue 32 entries
Instruction cache 128KB, dir. mapped, 64B blocks
Fixed-point unit 6, with latency = 1 cycle
Floating-point unit 6, with latency = 2 cycles
Branch unit 6, with latency = 1 cycle
Speculation Speculates beyond 6 branches

Parameters common to all machine models

Interlocking Full Tomasulo, out-of-order
Branch target bu�er 1024-entry bu�er, 2-bit counter

factor equal to the number of instructions in a cache
block (e.g., an interleave factor of 4 for PI4). BTB
interleaving is discussed further below.

3 Hardware Fetch Mechanisms

The lower bound for instruction fetch bandwidth is
one instruction per cycle in the presence of a cache
hit and a correctly predicted branch. However, few
fetch mechanisms perform so poorly. A more-realistic
lower bound is the performance of a sequential block
fetch scheme. Such a scheme fetches an entire cache
block and then selects multiple instructions from the
block. This removes the normal cache word select
logic and replaces it with masking logic. No hardware
is provided to handle short branches inside the block
(intra-block branches). The only code sequences that
are handled by the technique are sequential instruc-
tions. For this reason, the technique will be called
sequential throughout this paper. The operation of
sequential is depicted in Figure 2 for a short program
fragment.
The upper bound of instruction fetch bandwidth

is when the pipeline is never starved due to a lack
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Figure 2: Example operation of sequential for se-
quence 1, 2, 5, 8.

of instructions. This bound is referred to as per-
fect . Speci�cally, perfect assumes that the instruction
memory bandwidth into the scheduling window is un-
limited (in the absence of instruction cache misses).
Figure 3 presents the harmonic mean of the IPC for
sequential and perfect for the integer and 
oating-
point benchmarks. The data justi�es the need for
better instruction fetching for all machines, with the
possible exception of 
oating-point code executing
on the PI4 architecture. The loop-intensive 
oating-
point benchmarks exhibit regular access patterns, re-
ducing the need for better fetch mechanisms. The in-
teger benchmarks require more e�ective mechanisms
for better performance, due to a higher dynamic fre-
quency of branch instructions.

3.1 Interleaved sequential

One enhancement to sequential is to interleave the
instruction cache into two banks and prefetch one se-
quential block in advance. This interleaved sequen-
tial scheme (Figure 4) achieves higher e�ective issue
rates over plain sequential for accesses that span block
boundaries. Non-sequential accesses are not allowed.
For example, if the sequence were 1, 2, 5, 8, as in
Figure 2, the hardware would not be able to remove
the useless instructions between 2 and 5. As another
example, assume interleaved sequential is fetching in-
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Figure 3: Performance of sequential versus perfect for
integer and 
oating-point benchmarks.

structions in cache blocks A, B, C, D, etc. The cache
is accessed for A and B, then B and C, then C and
D, etc.
The interleaved sequential scheme must determine

and eliminate any predicted non-sequential instruc-
tions before forwarding to the decoder. This is ac-
complished using a BTB interleaved by the number
of instructions in a cache block [9]. A BTB query
returns the successor block address and a bit-pattern
predicting which instructions in the fetched block are
valid for decoding. The successor block address is
used to invalidate the sequential prefetch block. The
block address and bit-pattern are found using a chain
of comparators (depicted in Figure 5). Delay through
the chain is proportional to the number of instruc-
tions in a cache block times the comparator propa-
gation delay. (If this is signi�cant, the chain can be
redesigned using generate/propagate logic to reduce
the delay.)
Two additional hardware entities are included to

assist instruction aligning. These are the interchange
switch and the valid select logic. The interchange
switch can reverse the order of the fetch block and
the target block. For example, if the fetch block is
in the right-hand bank in Figure 4 and the target
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Figure 6: Design details of (a) the interchange switch, and (b) the valid select logic for interleaved sequential
and banked sequential.

block is in the left-hand bank, the two blocks must
be reordered so that instructions fed to the decoder
are sequential. The design of the interchange switch
that performs this task is shown in Figure 6(a). This
design requires 64 � k transmission gates for cache
blocks that hold k, 32-bit instructions per block.
The valid select logic has the responsibility of se-

lecting the valid instructions from the two cache
blocks. For an input of 2�k instructions, this logic se-
lects the �rst k sequential, valid instructions as deter-
mined by the BTB prediction information. It requires
an array of 32-bit multiplexers, and has nominal de-
lay. The design of valid select is shown in Figure 6(b)
(the right-mostmultiplexer is only required for banked
sequential, which is described below).
Interleaved sequential is pipelined into three stages:

BTB, Cache, and Interchange-Valid. There is bypass
logic between the BTB and Cache stages so that the
fetch pipeline latency for a mispredicted branch is two
cycles, rather than three1. Since the typical length of
instruction runs between branches is approximately
four to six instructions, interleaved sequential does
not perform well for high issue rates. This scheme

1The total misprediction penalty is the sum of the fetch

misprediction penalty plus the number of cycles between when

the branch is decoded and when it retires from the reorder

bu�er. This second component is instruction streamdependent

and is modeled by the simulator.

can be enhanced by hardware that allows fetching to
proceed across a branch.

3.2 Banked sequential

The banked sequential scheme is a modi�cation of
interleaved sequential to allow a limited amount of
across-branch fetching. The hardware con�guration
is very similar to the former scheme (Figure 4). Align-
ment is possible only when the branch and its desti-
nation reside in di�erent memory banks (inter-block
branches). The hardware cannot handle intra-block
branches. For a given fetch address, banked sequential
�nds the likely successor address then accesses the
cache simultaneously for both the fetch block and its
successor block. The likely successor address is deter-
mined by querying an interleaved BTB, as was done
with the interleaved sequential scheme. Bank inter-
ference can occur if the successor block is in the same
bank as the fetch block. In such a case, the successor
block is not fetched.
Pipelining of banked sequential is similar to inter-

leaved sequential, where the interchange switch and
valid select form one stage of the three-stage pipeline.
The BTB does not need to be queried again for the
successor (prefetch) block. This is because as the
fetch and successor blocks are being looked up in
the cache (the second pipeline stage), the next in-
struction fetch queries the BTB with the successor
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block address (the �rst stage). The BTB determines
the successor block's valid bits with this overlapped
cache/BTB access. Hence, the valid bits for the suc-
cessor block are ready for use by valid select without
two BTB queries.
Performance for banked sequential is limited by its

inability to fetch across intra-block branches. The
percentage of such branches to all taken branches
for the workloads under study are shown in Table 2.
For the PI4 machine (16-byte blocks), this percent-
age is small across all benchmarks except compress
(14.58%). It increases dramatically as the block size
increases. Eqntott increases from 6.13% to 29.26%
from PI4 to PI8 (32-byte blocks). For PI12, al-
most half of the taken branches for eqntott (41.40%),
espresso (45.68%) and wave5 (41.73%) have their
targets in the same block as the branch. This sug-
gests the need for a mechanism to handle intra-block
branches at high issue rates.

Table 2: Percentage of taken branches with target in
the same block (intra-block branches).

Class Benchmark PI4 PI8 PI12

bison 6.05% 24.13% 30.81%
compress 14.58% 14.59% 34.63%
eqntott 6.13% 29.26% 41.40%

Int. espresso 1.40% 14.86% 45.68%

ex 1.29% 3.88% 24.79%
gcc 4.98% 14.08% 24.73%
li 0.00% 5.74% 19.07%
mpeg play 0.70% 7.66% 11.96%
sc 0.17% 11.02% 21.59%
doduc 7.26% 11.85% 16.15%
mdljdp2 0.26% 24.37% 66.10%

FP nasa7 0.03% 0.06% 0.08%
ora 0.01% 19.01% 23.16%
tomcatv 0.08% 0.17% 13.97%
wave5 2.71% 35.21% 41.73%

3.3 Collapsing bu�er

The collapsing bu�er scheme removes the useless in-
structions between an intra-block branch and it's tar-
get. It is an implementation designed to achieve
merging [16], so that the target instruction follows
the branch instruction in the decoder. This results
in better decoder utilization and may also result in
higher IPC.
The collapsing bu�er scheme is shown in Figure 7.

The BTB and cache are accessed in the same fashion
as the previous two schemes. An additional bu�er is
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added that collapses the gaps between valid instruc-
tions caused by intra-block branches. (Because of the
capabilities of this bu�er, the valid select logic of the
previous two schemes has been removed.) Figure 8
details two possible implementations for the collaps-
ing bu�er. The �rst is a shifter-based implementa-
tion, and the second is a bus-based crossbar. The
two implementations are open to tradeo�s based on
area, speed and interconnect density. The crossbar
implementation has the added advantage of being ca-
pable of handling backward branches, although this
behavior was not supported by the controller modeled
here.
Collapsing bu�er is pipelined in a fashion similar

to banked sequential. The crossbar implementation
of the bu�er removes the need for the interchange
switch in addition to valid select logic. If traversal

of the crossbar takes one cycle, the fetch mispredic-
tion penalty is two cycles. The shifter implementa-
tion will have a much higher misprediction penalty.
Experiments with a penalty of three or more cycles
produced little performance advantage for collaps-
ing bu�er over banked sequential, arguing against the
shifter implementation (this is demonstrated below).

3.4 Performance of hardware schemes

The simulation results for sequential, interleaved se-
quential, banked sequential, and the collapsing bu�er
are shown in Figure 9(a) (integer benchmarks) and
Figure 9(b) (
oating-point benchmarks). Interleav-
ing sequential provides a slight performance increase
for both classes of benchmarks. Added fetch ca-
pabilities of the banked sequential and the collaps-
ing bu�er schemes provide distinct performance im-
provements, especially for integer benchmarks at
higher issue rates. The 
oating-point benchmarks
have well-behaved branches. Consequently, the per-
formance of all the schemes for these benchmarks
is relatively close for the PI4 machine. The need
for more-sophisticated fetch mechanisms for 
oating-
point code is more evident for the PI8 and PI12 ma-
chines, whose higher issue rates place a greater strain
on the fetch unit.
The collapsing bu�er is the most successful

alignment mechanism across all processor designs.
Floating-point benchmarks achieve almost perfect
performance using this technique. Integer perfor-
mance is also high, with IPCs very close to perfect .
The justi�cation for this scheme is provided by the
di�erence in performance when compared to banked
sequential for the PI12 machine. Here the gap in per-
formance between the collapsing bu�er and the other
schemes is readily apparent.
E�ective issue rate (EIR) is the rate at which in-

structions are successfully supplied to the decoders.
For perfect , EIR is less than the ideal due to cache
misses. For sequential, interleaved sequential, banked
sequential, and the collapsing bu�er, EIR is less than
EIR(perfect) due to alignment failures. The ratio
EIR/EIR(perfect) captures the ability of each of the
schemes to align data. This metric is presented for
each of the four schemes in Figure 10(a) (integer) and
Figure 10(b) (
oating-point). The collapsing bu�er
is the most-consistent scheme for delivering high EIR
compared with EIR(perfect). It retains high perfor-
mance in spite of increased issue rates from PI4 to
PI12. The other schemes decrease in relative e�-
ciency with approximately the same behavior from
PI4 to PI12. (This is true for both integer and

oating-point benchmarks.) This demonstrates that
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the collapsing bu�er is a scalable alignment scheme,
capable of delivering a high number of useful instruc-
tions in the presence of high issue rates.
In Section 3.3 it was mentioned that the shifter

implementation of collapsing bu�er does not pro-
vide much performance advantage over banked se-
quential. Figure 11 quanti�es this observation. This
�gure is similar to Figure 9(a), except the collaps-
ing bu�er was simulated with a fetch mispredic-
tion penalty of three cycles. (This is perhaps the
best-case performance for the shifter implementa-
tion.) Banked sequential actually performs slightly
better than the collapsing bu�er/shifter for PI4, and
only slightly worse for PI12. This suggests that
a low-misprediction-penalty implementation such as
the crossbar is required to bene�t from alignment us-
ing collapsing bu�er2.

4 The E�ects of Compiler Optimizations

The hardware schemes presented above are limited
by their ability to fetch across taken branches. Re-
duction of the number of non-sequential instruction
accesses can lessen the impact of this limitation. The
dynamic occurrence of taken branches can be reduced
via compiler optimizations such as trace or superblock
scheduling [17],[18]. These techniques reorder the
code at compile time to form groupings of basic blocks

2This observation is a function of the accuracy of the branch

predictor.

that tend to execute sequentially. These larger group-
ings can be used to improve instruction cache per-
formance, expand the scope of code scheduling, and
enhance traditional optimizations [4],[7],[8],[19].
The e�ect of code reordering on the performance

of the schemes was measured via simulation. Code
reordering was performed on the benchmarks using
trace selection and trace layout [7]. Six runs were
performed for each integer benchmark. Each of the
�rst �ve runs used a unique program input per run to
generate pro�le statistics. These pro�ling inputs were
taken from the input sets supplied by SPEC (or in the
case of li, from student LISP assignments). An addi-
tional test input, not a member of the �rst �ve, was
then used for the processor simulations. (SPECfp92
benchmarks were excluded since their code sequences
are already highly-sequential in nature.)
The results of the simulations are presented in Fig-

ure 12. The �gure also includes the performance of se-
quential and perfect without reordering (i.e., from the
previous section), labeled as sequential(unordered)
and perfect(unordered) in the �gure. In general, code
reordering signi�cantly enhances performance. The
success of code reordering can be attributed to a sig-
ni�cant reduction in the number of taken branches.
The percent reduction is shown in Table 3. The taken
branches for a majority of the benchmarks are re-
duced by at least 20% , and range from 15.72% for li
to 44.2% for compress.
A detailed analysis of the data (Figure 12) reveals

several interesting conclusions. Sequential(reordered)
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Figure 9: Performance of the alignment mechanisms
for (a) integer, and (b) 
oating-point benchmarks.
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Figure 11: Performance of comparison of collaps-
ing bu�er assuming a three-cycle fetch misprediction
penalty for integer benchmarks (all other schemes are
shown with two-cycle penalties).

Table 3: Percent reduction in taken branches due to
code reordering.

Benchmark % Reduction

bison 25.26%
compress 44.20%
eqntott 24.52%
espresso 22.42%

ex 35.17%
gcc 37.20%
li 15.72%
mpeg play 25.26%
sc 28.84%
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Figure 12: Performance of hardware schemes after
code reordering.

achieves nearly the performance of perfect(unordered)
for PI4. When reordered, the less-complicated in-
terleaved sequential achieves comparable performance
to perfect(unordered) across all three machine mod-
els. Hence, reordering can enhance the performance
of interleaved sequential to match the performance
of the hardware-only collapsing bu�er scheme. How-
ever, when collapsing bu�er is used with reordering,
it nearly matches the performance of perfect(reorderd)
from PI4 to PI12. This demonstrates that sophisti-
cated compiler optimizations and sophisticated hard-
ware combine to produce the highest performance for
high issue rates.

4.1 Enhancing sequential

Reordering clearly enhances all hardware schemes. A
compiler optimization to speci�cally enhance sequen-
tial is to align the traces by padding the end of each
trace with nops to force the following trace to begin
at a cache block boundary [8],[20]. This scheme is
termed pad-trace. Pad-trace can increase the number
of useful instructions in each fetched block. In addi-
tion, Fisher's trace selection algorithm places likely-
taken branches at the end of traces. Since these
branches transition to the beginning of other traces,



the inserted nops are seldom executed.
The disadvantage of both code reordering and pad-

trace is that they require pro�le information, which
is often hard to gather and requires additional steps
when compiling code. (Hardware-based pro�ling
techniques can remove many of these disadvantages,
although their use was not studied in this paper.
See [21].) An alternative to pad-trace is to pad all
blocks without regard for trace membership. Pad-
trace introduces signi�cantly less nops than pad-all,
as can be seen from Table 4.

Table 4: Degree of nops inserted for pad-all and pad-
trace (expressed as percentage of nops vs. original
code size).

block size 16B

Benchmark pad-all pad-trace

bison 28.45% 2.22%
compress 29.53% 0.08%
eqntott 40.15% 7.17%
espresso 28.85% 5.60%

ex 27.75% 5.27%
gcc 32.31% 5.94%
li 33.20% 8.68%
mpeg play 16.07% 3.45%
sc 37.89% 3.44%

block size 32B

Benchmark pad-all pad-trace

bison 74.74% 5.35%
compress 74.98% 1.85%
eqntott 98.95% 16.77%
espresso 74.05% 12.93%

ex 67.65% 13.47%
gcc 80.33% 14.23%
li 80.33% 19.20%
mpeg play 43.11% 8.87%
sc 90.71% 8.29%

block size 64B

Benchmark pad-all pad-trace

bison 183.6% 12.28%
compress 190.8% 4.06%
eqntott 254.9% 41.37%
espresso 196.2% 30.50%

ex 173.6% 33.01%
gcc 214.0% 34.49%
li 225.1% 41.85%
mpeg play 105.0% 21.18%
sc 237.8% 20.18%

The performance of sequential when augmented us-
ing pad-all and pad-trace is shown in Figure 13. Of
the two, pad-trace achieves marginally higher per-
formance improvement over its counterpart, sequen-
tial(reordered), than pad-all achieves over sequen-
tial(unordered) for PI4. Pad-all achieves gains only
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Figure 13: Performance of pad-all and pad-trace for
sequential.

for PI4, and experiences poor performance for pro-
cessors using a larger cache size. This is due to the
reduction in cache locality caused by excessive nop
insertion. In general, pad-all appears to be unjusti-
�ed even for PI4, since its bene�t is more than o�set
by code expansion (Table 4). The code expansion
for pad-trace is minor, justifying it as a re�nement of
code reordering.

5 Concluding Remarks

The results presented in this paper demonstrate the
need for e�cient instruction alignment in order to
support highly-parallel microarchitectures, such as
PI8 and PI12. It appears that some fetch mechanisms
such as interleaved sequential or banked sequential are
also required for PI4 (which is similar in structure to
several next-generation processors). The most robust
scheme across all architectures studied was the col-
lapsing bu�er . The evidence for this is presented in
the EIR/EIR(perfect) data of Figure 10. The col-
lapsing bu�er consistently aligns instructions at least
90% of the time.
The frequency of short branches within the same

block motivated the design of the collapsing bu�er.



Compiler-based techniques such as trace layout (re-
ordering) can reduce this phenomenon by eliminat-
ing many taken branches. The data shows that these
techniques can signi�cantly enhance all schemes. For
example, code reordering can enhance the perfor-
mance of interleaved sequential to nearly match that
of a hardware-only collapsing bu�er approach for
PI12. This also suggests that these techniques are
applicable to existing machines. Padding with nops,
either used with reordering or used separately, pro-
duced only marginal improvements for sequential (the
remainder of the hardware schemes were not signi�-
cantly enhanced by padding). The best overall solu-
tion is to combine the highest-performance hardware
scheme (collapsing bu�er) with code reordering.
It remains to be seen what e�ect branch pre-

diction accuracy has on the misprediction penalty
when designing a pipelined collapsing bu�er. Other,
more sophisticated predictors do exist that have
been designed for machines with high misprediction
penalty [9]. Depending on the complexity of this
branch prediction hardware, a shifter-based imple-
mentation of collapsing bu�er may be viable.

Acknowledgements

We would like to thank Sumedh Sathaye, Ashutosh
Singla, Prashant Maniar and the anonymous review-
ers for their comments and suggestions on improv-
ing this paper. This research has been supported by
AT&T.

References

[1] L. Gwennap, \MIPS R10000 uses decoupled archi-

tecture," Microprocessor Report, Oct. 1994.

[2] A. Agarwal, \UltraSPARC: A new era in SPARC

performance," in 1994 Microprocessor Forum Pro-

ceedings, Oct. 1994.

[3] M. Slater, \AMD's K5 designed to outrun Pentium,"
Microprocessor Report, Oct. 1994.

[4] S. McFarling, \Program optimization for instruc-

tion caches," in Proc. Third Int'l. Conf. on Architec-

tural Support for Prog. Lang. and Operating Systems,

pp. 183{191, Apr. 1989.

[5] D. B. Whalley, \Fast instruction cache performance

evaluation using compile-time analysis," in Proc.

ACM SIGMETRICS '92 Conf. on Measurement and

Modeling of Comput. Sys., (Newport, RI), pp. 13{22,

June 1992.

[6] C. L. Mitchell and M. J. Flynn, \The e�ects of pro-
cessor architecture on instruction memory tra�c,"

ACM Trans. Comput. Sys., vol. 8, pp. 230{250, Aug.
1990.

[7] W. W. Hwu and P. P. Chang, \Achieving high in-

struction cache performance with an optimizing com-
piler," in Proc. 16th Ann. International Symposium

Computer Architecture, (Jerusalem, Israel), pp. 242{

251, May 1989.

[8] K. Pettis and R. C. Hansen, \Pro�le guided code po-

sitioning," in Proc. of the ACM SIGPLAN '90 Con-

ference on Programming Language Design and Im-

plementation, pp. 16{27, June 1990.

[9] T. Yeh, Two-level adaptive branch prediction and

instruction fetch mechanisms for high performance

superscalar processors. PhD thesis, Department of

Electrical Engineering and Computer Science, Uni-
versity of Michigan, Ann Arbor, MI, 1993.

[10] B. Calder and D. Grunwald, \Fast & accurate in-

struction fetch and branch prediction," in Proc. 21st

Ann. International Symposium on Computer Archi-

tecture, pp. 2{11, Apr. 1994.

[11] S. McFarling, \Combining branch predictors," WRL

Technical Note TN-36, Digital Equipment Corpora-

tion, 1993.

[12] L. Gwennap, \PA-8000 combines complexity and

speed," Microprocessor Report, Nov. 1994.

[13] S. Weiss and J. E. Smith, POWER and PowerPC.
San Francisco, CA: Morgan Kaufmann, 1994.

[14] D. Alpert and D. Avnon, \Architecture of the Pen-
tium microprocessor," IEEE Micro, vol. 13, pp. 11{

21, June 1993.

[15] S. P. Song and M. Denman, \The PowerPC 604 RISC
microprocessor," tech. rep., Somerset Design Center,

Austin, TX, Apr. 1994.

[16] M. Johnson, Superscalar microprocessor design. En-

glewood Cli�s, NJ: Prentice-Hall, 1991.

[17] J. A. Fisher, \Trace scheduling: A technique for
global microcode compaction," IEEE Trans. Com-

put., vol. C-30, no. 7, pp. 478{490, July 1981.

[18] W. W. Hwu, S. A. Mahlke, W. Y. Chen, P. P. Chang,
N. J. Warter, R. A. Bringmann, R. G. Ouellette,

R. E. Hank, T. Kiyohara, G. E. Haab, J. G. Holm,

and D. M. Lavery, \The superblock: An e�ective

structure for VLIW and superscalar compilation,"

The Journal of Supercomputing, vol. 7, pp. 229{248,

Jan. 1993.

[19] P. P. Chang, S. A. Mahlke, and W. W. Hwu, \Using

pro�le information to assist classic code optimiza-
tions," Software{Practice and Experience, vol. 21,

pp. 1301{1321, Dec. 1991.

[20] M. Smotherman, S. Chawla, S. Cox, and B. Malloy,
\Instruction scheduling for the Motorola 88110," in

Proc. 26th Ann. Int'l. Symp. on Microarchitecture,

(Austin, TX), pp. 257{262, Dec. 1993.

[21] T. M. Conte, B. A. Patel, and J. S. Cox, \Us-

ing branch handling hardware to support pro�le-
driven optimization," in Proc. 27th Ann. Interna-

tional Symposium on Microarchitecture, (San Jose,

CA), Nov. 1994.


