
Combining Cluster Sampling with Single Pass Methods for Efficient Sampling
Regimen Design

Paul D. Bryan Thomas M. Conte
Center for Efficient, Secure and Reliable Computing (CESR)

North Carolina State University, Raleigh, NC 27695
{pdbryan, conte}@ncsu.edu

Abstract

Microarchitectural simulation is orders of

magnitude slower than native execution. As more
elements are accurately modeled, problems associated
with slow simulation are further exacerbated. Given
these issues, many researchers have devised sampling
techniques to reduce simulation time.

When cluster sampling techniques are used, care
must be taken to remove sampling and non-sampling
biases. Researchers have devised clever methods for
effectively reducing non-sampling bias, but little work
has been proposed for efficient reduction of sampling
bias (sampling regimen design).

Traditionally, sampling regimen design has been
an iterative process that required a full workload
simulation for error comparison. In this study, a
single-pass simulation technique for sampling regimen
design is proposed. Using this method, thousands of
sampling regimen candidates can be simultaneously
evaluated. With this technique, simulation speed was
increased by an average factor of 17 with a maximum
increase of 73 times relative to the total workload
simulation. Additionally, this technique allows the
user to effectively estimate the sample error without
running the entire workload.

1. Introduction

Modern processor design is driven by simulation.
Architects propose new design features and then
simulate to determine the efficacy of their designs. In
order to make valid inferences from a simulation,
often long instruction traces must be simulated.
Furthermore, the instruction counts of contemporary
benchmark suites are exploding to become orders of
magnitude larger than their previous counterparts (e.g.,
spec2006 vs. spec2000). To compound this issue, the
process of simulation is increasingly slower as more
cycle-accurate features are modeled. A program that
can be executed fully on hardware in a matter of
minutes, can take weeks or months to simulate. Given
that simulation is a limiting factor to new processor

technologies, many researchers have devised methods
to reduce simulation time.

Historically, researchers often executed an arbitrary
instruction stream located after initialization code in a
benchmark. Although effective in reducing simulation
time, the arbitrary selection of instructions can lead to
inferences that are misleading or inaccurate.
Currently, researchers often rely on sampling
techniques to reduce the number of instructions
required for simulation. Two commonly used
approaches include SMARTS [20] and SimPoint [18].

A number of sampling techniques have been
applied to hardware simulation, which include cluster
sampling [2],[5],[12],[17], set sampling [7],[10],[12],
and stratified sampling [14]. These methods differ in
which elements are sampled from the overall
population, but they all strive to extract a subset of
elements in order to reduce simulation time. In cluster
sampling, a group of contiguous elements from the
population is selected to form a cluster. The
information obtained from the cluster is then used for
measurement as an individual sampling unit.

Figure 1: Cluster Sampling

Figure 1 shows the general representation of cluster
sampling when applied to processor simulation. The
horizontal line represents the entire dynamic
instruction stream for the workload of interest. From
the instruction stream, clusters of instructions are
selected. These clusters are the regions where cycle-
accurate measurements are taken. The figure shows
three regions of execution: hot, cold, and warm. Hot
simulation refers to the complete cycle-accurate
simulation of the system. The pipeline, memory
hierarchy, branch predictor, etc., are all simulated

within the hot phase. Generally, hot execution
consists of normal system simulation. Once the
cluster has finished, execution continues in the cold
phase. The cold phase consists of simple functional
simulation. The purpose of cold simulation is to
ensure correct architectural and functional memory
state. At a predetermined point prior to the next
cluster, the warm execution phase begins. In warm
execution, data are functionally applied to high-state
microarchitectural elements, such as the branch
predictor and memory hierarchy. Functional
simulation continues identically in the cold phase, but
the elements are not rigorously modeled as in the hot
phase. The purpose of warm execution is to warm-up
the state of the processor before measurements are
taken from the next cluster.

When performing any type of sampling scheme,
two types of biases must first be overcome: sampling
bias and non-sampling bias. Sampling bias refers to
the construction of a representative sample of the
overall population. For processor simulation,
sampling bias is reduced with the design of a
representative sampling regimen. Non-sampling bias
is formally described as all other bias that is not
sampling bias. For processor simulation, non-
sampling bias is the difference in processor state that
causes dissimilar measurement from the full workload
simulation. The two most important structures
pertaining to non-sampling bias are the memory
hierarchy and branch predictor.

Non-sampling bias is removed through the use of
warm-up methods. Previously, warm-up methods
have been the main focus of sampling techniques.
Many algorithms including MRRL [8], BLRL [6], and
SMARTS [20] have been extensively studied.
However, the design of a valid sampling regimen is
often overlooked. Most authors simply state the
sampling regimen they used but neglect showing how
it was derived.

This paper focuses on the development of a method
to efficiently determine a valid sampling regimen that
effectively reduces sampling bias. The techniques
presented in this paper allow a user to generate a
sampling regimen without executing the entire
workload for comparison. Moreover, the single pass
nature of the algorithm alleviates the traditional
iterative process to sampling regimen design.

2. Statistical Sampling Assumptions

According to the central limit theorem, randomly
extracted data from any non-normal distribution
generates a normal distribution. From this normal
distribution, conventional associations and formulas

may then be applied to the normal distribution to find
its mean, variance, etc. The inferences drawn from the
normal distribution may then be inferred to be
associated with the non-normal distribution. When
sampling from a large population of any distribution
shape, the distribution of the sample means will
approach the normal distribution with a sufficient
sample size [9].

Two fundamental assumptions regarding sampling
techniques are as follows: 1) increasing the sample
size will increase the sample accuracy; and 2) the test
for individual inclusion in the sample must be random,
and each element in the population must have the
same probability for inclusion. With these
assumptions, confidence intervals can then be
calculated as follows:

,,
1

)(
1

2

cluster

IPC
IPC

cluster

N

i

sample
IPC

i
IPC

IPC N
S

S
N

S

cluster

=
−

−
=

∑
=

µµ

 IPCS is the standard deviation and
IPCS is the

standard error for a cluster sampling design. The
estimated standard error is used to calculate the error
bounds and confidence interval. Using the properties
of the normal distribution, the 95% confidence interval

is given by µ
sample
IPC ± 1.96 SIPC, where the error

bound is ±1.96SIPC. A confidence interval of 95%

implies that 95 out of 100 sample estimates may be
expected to fit within this interval. Low standard
errors imply relatively small variations in repeated
estimates, and consequently, result in higher precision.
For each sample, the relative error is calculated as
follows:

true
IPC

sample
IPC

true
IPCIPCRE

µ
µµ −

=)(,

where µ
true
IPC is the true population mean (IPC), and

µ
sample
IPC is the estimated mean (IPC) obtained from

the sample. Relative error relies on µ
true
IPC from a full

simulation of each workload.
A variety of factors affect sampling accuracy for a

constant sample size, including the variance of the
population and the type of distribution being sampled.
However, as the sample size increases, accuracy also
increases. Thus, with a sufficiently large sample size,
the estimate of the mean approaches the true mean and
the error approaches zero.

3. Sampling Regimen Construction

When designing a valid sampling regimen, there
are three parameters that must be determined: the
cluster size, the number of clusters, and the location of
the clusters within the dynamic instruction stream.
The cluster size refers to the number of instructions
executed in full cycle-accurate detail. The cluster’s
number and size dictate the sample size. Statistical
simulation is a compromise between speed and
accuracy. If too many clusters are selected, then speed
will be sacrificed. If too few clusters are selected,
then accuracy will be sacrificed. To further
complicate this issue, the location of clusters is equally
important. Even if the cluster’s number and size are
sufficient for sampling performance, the clusters may
be located at non-representative sections of code.
Thus, measurements taken at such locations would
lead to inaccurate estimates of performance.

Many researchers have investigated techniques in
reducing the cold-start bias for microarchitectural
simulation. However, little work has been proposed
dealing with efficient techniques for sampling regimen
design.

When designing a sampling regimen, each
program-input pair may have dramatically different
performance, affecting the underlying distribution of
IPC. Thus, a sampling regimen that performs well for
one workload will not necessarily be accurate when
applied to other workloads (or even the same
workload with different inputs).

Often, sampling regimen parameters are derived
through an iterative process consisting of the
following steps: 1) the entire workload is executed for
error comparison; 2) the workload is sampled
according to a predefined cluster number and size; 3)
the results are analyzed to determine if confidence
tests are met with sufficiently low error; and 4) if the
error threshold or confidence tests are unsatisfactory,
return to Step 2.

This iterative process can be extremely time-
consuming. For example, consider a user who wishes
to evaluate a number of sampling regimen
configurations. Assume the user wishes to assess
cluster sizes ranging from 1000 to 50000, with a step
size of 1000, and a cluster number ranging between 30
and 1000. For simplicity, assume each execution
takes 30 minutes. The total time required to evaluate
the entire suite of regimen configurations would take
over 48,000 simulations which would require over 2

years of processor time. Even more time would be
necessary if multiple random seeds are considered for
each sampling regimen. Although it is not likely
anyone would ever perform such an exhaustive
regimen sweep, the previous scenario represents an
extreme example of how time-consuming regimen
design can grow.

Although a sampling regimen may be valid for a
given workload, the user may be unlucky and
randomly select non-representative locations. For
example, a user could simulate the same sampling
regimen 20 times in a row (utilizing different random
seeds) and statistically, 1 could fail (a 95% confidence
test implies that the true population mean has a 95%
chance of being bracketed by the sample estimate).
Therefore, a valid sampling regimen could be
evaluated as a “false negative.”

The purpose of this work is to allow users to
perform a single simulation to derive a valid sampling
regimen and achieve the following goals: 1) prevent
users from having to run the entire workload for
performance comparison; 2) circumvent the iterative
nature of regimen design; and 3) derive a valid
sampling regimen according to user-specified criteria.

4. Single-Pass Regimen Design

Figure 2 shows a flow diagram of the single-pass
regimen evaluation. First, a program-input pair is
profiled via a large sample. This large sample contains
a very large number of clusters, many times more than
required for a valid sampling regimen. This sample is
called the over-sample because the sampling rate is
much higher than the minimum requirements. As the
sample size increases, the estimate of the mean will
converge to the true mean, and the over-sample should
estimate the mean very accurately. Embedded in this
sample, information is contained regarding varying
sized clusters.

After the over-sample has been collected, the
estimate of the mean, or IPC, is assumed to be a highly
accurate estimate of the true performance of the
workload. The data collected in the over-sample is
then analyzed to generate a list of sampling regimen
candidates. Given user-specified criteria, the
candidate list is pruned. The final candidate list then
identifies valid sampling regimen configurations.
Reported data include the cluster size, cluster number,
and starting location of each cluster.

 Figure 2: Single-Pass Figure 3: Cluster Sampling Modifications to Enable
 Sampling Regimen Derived Subsamples
 Flowchart

4.1. Simulator Modifications

If a user has a simulator that implements cluster
sampling with SMARTS [20], the modifications to
implement single-pass regimen design are minimal.
This work was performed using SMARTS warm-up
since it is generally accepted as the most accurate
warm-up method. However, this method is
orthogonal to warm-up, and could be applied using
any warm-up method that effectively removes non-
sampling bias.

The simulator was modified to ensure all aspects
of the regimen configuration could be controlled; in
this paper a configuration file was used to specify the
regimen attributes. Parameters could be specified via
the command line, but the large number of inputs
would make this approach unattractive. The regimen
configuration file is used to specify the size of a
cluster, the number of clusters, and the starting
location of each cluster according to the dynamic
instruction stream count. Additional parameters for
the profile sample include a minimum cluster size, a
maximum cluster size, and a step size.

Execution of each cluster continues similarly as
SMARTS with a few minor differences. As in
SMARTS, warm-up is performed on structures such
as the branch predictor and memory hierarchy as
instructions are skipped. When a cluster is
encountered, normal execution continues where each
cluster is evaluated according to the specified
minimum size. The difference between single-pass
and SMARTS is hot execution continues past the
minimum cluster size, until the maximum cluster size
has been reached. At each step size increment, all

measured information in a cluster is checkpointed.
The checkpointed information is recorded to allow
the user to determine which measurements would
have been taken for each cluster size and location.
Figure 3 shows a diagram of the accounting
differences between normal SMARTS execution.

4.2. Profiling Sample

Figures 4, 5, and 6 show the results of the profile
simulations. As expected, increasing the sample size
increases accuracy, but also increases simulation
time.

Each workload was sampled such that a specified
ratio of the entire workload was included in the over-
sample simulation. Each workload was sampled
according to the following sampled to non-sampled
ratios: 1:6, 1:12, 1:24, 1:48, 1:96, 1:192, 1:384,
1:768, 1:1536, and 1:3072. The 1:6 sample ratio
indicates one out of every six instructions in the
overall workload execution was simulated in full
detail.

Figure 4 shows the sampling accuracy associated
with each sampling ratio. As expected, the smallest
sampling ratio, 1:3072, (corresponding to 0.03%) had
the highest error. For this ratio, gcc had the highest
error with 24%, and art had the lowest error with
0.4%. As the sampling ratios increased, the error
rates for all benchmarks decreased. At the highest
sampling ratio, the average relative error was 0.03%.
Figure 5 shows a magnified version of Figure 4 at the
largest two sample sizes. As shown, a sampling ratio
of 1:6 achieved an average relative error of 0.3%. At

this sampling ratio, ammp had the highest relative
error at 1.7%.

Figure 4

As shown in Figure 6, the time required for

simulation explodes for certain benchmarks. At the
highest sampling ratio, 1:6, the average execution
time was approximately 5.4 hours. Mcf took the
longest at this ratio with 22.8 hours. However, the
largest sampled ratio is not necessary for accurate
estimation. Very similar accuracy was obtained with
a sampling ratio of 1:48. At this sampling ratio, the
average relative error was 0.7% with an average
execution time of 1.5 hours.

Figure 5

Although accuracy converges at a different

sampling ratio for each workload, all experiments
obtained accurate results when a sampling ratio of
1:48 was used.

Figure 6

4.3. Profiling Analysis

Once the over-sampled data have been collected,
the results must be analyzed. Using this information,
random subsamples are compiled over all ranges of
possible cluster sizes and numbers of clusters. For
each cluster size and cluster number, elements are
extracted randomly from the over-sampled
population. Each over-sampled subset is then
evaluated in terms of relative error, variance, and
statistical confidence.

As previously stated, it is possible for a particular
sampling regimen configuration to be rejected
because non-representative elements from the
population were included in the sample. To counter
this possibility, each sampling regimen configuration
is tested multiple times. From these results, the
average expected performance for a given sampling
regimen can be obtained. Each sampling regimen
configuration is then evaluated multiple times with
different random seeds. In this work, each sampling
regimen was tested 30 times in correspondence with
the central limit theorem. Once all possible input
combinations of cluster sizes and the number of
clusters have been searched, candidate selection
proceeds.

The benefit of this profile analysis is twofold.
First, the total workload simulation is not required
since the over-sampled population mean is assumed
to have sufficiently converged on the true population
mean. Second, all cluster sizes and numbers of
clusters recorded in the over-sampled population can
be simultaneously evaluated for inclusion.

The methods detailed in the candidate analysis are
statistically valid since each element in the over-
sampled population has the same probability of being
selected. Furthermore, use of the over-sampled data

provide confidence bounds that bracket the true
performance of each workload.

4.4. Candidate Selection

Once the profile sample has been analyzed and a
list of candidates generated, a sampling regimen
configuration must be selected. Using the candidate
list, candidates are pruned according to user-specified
criteria. In this study, elements from the candidate
list were excluded if all trials did not pass confidence
tests relative to the over-sampled estimate. The
minimum error could not exceed 2% and the variance
could not fall below 0.02. These threshold values are
somewhat arbitrary, and can be tuned to whatever
characteristics the user desires.

Some error is expected to be present when
comparing the full execution of a workload with the
over-sample. Additionally, some error is expected to
be present when comparing the second level
simulation, provided by candidate selection, with the
over-sample. By restricting the minimum error to
2%, the total bias introduced in the sampling process
should be kept sufficiently low to bracket the true
performance of the workload. Since variance is
proportional to the confidence interval bounds, a
higher variance increases the probability that the true
performance will be bracketed.

After the candidates have been pruned, they are
sorted based on sample size, which is equal to the
cluster size multiplied by the cluster number.
Candidates are sorted in this manner to reduce the
overall execution time. For example, assume two
sampling regimen configurations pass the user-
specified criteria for candidacy. Given that one may
require 2000 clusters with a cluster size of 50,000
instructions, and another may require 40 clusters with
a size of 1000 instructions, the latter should be
chosen since it would require significantly less time
to simulate.

The process of pruning sampling regimen
candidates does not eliminate a cluster from being
included in future sampling regimen configurations.
The decision to prune a sampling regimen simply
means that alternate cluster size and cluster number
combinations should be explored.

5. Methodology

All experiments were conducted with the

spec2000 benchmark suite. Integer benchmarks used
included gcc, mcf, parser, perl, vortex, vpr, and twolf.
Floating point benchmarks used included ammp and
art. The first six billion instructions from each
benchmark were simulated using reference input sets.

The model used in this study was an execution-
driven simulator based on SimpleScalar [1]. The
front end of the processor can fetch and dispatch
eight instructions per cycle, and can issue and retire
four instructions per cycle. The model included eight
universal function units that were fully pipelined. The
maximum number of in-flight instructions was 64.
The issue queue size was 32, and there was a load-
store queue of 64 elements. The pipeline depth was
seven stages. The minimum branch miss-prediction
penalty was five cycles. The processor frequency was
assumed to be 2 GHz. The branch predictor was a
64K entry Gshare with an eight-entry return address
stack. The BTB consisted of 4K entries. Architectural
checkpoints were utilized to allow the processor to
speculatively execute beyond eight branches.

A substantive memory hierarchy was modeled
within the simulator. The first level data cache was 4-
way and contained 32 KB with a 64-byte line size.
The first level instruction cache was also 4-way and
contained 64 KB with a 64-byte line size. The
instruction and data caches were implemented using a
write-through-no-write-allocate policy. The second
level cache was 8-way and contained 1 MB with a
64-byte line size, and was implemented using a write-
back-write-allocate policy.

A bus model also was incorporated in order to
emulate arbitration, contention, and transfer delay
between the levels of memory. The first level bus
was shared between the first level data and
instruction caches, and connected the first level
caches to the second level cache. The first level bus
had a width of 16 bytes and operated at 1 GHz. The
second level bus connected the second level cache to
main memory, had a width of 32 bytes, and operated
at 2 GHz.

The model included both a functional and a
timing simulator. The functional simulator was used
to validate the results of the timing simulator. If the
timing simulator attempted to commit a wrong value,
the functional simulator would assert an error.
However, in the context of sampled simulation, the
functional simulator had additional uses. As
instructions in the dynamic stream were skipped
(either in cold or warm simulation), the functional
simulator retained valid architectural state. When hot
execution continued in the next cluster, the values of
the registers contained in the functional simulator
were copied to the timing simulator.

For processor simulations, the standard
performance metric was IPC, which is the number of
instructions retired per execution cycle.

6. Results

Figure 7 shows the time savings of single-pass
simulation versus the total workload simulations as a
factor speedup. As expected, 16.67%, or a sampling
ratio of 1:6, had the least savings due to the size of
the over-sample. All results in Figure 7 include both
the profile sample simulation time and the second
level simulation indicated by the regimen candidacy
selection.

Figure 7

As previously stated, there were two types of

biases that were introduced in the single-pass
sampling methodology: 1) the introduced bias
between the profile sample and the true execution;
and 2) the introduced bias between the single-pass
simulation and the profile sample. All second level
simulations passed confidence tests when compared
to the profile sample. At sampling ratios of 1:6, 1:12,
1:24, 1:48, 1:96, and 1:192, all second level
simulations passed confidence tests when compared
to the total execution.

Low sampling ratio simulations passed most of
the confidence tests when compared to the total
execution. At the sampling ratios of 1:384, 1:768,
and 1:1536, 8 of 9 workloads passed confidence tests.
At sampling ratios of 1:3072, 6 of 9 workloads
passed confidence tests. This was expected behavior
since as the profile sample decreased, so did estimate
accuracy.

The lowest sampling ratio exhibited the highest
factor speedup, with an average of 23.6 times faster,
where mcf was 115 times faster than the entire
workload simulation. When the sampling ratio of
1:192 was utilized a factor speedup of 16.85 times
was obtained. In this study, a sampling ratio of 1:192
was optimal in achieving high speed without
sacrificing accuracy (less than 1% error). Using this
sampling ratio, the average number of clusters was

130, and the average cluster size was approximately
5000 instructions.

7. Related Work

The sampling of workloads has been used in a
number of architectural simulation applications.
Originally, sampling was applied to cache simulation
[3],[7],[11],[21] and was later extended to the
simulation of processors [5],[12],[17]. Most
instances utilized some derivative of cluster sampling
but other forms, such as stratified sampling [14] and
set sampling [7],[10],[13], have been used with
success.

Two different types of sampling are possible for
caches: time sampling [4],[7],[11],[21] and set
sampling [7],[10],[13]. Time sampling involves the
extraction of time-contiguous memory references
from different locations in an address trace. Set
sampling is a form of stratified sampling when
applied to caches and involves the inspection of
particular cache sets. Thus, the memory references
that affect chosen sets are not necessarily temporally
adjacent.

Many different approaches have been used to
remove non-sampling bias from sampled simulation.
Laha, et al., [11] took sampling units immediately
following context switches to ensure consistent state.
By assuming the cache contents were flushed after a
context switch for small caches, the contents were
emptied, and were therefore identical to the full
execution trace. For larger cache designs, the idea of
primed cache sets was introduced by Fu, et al. [7] and
Laha, et al. [11]. Once the execution of a new cluster
began, a set in the cache was considered primed after
it had been filled with unique references. Only
information gathered from primed sets were used to
record measurements. Other warm-up techniques
proposed by Wood, et al. [21] use probability to
distinguish misses at the beginning of a cluster
between compulsory and cold-start misses.

Of all of the warm-up methods, perhaps the most
accurate in removing non-sampling bias is SMARTS
[20], proposed by Wunderlich, et al. When skipping
instructions between clusters, the entire skip region
of instructions is executed in a warm phase. Thus,
every branch and memory operation is functionally
applied to the branch predictor and cache hierarchy.
The SMARTS warm-up policy has been applied in
cache simulations [3] and to processor simulations
[4],[5]. The SMARTS, or full functional, warm-up
method is extremely accurate, but at a cost.

Because SMARTS is demanding in terms of
simulation time, other warm-up methods have been
proposed that approximate the SMARTS accuracy at

a lower cost. Haskins, et al. [8] proposed the
Memory Reference Reuse Latency (MRRL) algorithm
for warm-up. MRRL profiles the skip regions
between clusters to determine the number of pre-
cluster instructions to execute for a specified
percentage warm-up. This work was later extended
by Eeckhout, et al. [6] with the Boundary Line Reuse
Latency (BLRL) algorithm. Unlike MRRL, BLRL
only considers memory references from instructions
that originate in the cluster. Another approach,
known as Reverse State Reconstruction (RSR) [2],
has been proposed to approximate SMARTS warm-
up. In this technique, skipped instruction data is
recorded and then applied to high-state structures in
reverse order.

One widely popular approach used in lieu of
statistical sampling was proposed by Sherwood, et al.
[18]. This technique, called SimPoint, analyzes the
frequency at which basic blocks are executed within
a workload. From this heuristic, SimPoint identifies
a region or set of regions that can be simulated to
approximate the entire program behavior. This
technique is hardware independent. While effective,
critics of SimPoint note the heuristic by which the
regions are selected utilizes systematic sampling.
Since the probability of selection is not random,
statistical tests such as the confidence interval cannot
be used. An extension to SimPoint, called Variance
SimPoint [16], has been introduced to calculate error
bounds for sampled clusters. Such error bounds can
only be calculated if SimPoint randomly selects
clusters of execution.

Much work has been proposed with regards to
warm-up methods, but there exists little work on
sampling regimen design.

8. Summary

In this work, an efficient sampling regimen design
process was presented. Utilizing a profile sample,
thousands of sampling regimen configurations can be
simultaneously evaluated for accuracy and statistical
confidence. Each sampling regimen configuration
was tested multiple times, each yielding a different
random sample in order to increase the probability of
correct classification. From the profile analysis, a list
of possible sampling regimen configurations were
identified and then pruned according to user-
determined filter criteria. From this candidate list,
sampling regimens were sorted based on sample size
to allow the user to run the smallest, and therefore
fastest, sample.

The techniques presented in this study are a vast
improvement over traditional sampling regimen
design. In this work, it was shown how sampling

regimens can be determined being required to run the
entire workload for accuracy comparisons.
Significant time savings were realized since the entire
workload was not required to be executed.
Additionally, significant time-savings were realized
by the efficient sampling regimen design algorithm.

9. References
[1] Burger, D. C., and Austin, T. M. The Simplescalar Toolset, version 2.0.

Computer Architecture News, 25(3):13-25, 1997.
[2] Bryan, P. D., Rosier, M. C. Conte, T. M. Reverse State Reconstruction

for Sampled Microarchitectural Simulation. IEEE ISPASS (San Jose,
CA), April 2007.

[3] Conte, T. M., Hirsch, M. A., and Hwu, W. W. Combining Trace
Sampling With Single Pass Methods for Efficient Cache Simulation.
IEEE Transactions on Computers, Jun. 1998.

[4] Conte, T. M. Systematic computer architecture prototyping. PhD thesis,
University of Illinois, Urbana, Illinois, 1992.

[5] Conte, T. M., Hirsch, M. A., and Menezes, K. N. Reducing State Loss
for Effective Trace Sampling of Superscalar Processors. In Proc of the
1996 ICCD, (Austin, TX), Oct. 1996.

[6] EeckHout, L., Luo, Y., Bosschere, K. D., and John, L. K. BLRL:
Accurate and Efficient Warmup for Sampled Processor Simulation.
The Computer Journal, Vol. 48 (4). 2005.

[7] Fu, J. W. C., and Patel, J. H. Trace driven simulation using sampled
traces. In Proc. 27th Hawaii Int’l. Conf. on System Sciences, (Maui,
HI), Jan. 1994.

[8] Haskins, J. W., and Skadron, K. Memory Reference Reuse Latency:
Accelerated Sampled Microarchitecture Simulation. In IEEE ISPASS,
Mar. 2003.

[9] Henry, G. T. Practical sampling. Newbury Park, CA: Sage
Publications, 1990.

[10] Kessler, R. E., Hill, M. D., and Wood, D. A. A comparison of trace-
sampling techniques for multi-megabyte caches. IEEE Trans. Comput.,
vol. C-43, June 1994.

[11] Laha, S., Patel, J. A., and Iyer, R. K. Accurate low-cost methods for
performance evaluation of cache memory systems. IEEE
Trans. Comput., vol. C-37, Feb. 1988.

[12] Lauterbach, G. Accelerating architectural simulation by parallel
execution. In Proc. 27th Hawaii Int’l. Conf. on System Sciences,
(Maui, HI), Jan. 1994.

[13] Lui, L., and Peir, J. Cache sampling by sets. IEEE Trans. VLSI
Systems, vol. 1, June 1993.

[14] Mangione-Smith, W. H., Abraham, S. G., and Davidson, E. S.
Architectural vs Delivered Performance of the IBM RS/6000 and the
Astronautics ZS-1. In Proc. 24th Hawaii International Conference on
System Sciences, January 1991.

[15] McCall, J. C. H. Sampling and statistics handbook for research. Ames,
Iowa: Iowa State University Press, 1982.

[16] Perelman, E., Hamerly G., and Calder, B. Picking Statistically Valid
and Early Simulation Points. In the International Conference on
Parallel Architectures and Compilation Techniques, 2003.

[17] Poursepanj. The PowerPC performance modeling methodology.
Communications ACM, vol. 37, pp. 47–55, June 1994.

[18] Sherwood, T., Perelman, E., Hamerly, G., and Calder, B. Automatically
Characterizing Large Scale Program Behavior. In the 10th ASPLOS,
October 2002.

[19] Wenisch, T. F, Wunderlich, R. E., Falsafi, B., and Hoe, J. C.
Simulation Sampling with Live-Points. IEEE ISPASS, Mar. 2006.

[20] Wunderlich, R. E., Wenish, T. F, Falsafi, B., and Hoe, J. C. SMARTS:
Accelerating Microarchitecture Simulation via Rigorous Statistical
Sampling. Proc. 30th ISCA, 2003.

[21] Wood, D. A., Hill, M. D., and Kessler, R. E. A model for estimating
trace-sample miss ratios. In Proc. ACM SIGMETRICS ’91 Conf. on
Measurement and Modeling of Comput. Sys., May 1991.

