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Abstract 

 
Microarchitectural simulation is orders of 

magnitude slower than native execution.  As more 
elements are accurately modeled, problems associated 
with slow simulation are further exacerbated.  Given 
these issues, many researchers have devised sampling 
techniques to reduce simulation time. 

When cluster sampling techniques are used, care 
must be taken to remove sampling and non-sampling 
biases.  Researchers have devised clever methods for 
effectively reducing non-sampling bias, but little work 
has been proposed for efficient reduction of sampling 
bias (sampling regimen design). 

Traditionally, sampling regimen design has been 
an iterative process that required a full workload 
simulation for error comparison.  In this study, a 
single-pass simulation technique for sampling regimen 
design is proposed.  Using this method, thousands of 
sampling regimen candidates can be simultaneously 
evaluated.  With this technique, simulation speed was 
increased by an average factor of 17 with a maximum 
increase of 73 times relative to the total workload 
simulation.  Additionally, this technique allows the 
user to effectively estimate the sample error without 
running the entire workload. 
 
1. Introduction 
 

Modern processor design is driven by simulation.  
Architects propose new design features and then 
simulate to determine the efficacy of their designs.  In 
order to make valid inferences from a simulation, 
often long instruction traces must be simulated.  
Furthermore, the instruction counts of contemporary 
benchmark suites are exploding to become orders of 
magnitude larger than their previous counterparts (e.g., 
spec2006 vs. spec2000).  To compound this issue, the 
process of simulation is increasingly slower as more 
cycle-accurate features are modeled.  A program that 
can be executed fully on hardware in a matter of 
minutes, can take weeks or months to simulate.  Given 
that simulation is a limiting factor to new processor 

technologies, many researchers have devised methods 
to reduce simulation time. 

Historically, researchers often executed an arbitrary 
instruction stream located after initialization code in a 
benchmark.  Although effective in reducing simulation 
time, the arbitrary selection of instructions can lead to 
inferences that are misleading or inaccurate.  
Currently, researchers often rely on sampling 
techniques to reduce the number of instructions 
required for simulation.  Two commonly used 
approaches include SMARTS [20] and SimPoint [18]. 

A number of sampling techniques have been 
applied to hardware simulation, which include cluster 
sampling [2],[5],[12],[17], set sampling [7],[10],[12], 
and stratified sampling [14].  These methods differ in 
which elements are sampled from the overall 
population, but they all strive to extract a subset of 
elements in order to reduce simulation time.  In cluster 
sampling, a group of contiguous elements from the 
population is selected to form a cluster.  The 
information obtained from the cluster is then used for 
measurement as an individual sampling unit. 

 

Figure 1: Cluster Sampling 
 

Figure 1 shows the general representation of cluster 
sampling when applied to processor simulation.  The 
horizontal line represents the entire dynamic 
instruction stream for the workload of interest.  From 
the instruction stream, clusters of instructions are 
selected.  These clusters are the regions where cycle-
accurate measurements are taken.  The figure shows 
three regions of execution: hot, cold, and warm.  Hot 
simulation refers to the complete cycle-accurate 
simulation of the system.  The pipeline, memory 
hierarchy, branch predictor, etc., are all simulated 



within the hot phase.  Generally, hot execution 
consists of normal system simulation.  Once the 
cluster has finished, execution continues in the cold 
phase.  The cold phase consists of simple functional 
simulation.  The purpose of cold simulation is to 
ensure correct architectural and functional memory 
state.  At a predetermined point prior to the next 
cluster, the warm execution phase begins.  In warm 
execution, data are functionally applied to high-state 
microarchitectural elements, such as the branch 
predictor and memory hierarchy.  Functional 
simulation continues identically in the cold phase, but 
the elements are not rigorously modeled as in the hot 
phase.  The purpose of warm execution is to warm-up 
the state of the processor before measurements are 
taken from the next cluster. 

When performing any type of sampling scheme, 
two types of biases must first be overcome: sampling 
bias and non-sampling bias.  Sampling bias refers to 
the construction of a representative sample of the 
overall population.  For processor simulation, 
sampling bias is reduced with the design of a 
representative sampling regimen.  Non-sampling bias 
is formally described as all other bias that is not 
sampling bias.  For processor simulation, non-
sampling bias is the difference in processor state that 
causes dissimilar measurement from the full workload 
simulation.  The two most important structures 
pertaining to non-sampling bias are the memory 
hierarchy and branch predictor. 

Non-sampling bias is removed through the use of 
warm-up methods.  Previously, warm-up methods 
have been the main focus of sampling techniques.  
Many algorithms including MRRL [8], BLRL [6], and 
SMARTS [20] have been extensively studied.  
However, the design of a valid sampling regimen is 
often overlooked.  Most authors simply state the 
sampling regimen they used but neglect showing how 
it was derived. 

This paper focuses on the development of a method 
to efficiently determine a valid sampling regimen that 
effectively reduces sampling bias.  The techniques 
presented in this paper allow a user to generate a 
sampling regimen without executing the entire 
workload for comparison.  Moreover, the single pass 
nature of the algorithm alleviates the traditional 
iterative process to sampling regimen design. 

 
2. Statistical Sampling Assumptions 
 

According to the central limit theorem, randomly 
extracted data from any non-normal distribution 
generates a normal distribution.  From this normal 
distribution, conventional associations and formulas 

may then be applied to the normal distribution to find 
its mean, variance, etc.  The inferences drawn from the 
normal distribution may then be inferred to be 
associated with the non-normal distribution. When 
sampling from a large population of any distribution 
shape, the distribution of the sample means will 
approach the normal distribution with a sufficient 
sample size [9]. 

Two fundamental assumptions regarding sampling 
techniques are as follows: 1) increasing the sample 
size will increase the sample accuracy; and 2) the test 
for individual inclusion in the sample must be random, 
and each element in the population must have the 
same probability for inclusion.  With these 
assumptions, confidence intervals can then be 
calculated as follows: 
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 IPCS  is the standard deviation and 
IPCS  is the 

standard error for a cluster sampling design.  The 
estimated standard error is used to calculate the error 
bounds and confidence interval. Using the properties 
of the normal distribution, the 95% confidence interval 

is given by µ
sample
IPC ± 1.96 SIPC, where the error 

bound is ±1.96SIPC. A confidence interval of 95% 

implies that 95 out of 100 sample estimates may be 
expected to fit within this interval.  Low standard 
errors imply relatively small variations in repeated 
estimates, and consequently, result in higher precision.  
For each sample, the relative error is calculated as 
follows: 
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where µ
true
IPC is the true population mean (IPC), and 

µ
sample
IPC  is the estimated mean (IPC) obtained from 

the sample. Relative error relies on µ
true
IPC from a full 

simulation of each workload. 
A variety of factors affect sampling accuracy for a 

constant sample size, including the variance of the 
population and the type of distribution being sampled.  
However, as the sample size increases, accuracy also 
increases.  Thus, with a sufficiently large sample size, 
the estimate of the mean approaches the true mean and 
the error approaches zero. 

 



3. Sampling Regimen Construction  
 

When designing a valid sampling regimen, there 
are three parameters that must be determined: the 
cluster size, the number of clusters, and the location of 
the clusters within the dynamic instruction stream.  
The cluster size refers to the number of instructions 
executed in full cycle-accurate detail.  The cluster’s 
number and size dictate the sample size.  Statistical 
simulation is a compromise between speed and 
accuracy.  If too many clusters are selected, then speed 
will be sacrificed.  If too few clusters are selected, 
then accuracy will be sacrificed.  To further 
complicate this issue, the location of clusters is equally 
important.  Even if the cluster’s number and size are 
sufficient for sampling performance, the clusters may 
be located at non-representative sections of code.  
Thus, measurements taken at such locations would 
lead to inaccurate estimates of performance. 

Many researchers have investigated techniques in 
reducing the cold-start bias for microarchitectural 
simulation.  However, little work has been proposed 
dealing with efficient techniques for sampling regimen 
design. 

When designing a sampling regimen, each 
program-input pair may have dramatically different 
performance, affecting the underlying distribution of 
IPC.  Thus, a sampling regimen that performs well for 
one workload will not necessarily be accurate when 
applied to other workloads (or even the same 
workload with different inputs). 

Often, sampling regimen parameters are derived 
through an iterative process consisting of the 
following steps: 1) the entire workload is executed for 
error comparison; 2) the workload is sampled 
according to a predefined cluster number and size; 3) 
the results are analyzed to determine if confidence 
tests are met with sufficiently low error; and 4) if the 
error threshold or confidence tests are unsatisfactory, 
return to Step 2. 

This iterative process can be extremely time-
consuming.  For example, consider a user who wishes 
to evaluate a number of sampling regimen 
configurations.  Assume the user wishes to assess 
cluster sizes ranging from 1000 to 50000, with a step 
size of 1000, and a cluster number ranging between 30 
and 1000.  For simplicity, assume each execution 
takes 30 minutes.  The total time required to evaluate 
the entire suite of regimen configurations would take 
over 48,000 simulations which would require over 2 

years of processor time.  Even more time would be 
necessary if multiple random seeds are considered for 
each sampling regimen.  Although it is not likely 
anyone would ever perform such an exhaustive 
regimen sweep, the previous scenario represents an 
extreme example of how time-consuming regimen 
design can grow. 

Although a sampling regimen may be valid for a 
given workload, the user may be unlucky and 
randomly select non-representative locations.  For 
example, a user could simulate the same sampling 
regimen 20 times in a row (utilizing different random 
seeds) and statistically, 1 could fail (a 95% confidence 
test implies that the true population mean has a 95% 
chance of being bracketed by the sample estimate).  
Therefore, a valid sampling regimen could be 
evaluated as a “false negative.” 

The purpose of this work is to allow users to 
perform a single simulation to derive a valid sampling 
regimen and achieve the following goals: 1) prevent 
users from having to run the entire workload for 
performance comparison; 2) circumvent the iterative 
nature of regimen design; and 3) derive a valid 
sampling regimen according to user-specified criteria. 
 
4. Single-Pass Regimen Design 
 

Figure 2 shows a flow diagram of the single-pass 
regimen evaluation.  First, a program-input pair is 
profiled via a large sample. This large sample contains 
a very large number of clusters, many times more than 
required for a valid sampling regimen.  This sample is 
called the over-sample because the sampling rate is 
much higher than the minimum requirements.  As the 
sample size increases, the estimate of the mean will 
converge to the true mean, and the over-sample should 
estimate the mean very accurately.  Embedded in this 
sample, information is contained regarding varying 
sized clusters. 

After the over-sample has been collected, the 
estimate of the mean, or IPC, is assumed to be a highly 
accurate estimate of the true performance of the 
workload.  The data collected in the over-sample is 
then analyzed to generate a list of sampling regimen 
candidates.  Given user-specified criteria, the 
candidate list is pruned.  The final candidate list then 
identifies valid sampling regimen configurations.  
Reported data include the cluster size, cluster number, 
and starting location of each cluster.



 
             Figure 2: Single-Pass  Figure 3: Cluster Sampling Modifications to Enable 
                  Sampling Regimen Derived Subsamples 
                  Flowchart 

 
4.1. Simulator Modifications 
 

If a user has a simulator that implements cluster 
sampling with SMARTS [20], the modifications to 
implement single-pass regimen design are minimal.  
This work was performed using SMARTS warm-up 
since it is generally accepted as the most accurate 
warm-up method.  However, this method is 
orthogonal to warm-up, and could be applied using 
any warm-up method that effectively removes non-
sampling bias. 

The simulator was modified to ensure all aspects 
of the regimen configuration could be controlled; in 
this paper a configuration file was used to specify the 
regimen attributes.  Parameters could be specified via 
the command line, but the large number of inputs 
would make this approach unattractive.  The regimen 
configuration file is used to specify the size of a 
cluster, the number of clusters, and the starting 
location of each cluster according to the dynamic 
instruction stream count.  Additional parameters for 
the profile sample include a minimum cluster size, a 
maximum cluster size, and a step size. 

Execution of each cluster continues similarly as 
SMARTS with a few minor differences.  As in 
SMARTS, warm-up is performed on structures such 
as the branch predictor and memory hierarchy as 
instructions are skipped.  When a cluster is 
encountered, normal execution continues where each 
cluster is evaluated according to the specified 
minimum size.  The difference between single-pass 
and SMARTS is hot execution continues past the 
minimum cluster size, until the maximum cluster size 
has been reached.  At each step size increment, all 

measured information in a cluster is checkpointed.  
The checkpointed information is recorded to allow 
the user to determine which measurements would 
have been taken for each cluster size and location.  
Figure 3 shows a diagram of the accounting 
differences between normal SMARTS execution. 

 
4.2. Profiling Sample 
 

Figures 4, 5, and 6 show the results of the profile 
simulations.  As expected, increasing the sample size 
increases accuracy, but also increases simulation 
time. 

Each workload was sampled such that a specified 
ratio of the entire workload was included in the over-
sample simulation.  Each workload was sampled 
according to the following sampled to non-sampled 
ratios: 1:6, 1:12, 1:24, 1:48, 1:96, 1:192, 1:384, 
1:768, 1:1536, and 1:3072.  The 1:6 sample ratio 
indicates one out of every six instructions in the 
overall workload execution was simulated in full 
detail. 

Figure 4 shows the sampling accuracy associated 
with each sampling ratio.  As expected, the smallest 
sampling ratio, 1:3072, (corresponding to 0.03%) had 
the highest error.  For this ratio, gcc had the highest 
error with 24%, and art had the lowest error with 
0.4%.  As the sampling ratios increased, the error 
rates for all benchmarks decreased.  At the highest 
sampling ratio, the average relative error was 0.03%.  
Figure 5 shows a magnified version of Figure 4 at the 
largest two sample sizes.  As shown, a sampling ratio 
of 1:6 achieved an average relative error of 0.3%.  At 



this sampling ratio, ammp had the highest relative 
error at 1.7%. 

 
Figure 4 

 
As shown in Figure 6, the time required for 

simulation explodes for certain benchmarks.  At the 
highest sampling ratio, 1:6, the average execution 
time was approximately 5.4 hours.  Mcf took the 
longest at this ratio with 22.8 hours.  However, the 
largest sampled ratio is not necessary for accurate 
estimation.  Very similar accuracy was obtained with 
a sampling ratio of 1:48.  At this sampling ratio, the 
average relative error was 0.7% with an average 
execution time of 1.5 hours. 

 

 
Figure 5 

 
Although accuracy converges at a different 

sampling ratio for each workload, all experiments 
obtained accurate results when a sampling ratio of 
1:48 was used. 

Figure 6 
 

4.3. Profiling Analysis 
 

Once the over-sampled data have been collected, 
the results must be analyzed.  Using this information, 
random subsamples are compiled over all ranges of 
possible cluster sizes and numbers of clusters.  For 
each cluster size and cluster number, elements are 
extracted randomly from the over-sampled 
population.  Each over-sampled subset is then 
evaluated in terms of relative error, variance, and 
statistical confidence. 

As previously stated, it is possible for a particular 
sampling regimen configuration to be rejected 
because non-representative elements from the 
population were included in the sample.  To counter 
this possibility, each sampling regimen configuration 
is tested multiple times.  From these results, the 
average expected performance for a given sampling 
regimen can be obtained.  Each sampling regimen 
configuration is then evaluated multiple times with 
different random seeds.  In this work, each sampling 
regimen was tested 30 times in correspondence with 
the central limit theorem.  Once all possible input 
combinations of cluster sizes and the number of 
clusters have been searched, candidate selection 
proceeds. 

The benefit of this profile analysis is twofold.  
First, the total workload simulation is not required 
since the over-sampled population mean is assumed 
to have sufficiently converged on the true population 
mean.  Second, all cluster sizes and numbers of 
clusters recorded in the over-sampled population can 
be simultaneously evaluated for inclusion. 

The methods detailed in the candidate analysis are 
statistically valid since each element in the over-
sampled population has the same probability of being 
selected.  Furthermore, use of the over-sampled data 



provide confidence bounds that bracket the true 
performance of each workload. 
 
4.4. Candidate Selection 
 

Once the profile sample has been analyzed and a 
list of candidates generated, a sampling regimen 
configuration must be selected.  Using the candidate 
list, candidates are pruned according to user-specified 
criteria.  In this study, elements from the candidate 
list were excluded if all trials did not pass confidence 
tests relative to the over-sampled estimate.  The 
minimum error could not exceed 2% and the variance 
could not fall below 0.02.  These threshold values are 
somewhat arbitrary, and can be tuned to whatever 
characteristics the user desires. 

Some error is expected to be present when 
comparing the full execution of a workload with the 
over-sample.  Additionally, some error is expected to 
be present when comparing the second level 
simulation, provided by candidate selection, with the 
over-sample.  By restricting the minimum error to 
2%, the total bias introduced in the sampling process 
should be kept sufficiently low to bracket the true 
performance of the workload.  Since variance is 
proportional to the confidence interval bounds, a 
higher variance increases the probability that the true 
performance will be bracketed. 

After the candidates have been pruned, they are 
sorted based on sample size, which is equal to the 
cluster size multiplied by the cluster number.  
Candidates are sorted in this manner to reduce the 
overall execution time.  For example, assume two 
sampling regimen configurations pass the user-
specified criteria for candidacy.  Given that one may 
require 2000 clusters with a cluster size of 50,000 
instructions, and another may require 40 clusters with 
a size of 1000 instructions, the latter should be 
chosen since it would require significantly less time 
to simulate. 

The process of pruning sampling regimen 
candidates does not eliminate a cluster from being 
included in future sampling regimen configurations.  
The decision to prune a sampling regimen simply 
means that alternate cluster size and cluster number 
combinations should be explored. 

 
5. Methodology 

 
All experiments were conducted with the 

spec2000 benchmark suite.  Integer benchmarks used 
included gcc, mcf, parser, perl, vortex, vpr, and twolf.  
Floating point benchmarks used included ammp and 
art.  The first six billion instructions from each 
benchmark were simulated using reference input sets. 

The model used in this study was an execution-
driven simulator based on SimpleScalar [1].  The 
front end of the processor can fetch and dispatch 
eight instructions per cycle, and can issue and retire 
four instructions per cycle. The model included eight 
universal function units that were fully pipelined. The 
maximum number of in-flight instructions was 64. 
The issue queue size was 32, and there was a load-
store queue of 64 elements. The pipeline depth was 
seven stages. The minimum branch miss-prediction 
penalty was five cycles. The processor frequency was 
assumed to be 2 GHz. The branch predictor was a 
64K entry Gshare with an eight-entry return address 
stack. The BTB consisted of 4K entries. Architectural 
checkpoints were utilized to allow the processor to 
speculatively execute beyond eight branches. 

A substantive memory hierarchy was modeled 
within the simulator. The first level data cache was 4-
way and contained 32 KB with a 64-byte line size. 
The first level instruction cache was also 4-way and 
contained 64 KB with a 64-byte line size. The 
instruction and data caches were implemented using a 
write-through-no-write-allocate policy. The second 
level cache was 8-way and contained 1 MB with a 
64-byte line size, and was implemented using a write-
back-write-allocate policy. 

A bus model also was incorporated in order to 
emulate arbitration, contention, and transfer delay 
between the levels of memory. The first level bus 
was shared between the first level data and 
instruction caches, and connected the first level 
caches to the second level cache. The first level bus 
had a width of 16 bytes and operated at 1 GHz. The 
second level bus connected the second level cache to 
main memory, had a width of 32 bytes, and operated 
at 2 GHz.  

The model included both a functional and a 
timing simulator.  The functional simulator was used 
to validate the results of the timing simulator. If the 
timing simulator attempted to commit a wrong value, 
the functional simulator would assert an error. 
However, in the context of sampled simulation, the 
functional simulator had additional uses. As 
instructions in the dynamic stream were skipped 
(either in cold or warm simulation), the functional 
simulator retained valid architectural state. When hot 
execution continued in the next cluster, the values of 
the registers contained in the functional simulator 
were copied to the timing simulator. 

For processor simulations, the standard 
performance metric was IPC, which is the number of 
instructions retired per execution cycle. 

 
 



6. Results 
 

Figure 7 shows the time savings of single-pass 
simulation versus the total workload simulations as a 
factor speedup.  As expected, 16.67%, or a sampling 
ratio of 1:6, had the least savings due to the size of 
the over-sample.  All results in Figure 7 include both 
the profile sample simulation time and the second 
level simulation indicated by the regimen candidacy 
selection. 

 
Figure 7 

 
As previously stated, there were two types of 

biases that were introduced in the single-pass 
sampling methodology: 1) the introduced bias 
between the profile sample and the true execution; 
and 2) the introduced bias between the single-pass 
simulation and the profile sample.  All second level 
simulations passed confidence tests when compared 
to the profile sample.  At sampling ratios of 1:6, 1:12, 
1:24, 1:48, 1:96, and 1:192, all second level 
simulations passed confidence tests when compared 
to the total execution. 

Low sampling ratio simulations passed most of 
the confidence tests when compared to the total 
execution.  At the sampling ratios of 1:384, 1:768, 
and 1:1536, 8 of 9 workloads passed confidence tests.  
At sampling ratios of 1:3072, 6 of 9 workloads 
passed confidence tests.  This was expected behavior 
since as the profile sample decreased, so did estimate 
accuracy. 

The lowest sampling ratio exhibited the highest 
factor speedup, with an average of 23.6 times faster, 
where mcf was 115 times faster than the entire 
workload simulation.  When the sampling ratio of 
1:192 was utilized a factor speedup of 16.85 times 
was obtained.  In this study, a sampling ratio of 1:192 
was optimal in achieving high speed without 
sacrificing accuracy (less than 1% error).  Using this 
sampling ratio, the average number of clusters was 

130, and the average cluster size was approximately 
5000 instructions. 

 
7. Related Work 
 

The sampling of workloads has been used in a 
number of architectural simulation applications.  
Originally, sampling was applied to cache simulation 
[3],[7],[11],[21] and was later extended to the 
simulation of processors [5],[12],[17].  Most 
instances utilized some derivative of cluster sampling 
but other forms, such as stratified sampling [14] and 
set sampling [7],[10],[13], have been used with 
success. 

Two different types of sampling are possible for 
caches: time sampling [4],[7],[11],[21] and set 
sampling [7],[10],[13].  Time sampling involves the 
extraction of time-contiguous memory references 
from different locations in an address trace.  Set 
sampling is a form of stratified sampling when 
applied to caches and involves the inspection of 
particular cache sets.  Thus, the memory references 
that affect chosen sets are not necessarily temporally 
adjacent. 

Many different approaches have been used to 
remove non-sampling bias from sampled simulation.  
Laha, et al., [11] took sampling units immediately 
following context switches to ensure consistent state.  
By assuming the cache contents were flushed after a 
context switch for small caches, the contents were 
emptied, and were therefore identical to the full 
execution trace.  For larger cache designs, the idea of 
primed cache sets was introduced by Fu, et al. [7] and 
Laha, et al. [11].  Once the execution of a new cluster 
began, a set in the cache was considered primed after 
it had been filled with unique references.  Only 
information gathered from primed sets were used to 
record measurements.  Other warm-up techniques 
proposed by Wood, et al. [21] use probability to 
distinguish misses at the beginning of a cluster 
between compulsory and cold-start misses. 

Of all of the warm-up methods, perhaps the most 
accurate in removing non-sampling bias is SMARTS 
[20], proposed by Wunderlich, et al.  When skipping 
instructions between clusters, the entire skip region 
of instructions is executed in a warm phase.  Thus, 
every branch and memory operation is functionally 
applied to the branch predictor and cache hierarchy.  
The SMARTS warm-up policy has been applied in 
cache simulations [3] and to processor simulations 
[4],[5].  The SMARTS, or full functional, warm-up 
method is extremely accurate, but at a cost. 

Because SMARTS is demanding in terms of 
simulation time, other warm-up methods have been 
proposed that approximate the SMARTS accuracy at 



a lower cost.  Haskins, et al. [8] proposed the 
Memory Reference Reuse Latency (MRRL) algorithm 
for warm-up.  MRRL profiles the skip regions 
between clusters to determine the number of pre-
cluster instructions to execute for a specified 
percentage warm-up.  This work was later extended 
by Eeckhout, et al. [6] with the Boundary Line Reuse 
Latency (BLRL) algorithm.  Unlike MRRL, BLRL 
only considers memory references from instructions 
that originate in the cluster.  Another approach, 
known as Reverse State Reconstruction (RSR) [2], 
has been proposed to approximate SMARTS warm-
up.  In this technique, skipped instruction data is 
recorded and then applied to high-state structures in 
reverse order. 

One widely popular approach used in lieu of 
statistical sampling was proposed by Sherwood, et al. 
[18].  This technique, called SimPoint, analyzes the 
frequency at which basic blocks are executed within 
a workload.  From this heuristic, SimPoint identifies 
a region or set of regions that can be simulated to 
approximate the entire program behavior.  This 
technique is hardware independent.  While effective, 
critics of SimPoint note the heuristic by which the 
regions are selected utilizes systematic sampling.  
Since the probability of selection is not random, 
statistical tests such as the confidence interval cannot 
be used.  An extension to SimPoint, called Variance 
SimPoint [16], has been introduced to calculate error 
bounds for sampled clusters.  Such error bounds can 
only be calculated if SimPoint randomly selects 
clusters of execution. 

Much work has been proposed with regards to 
warm-up methods, but there exists little work on 
sampling regimen design. 
 
8. Summary 
 

In this work, an efficient sampling regimen design 
process was presented.  Utilizing a profile sample, 
thousands of sampling regimen configurations can be 
simultaneously evaluated for accuracy and statistical 
confidence.  Each sampling regimen configuration 
was tested multiple times, each yielding a different 
random sample in order to increase the probability of 
correct classification.  From the profile analysis, a list 
of possible sampling regimen configurations were 
identified and then pruned according to user-
determined filter criteria.  From this candidate list, 
sampling regimens were sorted based on sample size 
to allow the user to run the smallest, and therefore 
fastest, sample. 

The techniques presented in this study are a vast 
improvement over traditional sampling regimen 
design.  In this work, it was shown how sampling 

regimens can be determined being required to run the 
entire workload for accuracy comparisons.  
Significant time savings were realized since the entire 
workload was not required to be executed.  
Additionally, significant time-savings were realized 
by the efficient sampling regimen design algorithm. 
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