
PROCEEDING OF THE 1995 ANNUAL
28th HAWAII INTERNATIONAL CONFERENCE ON SYSTEM SCIENCES (Maui, HI)
(winner: best paper)

A Technique to Determine Power-E�cient, High-Performance

Superscalar Processors

Thomas M. Conte Kishore N. P. Menezes Sumedh W. Sathaye

Computer Architecture Research Laboratory

Department of Electrical and Computer Engineering

University of South Carolina

Columbia, South Carolina 29208

Abstract

Processor performance advances are increasingly in-
hibited by limitations in thermal power dissipation.
Part of the problem is the lack of architectural
power estimates before implementation. Although
high-performance designs exist that dissipate low
power, the method for �nding these designs has been
through trial-and-error. This paper presents system-
atic techniques to �nd low-power, high-performance
superscalar processors tailored to speci�c user bench-
marks. The model of power is novel because it sep-
arates power into architectural and technology com-
ponents. The architectural component is found via
trace-driven simulation, which also produces perfor-
mance estimates. An example technology model is
presented that estimates the technology component,
along with critical delay time and real estate usage.
This model is based on case studies of actual designs.
It is used to solve an important problem: increasing
the duplication in superscalar execution units without
excessive power consumption. Results are presented
from runs using simulated annealing to maximize pro-
cessor performance subject to power and area con-
straints.
The major contributions of this paper are the sep-

aration of architectural and technology components
of dynamic power, the use of trace-driven simulation
for architectural power measurement, and the use of
a near-optimal search to tailor a processor design to
a benchmark.

1 Introduction

Power limitations are increasingly nullifying some
obvious superscalar advances. For example, dupli-
cating commonly used functional units can enhance
achievable parallelism [1]. Increasing duplication be-
yond current designs will increase power dissipation,
yet current designs are already dissipating record
amounts of power. Witness the 66MHz Intel Pen-

tium that dissipates 16 watts or the 200MHz DEC
Alpha AXP 21064 that dissipates 30 watts of power.
Power is also directly a�ected by cycle time and im-
provements in cycle time are likely to complicate the
current situation. Future increases in power dissi-
pation may require expensive cooling and packaging
techniques that signi�cantly increase the system cost,
pricing levels of performance out of the reach of all
but supercomputer markets.

One source of the problem may be that architec-
tural decisions are made largely without power usage
information. Until now, obtaining such information
before implementation has been extremely di�cult.
In the absence of this, the main emphasis has been
on performance. Although high-performance designs
may exist that dissipate low power, the only method
for �nding these designs has been through trial-and-
error.

This paper presents a systematic technique to �nd
low-power, high-performance superscalar processors
tailored to speci�c user applications. Power in CMOS
is composed of static and dynamic components. A
novel approach is developed that separates the archi-
tectural contribution of dynamic power from the tech-
nology contribution. The architectural contribution
is obtained via trace-driven simulation of SPEC92
benchmarks. The technology contribution is from a
model based on estimates of actual designs. In real-
ity, the constraints of circuit timing and limited real
estate also impact power. Estimates of these are also
included in the cost function. The function is opti-
mized using a near-optimal search algorithm, to syn-
thesize processor designs.

Duplication of integer functional units has been
used in the Motorola 88110, the Intel Pentium and the
Motorola/IBM PowerPC 604, among others [2],[3],[4].
The tradeo� between duplication and power has not
been studied in detail. This paper uses the power
model to address this question. Example superscalar
designs are presented that achieve high parallelism



by duplicating functional units while dissipating in
some cases less than 25% additional power over su-
perscalars that have little duplicated hardware. The
techniques used to select these designs and the esti-
mates of power and area are presented in the next sec-
tion. Comments, conclusions and future work close
out the paper.

2 Methods and Models

The processor model for this study is a superscalar
engine with full-Tomasulo scheduling and pipelined
functional units. To achieve high parallelism, integer
and oating-point functional units are duplicated and
the functional unit latencies are optimized. This pa-
per focuses on power-centric design of the processor's
execution unit and its pool of functional units. For
the Alpha 21064, this unit comprises slightly over half
of the chip area (from micrographs presented in [5]).

The types of functional units are shown in Ta-
ble 1. A 64-bit architecture is assumed. The in-
teger class is composed of 64-bit integer ALU units
(IALU ), 64-bit shifter hardware (Shift) and branch
hardware (Branch). The oating-point units are
grouped into addition (FPAdd), multiplication (FP-
Mul) and division (FPDiv). FPDiv is a pseudo-unit:
division actually takes place in the multiplier using
the quadratic convergence division method in an it-
erative, unpipelined fashion1.

The data cache is accessed through three functional
units: the Load , Store and PMiss units. PMiss is an
abbreviation for Pending Miss. Any Load operation
that causes a cache miss is automatically coupled with
a dynamically created PMiss operation. These oper-
ations fetch the missing cache block independently
from other cache accesses. Once a PMiss operation
completes, its associated Load operation is allowed
to execute. This scheme incorporates the lockup-free
cache concepts presented by Kroft into a superscalar
framework [8].

Example execution units are shown in Figure 1.
In part (a) of the �gure, an execution unit with no
duplication is shown. This is the base design. Opti-
mization for integer performance may result in design
(b). Here the integer and the Load units have been
duplicated. This allows parallel execution of indepen-
dent integer instructions. A similar optimization for
oating-point hardware may result in design (c).

1This algorithm can achieve the precision required by the
IEEE standard at reasonable cost and speed [6] and was im-
plemented in the RS/6000 [7]

Table 1: Functional unit types.

Class Unit Description
Integer IALU Integer arithmetic, logicals

Shift Bit manipulation, shifting
Branch Branch prediction; fault recovery

Floating- FPAdd Floating-point addition
Point FPMul Integer,oating-point multiply

FPDiv Integer, oating-point divide

Data- Load Data cache read
Cache Store Store-bu�er/data-cache write

PMiss Miss repair unit (lockup-free)

2.1 An Architectural Power Model

Power dissipation in CMOS can be divided into a
static and dynamic component. The static compo-
nent is proportional to the product of gate leakage
current (a function of the number of devices) times
the supply voltage. This component is highly tech-
nology dependent. The dynamic component can be
separated into architectural and technology compo-
nents. To show this, assume a unit is pipelined into
N stages, labeled S1; S2,: : : , SN . Let ESi be the en-
ergy consumed when stage Si performs work2. The
power dissipated for one instruction is:

P =
1

T
(ES1 +ES2 + � � �+ESN ) (1)

where T is the time it takes to execute the instruc-
tion (here T = N ). Now consider a program frag-
ment. Let USi be the total usage of stage Si during
execution. The power dissipation now takes the form:

P =
1

TTOT
(US1ES1 + US2ES2 + � � �+ USNESN ) ;

(2)
where TTOT is the total execution time for the pro-
gram fragment. The stage energies, ESi , are technol-
ogy parameters, whereas TTOT and the stage utiliza-
tions, USi , are architectural parameters. This way, a
simulation of the pipeline can measure the architec-
tural parameters without any knowledge of the un-
derlying technology.
An example helps illustrate the model. One pop-

ular myth about power usage is that pipelining can
be ignored. The theory is that if any operation uses
a unit, it must travel through all stages of the unit
in turn, which means it consumes the same power
(minus latching costs) as it would on an unpipelined
unit. Figure 2 shows why this myth is false. (It has

2For now, we will assume this value is constant. Shortly, we
will justify this approximation.



IALU Shift Branch Store PMiss
LoadFPAdd FPMul

Instruction Dispatch

Instruction Dispatch

IALU Shift Branch

IALU Shift

LoadFPAdd FPMul

Load

Store PMiss

Instruction Dispatch

IALU Shift Branch
LoadFPAdd FPMul

Load

Store PMiss

(a) Execution unit with no functional unit duplication

FPAdd

(b) A possible configuration for high integer performance

(c) A possible configuration for high floating−point performance

Load

Figure 1: Example execution units.

also been disproved in [9].) Here three instructions
are executed on a pipelined unit (left side of �gure)
and on an unpipelined unit (right side of �gure). The
corresponding power cost for each is shown below the
�gure. The unpipelined version uses 55% less power.
The reason for this di�erence is the pipeline speedup
e�ect, which is an architectural phenomenon.
The stage energy parameters ESi are dependent

on the logical inputs to the stages. They could also
be derived via trace-driven simulation. However, for
this study, a further approximation of stage energy is
used. We assume that every device transitions when
the unit is active, which is a worst-case assumption.
We also assume that the worst case stage energy is
related to the average energy by a constant.3 An ex-
ample model for the stage energies is presented below.

2.2 Simulation techniques

The set of benchmarks used in this paper is shown in
Table 2. The benchmarks are compiled using GCC,
which schedules instructions within basic blocks us-
ing a priority-based list scheduling algorithm. This

3Even though the worst case is used for this study, it is not

a required assumption of the model. A model based on average
energy can be used for more accuracy. Our limited access to
manufacturer implementations did not permit this.

shortens the critical dependence path of each block
as much as possible, enhancing parallelism.

Architectural behavior is determined via trace-
driven simulation. Traces are generated from bench-
marks using the Spike tracing tool [10]. The sim-
ulator implements a dynamic instruction scheduling
model, with the window for instruction scheduling
moving between correctly predicted branches. Yeh's
adaptive training branch algorithm is used to predict
branch behavior, since it is currently one of the most
accurate prediction schemes [11]. Since the bench-
marks can generate extremely long traces, trace-
sampling techniques are employed to reduce trace size
and simulation time (see [12], [13] for details). Branch
hardware and data cache simulation are done for the
full traces, removing the possibility of sampling error
for these units. The full trace is used to mark each
incorrectly predicted branch in the sampled trace �le.
A similar approach is used to mark loads and stores
that miss in the data cache.

The architectural component of dynamic power is
measured during the simulation. In each cycle of the
simulation, the usage of each pipeline stage is logged
(i.e., USi is incremented if Si is busy). In addition,
the simulator �nds the total run time of the bench-
mark (i.e., TTOT ). This is later combined with the



Table 2: The benchmark set.

Class Benchmark Description

compress reduces the size of �les
eqntott conversion from equation to truth table

Integer espresso minimization of boolean functions
gcc GNU C compiler
li lisp interpreter
sc spreadsheet program
doduc Monte Carlo simulation
hydro2d Solves Navier Stokes equations

Floating- mdljdp2 solves equations of motion
point ora ray tracer through optical system

tomcatv vectorized mesh generation
wave5 solves Maxwell's equations

(a) pipelined unit

Cycle

1

2

3

4

5

S
S
S

1

2

3

P =
1

5
(3ES1 + 3ES2 + 3ES3)

(b) unpipelined unit

Cycle

1

2

3

4

5

6

7

8

9

P =
1

9
(3ES1 + 3ES2 + 3ES3 )

Figure 2: Why pipelining matters to power dissipa-
tion.

Part (a) shows a pipelined unit executing three instructions, (b)
shows an unpipelined unit executing the same three instruc-
tions. Because of the e�ects of pipeline speedup on parallel
stage usage, the power dissipated in (b) is 5=9 = 55% smaller
than (a).

technology parameters (ESi 's) to �nd the dynamic
power component using Equation 2.

2.3 Finding power-e�cient processors

One goal of this study is to determine designs that
achieve high performance without excessive power or
area usage. Each functional unit can be duplicated as
many times as power and real estate limitations allow.
This freedom of design results in an extremely large
design space. Exhaustive search via simulation of this
space is impractical. This problem lends itself to a
near-optimal search, such as simulated annealing [14].

The following is the method used to guide the sim-
ulated annealing algorithm: Consider a processor de-
sign space composed of one or more of the functional
units of Table 1, each having a latency ranging from
1 to Lmax. Let P be some set of processors under
consideration. A processor p 2 P , has nj functional
units of type j and each of these functional units has
a latency of `j . A concise representation of proces-
sor p is p = h(`0; n0); (`1; n1); : : : ; (`k�1; nk�1)i, for k
di�erent types of functional units. At each step of
the simulated annealing algorithm, the next design,
pi+1, is selected from the current design, pi, using a
restricted random selection procedure. The following
procedure for determining a pi+1 from a pi is used:
(i) m functional units are selected at random from
pi, where m is a random integer in the range [1; 3],
(ii) the number of each of these functional units in pi
is changed by a random integer in the range [�3; 3].
Any number greater than the issue rate or less than
1 is rejected. For units with several possible pipeline
latencies, a slightly more restrictive procedure is used
to randomly alter the latencies.
A superscalar without functional unit duplication



is used as the starting point for the search: p0 =
h(`MIN ; 1)ik, where `MIN are the minimal allowed
latencies. The goal of the search algorithm is to ad-
just the parameters of pi = h(`j ; 1)i1�j�k to maxi-
mize performance and yet remain within power and
real estate budgets. A detailed description of this cost
function is presented below.

2.4 Performance metrics

A performance metric is needed that takes into ac-
count both architectural performance and technologi-
cal considerations. Parallelism or instructions per cy-
cle (IPC) is often used for architectural performance.
IPC is ultimately limited by the issue rate (a design
feature) and inter-instruction dependencies (a bench-
mark characteristic).

IPC alone lacks technology considerations. For ex-
ample, short latency functional units produce high
IPC, since dependencies are resolved quicker using
shorter latencies (shallow pipeline depths). However,
lower degrees of pipelining may lengthen the execu-
tion unit's critical path. This has an impact on the
total time to execute a program, but is not reected
by the IPC metric. The critical path that determines
cycle time is typically through the �rst level of the
memory hierarchy (e.g., the data cache). Shallow
pipelines can shift this critical path into the execu-
tion unit. Since this paper concentrates on the exe-
cution unit, the aim is to optimize on the critical path
within the execution unit. This reduces the impact
of the execution unit's critical path on the external
cycle time of the processor.

A metric that combines IPC and critical path de-
lay is the critical time per instruction (CTPI). CTPI
is the ratio of the critical path delay to the number
of instructions per cycle. Optimizing the execution
unit for low CTPI reduces the chance of a�ecting the
processor's cycle time. For this reason, CTPI is used
in the search algorithm's cost model.

2.5 Example technology cost model

It is exceedingly di�cult to obtain accurate technol-
ogy estimates of the state-of-the-art, since micropro-
cessor manufacturers rarely release this information.
In the absence of this, we have constructed what we
believe to be a reasonably approximate model using
published results. The model considers a processor
implementation technology with a budget of 1.68 mil-
lion transistors and a supply voltage of 3.3 volts. This
is based on the reported �gures in [5] for a 0.75�m
three metal-layer CMOS process technology.
Although the �rst-level data cache is not included in

the execution unit, its miss rate impacts the overall
performance of the superscalar core. A 16KB, 2-way
associative data cache is assumed. This design as-
sumes a page size of 8K bytes so that cache data
store indexing can occur in parallel with TLB access.
Cache misses are handled by the hardware using a
lockup-free mechanism [8]. The latency to repair a
missing block from the L2 cache is assumed to be 10
cycles.

The speci�c cost model depends on performance,
real estate and power estimates:

Performance: Performance is measured by CTPI,
where low CTPI is desirable. CTPI is calculated from
the number of instructions, the number of cycles for
the execution of the program, and an estimate of the
critical path. The deepest pipeline stage in the ex-
ecution unit is used to �nd the critical path using
a technique presented by the authors in [13]. The
function units could not be partitioned such that the
cycle time is exactly inversely proportional to the de-
gree of pipelining. Instead the deepest pipeline stage
for each degree of pipelining is determined from our
own designs. The sum of the gate delays within this
stage constitutes the cycle time.

Real estate: Transistor level analysis of published
work provided the approximations for each functional
unit type. This model is presented in Table 3. (Since
the FPMul unit is used iteratively for division, the
FPDiv unit does not consume any die space and is
not mentioned in the table.)

Real estate goals are expressed as a budget:

(area of pi) � (area budget)

The area budget is based on the 1.68 million transis-
tor budget, which includes interconnection overhead.
Approximating interconnection overhead as half of
this �gure, and assuming that the execution unit com-
prises half of the total die (as is the case with the
Alpha 21064), the real estate budget is taken as 25%
of 1.68 million, or 420,000.

Power: Only relative power increases are required
for the cost model. Therefore, power is normalized.
Exact gate leakage currents for the two technologies
are unpublished, but dynamic power is taken to be
approximately 10,000 times larger than static power
(a typical ratio). Static power is estimated using the
product of the total number of transistors (which is
proportional to the leakage current) times the sup-
ply voltage. The trace-driven simulation model is
used for dynamic power. As stated above, the worst-
case estimates are used to calculate the stage ener-
gies. This component is weighted by the square of
the supply voltage [17].



Table 3: Real estate usage by functional unit type.

Functional Allowed Number of transistors (by latency)
unit latencies 1 2 3 4 5 6

IALU 1{1 5068 { { { { {
Shift 1{1 6272 { { { { {
Branch 1{1 8660 { { { { {
FPAdd� 1{5 18880 19192 19504 19504�� 19816 {
FPMul� 1{6 40292 41540 46196 42788 43796 46436

Load 1{4y 4928 4928 4928 4928 { {
Store 1{1 4928 { { { { {

Pmiss 10 46848z 46848 46848 46848 46848 46848

�Sources: [15],[16],[6] along with our own implementations.
��No change is seen in the number of transistors from latency 3 to 4 since the placement of the latches results in fewer

bits that need to be latched.
yLoad is through the data cache, which is excluded from the execution unit. However, slight overhead is required for each

load operation to latch the values. Multiple load units are implemented by interleaving the cache.
zValue shown is extrapolated from [8].

The power consumed by a processor pi is con-
strained to a fractional increase in the power con-
sumed by a processor without duplicated functional
units (processor p0):

(power of pi) � K � (power of p0):

The overall goal is to minimize CTPI subject to
constrained power and area budgets. An expression
for the combined cost function is:

f(pi) =

8<
:

CTPI; if (area of pi) � (area budget) &
(power of pi) � K � (power of p0)

1; otherwise:

3 Experimental Results

This section presents examples of the method in ac-
tion. The example cost model is used to optimize
processors for increased performance via duplicated
functional units. Power is limited to a fractional in-
crease over the base case (no duplicated hardware).
The power budget factor, K, is selected such that the
limit of power usage is quite restrictive. Assuming
that the execution unit occupies 50% of the chip area
and that the power usage is uniformly distributed
across the chip, a power budget of K = 1:5 translates
into a 25% increase in power overall. This sometimes
restricts performance improvement. A second budget
of a 50% increase in power (K = 2:0) is also investi-
gated.
Figure 3 illustrates the evolution of the cost func-

tion for li . As may be seen, an immediate attempt is

10

20

30

40

50

60

70

80

90

0 50 100 150 200 250

C
o
s
t

Iteration

Figure 3: The cost function for li (in�nities excluded
from plot).



Table 4: Performance of initial designs.

Class Benchmark IPC Power Index

compress 1.40 19.83
eqntott 1.38 20.80

Integer espresso 1.41 21.03
gcc 1.27 20.28
li 1.40 21.10
sc 1.36 25.41

doduc 1.80 34.82
hydro2d 1.85 28.51

Floating mdljdp2 2.05 34.58
point ora 1.82 26.42

tomcatv 2.13 47.23
wave5 1.79 28.09

made to reduce the cost from that of the initial design,
p0. Although the new cost is better than the origi-
nal, the search continues for a more global minimum.
The search is initially liberal in its design selections
but settles into a region of the design space after the
150th iteration.

3.1 Performance of initial designs

Table 4 shows the performance of the initial designs
(no duplicated functional units). Also presented is
the normalized power index from the power estima-
tors. The power index for the oating-point bench-
marks is consistently higher than the integer bench-
marks. Floating-point units burn higher amounts
of power than integer units, due to a higher num-
ber of transistors per unit. Note the strong cor-
relation between high IPC and high power usage:
more instructions executing in parallel implies more
functional units active. This correlation between
power and instruction-level parallelism implies high-
performance superscalars are high power designs.
Our goal is to shift performance gains to less power-
intensive functional units by duplicating those units.

3.2 Optimized designs

The optimized designs for each benchmark are pre-
sented below. The IPC and power index values4 of
the designs are presented graphically in Figures 4
and 5. Comparison of Figure 4 and Figure 5 shows
the a general correlation between IPC and the power

4IPC is used here to measure external performance, assum-
ing minimization of the critical path did not a�ect the external
cycle time (see Section 2.4).

index. As the power budget is increased, IPC (par-
allelism) also increases. This is only true on a per-
benchmark basis, and not true across benchmarks.
Although for 125% of initial power, the IPC for li is
greater than that for doduc, the power index for doduc
exceeds that for li . This is because the oating-point
intensive operations found in doduc use more power
than integer intensive operations in li.

es
pr

es
so

eq
nt

ot
t li

co
m

pr
es

s

m
dl

jd
p2 or
a

hy
dr

o2
d

1

2

3

4

gc
c sc

do
du

c

to
m

ca
tv

w
av

e5

0

1

2

3

4

0

150% of initial power

125% of initial power

initial power

Figure 4: IPC for the benchmarks.

es
pr

es
so

eq
nt

ot
t li

co
m

pr
es

s

m
dl

jd
p2 or
a

hy
dr

o2
d

gc
c sc

do
du

c

to
m

ca
tv

w
av

e5

0

20

40

60

80

100

0

20

40

60

80

100

150% of initial power

125% of initial power

initial power

Figure 5: Power usage for the benchmarks.

Table 5 present the optimized designs for power
budgets of 125% (part (a)) and 150% (part (b)).

125% power budget designs

The integer-intensive benchmarks in Table 5(a)
achieve signi�cant performance increases over the ini-
tial designs in Table 4. For example, the IPC for gcc
improves from 1.27 initially to 1.81, and li increases
from 1.40 to 2.12. These increases are achieved pri-
marily by replicating the IALU units. The oating-
point benchmarks do not have use for more than one
IALU. The exception ismdljdp2 , which uses four, due
to a high number of address (array indexing) calcu-
lations.



Table 5: The power/area-e�cient processor designs

(a) power budget 125%

IPC Power IALU Shift Branch FPAdd FPMul Load Store PMiss

Benchmark Index n ` n ` n ` n ` n ` n ` n ` n `

compress 1.37 20.6 1 1 2 1 2 1 1 5 1 6 2 1 1 1 1 10
eqntott 1.45 21.7 1 1 1 1 3 1 1 5 1 6 2 1 1 1 1 10
espresso 1.37 20.6 1 1 2 1 2 1 1 5 1 6 2 1 1 1 1 10
gcc 1.81 30.1 2 1 2 1 2 1 1 5 1 6 3 3 1 1 2 10
li 2.12 31.3 2 1 1 1 1 1 1 5 1 6 4 3 2 1 2 10
sc 1.43 26.7 1 1 2 1 3 1 1 5 1 6 2 2 1 1 1 10

doduc 1.75 37.8 1 1 2 1 1 1 1 5 2 6 1 1 2 1 1 10
hydro2d 1.86 30.1 1 1 1 1 3 1 2 5 1 6 2 1 2 1 1 10
mdljdp2 2.60 50.9 4 1 1 1 3 1 1 5 3 6 3 1 3 1 1 10
ora 1.73 28.3 1 1 1 1 3 1 2 5 1 6 2 1 2 1 1 10
tomcatv 2.12 52.3 1 1 1 1 2 1 2 5 2 6 2 1 1 1 1 10
wave5 1.94 32.0 1 1 1 1 1 1 2 5 2 6 3 1 2 1 1 10

(b) power budget 150%

IPC Power IALU Shift Branch FPAdd FPMul Load Store PMiss

Benchmark Index n ` n ` n ` n ` n ` n ` n ` n ell

compress 2.37 35.8 3 1 2 1 1 1 1 5 1 6 1 1 3 1 1 10
eqntott 2.35 36.3 3 1 1 1 2 1 1 5 1 6 3 2 1 1 3 10
espresso 2.42 36.2 4 1 2 1 2 1 1 5 1 6 3 1 2 1 2 10
gcc 2.05 33.9 3 1 2 1 2 1 1 5 1 6 2 1 2 1 2 10
li 2.57 37.6 4 1 1 1 3 1 1 5 1 6 3 1 2 1 2 10
sc 2.30 45.3 3 1 2 1 3 1 1 5 1 6 3 1 1 1 1 10

doduc 2.73 60.0 4 1 1 1 2 1 1 5 3 6 3 1 1 1 3 10
hydro2d 3.39 55.5 4 1 4 1 2 1 2 5 3 6 3 1 1 1 2 10
mdljdp2 2.60 50.9 4 1 1 1 3 1 1 5 3 6 3 1 3 1 1 10
ora 1.92 45.7 3 1 2 1 2 1 2 5 1 6 3 1 1 1 1 10
tomcatv 3.41 85.8 2 1 2 1 2 1 1 5 2 6 3 1 1 1 1 10
wave5 3.14 54.2 4 1 3 1 2 1 2 5 2 6 4 2 2 1 2 10

There is little performance increase for the oating-
point benchmarks, and in some cases the designs ac-
tually achieve a slight performance decrease. The
125% budget appears to be too restrictive for these
benchmarks, preventing simulated annealing from
improving the designs considerably. This is also the
reason that oating-point unit duplication does not
necessarily result in higher performance. This is not
the case when a budget of 150% is assumed (see be-
low).

The memory access units are optimized for mul-
tiple copies across all benchmarks. Load ports are
especially important for most benchmarks, with four
load ports required for li . Note that multiple load
ports translate into high degrees of cache interleav-
ing. With the exception of gcc and li , no more than
one pending miss is needed.

In general, the parallelism available from a four

instructions per cycle lookahead is wasted for the
oating-point benchmarks under the 125% budget.

150% power budget designs

The designs constrained by a 150% power budget
are presented in Table 5(b). Increasing the power
budget to twice the initial design has a dramatic ef-
fect on the achieved parallelism of the benchmarks.
The integer benchmarks achieve parallelism values as
high as 2.57 instructions per cycle (li). The oating-
point benchmarks now achieve values signi�cantly
better than those of the Table 4 initial designs. Tom-

catv, for example, achieves an IPC of 3.41 versus
2.13. Functional unit duplication favors the integer
units, as before. Espresso now uses four IALU units,
instead of the one used for the 125% power bud-
get. In general, the 150%-budget designs are elite,



high-performance superscalars. The hydro2d design
achieves an IPC = 3:39, for example. In general, all
IPC values are greater than 2.0, with the exception
of ora (1.92). The most-popular unit to duplicate re-
mains the IALU unit, with a median value of three
IALU units. The IALU is one of the lowest-power
units and at the same time one of the most-needed
units. Other integer units are duplicated as well: hy-
dro2d selects four Shift units and wave5, three5.
The memory access units follow the general trend

observed for the 125% power budget. Load ports
are very important. Also, two of the oating-point
benchmarks and one of the integer benchmarks re-
quire parallel data cache writes (three for compress

and mdljdp2 ). In some cases, three pending miss
units are required.

When combined, these results suggest that high
performance can be achieved by technology-based al-
location of units that deliver high performance with-
out high power usage.

4 Conclusion

The number and importance of technology considera-
tions has increased dramatically in recent years with
advances in high-performance processor designs. The
techniques presented in this paper make the connec-
tion between these technology considerations and the
architecture level. The major contributions of this
paper are the separation of architectural and technol-
ogy components of dynamic power, the use of trace-
driven simulation for architectural power measure-
ment, and the use of a near-optimal search to tai-
lor a processor to a benchmark. Although based on
published design information, the example technol-
ogy model has some aws. It was presented in order
to demonstrate the technique. Industry practition-
ers can readily develop a more accurate technology
model for their internal use.

The model's predictions do match conventional
wisdom: integer ALU's are best to duplicate, oating-
point hardware is expensive and power-hungry, etc.
With caveats in mind, several insights can be drawn
from the results:

� Integer units (IAlu and Shift) achieve the highest
performance per power increase,

� For higher performance designs, up to three
pending misses may be required (note that this
result is only valid for a miss repair penalty of
10),

5Shifts are used for array indexmultiplicationafter the com-
piler applies strength reduction.

� Deeply pipelined oating-point units are favored
for their cycle time advantage,

� Provisions for multiple, parallel data cache reads
are required,

� Up to three speculative branches active at once
are needed in some cases (the PowerPC 604 cur-
rently supports two [4]),

In general, signi�cant increases in oating-point per-
formance will require much higher power budgets
than equivalent increases in integer performance. Sig-
ni�cant performance via duplication cannot be con-
templated without taking this e�ect into account.
The techniques in this paper �nd and duplicate units
that produce the most performance for the least
amount of power dissipation.



References

[1] T. M. Conte, \Architectural resource require-
ments of contemporary benchmarks: A wish
list," in Proc. 26th Hawaii Int'l. Conf. on Sys-

tem Sciences, vol. 1, (Maui, HI), pp. 517{529,
Jan. 1993.

[2] D. R. Ditzel and H. R. McLellan, \Branch fold-
ing in the CRISP microprocessor: Reducing
branch delay to zero," in Proc. 14th Ann. In-

ternational Symposium Computer Architecture,
(Pittsburgh, PA), pp. 2{9, June 1987.

[3] D. Alpert and D. Avnon, \Architecture of the
Pentium microprocessor," IEEE Micro, vol. 13,
pp. 11{21, June 1993.

[4] S. P. Song and M. Denman, \The PowerPC 604
RISC microprocessor," tech. rep., Somerset De-
sign Center, Austin, TX, Apr. 1994.

[5] E. McLellan, \The Alpha AXP architecture and
the 21064 processor," IEEE Micro, vol. 13,
pp. 36{47, June 1993.

[6] I. Koren, Computer arithmetic algorithms. En-
glewood Cli�s, NJ: Prentice Hall, 1993.

[7] P. W. Markstein, \Computation of elementary
functions on the IBM RISC system/6000 proces-
sor," IBM J. Research and Development, vol. 34,
pp. 111{119, Jan. 1990.

[8] D. Kroft, \Lockup-free in-
struction fetch/prefetch cache organization," in
Proc. 8th Ann. Int'l. Symp. Computer Architec-

ture, pp. 81{87, May 1981.

[9] A. P. Chandrakasan, S. Sheng, and R. W.
Brodersen, \Low-power CMOS digital design,"
IEEE Journal of Solid-State Circuits, vol. 27,
pp. 473{484, Apr. 1992.

[10] M. L. Golden, \Issues in trace collection through
program instrumentation," Master's thesis, De-
partment of Electrical and Computer Engineer-
ing, University of Illinois, Urbana-Champaign,
Illinois, 1991.

[11] T. Yeh and Y. N. Patt, \Two-level adaptive
training branch prediction," in Proc. 24th Ann.

International Symposium on Microarchitecture,
(Albuquerque, NM), pp. 51{61, Nov. 1991.

[12] T. M. Conte, Systematic computer architecture

prototyping. PhD thesis, Department of Elec-
trical and Computer Engineering, University of
Illinois, Urbana, Illinois, 1992.

[13] T. M. Conte and W. Mangione-Smith, \Deter-
mining cost-e�ective multiple issue processor de-
signs," in Proc. 1993 Int'l. Conf. on Computer

Design, (Cambridge, MA), Oct. 1993.

[14] S. Kirkpatric, C. D. Gelatt, and M. P. Vecchi,
\Optimization by simulated annealing," Science,
vol. 220, pp. 671{680, May 1983.

[15] D.W. Anderson, J. G. Earle, R. E. Goldschmidt,
and D. M. Powers, \The IBM system/360 model
91: Floating point execution unit," IBM J. Re-

search and Development, vol. 11, pp. 25{33, Jan.
1967.

[16] T. Asprey, G. S. Averill, E. DeLano, R. Ma-
son, B. Weiner, and J. Yetter, \Performance fea-
tures of the PA7100 microprocessor," IEEE Mi-

cro, vol. 13, pp. 22{35, June 1993.

[17] M. Annaratone, Digital CMOS circuit design.
Boston, MA: Kluwer Academic Publishers, 1986.


