
To Appear in 6th IFIP Conference on Parallel and Distributed Embedded Systems

A Power Model for Register-Sharing Structures

Balaji V. Iyer and Thomas M. Conte
Center of Efficient, Scalable and Reliable Computing,
North Carolina State University, Raleigh, NC 27695
{bviyer, conte}@ncsu.edu

ABSTRACT Register files (RF) are known to consume about 20% of the power
inside a processor. Embedded systems, due to area and timing constraints, generally
have small register files, which can cause significant register pressure. This work
explores how having a map-table or a map-vector can decrease the power dissipation
in the processor. The distribution of register writes and sharing of commonly occur-
ring values such as ‘0’ is investigated. It is shown that systems with small register
files obtain a greater power reduction than larger register files when these sharing
structures are used. Finally, the proposed power model comes within 95% accuracy
when compared using benchmarks on a synthesized Verilog softcore processor.

1. Introduction

Registers play a significant role to improve the instruction-level-parallelism
(ILP), in modern systems [2, 5, and 11]. Large register files (RF), with the help of an
optimal register allocation scheme, can greatly reduce the number of spill-code in-
serted in the program [1]. This can reduce the memory traffic, thus reducing the
number of execution cycles necessary.

To remove false dependences in dynamically-scheduled processors, designers
implement rename-map tables that map the architectural registers to physical regis-
ters [2, 3]. In statically scheduled systems, these false dependencies are resolved by
using tighter register allocation schemes and/or large RF. In either case, there can be
a huge amount of pressure exerted on RF [1].

Even though the idea of implementing a large RF is attractive for performance
(figure-of-merit for performance is IPC), there can be setbacks in terms of energy or
power dissipation, access time and chip area [12]. It is known that RF energy con-
sumption accounts for about 10-20% of the overall energy consumption [3, 5]. For
example, in the Motorola M.CORE architecture, the RF energy consumption ac-
counts for 16% of the total processor power and 42% of the dual-path power.

Current embedded systems are required to achieve high performance, but many
still must run on batteries [4, 13]. Battery technology significantly lags behind the
processor’s power consumption [13]. New technology processes currently allow
higher integration density and larger chips, which leads to higher power consump-
tion and heat radiation. High heat in chips can cause glitches, races and frequent er-
rors [1].

To combat the performance degradation, researchers are exploring several
hardware and software optimization techniques. Some of the software techniques
include reducing value lifetimes [6, 10], content-based value storage [5], packing
instructions into pairs [9], and value based register sharing [2, 11]. There are also
several hardware based solutions to reduce the access time and power dissipation

2 Balaji V. Iyer and Thomas M. Conte

such as distributing the registers among clusters [10, 14] and gating certain unused
registers in the RF [1].

The majority of the techniques mentioned above take advantage of value local-
ity. The granularity of a value can be the whole word or even certain patterns in a
word. These techniques exploit the fact that a large number of values written to reg-
isters are already present inside the RF. To do such value sharing between registers,
some hardware addition is necessary.

The main aspect of this paper is to understand the power overhead added by
these structures that aid register/value sharing. In addition, we point out when such
structures are useful and help reduce the RF power dissipation. Moreover, we try to
show how the patterns of register-writes can affect the power consumption of the
RF. Finally, we validate our power-model using standard embedded benchmarks.

2 Related Work
Optimizing register-usage for performance improvement has been studied for

the past two decades. The problems concerning power and heat dissipation in proc-
essors became a problem only in the nineties. Zyuban and Kogge in [16] study the
power dissipation of an integer RF. Their models express the power consumption of
a register in terms of the number of read-write ports and issue width. Similarly, Xao
and Ye in [15] also provide models for finding power dissipation in RF.

Hu and Martonosi in [6] find that most read and write operations occur within a
few cycles. They introduce a value aging buffer that saves recently-produced values
so that the instructions requiring these values need not access them from RF. They
received a power reduction of 30% with a less than 5% performance loss.

Kim and Mudge in [8] observe that only 0.1% of the cycles fully utilize a 16-bit
read port of the RF. The main aim of their work was to reduce the number of read-
ports, not the number of registers. They use a delay-writeback queue, an operation
pre-fetch buffer and request queues. They show 22% reduction in energy per register
access.

Gonzalez et al. in [5] explain ways to share partial values between registers in-
side a RF. They find a 50% reduction in power consumption with 1.7% IPC loss.
Ayala, Veidenbaum and Lopez-Vallejo in [1] propose ways to statically find regis-
ters that are not used during certain times and turn-off these registers to reduce
power. They show 46% energy reduction in the entire MiBench benchmark suite.

Seznec, Toullec and Rouchecouste in [10] propose that restricting certain func-
tion units to write and read only a subset of registers (clustering the processor) can
reduce the access time by 33% and power by 50%. Jain et al. in [7] evaluate the RF
for an ASIP using ARM7TDMI as a test processor. It is shown that there is a high
correlation between performance improvement and energy reduction. They further
prove that slight increase in number of registers will give a large amount of power
reduction in ASIP (~50%).

Balakrishnan and Sohi in [2] discussed using a map-table for relieving register
pressure by sharing values such as ‘0’. Tran et al. in [11] proposed a way to mark
Reorder-buffers with one bit to indicate if the instruction’s result from the ALU is a
zero. [11] also discusses using a map-table as a possibility. These two papers are

A Power Model for Register-Sharing Structures 3

quoted extensively for value sharing inside the RF. In this work, we find the power
contributions of these two types of structures for different configurations and per-
centage of zeros-writes in RF.

3 Experimental Frameworks
In order to view the register-value patterns, we picked four machines with differ-

ent register-file sizes: ARM (thumb), OpenRISC, Simplescalar (PISA), and IA64.
Table 1 below shows the register configuration of these four machines. The bench-
mark-set consists of 10 benchmarks from the EEMBC workload [20]. Table 2 ex-
plains these benchmarks. EEMBC is considered one of the most representative
benchmarks in the industry today. Secondly, we modeled different RF configura-
tions along with the appropriate sharing structures using Verilog. The original RF
was extracted from the Verilog model of the OpenRISC 1000 processor [17]. The
RF contains 2 read ports and 1 write port. These models were synthesized (0.18 µm
IIT/OSU-standard-cell library) using Synopsys Design Analyzer and simulated using
the Cadence NC-Verilog simulator to generate the VCD waveform files.

Table 1: Register file sizes of different architectures
Processor/Architecture Number of Registers
ARM (thumb mode) 16
OpenRISC 1000 Processor 32
Simplescalar 2.0 Simulator (PISA) (using hard float) 64
IA-64 (using software floating point) 128
IA-64 (using hardware floating point) 256

Table 2: EEMBC Benchmarks Description
Benchmarks Description
aifir01 FIR Filter
conven00 Convolutional encoder
Dither Floyd-Steinberg error diffusion Dithering Algorithm
Ospf Open-shortest path first/Dijkistra’s Algorithm
Puwmod Pulse Width Modulation Algorithm
rotate01 Image Rotation Algorithm
Routelookup IP Datagram forwarding Algorithm
rspeed01 Road Speed Calculation
ttsprk01 Tooth-to-Spark tests in automobiles
viterb00 Viterbi Decoder

The synthesized register files along with the sharing structures are placed-and-

routed using Cadence Design Encounter. The parasitic information is extracted dur-
ing this process. Power analysis was done by Synopsys Primepower software using
the VCD files, parasitic information and the synthesized gate-level verilog model.
RF Inputs are discussed in section 5. Primepower is considered one of the most ac-
curate power measurement tools, second only to SPICE [19].

4 Preliminary Analysis
To benefit from register sharing it is necessary to see if there is a great deal of

duplicate values and constant values written into the registers. It was found by ex-
perimentation that ‘0’ is the most frequent value written in the register-file. Table 3

4 Balaji V. Iyer and Thomas M. Conte

shows the percentage of zero-writes and duplicate-writes (dupl. writes) in the ten
benchmarks used in this work. Zero-writes are not necessarily a subset of duplicate
writes, since in the life-time of a program, certain values can be re-written several
times but not duplicated in the RF.

Table 3: Percentage of Zero-Writes and Duplicate-Writes for Different Architectures.

ARM (Thumb Mode) OpenRISC 1000 Simplescalar 2.0 IA-64 (Soft Float) IA-64 (Hard Float)
Benchmark Zero-Write Dupl. Write Zero-Write Dupl. Write Zero-Write Dupl. Write Zero-Write Dupl. Write Zero-Write Dupl. Write
aifirf01 24% 43% 13% 46% 20% 67% 1% 5% 1% 5%
conven00 15% 48% 30% 49% 25% 48% 1% 7% 1% 7%
dither 8% 14% 8% 21% 10% 15% 2% 10% 2% 10%
puwmod 3% 25% 6% 39% 3% 30% 1% 9% 1% 10%
rotate 3% 17% 3% 23% 3% 17% 1% 10% 1% 11%
routelookup 5% 40% 7% 53% 5% 44% 1% 5% 1% 5%
rspeed01 4% 20% 21% 45% 3% 23% 1% 7% 1% 7%
ttsprk01 5% 28% 25% 53% 3% 39% 1% 8% 1% 8%
viterbi 11% 31% 12% 40% 7% 42% 1% 6% 1% 6%
ospf 6% 35% 19% 41% 3% 32% 1% 5% 1% 5%

There are a large number of duplicate and zero-writes occurring inside a RF.
The distribution of these writes also varies across benchmarks. In some benchmarks
such as dither, the zero-writes occur in a pattern, but in benchmarks such as route-
lookup, they are very bursty. In the remaining benchmarks they are more or less ran-
dom.

5 Register Sharing Techniques
Power dissipation of the RF is a popular research area. Many register optimiza-

tion techniques can greatly help in improving the performance of the program. Most
register-sharing techniques typically encompass using either a map-table [2] or a
map-vector [11]. Figure 1 explains the top-level block diagram of these two struc-
tures.

Fig 1: Top-level block diagram of the map-table or the map-vector.

A register map-table is used to map certain architectural registers to physical

registers that hold the certain values. Since there is a significant amount of ‘0’ writ-
ten into the RF, we choose one architectural register (r0) that is permanently
grounded to zero. Any register whose value is zero is mapped to r0. The primary
advantage of this scheme is that we do not access the RF for zero-writes, thus saving
power.

A Power Model for Register-Sharing Structures 5

A Second approach is to use a map-vector to indicate which registers hold the
zero value. Each register is assigned a bit in the vector to indicate if its result is zero.
If the corresponding bit is set, then the register-file is not accessed. In our experi-
ments, map-vectors generally consume about 30-40% less power than a map-table.
As soon as we reach the write-back stage, we know the register value along with the
result to be written. If the value written is zero then a certain bit is set in a map-table
and the RF is not accessed. Otherwise the value is forwarded to the RF and written
to the appropriate register. Figure 2 present flow-charts for the steps in these stages.
These structures were designed such that the processor’s clock-cycle remains unaf-
fected. The base processor’s clock-period remains unaffected by using these struc-
tures.

 (a) (b)
Fig. 2: Flow-diagram for the write-back stage (a) and reg-read stage (b) of the processor that
uses a map-vector.

Fig. 3: Example of Different placement of zero-writes in our experiments (50% zero-writes)
for 20 register-writes

To accurately portray register writes, 1-million register writes and 2-million reg-
ister reads were generated. In each run we increased the number of zeros by a set
percentage. Throughout the paper, the number of zeros in the stream is given in
terms of percentage. It is worth mentioning that we only read registers that have al-
ready been written (with the exception of the stack pointer and the return value reg-
ister1). Figure 3 explains different test-input schemes. In Figure 3, the number of
writes was reduced to 20 for the ease of explanation.

1 Registers r1 and r9 are designated as stack pointer and return register as described in [17].

6 Balaji V. Iyer and Thomas M. Conte

In addition, we also created sequences of zeros writes into the RF. These se-
quences of writes are placed in different regions. For example the sequence 40-10
implies that the first 10% of the register writes are non-zero values. Next 40% of the
writes are zeros. Then, the remaining 50% of the values are non-zero writes. We
take this model further and break this zero sequence into intervals to see their ef-
fects. For example, 40-40-10 implies that the first 40% (bold) of the writes are non-
zeros, and then in the next 60%, the 40% zeros (underlined) are divided into inter-
vals of 10%. In the next section we explain the results of these distributions.

6 Results
To see the impact of the RF size on power dissipation a 32-bit RF of size 16, 32,

64, 128 and 256 registers is modeled. The percentage of zero-writes (distributed ran-
domly) is varied from 0-100% in 5% intervals. Figure 4-8 show our findings.

0.01

0.011

0.012

0.013

0.014

0.015

0.016

0.017

0.018

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

Percentage zero-writes

P
ow

er
(W

)

Base Map Vector Map Table
Fig. 4: Power dissipation (PD) for random reg-write for (RF size: 16)

In all cases, using a RF with a map-table consumed more power than using just

the RF without any value sharing (the “base” case). The map-vector gives a power
advantage when we have 20% and 45% of zeros for the RF size of 16 and 32, re-
spectively. The map vector fails to provide a power-reduction for the 128 and 256-
size RF. This is because the internal power of the cell dominates significantly for
larger RF. For 64, the break-even point is after 95%.

In this work, leakage power is not a major factor. Static power, however, is a
problem in the memory hierarchy [18]. Inside the processor, the dynamic power is a
major contributor (~90-95%). In addition, the static power is not activity-based. The
only way to reduce static power is through turning-off certain units, which is beyond
the scope of this work [18].

Next the impact of writing zeros into RF in burst sequences placed at different
parts of the trace is examined. Specifically, we wanted to see if scheduling a chunk
of zero-writes in the beginning, middle or end would be most beneficial. Zero-writes
were placed at 10%, 40% and 80% of the trace to see their impact. The chunk-size
was modeled from 10-80% (whenever applicable). Table 4 shows our findings. Posi-
tive values in tables 4 and 5 indicate a power reduction, while negative values indi-
cate a power increase. Since the map-table failed to provide any power reduction for
the overall system, we do not show its results for the rest of the paper.

A Power Model for Register-Sharing Structures 7

0.015

0.017

0.019

0.021

0.023

0.025

0.027

0.029

0.031

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

Percentage of Zero-Writes

P
ow

er
(W

)

Base Map Vector Map Table
Fig. 5: Power dissipation for random reg-write (RF Size: 32)

0.037

0.039

0.041

0.043

0.045

0.047

0.049

0.051

0.053

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

Percentage Zero Writes

P
ow

er
(W

)

Base Map Vector Map Table
Figure 6: Power-dissipation for random reg-write (RF size: 64)

It can be seen that for smaller register files, there is a power reduction even

when zero-writes are not significant. As the register-file size increases, there must be
a significant burst of zeros to get a power reduction. To understand why, we con-
verted the register file into an appropriate SPICE model using the Synopsis Virtuoso
toolset (“icfb”) to see the transistor layout. We noticed that on large register files, the
map-vectors created a significant amount of latches, which consumed a non-
negligible amount of power. In addition, the wire-lengths between these map-vectors
and the register-file interface were also huge. This increase in length caused an in-
crease in wire-capacitance (verified using design encounter’s parasitic values, and
the capacitance using SPICE), which increased the dynamic power.

Now, we extend our previous results further and divide these sequences into
burst interval chains. Typically in a program, the compiler will have an easier time
to distribute 5-2% zero-write chains as supposed to a one single 10% chain. The val-
ues of intervals where chosen as 2%, 5%, and 10% respectively. These values are
chosen because they are common divisors of 10, 40 and 80, thus making a fair com-
parison. Table 5 displays the results of this experiment. The trends noticed in this
experiment are similar to the ones given in Table 4.

According to Table 4, small register-files greatly benefited with such structures
when there were significant number of bursts. For small bursts, the map-vector con-

8 Balaji V. Iyer and Thomas M. Conte

tributed negatively to the power dissipation. One odd trend in Table 4 and 5 is that
for the same set of sequences, a RF of size 64 did slightly worse than 128. Registers
were chosen to write and read based on a random number generator. For a 128 RF,
the probability of picking the same register to be written twice is significantly less
than that of a 64 RF. Thus, there was more switching inside the RF of 64 than that of
128, thus we find a 0.3-0.5% difference. This phenomenon did not affect the 256
RF.

0.072

0.074

0.076

0.078

0.08

0.082

0.084

0.086

0.088

0.09

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

Percentage Zero Writes

Po
w

er
(W

)

Base Map Vector Map Table
Figure 7: Power Dissipation for random reg-write (RF size: 128)

0.14

0.145

0.15

0.155

0.16

0.165

0.17

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

Percentage Zero Writes

P
ow

er
(W

)

Base Map Vector Map Table
Figure 8: Power Dissipation for random reg-write (RF size: 256)

The next step is to validate our power-model. For this work, we use the OpenRISC

1000 (OR32) processor. This processor is considered a valid representation of mod-
ern embedded systems [17]. The ten benchmarks mentioned in section 3 were exe-
cuted on a Verilog-core of OR32 and the power values of each processor unit are
captured separately. For this work, we only present the power-savings of the regis-
ter-file. Table 6 displays our results. It can be seen that the power savings depicted
using our synthetic benchmarks matched very closely to the values obtained using
representative benchmarks. For example, the benchmark conven00 had 30% zero-
writes, and exhibited a 1.44% power reduction. Value obtained from the synthetic
benchmarks in Figure 5 show a 1.47% reduction in power. The difference is mainly
due to pipeline stalls and the differences in values that are written into the register.
Similarly, dither, even though had approximately the same number of zero-writes as

A Power Model for Register-Sharing Structures 9

routelookup, exhibited lower power dissipation due to the bursty nature of the zero-
writes. The rest of the benchmarks, even though they did not fall into the granularity
that was studied in this paper, had power dissipations that fell within the correct
range.

Table 4: Percentage of Zero-Writes in Burst Sequences for Different Register-file sizes
16 Regs. 32 Regs. 64 Regs. 128 Regs. 256 Regs.

10--10 -0.30% -4.10% -4.10% -4.30% -4.10%
10--20 -0.30% -4.10% -4.10% -4.30% -4.00%
10--30 -0.40% -4.20% -4.10% -4.30% -4.00%
10--40 -0.40% -4.20% -4.10% -4.30% -4.00%
10--60 -0.50% -4.30% -4.10% -4.30% -4.00%
10--80 -0.60% -4.40% -4.20% -4.30% -4.00%
40--10 2.60% 0.40% -3.00% -3.60% -3.60%
40--20 2.40% 0.30% -3.10% -3.70% -3.60%
40--30 2.00% 0.30% -3.20% -3.80% -3.60%
40--40 1.80% 0.40% -3.40% -3.80% -3.70%
40--50 1.60% 0.50% -3.40% -3.90% -3.70%
80--10 7.40% 6.90% -1.60% -2.70% -3.00%
80--20 6.50% 7.40% -1.80% -2.90% -3.10%

Table 5: Percentage of Zero-Writes in Sequence-intervals for Different Register-file sizes

16 Regs. 32 Regs. 64 Regs 128 Regs 256 Regs.
10--10--2 -25.30% 0.40% -2.70% -1.70% -5%
10--10--5 -25.40% 0.40% -2.80% -1.70% -5%
10--10--10 -25.40% 0.40% -2.80% -1.70% -5.00%
10--40--2 -25.30% 0.40% -2.70% -1.70% -5.10%
10--40--5 -25.30% 0.40% -2.80% -1.70% -5.00%
10--40--10 -25.30% 0.40% -2.70% -1.70% -5%
10--80--2 -25.40% 0.40% -2.70% -1.70% -5.00%
10--80--5 -25.30% 0.40% -2.70% -1.70% -5.00%
10--80--10 -25.40% 0.40% -2.80% -1.70% -5.00%
40--10--2 4.00% 2.30% -1.90% -1.10% -3.60%
40--10--5 3.80% 2.10% -2.10% -1.30% -3.50%
40--10--10 3.80% 2.10% -2.20% -1.40% -3.60%
40--40--2 3.10% 1.70% -2.20% -1.30% -4.90%
40--40--5 3.00% 1.50% -2.40% -1.50% -4.80%
40--40--10 3.00% 1.50% -2.40% -1.50% -4.60%
80--10--2 10.10% 2.70% -2.00% -1.00% -1.70%
80--10--5 9.90% 2.50% -2.10% -1.30% -1.70%
80--10--10 9.00% 2.70% -2.10% -1.30% -2.10%

Table 6: Power Reduction using Map-vector on EEMBC Benchmarks

Percent Zero Writes Power Savings
aifirf01 13% -1.06%
conven00 30% 1.44%
dither 8% -0.78%
puwmod 6% -1.33%
rotate 3% -1.33%
routelookup 7% -1.33%
rspeed01 21% 0.28%
ttsprk01 25% 0.74%
viterbi 12% -0.95%
ospf 19% 0.23%

7 Conclusion
This study reveals several power dissipation patterns of the RF. First, adding a

map-vector can cause a power reduction only when there is a significant amount of
zero-writes present in the workload. Similarly, scheduling multiple zero-writes to-
gether, regardless of the destination registers, can give some power reduction for a
small RF. Some power-reduction can also be achieved if it is able to divide the regis-

10 Balaji V. Iyer and Thomas M. Conte

ter write into intervals rather than just placing them at random. Finally, the power
difference obtained when using such structures is at least 95% accurate when veri-
fied using real benchmarks.

These techniques can be extended to a physical or an architectural register file.
The impact of zero-writes on power dissipation can be useful in several ways. For
example, a compiler can use this information and schedule instructions that poten-
tially have a zero-write together and form chunks. In addition, the processor can gate
a map-vector when the compiler or a profiler can predict and communicate that the
number of zero-writes in the system is low. Another option is to run a similar work-
load in a simulator to predict the amount of zero-writes and have the compiler
schedule specialized instructions that enables or disables the register sharing struc-
ture based on the workload.

References
 [1] J. L. Ayala, A. Veidenbaum, M. Lopez-Vallejo, “Power-Aware Compilation for Register file

energy reduction,” International Journal of Parallel Programming, Vol. 31, No. 6, 2003
 [2] S. Balakrishnan, G. S. Sohi, “Exploiting Value Locality in Physical Register Files,” Intl. Sym-

posium on Microarchitecture, 2003
 [3] R. Balasubramonian, S. Dwarkadas, D. H. Albonesi, “Reducing the Complexity of the Register

File in Dynamic Superscalar Processors,” Intl. Symposium on Microarchitecture, 2001
 [4] A. Bechini, T. M. Conte, C. A. Prete, “Opportunities and Challenges in Embedded Systems,”

Proc. of the Intl. Symposium on Microarchitecture, August 2004.
 [5] R. Gonzalez, et al., “A Content Aware Integer Register File Organization,” ISCA, 2004
 [6] Z. Hu, M. Martonosi, “Reducing Register File Power Consumption by Exploiting Value Life-

time Characteristics,” Workshop on Complexity Effective Design, 2000
 [7] M. K. Jain, et al., “Evaluating Register File Size in ASIP Design,” Proc. of 9th Intl. Symposium

on Hardware-Software Codesign, 2001
 [8] N. S. Kim, T. Mudge, “The Microarchitecture of a Low Power Register File,” ISLPED, 2003
 [9] M. T, Lee, et al., “Power Analysis and Minimization Techniques for Embedded DSP Soft-

ware,” IEEE Trans. on VLSI Systems, Vol. 5, No. 1, 1997
 [10] A. Seznec, E. Toullec, O. Rochecouste, “Register Write Specialization Register Read Speciali-

zation: A Path to Complexity-Effective Wide-Issue Superscalar Processors,” International
Symposium on Microarchitecture, 2002

 [11] L. Tran, et al., “Dynamically Reducing Pressure on the Physical Register File through Simple
Register Sharing,” Intl. Symposium on Performance Analysis of Systems and Software, 2004

 [12] M. Pericas, et al., “An Optimized Front-end Physical Register File with Banking and Write-
back Filtering,” Workshop on Power-Aware Computer Systems, 2004

 [13] L. Wehmeyer, et al., “Analysis of the Influence of Register File size on energy consumption,
code-size and execution time,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, Vol. 20, No. 11, November 2001

 [14] J. Zalamea, et al., ”Hierarchical Clustered Register File Organization for VLIW Processors,”
Proc. of the Intl. Parallel and Distributed Processing Symposium, 2003

 [15] X. Zhao, Y. Ye, “Structure Configuration of Low-power register file using energy model,”
Proc. of the IEEE Asia-Pacific Conference on Application-Specific Integrated Circuits, 2002

 [16] V. Zyuban, P. Kogge, “The Energy Complexity of Register Files,” Proc. of ISLPED, 1998.
 [17] “OpenRISC Architecture Manual,” http://www.opencores.org, 2003
 [18] N. S. Kim et al., “Leakage current: Moore’s law meets static power,” IEEE Computer, Vol. 26,

Issue 12, 2003
 [19] R. Goering, “Synopsys launches more powerful power-analysis tool,” EE-times, 2000
 [20] “Embedded Benchmark Consortium”, http://www.eembc.org

