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Abstract 

Embedded-handheld devices are the predominant 
computing platform today. These devices are required to 
perform complex tasks yet run on batteries. Some 
architects use ASICs to combat this energy-performance 
dilemma. Even though they are efficient in solving this 
problem, ASICs are very inflexible. Thus, it is necessary 
for a general purpose solution. In addition, no single 
processor configuration provides the best energy-
performance solution over a diverse set of applications or 
even throughout the life of a single application. Thus the 
processor needs to be adaptable to the specific workload 
behavior. Code-generation and code-compatibility are the 
biggest challenges in such adaptable processors. 

 In this work, we provide an embedded processor 
that has the flexibility of a general purpose processor 
with the specialization of an ASIC. It is able to 
dynamically modify its issue width with one VLIW 
instruction overhead. This processor is designed in 
Verilog, synthesized, DRC-checked, and placed and 
routed. Its energy and performance values are reported 
using industrial-strength transistor-level analysis tools to 
dispel several myths that were thought to be dominating 
factors in embedded systems. In addition, we provide the 
software tools that help achieve optimized code for such 
dynamic architectures and discuss some of the code-
generation procedures and challenges. 

 
1. Motivation 
Embedded-handheld devices are the predominant 

computing platform today [3]. These devices are required 
to perform tasks that were once only attempted by high-
performance systems [38]. For example, a modern mobile 
phone, in addition to sending and receiving audio-signals, 
can capture images and video, maintains a daily planner, 
enables web browsing and sends and receives digital 
information. Another constraint imposed upon these 
systems is that they must still use batteries as the primary 
power source [3]. Thus, it is important for embedded-
handheld devices to give comparable performance with a 
high-performance system while consuming significantly 
less energy. 

Some designers have tried to combat this problem 
by using application-specific integrated circuits (ASIC) as 
the primary embedded processor. An ASIC processor, 
however, is inflexible and has to be re-designed whenever 
a new application is introduced into the system. To gain a 
flexible solution, architects have used a tailored general 

purpose processor (GPP) for embedded systems. These 
processors are simple and require significant help from 
the compiler or operating system for scheduling, branch-
prediction, etc. [3]. The advantage that these tailored GPP 
have over ASIC is that when new applications are 
introduced, the processor can execute the application 
without having to redesign the system. 

Even though these tailored processors provide a 
flexible solution, diverse characteristics among embedded 
applications and diversity within an application make it 
impossible to select one processor-configuration that 
provides the optimal energy-performance balance. In the 
past, there have been three major works that tried to study 
and solve this problem: the Lx [15], Tensilica Xtensa 
7[46] and the OptimoDE [10] processors. These 
processors provide a static-scalable solution that allows 
customization of the processor for target application(s). 

 

      
Figure 1: 8-Issue CLAW Architecture (After 

Placement and After Routing) 
In this work, we extend the ideas of Lx and 

OptimoDE to provide dynamic-scalability. We propose a 
Clustered Length-Adaptive Word Processor (CLAW) that 
is able to provide the flexibility of a general-purpose 
processor while having an adaptable nature. CLAW 
allows dynamic modification of the issue width with one-
instruction’s worth of overhead.  In such architectures, 
generating code to make them adaptable for several 
configurations becomes the biggest challenge [15][10]. 
We provide a toolchain that uses aggressive scheduling 
techniques to find the optimal processor configuration and 
communicates its findings to the processor.  A prototype 
for the CLAW processor is designed in Verilog, 
synthesized, DRC checked and placed and routed. An 
eight-issue (4-Cluster) implementation of CLAW is 
shown in Figure 1. The processor also has the ability to 
execute up to eight threads in hardware where the number 
of hardware threads is controlled by either the user or the 
operating system. For brevity, in this study we only 
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discuss the dynamic scalability of CLAW for single-
threaded applications. 

The main focus of this work is to generate efficient 
code for flexible issue-width architectures through 
interaction between the hardware and the compiler. The 
paper is organized as follows. Section 2 describes related-
work in this area. In this section we also describe how 
CLAW differs from previous work. Section 3 provides an 
architecture level description for CLAW. In section 4, we 
describe the challenges of compiling for CLAW. Section 
5 describes the experimental-framework, and the 
benchmarks. We present our results in section 6 and we 
provide a conclusion in section 7. 

 
2 Related Work 
The idea of customizing a general-purpose processor 

for an application was first proposed by [16]. To our best 
knowledge, the only processors that provide flexibility 
and adaptability like CLAW are the Lx [15], Tensilica 
Xtensa LX2 [46] and the OptimoDE processors [10]. 
Figure 2 shows the design process of Lx, OptimoDE, 
Tensilica and CLAW (assuming we are designing the 
processor to target programs A and B). The only major 
difference between Optimode and Tensilica is that 
Optimode allows the user to fully customize the 
instructions, while Tensilica uses a standardized ISA. Lx 
architects provide a framework that analyzes a benchmark 
(or a set of benchmarks) and design a processor with 
appropriate issue-width, function-units, etc. to maximize 
the processor performance using the appropriate energy 
budget. OptimoDE framework tries to analyze the source-
code and provide hints to the user regarding the optimal 
issue-width, function-units, data-path sizes, etc. Standard 
function units are inserted by the tools, but custom-units 
must be hand-generated.  

 

 
Figure 2: OptimoDE, Tensilica, Lx and CLAW 

Design-flow 
The biggest drawback for Lx and OptimoDE is they 

are static approaches. Let’s assume we are trying to add a 
new application (‘C’) into the processors designed in 
Figure 2 As shown in Figure 3, if a new application is 
introduced into these systems, the processors must be 
redesigned for optimal functioning, which can be 
expensive and time-consuming. This problem is 
overcome in CLAW by providing mechanisms to 
dynamically adapt issue-widths and function-unit sizes 
during compile-time.  

 

  
Figure 3: Steps for adding new Application into 

OptimoDE, Tensilica, Lx and CLAW 
 

To do the dynamic modification of issue width, the 
most successful method employed by several high-
performance processors is gating the clock for the unused 
units [29][32][21][30][36]. The granularity of the unit can 
be a specific gate [4], a function-unit [21][1][36], 
processor-stage [22][30][27][29], or an entire cluster 
[32][5]. Each of the methodologies described can be 
beneficial, depending on the application. The key 
question is at what part of the program must the gating 
occur so that optimal energy is consumed with virtually 
no performance degradation? We provide the answer to 
this using our CLAW software-framework.  

Several super-scalar designers have studied this 
problem. In out-of-order dynamic-scheduling processors, 
however, this problem is trivial because the processor has 
direct control of the scheduling. Buyuktosunoglu et al. [6] 
provides an adaptive issue queue for reducing processor 
power. Albonesi [2] provides a methodology to 
dynamically shut off units and processor issue-widths in 
super-scalar processors to save power. Unfortunately, 
dynamic-scheduling processors are not power-efficient 
for embedded systems. As per our calculations and 
comparisons with [41], for the same transistor technology, 
the scheduling logic of a superscalar alone took more 
power than an entire VLIW processor of the same issue-
width.  

Tai and John [28] proposed a method to dynamically 
scale processor resources such as the reorder-buffer, load-
store queue and the instruction-window on a super-scalar 
processor. They propose using specialized instructions 
inserted by the operating system. We incorporate this idea 
into our design, however, we insert specialized 
instructions using a profiling compiler because many 
embedded systems do not have complex OS support, but a 
compiler is almost always available. 

 
3 The CLAW Microarchitecture 
 
The microarchitecture used in this processor is 

CLAW. CLAW is a variable-width processor whose 
width can be modified as necessary during design-time. 
Additionally, the processor’s width can be reduced 
dynamically during execution without significant 
overhead. The prohibitive factor in wide-issue processors 
is the wire-length delays [20], however, clustered 
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architectures circumvent this problem by “forcing data 
locality into the processor [40].” Another advantage with 
the clustered architecture is that we have fine-grain 
control over the processor control path. 

 

 
Figure 4: Top Level CLAW Block Diagram 

 
Figure 4 shows the top-level diagram of CLAW.  An 

entire Multi-Op (MOP) is fetched from the cache or 
memory using the memory controller. A MOP is 
synonymous to a VLIW instruction or a group in IA-64. 
This MOP is then sent to the Fetch unit, which divides 
each MOP into cluster-Ops (COP). Each COP contains 
two operations (OP). Each Op is synonymous to an 
individual instruction such as ADD or LOAD. The 
relationship between MOP, COP and OP is given in 
Figure 5. The last OP of each MOP is indicated by setting 
the “T” bit, also shown in Figure 5. The “X” bit is 
reserved for future-use. In CLAW, each cluster is able to 
execute two OPs. This number was chosen because our 
initial study of the benchmarks via simulation revealed 
IPC potential greater than one.  

 
Figure 5: CLAW Instruction Granularities 

 
Figure 6: Components of a single Cluster 

Each cluster is able to accept two OPs, 
simultaneously decode them, read the appropriate values 
from the local register-file, then execute them and write 
the results back to the register file or memory. Figure 6 
shows the components inside a cluster. The instructions 
are able to see only its local register-file. Values from 
other clusters must be explicitly copied to the local 
register file using appropriate copy instructions. More 
information about inter-cluster copies is given in section 
4.   

 
Figure 7: Cluster shutoff Mechanism in CLAW 

 
The idea of dynamically modifying clusters came 

from the realization that ILP in a program’s lifetime is 
bursty. The compiler can be used to capture such 
information during compile-time and provide hints for the 
processor to dynamically shutoff certain cores to reduce 
unwanted energy consumption. The shutoff instruction is 
required to be the first instruction inside the MOP. The 
fetch unit will poll the first instruction of the MOP to find 
a shutoff instruction. When it encounters such an 
instruction, the appropriate cluster indicated by the 
immediate field is shutoff. The shutoff mechanism in 
CLAW is shown in Figure 7; if necessary shutoff 
instructions can be overridden by the user via the 
appropriate input to the chip (override pin).  

 
4 Compiling for CLAW Architecture 
 

 
Figure 8: Steps for Translating High-level Source code 

to executable 
Optimizing an application for different issue-widths 

to take advantage of ILP phase changes, while efficiently 
running them on the same VLIW processor is a non-
trivial problem. Figure 8 shows the translation of a high-
level program into an executable as well as the tool chain 
used toward this goal. To successfully compile and 
execute programs on the CLAW processor, we created a 
CLAW backend for binutils, gcc and uClibc. GCC is used 
to schedule instructions and the appropriate NOPs to 
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remove dependencies are inserted by the GNU assembler 
(part of binutils). The register-file of each cluster is 
represented as a register-class in GCC. For homogeneity 
and scalability, all instructions can be handled by all 
clusters. Instructions using registers 0-31 are assigned to 
cluster 1, and 32-63 to clusters 2 and so forth. If an RTL 
(after register allocation) has source and destination 
registers between 0 and 31, then the instruction is 
assigned to cluster 1. Registers in cluster 1 hold the state-
information. Register ‘r1,’ ‘r2’ and ‘r9’ is designated as 
the stack-pointer, frame-pointer and return-address 
registers respectively. Registers r3-r8 are used for passing 
parameters between functions.  

Since CLAW is a variable-width clustered 
architecture, a cluster-scheduling algorithm is necessary. 
Since GCC does not provide such a feature, we had to 
implement one over the existing scheduler. For this work, 
four major published cluster-scheduling algorithms were 
considered: Bottom-up-Greedy (BUG)[14] , Limited-
Connected VLIW scheduling (LC-VLIW) [7], Unified 
Assign and Schedule (UAS) [34]and Combined cluster 
Assignment, Register allocation and instruction 
Scheduling (CARS) [24]. 

BUG takes a data-precedence graph (DPG) of a 
trace and traverses it from the bottom up. It recursively 
traverses the DPG and computes the function unit and 
operand availability of each instruction. Using this 
information, BUG assigns the operations in a trace. After 
this, the list scheduler inserts communication operations 
into the schedule as necessary. LC-VLIW focuses on 
partitioning code for a clustered machine that does not 
have full-connectivity between all clusters. This uses a 
multi-phase approach similar to BUG. The code is 
initially scheduled assuming the machine is a fully 
connected clustered VLIW machine. The code is then 
compacted locally to minimize the effect of inserted copy 
operations to the schedule. 

UAS, unlike LC-VLIW or BUG, integrates the 
cluster-assignment in the instruction-scheduling phase. 
The schedule of operations and the DPG of the list are 
passed into the scheduler. Typically a list based scheduler 
is used with the list of operations being ordered based on 
a priority function. The inter-cluster buses are considered 
to be machine resources and are used within the scheduler 
when necessary. UAS claims to create a compact, 
efficient and nearly optimal schedule. 

CARS tries to perform cluster-assignment, 
instruction scheduling and register allocation in a single 
step. CARS algorithm takes a dependence flow graph 
(DFG) with nodes representing operations and directed 
edges representing data and control flow. The CARS 
algorithm, unlike UAS, considers registers as a resource 
during cluster scheduling. 

The single-phase algorithms (UAS and CARS) 
avoid several scheduling constraints that hinder optimal 
cluster scheduling. Important information such as 
instruction dependencies is lost between phases, which 
can result in a significant amount of inter-cluster copies.  
This in turn incurs significant performance and energy 

expense due to charging and discharging of long wires. Of 
the four algorithms, CARS seems to be the best solution 
since it considers scheduling, assigning and register-
allocation concurrently. Unfortunately, our framework 
(GCC) does not allow register-allocation to be done 
together with scheduling, thus UAS was chosen. 

To gain high-performance from UAS, an aggressive 
list-scheduler is necessary. Treegions [19] can provide 
large instruction-windows beyond basic blocks so that the 
list-scheduler can perform a tighter schedule. Treegion 
scheduling is implemented on a GCC-4.0.2 branch by 
Rosier and Conte [37] 1. As a result, we decided to 
implement UAS algorithm on top of their Treegion-
scheduler.  

 
4.1 UAS on GCC 

GCC provides several hooks that allow architects to 
manipulate and intercept the ready-list at different stages 
of scheduling [39]. The UAS was attached to the 
“TARGET_SCHED_FINISH_GLOBAL” hook. This 
hook is called immediately after the treegions are created. 
Figure 9 shows the flow-diagram of the major steps 
involved in the UAS implementation. A list of 
unscheduled Ops (as RTL) is taken from the Treegion 
scheduler and a list of instructions that are ready in the 
current cycle is assembled. For each instruction in this 
ready list, a new cluster is picked as per a priority 
function.  

There are four different priority functions available 
in UAS, they are: sequential placement, random 
placement, magnitude-weighted placement (MWP) and 
completion-weighted placement (CWP). In sequential 
placement, the Ops are assigned in a round-robin fashion 
to each cluster. In Random placement, the Ops are placed 
to a random cluster chosen using a pseudo-random 
number generator (lrand48()). MWP schedules an Op to 
the same cluster as its predecessors. If a cluster’s 
predecessors are assigned to two different clusters, either 
one can be a target for the current Op. In CWP, the Op is 
assigned to the same cluster as the predecessor that takes 
the longest to complete. The advantage CWP has over 
MWP is that since the current Op has to wait till the latest 
of its predecessor to complete, the holes in between can 
be used to schedule a copy instruction. For more detailed 
explanation, the reader is referred to [34]. 

The additional challenge encountered is register 
allocation. The register allocator tries to minimize 
assigning instructions to different register classes by 
mapping dependent-instructions into the same register 
class. Even though this can reduce additional cluster-
usage, the register-allocator does not take cycle-time into 
account. To overcome this problem, the register 
allocator’s mapping function (reg_class(..)  function in 
passes.c [39]) was replaced with a specialized function 
(added using a new hook called 
“TARGET_MACHINE_DEPENDENT_REG_CLASS”) 
                                                
1 We obtained a patch from M. C. Rosier for gcc-4.0.2 and 
applied the patch onto our compiler 
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that will assign instructions as per the UAS scheduler. 
The new hook implementation has been submitted to the 
gcc-patches mailing-list as a patch for acceptance. All the 
modifications described will not affect any other gcc port, 
and our gcc source-code can be configured for any other 
gcc-backend (e.g. x86) and function without any 
difficulty. 

In CLAW it is possible to dynamically or statically 
shutoff (through clock-gating) certain clusters. The best 
way to accomplish this with minimal overhead is through 
a specialized instruction. In CLAW, we created such an 
instruction called “shutoff.” The Immediate field for this 
instruction is a bit vector which indicates the appropriate 
cluster that needs to be shutoff. For example, “shutoff 
0110b” implies that cluster 2 and cluster 3 should be 
shutoff. While the shutoff instruction can be inserted at 
any granularity, for this work we have studied using the 
shutoff instruction at the basic-block level and the 
function level.  

 
Figure 9: The Design-flow of the UAS Algorithm on 

GCC 

 
Figure 10: Example of Unused Cluster (indicated in 

Blue boxes) in Viterbi benchmark2 
 

Initially, the compiler inserts a shutoff instruction 
with ‘0’ as its immediate field (indicating all clusters must 
be on). The CLAW profiler then scans the static code 
provided by the compiler to see if there are any empty 
clusters. Figure 10 shows an example of an empty cluster: 
if for the duration of an entire basic-block (or function 
depending on the granularity) there exists a common 
empty cluster, then the appropriate cluster is shutoff. 

Figure 11 shows the algorithm of our profiler to 
detect idle clusters to power-down using the shutoff 
instruction. The algorithm accepts a block of instructions 
(BLK) as input. The profiler goes through every MOP to 
see if it can find Cluster-Ops (COP) with only NOP, that 
is, an unused-cluster. If such a scenario is noticed, the 
appropriate bit is set to ‘1’ in the ‘Unused’ array. M.count 
                                                
2 The “.t.nv” next to the 4th NOP signifies the TAIL bit indicated in 
Figure 5 

indicates the MOP position in the BLK and C.count 
indicates COP position in the MOP M. This array is a 
two-dimensional array with rows indicating the number of 
MOPs in the block (indicated by BLK.MOP_Count) and 
the columns showing each cluster. This array must be 
dynamically allocated, but it is not shown in the figure for 
simplicity. 

After stepping through all the MOPs in BLK, the 
profiler goes through the ‘Unused’ array to find if all the 
MOPs have common clusters that can be shutoff. This is 
done by checking if the summation of all the 1’s in a 
column is equal to the number of MOPs in BLK. The list 
of empty clusters is returned back to the profiler from this 
function using the “Shutoff_Cluster_List” variable. The 
profile examines this to set the appropriate bit in the 
shutoff instruction. The profiler also displays the number 
of cases where all the clusters are turned-on for analysis. 

 
Figure 11: Cluster-shutoff algorithm implemented in 

the Profiler 
 
5 Experimental Frameworks 
 
5.1 Design Flow & Energy Measurement 
Embedded systems, unlike high-performance 

systems, are small and very sensitive to power and energy 
differences. Moreover, accurate energy values are 
necessary to determine the size and strength of the battery 
required for the embedded processor. A gross 
overestimation of energy can require the designers to use 
a larger battery, thus incurring more area and cost. An 
underestimate can undermine the battery requirement, 
which requires frequent replacement (or recharging) of 
the batteries making the system inconvenient for the user. 
In an independent study done by EE-times, a high-level 
processor power analyzer had up to 25% error in its 
calculation. Moreover, previous studies suggest that 
hardware level (as in RTL level) studies provide 14-24% 
better power and energy results than pure cycle-count 
studies [12].  

The most accurate way to measure power and 
energy in an embedded system is to create a prototype of 
the proposed system in hardware and connect a multi-
meter and measure its current. The cost and time of 
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fabrication and chip-design can make this a prohibitive 
effort. Another way to measure power is to create a 
transistor-level design of the circuit and use SPICE to 
measure power. To execute ~1,000,000 instructions 
through a transistor-level design of a processor using 
Cadence Virtuoso and measure power using SPICE is 
estimated to take over 31 days on a low-load SPARC Sun 
fire 280W. This measurement-time cost is not feasible for 
research today. 

There are several RTL-level tools such as Primetime 
(formerly known as Primepower) and Power-mill [25] 
that can measure power within 5% accuracy to SPICE 
[17]. If a processor can be designed, synthesized and 
verified in Verilog and have its energy consumption 
measured in Primetime then accurate power values can be 
achieved. To simulate ~1,000,000 instructions through 
our Verilog-model (on a low-load SPARC Sun-fire 
280W) using Verilog-XL [43] takes approximately 14 
hours. Using the execution-time from Verilog-XL and the 
power values from Primetime, accurate energy estimates 
can be derived. This is a good compromise between 
accurate energy values and fast simulation.   

CLAW, based on OpenRISC 1200 architecture, is 
written in Verilog hardware-description language and 
synthesized by Synopsys Design Analyzer using Artisan 
SAGE-X 90nm RVT standard-cell library. This standard-
cell library is equivalent to low-operating power libraries 
described by ITRS [44]. Such libraries are most-often 
used for embedded processors today [35]. This 
synthesized Verilog is then placed and routed using 
Cadence Design-Encounter. The output of this step is the 
parasitic file (SPEF format) that gives accurate 
capacitance values of the wires inside the processor.  The 
synthesized Verilog-file is then simulated with the 
appropriate 90nm gates and a test-bench using the 
Cadence Verilog Simulator. The simulator outputs the 
switching information in the VCD format as well as 
number of cycles CLAW took to execute the benchmark. 
This simulation-step is illustrated in Figure 12.  

The VCD file, obtained from Verilog simulation, 
along with the SPEF file and the synthesized Verilog is 
input into Primetime and appropriate power-values are 
obtained. The product of the obtained power values along 
with the cycle-time and cycle-count results in energy 
values. 

 
5.2 Benchmark Selection and Execution 
To accurately represent embedded-system 

benchmarks, ten benchmarks from EEMBC benchmark 
set [45] were used, shown in Table 1. EEMBC is reputed 
to be the most representative embedded-systems 
benchmarks available today. These benchmarks are 
created by a consortium represented by engineers from 
both industry and academia who are experts on embedded 
systems. In addition, the consortium have provided 
specific instructions about the starting point and stopping 
point of all the benchmarks, along with the number of 
iterations required for all the loops. The starting point is 
marked with a “th_signal_start()” function and the 

stopping point is marked by “th_signal_finished()” 
function. The C code between these two functions must 
be the only part whose characteristics are measured. This 
isolates the actual algorithm from additional noise such as 
I/O, and makes sure the algorithm is executed completely 
and adequately. 

To execute the benchmarks as per EEMBC 
specifications in hardware, a CLAW simulator was 
written in C++. This simulator is used to capture the state 
(mainly the register-file and the memory state) up to the 
starting point described by EEMBC. When the reset pin 
of the processor is set, the appropriate values are written 
in the register-file and the memory-array3 (and data-
cache). The PC is then pointed by the test bench to the 
starting point and the memory values are updated using 
the values obtained by the C++ simulator. The benchmark 
is executed until the stopping point described by EEMBC. 

 
Figure 12: Simulating CLAW using Verilog-XL 

 
Table 1: EEMBC Benchmarks 

Benchmark Description 
Aifir01 FIR Filter 
conven00 Convolutional encoding 
Dither01 Floyd-Steinberg error diffusion Dithering 

Algorithm 
Ospf OSPF Dijkstra’s Algorithm 
puwmod01 Pulse Width Modulation Algorithm 
rotate Image Rotation algorithm 
routelookup Packet Routing Algorithms 
Rspeed01 Road Speed Calculation 
ttsprk01 Tooth-to-Spark tests in automobiles 
viterb01 Viterbi Decoder 

  
6. Results 
 
For this paper, a one, two and four-cluster CLAWs 

were created in hardware. The clock-frequency is fixed at 
75 MHz (period: 13 ns) for all the configurations for 
uniformity. A 13 ns period was chosen because it is the 
cycle-time at which up to 64 clusters can be incorporated 
without slack violation. While we only present results for 
up to 4 clusters (which could have had 2-3x smaller 
period), this is not an issue because the energy trends 
discussed in this work still hold as frequency is scaled. 
Single cluster standard-cell area is 0.52 mm2. Two and 
four-cluster CLAWs have areas of 1.05 and 2.13 mm2, 
respectively.  The UAS scheduler was implemented on 
GCC using the four cluster-assignment priorities 
(Sequence, Random, MWP and CWP) for the two and 
four-cluster configurations. Figure 13 and Figure 14 show 
the speedup of 2-cluster and 4-cluster CLAW over a 

                                                
3 We model memory in the test-bench as an array and connect it 
directly to the data-cache 
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single-cluster for the 10 EEMBC benchmarks, 
respectively. 

MWP and CWP schemes give the most speedup 
across all the benchmarks because they take the code-
pattern into account when scheduling the instructions.  
Routeloop is the most parallel benchmark, while aifir01 
shows the least. Figure 15 and Figure 16 show the 
percentage of copy-operations in the dynamic stream for 2 
and 4-cluster CLAW. Sequential and Random placement 
of UAS results in ~8-28% of the dynamic instruction 
stream consisting of copy instructions, while MWP and 
CWP on average had only 0.2%. These copy instructions 
increase the number of dynamic instructions, which in 
turn increases the execution-time. Copy instructions 
create additional true-dependences between instructions 
between clusters, thus increasing execution time. 
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Figure 13: Speedup for EEMBC Benchmarks for 2-

Cluster CLAW over single-cluster CLAW 
Several predictions claim that static (or leakage) 

energy will dominate the processors today. Static-energy 
is claimed to have ~50% contribution to the total energy 
consumption for 90nm technology, yet as per Figure 17 
the static-energy accounts for roughly 15-20% of the total 
energy. The primary reason for this disparity is that static 
energy is dominant in the memory hierarchy [26]; 
dynamic energy is still dominant inside the processor 
[26]. For CLAW the energy values are measured only for 
the processor. The memory hierarchy is modeled inside 
the test-bench and isolated from power-measurement 
because many embedded and real-time systems have on-
chip memories and avoid caches due to their 
unpredictability and excessive power dissipation. 
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Figure 14: Speedup for EEMBC Benchmarks on 4-

Cluster CLAW over single-cluster CLAW 
 
Figure 18 and Figure 19 show the dynamic-energy 
consumption for two and four-cluster CLAW. 
Routelookup and OSPF are significantly smaller 

benchmarks than the rest, which impacts their energy use. 
Ttsprk01 has the largest dynamic code-size in the group. 
Static energy distribution is given in Figure 20 and Figure 
21. Static energy increased for Sequential and random 
placement because they generated dependent copy 
instructions that created more holes in the trace. As the 
code-size gets larger, there is a potential for more NOPs, 
which can cause stagnant wires and units, increasing 
static energy. In all these data, shutoff mechanism is 
disabled to show the base values. 
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Figure 15: Percentage of Copy Instructions for 2-

Cluster CLAW 
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Figure 16: Percentage of Copy Instructions for 4-

Cluster CLAW 
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Figure 17: Static and Dynamic Energy Dissipation for 

Single Cluster CLAW 
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Figure 18: Dynamic Energy Consumption for 2-

Cluster CLAW 
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Figure 19: Dynamic Energy Consumption for 4-
Cluster CLAW 
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Figure 20: Static Energy Consumption of 2-Cluster 

CLAW 
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Figure 21: Static Energy Consumption of 4-Cluster 

CLAW 
 

6.2 Dynamic Cluster Shutoff 
To study the energy effects due to dynamic-cluster 

shutoff, we studied 2-cluster and 4-cluster CLAW for 
both basic-block-level and function-level shutoff. For the 
random and sequential placement, the profiler was not 
able to shutoff any clusters. Due to space constraints, we 
only show the energy effects of 4-Cluster CLAW for 

function level and 2-Cluster CLAW for basic-block-level 
experiments. We only show results for the CWP 
mechanism since we were unable to find any optimization 
scenarios for the Random and Sequential placement. 
MWP was skipped because it followed same utilization 
trend as CWP. 

Figure 22 and Figure 23 show the dynamic and 
static energy consumption of 4 Cluster CLAW utilizing 
the shutoff mechanism at function granularity. The values 
are normalized with the base values of all clusters on 
(from Figure 19 and Figure 21). All the benchmarks 
except routelookup turned clusters 2, 3 and 4 off most of 
the time while routelookup only shutoff 3 and 4. The 
energy values did scale appropriately with the cluster-
shutoff. The static energy increased by approximately 10-
20% but the dynamic energy compensated this increase. 

Adding shutoff instructions at the start and end of 
every basic-block was not effective because this resulted 
in code-explosion. This almost doubled the execution-
time for every benchmark and offset the benefit of 
shutting off clusters. Figure 24 and Figure 25 show our 
results. The static energy also increased due to the 
increase in number of NOP. Similar energy increase trend 
is seen in 4-cluster CLAW due to code-explosion.  This 
increase could be reduced through the use of an 
optimization pass to remove silent shutoff instructions 
(those that do not change machine state), but is not 
explored in this work. 
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Figure 22: Dynamic Energy Distribution of Function-

level Cluster-shutoff for 4-Cluster CLAW 
 

There is another factor that is inherent to GCC that 
resulted in such code-explosion. GCC, unlike several 
proprietary compilers such as TI Compiler (TI-CC) [13] 
or the ARM-CC[42], does not perform any high-level 
optimization, such as loop-fusion, on the code[33]. The 
parser directly decomposes the C statements into trees in 
GIMPLE format then tries to apply optimization. At this 
stage, it is generally too late for such optimizations. Thus, 
GCC code on average contains more basic-blocks with 
fewer instructions when compared to ARM-CC or TI-CC 
basic blocks. This translates to more shutoff instruction 
insertions at this granularity, resulting in further code-
explosion.  
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Figure 23: Static Energy Distribution with Function-

level shutoff for 4-Cluster CLAW 
 
      From this research it is clear that the function level 
cluster shutoff heuristic is superior to the basic-block 
policy in terms of energy and provides significant benefits 
over the baseline with no shutoff.  Additionally, function 
level shutoff has minimal impact on performance since 
only 1 MOP per function is inserted, translating to less 
than a 0.2% increase in the overall dynamic code stream. 
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Figure 24: Dynamic Energy Distribution with basic-

block-level shutoff for 2 Cluster CLAW 
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Figure 25: Static Energy Distribution with basic-

block-level shutoff for 2 Cluster CLAW 
 

To exploit the dynamic shutoff mechanism of 
CLAW, we wanted to see the utilization of each cluster. 
Random and Sequential placement uses all the clusters in 
approximately equal fashion, but MWP and CWP uses 
cluster-1 most of the time. MWP and CWP have similar 
results because most of the instructions in the CLAW 
architecture are able to execute in a single cycle. For 
example, puwmod using MWP has at least one non-NOP 

OP in cluster 1 100% of the time, and none in cluster-2 
(never used). 
 

7 Conclusions 
 
In this work, we provided a RTL level VLIW-

embedded processor, CLAW, that is synthesized and 
placed and routed, then measure its power and energy 
using industry-strength tools. This processor is able to 
dynamically scale its issue-width, enabling effective 
energy aware compilation. In addition, we provided 
compiler and optimizing tools that are able to exploit this 
scalability and utilize this energy efficient processor 
without sacrificing any performance. By having a 
dynamic scheme, we can save considerable time 
compared to previous approaches which require a 
redesigning of the processor when switching applications 
or adding new application.  

Using this processor, we also showed that hardware-
level analysis is far more accurate than software 
simulation, providing better insight into energy 
dissipation within a processor. Using this hardware-level 
design we were able to debunk the myth that static-energy 
domination is as much of a concern in embedded 
processors at 90 nm as it is in high-performance 
processors, which otherwise would not have been possible 
in a software-only approach.  
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