
 1

Length Adaptive Processors: A Solution for the Energy/Performance
Dilemma in Embedded Systems

Balaji V. Iyer Jesse G. Beu Thomas M. Conte

{biyer3, jbeu3, conte}@cc.gatech.edu
School of Computer Science,

College of Computing,
Georgia Institute of Technology, Atlanta, GA

Abstract

Embedded-handheld devices are the predominant
computing platform today. These devices are required to
perform complex tasks yet run on batteries. Some
architects use ASICs to combat this energy-performance
dilemma. Even though they are efficient in solving this
problem, ASICs are very inflexible. Thus, it is necessary
for a general purpose solution. In addition, no single
processor configuration provides the best energy-
performance solution over a diverse set of applications or
even throughout the life of a single application. Thus the
processor needs to be adaptable to the specific workload
behavior. Code-generation and code-compatibility are the
biggest challenges in such adaptable processors.

 In this work, we provide an embedded processor
that has the flexibility of a general purpose processor
with the specialization of an ASIC. It is able to
dynamically modify its issue width with one VLIW
instruction overhead. This processor is designed in
Verilog, synthesized, DRC-checked, and placed and
routed. Its energy and performance values are reported
using industrial-strength transistor-level analysis tools to
dispel several myths that were thought to be dominating
factors in embedded systems. In addition, we provide the
software tools that help achieve optimized code for such
dynamic architectures and discuss some of the code-
generation procedures and challenges.

1. Motivation
Embedded-handheld devices are the predominant

computing platform today [3]. These devices are required
to perform tasks that were once only attempted by high-
performance systems [38]. For example, a modern mobile
phone, in addition to sending and receiving audio-signals,
can capture images and video, maintains a daily planner,
enables web browsing and sends and receives digital
information. Another constraint imposed upon these
systems is that they must still use batteries as the primary
power source [3]. Thus, it is important for embedded-
handheld devices to give comparable performance with a
high-performance system while consuming significantly
less energy.

Some designers have tried to combat this problem
by using application-specific integrated circuits (ASIC) as
the primary embedded processor. An ASIC processor,
however, is inflexible and has to be re-designed whenever
a new application is introduced into the system. To gain a
flexible solution, architects have used a tailored general

purpose processor (GPP) for embedded systems. These
processors are simple and require significant help from
the compiler or operating system for scheduling, branch-
prediction, etc. [3]. The advantage that these tailored GPP
have over ASIC is that when new applications are
introduced, the processor can execute the application
without having to redesign the system.

Even though these tailored processors provide a
flexible solution, diverse characteristics among embedded
applications and diversity within an application make it
impossible to select one processor-configuration that
provides the optimal energy-performance balance. In the
past, there have been three major works that tried to study
and solve this problem: the Lx [15], Tensilica Xtensa
7[46] and the OptimoDE [10] processors. These
processors provide a static-scalable solution that allows
customization of the processor for target application(s).

Figure 1: 8-Issue CLAW Architecture (After

Placement and After Routing)
In this work, we extend the ideas of Lx and

OptimoDE to provide dynamic-scalability. We propose a
Clustered Length-Adaptive Word Processor (CLAW) that
is able to provide the flexibility of a general-purpose
processor while having an adaptable nature. CLAW
allows dynamic modification of the issue width with one-
instruction’s worth of overhead. In such architectures,
generating code to make them adaptable for several
configurations becomes the biggest challenge [15][10].
We provide a toolchain that uses aggressive scheduling
techniques to find the optimal processor configuration and
communicates its findings to the processor. A prototype
for the CLAW processor is designed in Verilog,
synthesized, DRC checked and placed and routed. An
eight-issue (4-Cluster) implementation of CLAW is
shown in Figure 1. The processor also has the ability to
execute up to eight threads in hardware where the number
of hardware threads is controlled by either the user or the
operating system. For brevity, in this study we only

 2

discuss the dynamic scalability of CLAW for single-
threaded applications.

The main focus of this work is to generate efficient
code for flexible issue-width architectures through
interaction between the hardware and the compiler. The
paper is organized as follows. Section 2 describes related-
work in this area. In this section we also describe how
CLAW differs from previous work. Section 3 provides an
architecture level description for CLAW. In section 4, we
describe the challenges of compiling for CLAW. Section
5 describes the experimental-framework, and the
benchmarks. We present our results in section 6 and we
provide a conclusion in section 7.

2 Related Work
The idea of customizing a general-purpose processor

for an application was first proposed by [16]. To our best
knowledge, the only processors that provide flexibility
and adaptability like CLAW are the Lx [15], Tensilica
Xtensa LX2 [46] and the OptimoDE processors [10].
Figure 2 shows the design process of Lx, OptimoDE,
Tensilica and CLAW (assuming we are designing the
processor to target programs A and B). The only major
difference between Optimode and Tensilica is that
Optimode allows the user to fully customize the
instructions, while Tensilica uses a standardized ISA. Lx
architects provide a framework that analyzes a benchmark
(or a set of benchmarks) and design a processor with
appropriate issue-width, function-units, etc. to maximize
the processor performance using the appropriate energy
budget. OptimoDE framework tries to analyze the source-
code and provide hints to the user regarding the optimal
issue-width, function-units, data-path sizes, etc. Standard
function units are inserted by the tools, but custom-units
must be hand-generated.

Figure 2: OptimoDE, Tensilica, Lx and CLAW

Design-flow
The biggest drawback for Lx and OptimoDE is they

are static approaches. Let’s assume we are trying to add a
new application (‘C’) into the processors designed in
Figure 2 As shown in Figure 3, if a new application is
introduced into these systems, the processors must be
redesigned for optimal functioning, which can be
expensive and time-consuming. This problem is
overcome in CLAW by providing mechanisms to
dynamically adapt issue-widths and function-unit sizes
during compile-time.

Figure 3: Steps for adding new Application into

OptimoDE, Tensilica, Lx and CLAW

To do the dynamic modification of issue width, the
most successful method employed by several high-
performance processors is gating the clock for the unused
units [29][32][21][30][36]. The granularity of the unit can
be a specific gate [4], a function-unit [21][1][36],
processor-stage [22][30][27][29], or an entire cluster
[32][5]. Each of the methodologies described can be
beneficial, depending on the application. The key
question is at what part of the program must the gating
occur so that optimal energy is consumed with virtually
no performance degradation? We provide the answer to
this using our CLAW software-framework.

Several super-scalar designers have studied this
problem. In out-of-order dynamic-scheduling processors,
however, this problem is trivial because the processor has
direct control of the scheduling. Buyuktosunoglu et al. [6]
provides an adaptive issue queue for reducing processor
power. Albonesi [2] provides a methodology to
dynamically shut off units and processor issue-widths in
super-scalar processors to save power. Unfortunately,
dynamic-scheduling processors are not power-efficient
for embedded systems. As per our calculations and
comparisons with [41], for the same transistor technology,
the scheduling logic of a superscalar alone took more
power than an entire VLIW processor of the same issue-
width.

Tai and John [28] proposed a method to dynamically
scale processor resources such as the reorder-buffer, load-
store queue and the instruction-window on a super-scalar
processor. They propose using specialized instructions
inserted by the operating system. We incorporate this idea
into our design, however, we insert specialized
instructions using a profiling compiler because many
embedded systems do not have complex OS support, but a
compiler is almost always available.

3 The CLAW Microarchitecture

The microarchitecture used in this processor is

CLAW. CLAW is a variable-width processor whose
width can be modified as necessary during design-time.
Additionally, the processor’s width can be reduced
dynamically during execution without significant
overhead. The prohibitive factor in wide-issue processors
is the wire-length delays [20], however, clustered

 3

architectures circumvent this problem by “forcing data
locality into the processor [40].” Another advantage with
the clustered architecture is that we have fine-grain
control over the processor control path.

Figure 4: Top Level CLAW Block Diagram

Figure 4 shows the top-level diagram of CLAW. An

entire Multi-Op (MOP) is fetched from the cache or
memory using the memory controller. A MOP is
synonymous to a VLIW instruction or a group in IA-64.
This MOP is then sent to the Fetch unit, which divides
each MOP into cluster-Ops (COP). Each COP contains
two operations (OP). Each Op is synonymous to an
individual instruction such as ADD or LOAD. The
relationship between MOP, COP and OP is given in
Figure 5. The last OP of each MOP is indicated by setting
the “T” bit, also shown in Figure 5. The “X” bit is
reserved for future-use. In CLAW, each cluster is able to
execute two OPs. This number was chosen because our
initial study of the benchmarks via simulation revealed
IPC potential greater than one.

Figure 5: CLAW Instruction Granularities

Figure 6: Components of a single Cluster

Each cluster is able to accept two OPs,
simultaneously decode them, read the appropriate values
from the local register-file, then execute them and write
the results back to the register file or memory. Figure 6
shows the components inside a cluster. The instructions
are able to see only its local register-file. Values from
other clusters must be explicitly copied to the local
register file using appropriate copy instructions. More
information about inter-cluster copies is given in section
4.

Figure 7: Cluster shutoff Mechanism in CLAW

The idea of dynamically modifying clusters came

from the realization that ILP in a program’s lifetime is
bursty. The compiler can be used to capture such
information during compile-time and provide hints for the
processor to dynamically shutoff certain cores to reduce
unwanted energy consumption. The shutoff instruction is
required to be the first instruction inside the MOP. The
fetch unit will poll the first instruction of the MOP to find
a shutoff instruction. When it encounters such an
instruction, the appropriate cluster indicated by the
immediate field is shutoff. The shutoff mechanism in
CLAW is shown in Figure 7; if necessary shutoff
instructions can be overridden by the user via the
appropriate input to the chip (override pin).

4 Compiling for CLAW Architecture

Figure 8: Steps for Translating High-level Source code

to executable
Optimizing an application for different issue-widths

to take advantage of ILP phase changes, while efficiently
running them on the same VLIW processor is a non-
trivial problem. Figure 8 shows the translation of a high-
level program into an executable as well as the tool chain
used toward this goal. To successfully compile and
execute programs on the CLAW processor, we created a
CLAW backend for binutils, gcc and uClibc. GCC is used
to schedule instructions and the appropriate NOPs to

 4

remove dependencies are inserted by the GNU assembler
(part of binutils). The register-file of each cluster is
represented as a register-class in GCC. For homogeneity
and scalability, all instructions can be handled by all
clusters. Instructions using registers 0-31 are assigned to
cluster 1, and 32-63 to clusters 2 and so forth. If an RTL
(after register allocation) has source and destination
registers between 0 and 31, then the instruction is
assigned to cluster 1. Registers in cluster 1 hold the state-
information. Register ‘r1,’ ‘r2’ and ‘r9’ is designated as
the stack-pointer, frame-pointer and return-address
registers respectively. Registers r3-r8 are used for passing
parameters between functions.

Since CLAW is a variable-width clustered
architecture, a cluster-scheduling algorithm is necessary.
Since GCC does not provide such a feature, we had to
implement one over the existing scheduler. For this work,
four major published cluster-scheduling algorithms were
considered: Bottom-up-Greedy (BUG)[14] , Limited-
Connected VLIW scheduling (LC-VLIW) [7], Unified
Assign and Schedule (UAS) [34]and Combined cluster
Assignment, Register allocation and instruction
Scheduling (CARS) [24].

BUG takes a data-precedence graph (DPG) of a
trace and traverses it from the bottom up. It recursively
traverses the DPG and computes the function unit and
operand availability of each instruction. Using this
information, BUG assigns the operations in a trace. After
this, the list scheduler inserts communication operations
into the schedule as necessary. LC-VLIW focuses on
partitioning code for a clustered machine that does not
have full-connectivity between all clusters. This uses a
multi-phase approach similar to BUG. The code is
initially scheduled assuming the machine is a fully
connected clustered VLIW machine. The code is then
compacted locally to minimize the effect of inserted copy
operations to the schedule.

UAS, unlike LC-VLIW or BUG, integrates the
cluster-assignment in the instruction-scheduling phase.
The schedule of operations and the DPG of the list are
passed into the scheduler. Typically a list based scheduler
is used with the list of operations being ordered based on
a priority function. The inter-cluster buses are considered
to be machine resources and are used within the scheduler
when necessary. UAS claims to create a compact,
efficient and nearly optimal schedule.

CARS tries to perform cluster-assignment,
instruction scheduling and register allocation in a single
step. CARS algorithm takes a dependence flow graph
(DFG) with nodes representing operations and directed
edges representing data and control flow. The CARS
algorithm, unlike UAS, considers registers as a resource
during cluster scheduling.

The single-phase algorithms (UAS and CARS)
avoid several scheduling constraints that hinder optimal
cluster scheduling. Important information such as
instruction dependencies is lost between phases, which
can result in a significant amount of inter-cluster copies.
This in turn incurs significant performance and energy

expense due to charging and discharging of long wires. Of
the four algorithms, CARS seems to be the best solution
since it considers scheduling, assigning and register-
allocation concurrently. Unfortunately, our framework
(GCC) does not allow register-allocation to be done
together with scheduling, thus UAS was chosen.

To gain high-performance from UAS, an aggressive
list-scheduler is necessary. Treegions [19] can provide
large instruction-windows beyond basic blocks so that the
list-scheduler can perform a tighter schedule. Treegion
scheduling is implemented on a GCC-4.0.2 branch by
Rosier and Conte [37] 1. As a result, we decided to
implement UAS algorithm on top of their Treegion-
scheduler.

4.1 UAS on GCC

GCC provides several hooks that allow architects to
manipulate and intercept the ready-list at different stages
of scheduling [39]. The UAS was attached to the
“TARGET_SCHED_FINISH_GLOBAL” hook. This
hook is called immediately after the treegions are created.
Figure 9 shows the flow-diagram of the major steps
involved in the UAS implementation. A list of
unscheduled Ops (as RTL) is taken from the Treegion
scheduler and a list of instructions that are ready in the
current cycle is assembled. For each instruction in this
ready list, a new cluster is picked as per a priority
function.

There are four different priority functions available
in UAS, they are: sequential placement, random
placement, magnitude-weighted placement (MWP) and
completion-weighted placement (CWP). In sequential
placement, the Ops are assigned in a round-robin fashion
to each cluster. In Random placement, the Ops are placed
to a random cluster chosen using a pseudo-random
number generator (lrand48()). MWP schedules an Op to
the same cluster as its predecessors. If a cluster’s
predecessors are assigned to two different clusters, either
one can be a target for the current Op. In CWP, the Op is
assigned to the same cluster as the predecessor that takes
the longest to complete. The advantage CWP has over
MWP is that since the current Op has to wait till the latest
of its predecessor to complete, the holes in between can
be used to schedule a copy instruction. For more detailed
explanation, the reader is referred to [34].

The additional challenge encountered is register
allocation. The register allocator tries to minimize
assigning instructions to different register classes by
mapping dependent-instructions into the same register
class. Even though this can reduce additional cluster-
usage, the register-allocator does not take cycle-time into
account. To overcome this problem, the register
allocator’s mapping function (reg_class(..) function in
passes.c [39]) was replaced with a specialized function
(added using a new hook called
“TARGET_MACHINE_DEPENDENT_REG_CLASS”)

1 We obtained a patch from M. C. Rosier for gcc-4.0.2 and
applied the patch onto our compiler

 5

that will assign instructions as per the UAS scheduler.
The new hook implementation has been submitted to the
gcc-patches mailing-list as a patch for acceptance. All the
modifications described will not affect any other gcc port,
and our gcc source-code can be configured for any other
gcc-backend (e.g. x86) and function without any
difficulty.

In CLAW it is possible to dynamically or statically
shutoff (through clock-gating) certain clusters. The best
way to accomplish this with minimal overhead is through
a specialized instruction. In CLAW, we created such an
instruction called “shutoff.” The Immediate field for this
instruction is a bit vector which indicates the appropriate
cluster that needs to be shutoff. For example, “shutoff
0110b” implies that cluster 2 and cluster 3 should be
shutoff. While the shutoff instruction can be inserted at
any granularity, for this work we have studied using the
shutoff instruction at the basic-block level and the
function level.

Figure 9: The Design-flow of the UAS Algorithm on

GCC

Figure 10: Example of Unused Cluster (indicated in

Blue boxes) in Viterbi benchmark2

Initially, the compiler inserts a shutoff instruction
with ‘0’ as its immediate field (indicating all clusters must
be on). The CLAW profiler then scans the static code
provided by the compiler to see if there are any empty
clusters. Figure 10 shows an example of an empty cluster:
if for the duration of an entire basic-block (or function
depending on the granularity) there exists a common
empty cluster, then the appropriate cluster is shutoff.

Figure 11 shows the algorithm of our profiler to
detect idle clusters to power-down using the shutoff
instruction. The algorithm accepts a block of instructions
(BLK) as input. The profiler goes through every MOP to
see if it can find Cluster-Ops (COP) with only NOP, that
is, an unused-cluster. If such a scenario is noticed, the
appropriate bit is set to ‘1’ in the ‘Unused’ array. M.count

2 The “.t.nv” next to the 4th NOP signifies the TAIL bit indicated in
Figure 5

indicates the MOP position in the BLK and C.count
indicates COP position in the MOP M. This array is a
two-dimensional array with rows indicating the number of
MOPs in the block (indicated by BLK.MOP_Count) and
the columns showing each cluster. This array must be
dynamically allocated, but it is not shown in the figure for
simplicity.

After stepping through all the MOPs in BLK, the
profiler goes through the ‘Unused’ array to find if all the
MOPs have common clusters that can be shutoff. This is
done by checking if the summation of all the 1’s in a
column is equal to the number of MOPs in BLK. The list
of empty clusters is returned back to the profiler from this
function using the “Shutoff_Cluster_List” variable. The
profile examines this to set the appropriate bit in the
shutoff instruction. The profiler also displays the number
of cases where all the clusters are turned-on for analysis.

Figure 11: Cluster-shutoff algorithm implemented in

the Profiler

5 Experimental Frameworks

5.1 Design Flow & Energy Measurement
Embedded systems, unlike high-performance

systems, are small and very sensitive to power and energy
differences. Moreover, accurate energy values are
necessary to determine the size and strength of the battery
required for the embedded processor. A gross
overestimation of energy can require the designers to use
a larger battery, thus incurring more area and cost. An
underestimate can undermine the battery requirement,
which requires frequent replacement (or recharging) of
the batteries making the system inconvenient for the user.
In an independent study done by EE-times, a high-level
processor power analyzer had up to 25% error in its
calculation. Moreover, previous studies suggest that
hardware level (as in RTL level) studies provide 14-24%
better power and energy results than pure cycle-count
studies [12].

The most accurate way to measure power and
energy in an embedded system is to create a prototype of
the proposed system in hardware and connect a multi-
meter and measure its current. The cost and time of

 6

fabrication and chip-design can make this a prohibitive
effort. Another way to measure power is to create a
transistor-level design of the circuit and use SPICE to
measure power. To execute ~1,000,000 instructions
through a transistor-level design of a processor using
Cadence Virtuoso and measure power using SPICE is
estimated to take over 31 days on a low-load SPARC Sun
fire 280W. This measurement-time cost is not feasible for
research today.

There are several RTL-level tools such as Primetime
(formerly known as Primepower) and Power-mill [25]
that can measure power within 5% accuracy to SPICE
[17]. If a processor can be designed, synthesized and
verified in Verilog and have its energy consumption
measured in Primetime then accurate power values can be
achieved. To simulate ~1,000,000 instructions through
our Verilog-model (on a low-load SPARC Sun-fire
280W) using Verilog-XL [43] takes approximately 14
hours. Using the execution-time from Verilog-XL and the
power values from Primetime, accurate energy estimates
can be derived. This is a good compromise between
accurate energy values and fast simulation.

CLAW, based on OpenRISC 1200 architecture, is
written in Verilog hardware-description language and
synthesized by Synopsys Design Analyzer using Artisan
SAGE-X 90nm RVT standard-cell library. This standard-
cell library is equivalent to low-operating power libraries
described by ITRS [44]. Such libraries are most-often
used for embedded processors today [35]. This
synthesized Verilog is then placed and routed using
Cadence Design-Encounter. The output of this step is the
parasitic file (SPEF format) that gives accurate
capacitance values of the wires inside the processor. The
synthesized Verilog-file is then simulated with the
appropriate 90nm gates and a test-bench using the
Cadence Verilog Simulator. The simulator outputs the
switching information in the VCD format as well as
number of cycles CLAW took to execute the benchmark.
This simulation-step is illustrated in Figure 12.

The VCD file, obtained from Verilog simulation,
along with the SPEF file and the synthesized Verilog is
input into Primetime and appropriate power-values are
obtained. The product of the obtained power values along
with the cycle-time and cycle-count results in energy
values.

5.2 Benchmark Selection and Execution
To accurately represent embedded-system

benchmarks, ten benchmarks from EEMBC benchmark
set [45] were used, shown in Table 1. EEMBC is reputed
to be the most representative embedded-systems
benchmarks available today. These benchmarks are
created by a consortium represented by engineers from
both industry and academia who are experts on embedded
systems. In addition, the consortium have provided
specific instructions about the starting point and stopping
point of all the benchmarks, along with the number of
iterations required for all the loops. The starting point is
marked with a “th_signal_start()” function and the

stopping point is marked by “th_signal_finished()”
function. The C code between these two functions must
be the only part whose characteristics are measured. This
isolates the actual algorithm from additional noise such as
I/O, and makes sure the algorithm is executed completely
and adequately.

To execute the benchmarks as per EEMBC
specifications in hardware, a CLAW simulator was
written in C++. This simulator is used to capture the state
(mainly the register-file and the memory state) up to the
starting point described by EEMBC. When the reset pin
of the processor is set, the appropriate values are written
in the register-file and the memory-array3 (and data-
cache). The PC is then pointed by the test bench to the
starting point and the memory values are updated using
the values obtained by the C++ simulator. The benchmark
is executed until the stopping point described by EEMBC.

Figure 12: Simulating CLAW using Verilog-XL

Table 1: EEMBC Benchmarks

Benchmark Description
Aifir01 FIR Filter
conven00 Convolutional encoding
Dither01 Floyd-Steinberg error diffusion Dithering

Algorithm
Ospf OSPF Dijkstra’s Algorithm
puwmod01 Pulse Width Modulation Algorithm
rotate Image Rotation algorithm
routelookup Packet Routing Algorithms
Rspeed01 Road Speed Calculation
ttsprk01 Tooth-to-Spark tests in automobiles
viterb01 Viterbi Decoder

6. Results

For this paper, a one, two and four-cluster CLAWs

were created in hardware. The clock-frequency is fixed at
75 MHz (period: 13 ns) for all the configurations for
uniformity. A 13 ns period was chosen because it is the
cycle-time at which up to 64 clusters can be incorporated
without slack violation. While we only present results for
up to 4 clusters (which could have had 2-3x smaller
period), this is not an issue because the energy trends
discussed in this work still hold as frequency is scaled.
Single cluster standard-cell area is 0.52 mm2. Two and
four-cluster CLAWs have areas of 1.05 and 2.13 mm2,
respectively. The UAS scheduler was implemented on
GCC using the four cluster-assignment priorities
(Sequence, Random, MWP and CWP) for the two and
four-cluster configurations. Figure 13 and Figure 14 show
the speedup of 2-cluster and 4-cluster CLAW over a

3 We model memory in the test-bench as an array and connect it
directly to the data-cache

 7

single-cluster for the 10 EEMBC benchmarks,
respectively.

MWP and CWP schemes give the most speedup
across all the benchmarks because they take the code-
pattern into account when scheduling the instructions.
Routeloop is the most parallel benchmark, while aifir01
shows the least. Figure 15 and Figure 16 show the
percentage of copy-operations in the dynamic stream for 2
and 4-cluster CLAW. Sequential and Random placement
of UAS results in ~8-28% of the dynamic instruction
stream consisting of copy instructions, while MWP and
CWP on average had only 0.2%. These copy instructions
increase the number of dynamic instructions, which in
turn increases the execution-time. Copy instructions
create additional true-dependences between instructions
between clusters, thus increasing execution time.

0

0.5

1

1.5

2

2.5

3

3.5

ai
fir

f0
1

co
nv

en
00

di
th

er

os
pf

pu
w

m
od

ro
ta

te

ro
ut

el
oo

ku
p

rs
pe

ed

tts
pr

k0
1

vi
te

rb
00

Sequential Random MWP CWP

jj

Figure 13: Speedup for EEMBC Benchmarks for 2-

Cluster CLAW over single-cluster CLAW
Several predictions claim that static (or leakage)

energy will dominate the processors today. Static-energy
is claimed to have ~50% contribution to the total energy
consumption for 90nm technology, yet as per Figure 17
the static-energy accounts for roughly 15-20% of the total
energy. The primary reason for this disparity is that static
energy is dominant in the memory hierarchy [26];
dynamic energy is still dominant inside the processor
[26]. For CLAW the energy values are measured only for
the processor. The memory hierarchy is modeled inside
the test-bench and isolated from power-measurement
because many embedded and real-time systems have on-
chip memories and avoid caches due to their
unpredictability and excessive power dissipation.

0

0.5

1

1.5

2

2.5

3

3.5

ai
fir

f0
1

co
nv

en
00

di
th

er

os
pf

pu
w

m
od

ro
ta

te

ro
ut

el
oo

ku
p

rs
pe

ed

tts
pr

k0
1

vi
te

rb
00

Sequential Random MWP CWP

j

Figure 14: Speedup for EEMBC Benchmarks on 4-

Cluster CLAW over single-cluster CLAW

Figure 18 and Figure 19 show the dynamic-energy
consumption for two and four-cluster CLAW.
Routelookup and OSPF are significantly smaller

benchmarks than the rest, which impacts their energy use.
Ttsprk01 has the largest dynamic code-size in the group.
Static energy distribution is given in Figure 20 and Figure
21. Static energy increased for Sequential and random
placement because they generated dependent copy
instructions that created more holes in the trace. As the
code-size gets larger, there is a potential for more NOPs,
which can cause stagnant wires and units, increasing
static energy. In all these data, shutoff mechanism is
disabled to show the base values.

0%

5%

10%

15%

20%

25%

30%

ai
fir

f0
1

co
nv

en
00

di
th

er

os
pf

pu
w

m
od

ro
ta

te

ro
ut

el
oo

ku
p

rs
pe

ed

tts
pr

k0
1

vi
te

rb
00

Sequential Random MWP CWP
Figure 15: Percentage of Copy Instructions for 2-

Cluster CLAW

0%

5%

10%

15%

20%

25%

30%

ai
fir

f0
1

co
nv

en
00

di
th

er

os
pf

pu
w

m
od

ro
ta

te

ro
ut

el
oo

ku
p

rs
pe

ed

tts
pr

k0
1

vi
te

rb
00

Sequential Random MWP CWP
Figure 16: Percentage of Copy Instructions for 4-

Cluster CLAW

0

10

20

30

40

50

60

70

80

ai
fir

f0
1

co
nv

en
00

di
th

er

os
pf

pu
w

m
od

ro
ta

te

ro
ut

el
oo

ku
p

rs
pe

ed

tts
pr

k0
1

vi
te

rb
00

m
ill

iJ
ou

le
s

Dynamic Energy Static Energy
Figure 17: Static and Dynamic Energy Dissipation for

Single Cluster CLAW

 8

0

50

100

150

200

250

300

ai
fir

f0
1

co
nv

en
00

di
th

er

os
pf

pu
w

m
od

ro
ta

te

ro
ut

el
oo

ku
p

rs
pe

ed

tts
pr

k0
1

vi
te

rb
00

m
ill

iJ
ou

le
s

Sequential Random MWP CWP
Figure 18: Dynamic Energy Consumption for 2-

Cluster CLAW

0

50

100

150

200

250

300

ai
fir

f0
1

co
nv

en
00

di
th

er

os
pf

pu
w

m
od

ro
ta

te

ro
ut

el
oo

ku
p

rs
pe

ed

tts
pr

k0
1

vi
te

rb
00

m
ill

ijo
ul

es

Sequential Random MWP CWP

Figure 19: Dynamic Energy Consumption for 4-
Cluster CLAW

0
5

10
15
20
25
30
35
40
45

ai
fir

f0
1

co
nv

en
00

di
th

er

os
pf

pu
w

m
od

ro
ta

te

ro
ut

el
oo

ku
p

rs
pe

ed

tts
pr

k0
1

vi
te

rb
00

m
ill

iJ
ou

le
s

Sequential Random MWP CWP
Figure 20: Static Energy Consumption of 2-Cluster

CLAW

0
5

10
15
20
25
30
35
40
45

ai
fir

f0
1

co
nv

en
00

di
th

er

os
pf

pu
w

m
od

ro
ta

te

ro
ut

el
oo

ku
p

rs
pe

ed

tts
pr

k0
1

vi
te

rb
00

m
ill

iJ
ou

le
s

Sequential Random MWP CWP
Figure 21: Static Energy Consumption of 4-Cluster

CLAW

6.2 Dynamic Cluster Shutoff
To study the energy effects due to dynamic-cluster

shutoff, we studied 2-cluster and 4-cluster CLAW for
both basic-block-level and function-level shutoff. For the
random and sequential placement, the profiler was not
able to shutoff any clusters. Due to space constraints, we
only show the energy effects of 4-Cluster CLAW for

function level and 2-Cluster CLAW for basic-block-level
experiments. We only show results for the CWP
mechanism since we were unable to find any optimization
scenarios for the Random and Sequential placement.
MWP was skipped because it followed same utilization
trend as CWP.

Figure 22 and Figure 23 show the dynamic and
static energy consumption of 4 Cluster CLAW utilizing
the shutoff mechanism at function granularity. The values
are normalized with the base values of all clusters on
(from Figure 19 and Figure 21). All the benchmarks
except routelookup turned clusters 2, 3 and 4 off most of
the time while routelookup only shutoff 3 and 4. The
energy values did scale appropriately with the cluster-
shutoff. The static energy increased by approximately 10-
20% but the dynamic energy compensated this increase.

Adding shutoff instructions at the start and end of
every basic-block was not effective because this resulted
in code-explosion. This almost doubled the execution-
time for every benchmark and offset the benefit of
shutting off clusters. Figure 24 and Figure 25 show our
results. The static energy also increased due to the
increase in number of NOP. Similar energy increase trend
is seen in 4-cluster CLAW due to code-explosion. This
increase could be reduced through the use of an
optimization pass to remove silent shutoff instructions
(those that do not change machine state), but is not
explored in this work.

0

0.2

0.4

0.6

0.8

1

1.2

ai
fir

f0
1

co
nv

en
00

di
th

er

os
pf

pu
w

m
od

ro
ta

te

ro
ut

el
oo

ku
p

rs
pe

ed

tt
sp

rk
01

vi
te

rb
00

Base After Cluster-Shutoff
Figure 22: Dynamic Energy Distribution of Function-

level Cluster-shutoff for 4-Cluster CLAW

There is another factor that is inherent to GCC that
resulted in such code-explosion. GCC, unlike several
proprietary compilers such as TI Compiler (TI-CC) [13]
or the ARM-CC[42], does not perform any high-level
optimization, such as loop-fusion, on the code[33]. The
parser directly decomposes the C statements into trees in
GIMPLE format then tries to apply optimization. At this
stage, it is generally too late for such optimizations. Thus,
GCC code on average contains more basic-blocks with
fewer instructions when compared to ARM-CC or TI-CC
basic blocks. This translates to more shutoff instruction
insertions at this granularity, resulting in further code-
explosion.

 9

0

0.2

0.4

0.6

0.8

1

1.2

1.4

ai
fir

f0
1

co
nv

en
00

di
th

er

os
pf

pu
w

m
od

ro
ta

te

ro
ut

el
oo

ku
p

rs
pe

ed

tt
sp

rk
01

vi
te

rb
00

Base After Cluster-Shutoff
Figure 23: Static Energy Distribution with Function-

level shutoff for 4-Cluster CLAW

 From this research it is clear that the function level
cluster shutoff heuristic is superior to the basic-block
policy in terms of energy and provides significant benefits
over the baseline with no shutoff. Additionally, function
level shutoff has minimal impact on performance since
only 1 MOP per function is inserted, translating to less
than a 0.2% increase in the overall dynamic code stream.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

aif
irf0

1

co
nv

en
00

dit
he

r
os

pf

pu
wmod

rotate

route
loo

ku
p

rsp
ee

d

tts
prk

01

vite
rb0

0

B ase After Cluster-Shutoff
Figure 24: Dynamic Energy Distribution with basic-

block-level shutoff for 2 Cluster CLAW

0

0.5

1

1.5

2

2.5

aif
irf0

1

co
nv

en
00

dit
he

r
os

pf

pu
wmod

rotat
e

route
loo

ku
p

rsp
ee

d

tts
prk

01

vit
erb

00

Base After Cluster-Shutoff
Figure 25: Static Energy Distribution with basic-

block-level shutoff for 2 Cluster CLAW

To exploit the dynamic shutoff mechanism of
CLAW, we wanted to see the utilization of each cluster.
Random and Sequential placement uses all the clusters in
approximately equal fashion, but MWP and CWP uses
cluster-1 most of the time. MWP and CWP have similar
results because most of the instructions in the CLAW
architecture are able to execute in a single cycle. For
example, puwmod using MWP has at least one non-NOP

OP in cluster 1 100% of the time, and none in cluster-2
(never used).

7 Conclusions

In this work, we provided a RTL level VLIW-

embedded processor, CLAW, that is synthesized and
placed and routed, then measure its power and energy
using industry-strength tools. This processor is able to
dynamically scale its issue-width, enabling effective
energy aware compilation. In addition, we provided
compiler and optimizing tools that are able to exploit this
scalability and utilize this energy efficient processor
without sacrificing any performance. By having a
dynamic scheme, we can save considerable time
compared to previous approaches which require a
redesigning of the processor when switching applications
or adding new application.

Using this processor, we also showed that hardware-
level analysis is far more accurate than software
simulation, providing better insight into energy
dissipation within a processor. Using this hardware-level
design we were able to debunk the myth that static-energy
domination is as much of a concern in embedded
processors at 90 nm as it is in high-performance
processors, which otherwise would not have been possible
in a software-only approach.

References
[1] R. Bahar, S. Manne, “Power and Energy Reduction

Via Pipeline Reduction,” ISCA, 2001
[2] D. Albonesi, “Dynamic IPC/Clock Rate

Optimization,” ISCA,, 1998
[3] A. Bechini, T. M. Conte, C. A. Prete, “Opportunities

and Challenges in Embedded Systems,” MICRO,
2004

[4] S. Bhunia et al., “A Novel Low-Power Scan Design
Technique Using Supply Gating,” ICCD, 2001

[5] A. Bona et al., “Energy Estimation and Optimization
of Embedded VLIW Processors based on Instruction
Clustering,” DAC, pp. 886-891, 2002

[6] A. Buyuktosunoglu et al., “An Adaptive Issue
Queue for Reduced Power at High Performance,”
Proc. of First Intl. PACS, 2000

[7] A. Capitianio, N. Dutt, A. Nicolau, “Partitioned
Register Files for VLIWs: A preliminary Analysis of
Tradeoffs, ” In MICRO, pp.292-300, 1992

[8] C. Chang, D. Marculescu, “Design and Analysis of a
Low Power VLIW DSP Core,” Proc. of Emerging
VLSI Technologies and Architectures, 2006

[9] R. Chassaing, “DSP Applications using C on the
TMS320c6x DSK”

[10] N. Clark et al., “OptimoDE: Programmable
Accelerator Engines trough Retargetable
Customization,” Hot-chips, 2004

[11] O. Colavin, D. Rizzo, “A Scalable Wide-Issue
Clustered VLIW with a Reconfigurable
Interconnect,” CASES, pp.148-158, 2003

 10

[12] J. Cong et al., “Microarchitecture Evaluation with
Physical Planning,” DAC, pp. 32-35, June 2-6, 2003

[13] G. Davis, “Writing Reliable C/C++ system Code:
Nut and Bolts,” TI Developer Conference, 2007

[14] J. R. Ellis. Bulldog: A Compiler for VLIW
Architectures. The MIT Press, 1985

[15] P. Faraboschi, G. Brown, J. A. Fischer, “Lx: A
Technology Platform for Customizable VLIW
Embedded Processing,” ISCA, pp. 203-213, 2000

[16] J. Fischer, P. Faraboschi, G. Desoli, “Custom-Fit
Processors: Letting Application Define
Architectures,” MICRO, pp. 324-335, 1996

[17] R. Goering, “Synopsys launches more powerful
power-analysis tool,” EE-times, 2000

[18] J. Gonzalez, A. Gonzalez, “Dynamic Cluster
Resizing,” ICCD, 2003

[19] W. A. Hawanki, S. Banerjia, T. M. Conte, “Treegion
scheduling for wide-issue processors,” ISCA, 1998

[20] M. Horowitz, W. Dally, “How Scaling Will Change
Processor Architecture,” ISSCC, 2004

[21] Z. Hu, et al., “Microarchitectural Techniques for
Power Gating of Execution Units,” ISLPED, pp. 32-
37, 2004

[22] A. Iyer, D. Marculescu, “Power Aware
Microarchitecture Resource Scaling,” DATE, pp.
190-196, 2001

[23] D. Jain et al., “Automatically Customizing VLIW
Architectures with Coarse Grained Application-
specific Functional Units,” Proc. of Software and
Compilers on Embedded Systems, 2004

[24] K. Kailas, K. Ebcioglu, A. Agrawala, “CARS: A
New Code Generation Framework for Clustered ILP
Processors, ” HPCA, p.133-143, 2001

[25] M. Keating et al. “Low Power Methodologies
Manual,” Springer Publishing, July 2007

[26] N. S. Kim et al., “Leakage current: Moore’s law
meets static power,” IEEE Computer, Vol. 26, Issue
12, 2003

[27] H. Li et al., “Deterministic Clock Gating for
Microprocessor Power Reduction,” HPCA, 2002

[28] T. Li, L. K. John, “Routine based OS-aware
Microprocessor Resource Adaptation for Run-time
Operation System power savings,” ISLPED, 2003

[29] Y. Luo et al., “Low Power Network Processor
Design using Clock Gating,” DAC, 2005

[30] S. Manne, A. Klauser, D. Grunwald, “Pipeline
Gating: Speculation Control for Energy Reduction,”
ISCA, 1998

[31] S. Mukopadhyay et al., “Gate Leakage Reduction
for Scaled Devices Using Transistor Stacking,”
IEEE Transactions on VLSI, pp. 716-730, vol. 11,
No. 4, August 2003

[32] R. Nagpal, Y. Srikant, “Compiler-Assisted Leakage
Energy Optimization for Clustered VLIW
Architectures,” Proc. of IEEE International
Conference on Embedded Software, 2006

[33] D. Novillo, “GCC Internals,” CGO (Presentation),
2007

[34] E. Ozer, S. Banerjia, T. M. Conte, “Unified Assign
and Schedule: A New approach to Scheduling for
Clustered Register File Microarchitectures,”
MICRO, 1998

[35] L. Pickup and S. Tyson, “Hot Chips? … Not!” Chip
Design Magazine, pp. 26-29, August/September
2004

[36] M. Powell et al., “Gated-Vdd: A Circuit Technique
to Reduce Leakage in Deep-Micron Cache
Memories,” ISLPED, 2000

[37] M. C. Rosier, T. M. Conte, “Treegion Instruction
Scheduling in GCC,” Proc. Of the GCC Developers
Summit, 2006

[38] C. Su, C Tsui, A. Despain, “Saving Power in the
Control Path of Embedded Processors,” IEEE
Design & Test of Computers, pp. 24-30, 1994

[39] R. M. Stallman, “GNU Compiler Collection
Internals for GCC 4.0.2,” 2006, FSF Press (Obtained
from GCC Source)

[40] A. Terechko, M. Garg, H. Corporaal, “Evaluation of
Speed and Area of Clustered VLIW Architectures,”
Proc. of International Conference on VLSI Design,”
2005

[41] V. Zyuban and P. Kogge, “Inherently Lower-Power
High-Performance Superscalar Architectures,” IEEE
Trans. on Computers, March 2001

[42] “Writing Efficient C Code for ARM,” Application
Note 34, Document No: ARM DAI 0034A, 1998

[43] “Verilog-XL User guide,” Product Version 4.0,
2002, Published by Cadence (www.cadence.com)

[44] International Technology Roadmap for
Semiconductors (ITRS), http://www.itrs.net

[45] Embedded Benchmark Consortium,
http://www.eembc.org

[46] Tensilica Xtensa 7 (LX2), http://
http://www.tensilica.com/products/xtensa/index.htm

