

Energy-Aware Opcode Design
Balaji V. Iyer #1, Jason A. Poovey *2, Thomas M. Conte #3

1bviyer@gatech.edu 2japoovey@ncsu.edu 3conte@cc.gatech.edu
#School of Computer Science, College of Computing *Department of Electrical & Computer Engineering

Georgia Institute of Technology, Atlanta, GA North Carolina State University, Raleigh, NC

Abstract— Embedded processors are required to achieve
high performance while running on batteries. Thus, they must
exploit all the possible means available to reduce energy
consumption while not sacrificing performance. In this work,
one technique to reduce energy is explored to intelligently
design the instruction-opcodes of a processor based on a target-
workload. The optimization is done using a heuristic that not-
only minimizes switching between adjacent instructions, but
also simplifies the decoding to reduce latches to save dynamic
energy. On average, an optimized opcode is able to be decoded
using 40-60% less latches in the decoder. In addition, it is
shown that a decoder optimized for algorithms that had similar
program structure, similar data-types or similar behavior
exhibited consistent patterns of energy reduction. The
techniques presented in this paper yield an average 10%
reduction in the total dynamic energy. It is also shown that this
heuristic can be used to achieve similar results on different
issue-width processors.

I. MOTIVATION
Embedded devices are required to perform several

complex tasks that were once attempted by high-performance
systems [18]. Moreover, the need for portability requires
these devices to use batteries as primary source for energy [1]
[4] [11] [18].

One solution is to take a general-purpose processor and
customize it for an embedded system [1]. These embedded
processors are simpler than their high-performance
counterparts and require significant assistance from the
compiler for scheduling, branch-handling etc. However,
unlike high-performance systems, wide-availability of
compilers, assemblers, and other utilities are limited [20].

The first logical step for designing (or choosing) such
processors is to define the target application. This ONE
target application represents the main workload of this
processor. It is generally a good assumption that this target
application is one of the most frequently executed
applications in this system. If this one target application is
able to be run at high performance while consuming less
energy, then the overall system energy is reduced.

The main concentration of this work is to provide a
heuristic for intelligent-design of the instruction opcodes for
an embedded processor using one application as the target
(or training application). The new-opcode configuration is
created by analyzing the code-generator and reducing
switching among the adjacent instructions occurring in the
target application. The opcodes are designed such that

frequently occurring instructions are decoded easily, which
reduces the internal decoder power.

Unlike previous work, which requires the superset of all
benchmarks to be run on the processor to gain any
power/energy reduction ([9] [29]), we prove that one
benchmark is enough to provide a significant amount of
energy reduction. In addition, we show that an energy-
efficient opcode-design can reduce energy in the decoder and
other stages of the pipelined processor. Finally, we show the
effects of processor issue-width scaling on the overall power
reduction using this methodology.

For this work, the compiler is selected and designed before
the processor. Using this design approach, the constraints
imposed by the compiler (as shown in section 2) is known
ahead of time, and the processor can be designed
accordingly.

The paper is organized as follows. The related works are
explained in section 2. Section 3 gives a brief introduction of
a Retargetable code-generator. The experimental framework
and the benchmark-set are explained in section 4. Section 5
explains the project methodology. The discussion of results
is given in section 6 and the paper is concluded in section 7.

II. RELATED WORK
Several works have been proposed for power and energy

reduction using intelligent opcode-design. To our
knowledge, the only work that closely resembles ours is by
Benini et al. [2]. The authors provide a methodology to
reduce power of the decoder and the fetch units by
examining the adjacent instructions in the trace and
designing the ISA accordingly. The authors only consider
instructions with fixed-size opcode and no sub-opcode fields.
We show in later sections that this is an invalid assumption
for several popular embedded-systems ISA. Second, the
authors of [2] assume that switching directly corresponds to
power consumption. We notice that blindly minimizing
switching can lead to the addition of extra latches, which can
make the power-savings contributed by the reduced
switching. Finally, unlike [2] we present the power savings
provided by an ISA trained using one application on a wide
variety of applications.

Kim & Kim [10] and Woo, Yoon & Kim [29] describe
methods for reducing hamming distance between adjacent
instructions. Their works fail to mention the effects of power
or energy on any particular units. They report their results

just on switching activity and ignore other aspects inside a
processor such as latches, wire-length etc.

Cheng and Tyson [3] provide frameworks for tuning
instruction-sets. They tailor the instruction-set to the target
application by compiling the program and then using a
reconfigurable decoder to only decode instructions that are
going to be used by the processor. Our method avoids this
extra reconfiguration step, yet provides very comparable
results.

Varma et al. [28] studies the power reduction of
switching in the register-bus and the bypass logic for the
Intel X-scale processor. They indicate that switching in the
register-port increases the instruction-energy by 10%.
Similarly, Haga et al. [4] explore dynamically assigning
function-units to reduce switching. They show a 26% power
reduction in integer ALU.

Pechanek, Larin and Conte [17] present a technique for
entropy-based encodings of the ISA. The primary concern
for this work is on variable-size instruction which frequently
occur in DSP architecture. Kalambur and Irwin [7] study
ways to reduce data-fetch energy by adding an addressing
mode for the ALU instructions to access operands from
memory.

Tiwari, Malik and Wolfe in [26] and Tiwari et al. in [27]
describe ways to reduce power and energy by modifying the
amount of switching in software. They give detailed
descriptions for instruction-level power reduction techniques
for a specific set of applications. They claim that opcode-
distribution typically only gives energy/power reduction in
the decoder. In our work, we prove that up to 30% of the
energy reduction is gained from other units of the processor,
not just the decoder.

III. CODE GENERATION USING RETARGETABLE COMPILERS
Retargetable compilers make generating codes for

multiple architectures easier by splitting the compiler tasks
into architecture-independent and architecture-dependent
sections. Figure 1 shows components of the most popular
Retargetable compiler, the GNU Compiler Collection
(GCC).

Figure 1: Components of the GNU Compiler [14]

GCC can be configured to accept several sources and
provide executables for the wanted target architecture. The
source code is parsed using an appropriate parser by the
front-end, and converted to an intermediate language format,
called GIMPLE, that is language-independent (GENERIC is
a subset of GIMPLE). GIMPLE retains much of the structure
of the parse-trees. GIMPLE is then translated to the three-

operand, machine-independent format, Register-transfer-
language (RTL).

Instruction scheduling is done on the RTL instructions.
For this work, an aggressive scheduler using Treegion
scheduling [6] is used to maximize the compiler’s
scheduling ability. Treegion-scheduling for GCC is
implemented by Rosier and Conte on a gcc-4.0.2 branch
available at GNU website [21]1.

Register allocation is done on the RTL instructions using
the constraints of the target architecture provided by the
compiler-architect. The RTL is then mapped to appropriate
instructions available in the target architecture. This
mapping is done using the machine-description code
provided by the compiler-architect. If a one-to-one mapping
is not found, the architect must provide an appropriate
combination of instructions to handle such an RTL.

If the architect cannot represent a certain instruction in
the machine-description, the instruction will not be emitted.
In addition, two applications that contain the same RTL will
contain the same instruction(s) in the executable.

IV. EXPERIMENTAL FRAMEWORK

A. Processor Architecture
In order to gain a fine-grain understanding of energy

dissipation in processors, a hardware-level model of the
embedded processor is necessary. For this work, OpenRISC
1000 core is used [12] [31]. This is a five stage processor,
with basic DSP capabilities. The instruction-set is similar to
several popular embedded architectures such as ARM [23],
MIPS [16], Atmel [30] etc.

The processor is synthesized at 13ns for all runs without
any slack-violation using Artisan Physical IP 1 Volt, SAGE-
X 90 nm RVT standard-cell library by ARM [33] using
Synopsys Design Analyzer. This standard-cell library is
equivalent to low-operating power libraries described by
ITRS [34]. Such libraries are most-often used for embedded
processors today [34] [19].

The synthesized processor is then placed-and routed using
Cadence Encounter to obtain the parasitic information.
Then, appropriate benchmarks are run through the
synthesized cores using the Verilog VERA simulator to
capture the switching activity in VCD format.

The switching information, the synthesized Verilog core,
the parasitic information and the timing information is
analyzed using Synopsys Primetime (formerly Primepower)
to gain static and dynamic power values. These values are
converted to energy values using the cycle-time information
obtained from VERA simulator. Energy values are used
because energy is more analogous to battery-life than power
[27]. As per EE Times, after SPICE, Primetime currently
provides the most accurate power values [5].

1 For this work, we took a patch from Rosier and Conte and applied it onto
the GCC port made available by OpenRISC

Measuring power in this format is very time consuming.
This work was made possible using 6 SPARC and 6 Linux
multiprocessor systems that were solely dedicated for this
work for 40 days. This extra expense allows for accurate and
authoritative energy values and helps reveal the fine-grain
effects that are unable to be captured in high-level
simulators.

B. Issue-Width Modification
To study the scalability of the new opcode-configuration,

we combined two-issue OR32 data-paths and created a
cluster. These clusters were combined together to create a 4-
issue (2-Cluster) and 8-issue (4-Cluster) statically scheduled
processor. To do inter-cluster copy of register-values, a
specialized “l.copy” instruction was added into the ISA.

To compile benchmarks for this clustered-architecture, we
added a UAS scheduler [15] on top of the Treegion-
scheduler. GCC provides several hooks that intercept the
instruction scheduler to manipulate and rearrange the ready-
list. We used the “TARGET_SCHED_FINISH_GLOBAL”
hook. There are several priority-assignments available in
UAS, but the cycle-weighted-placement (CWP) was used
since it gives the most optimal results.

C. Benchmark Selection and Execution Methodology
To accurately represent embedded system workloads, 6

benchmarks from Embedded Microprocessor Benchmarking
Consortium (EEMBC) were chosen [32]. Table 1 explains
the benchmarks in detail.

Table 1: EEMBC Benchmarks

Benchmarks Description
aifir01 FIR Filter
conven00 Convolutional encoder
ospf Open-shortest path first/Dijkstra’s Algorithm
puwmod Pulse Width Modulation Algorithm
routelookup IP Datagram forwarding Algorithm
viterb00 Viterbi Decoder

EEMBC benchmarks are created by an independent

consortium whose primary objective is providing
representative workloads for embedded systems. These
benchmarks must be run as per the specifications provided
by EEMBC. Figure 2 shows the structure of an EEMBC
benchmark. All performance evaluation metrics must be
measured only for the code between “th_signal_start” and
“th_signal_finished.” Also, EEMBC provides a minimal
number of iterations that will guarantee the correct execution
of all the benchmarks.

Figure 2: Structure of EEMBC Benchmarks

To run EEMBC on synthesized Verilog model, register
and memory values available after the “th_signal_start” were
inserted into the processor during the enabling of the reset
signal. The program counter is then pointed to the start of
the for-loop and the execution is begun. To check the
accuracy, several debug-runs were performed by manually
adding “$display” statements into the Verilog code (after
synthesis) and the test-bench to monitor the control flow.
The memory values were checked by comparing values
obtained by the C simulator. Since the execution
environment does not provide a way to interface an
Operating System, system calls could not be handled
correctly in hardware, thus only the benchmarks that had no
system-calls inside the for-loop were selected.

D. RISC Opcode Configuration
Several major RISC instruction-sets have telescoping

encoding [25]. In telescoping encoding, two similar
instructions of same type (e.g. Arithmetic instructions) have
the same primary opcode, and different secondary opcodes.
There are two ways to decode instructions following such
encoding: using either a parallel or serial approach. Figure 3
shows examples of parallel and serial approaches for
decoding an “OR” instruction in OpenRISC.

In the parallel approach, the opcode and sub-opcodes are
compared in a single step. Thus, as per Figure 3, to decode an
OR instruction, the parallel approach takes 12 comparisons,
regardless of a match. In the serial approach, the primary
opcode is compared, then if there is a match, then the
secondary opcode is compared. Such cascaded comparisons
can introduce additional latches into the system

Suppose that there are 1 million OR instructions in a
benchmark. If the decoder is written using a parallel
approach, then to decode this instruction, there must be 12x1
million comparisons. In the serial approach, in addition to
12x1 million comparisons, 6x1 million additional latches are
charged and discharged, which can consume significant
amount of energy.

 (a) (b)

Figure 3: Decoding Approaches for Telescoping Encoding

Not all instructions have multiple fields. For example, the
“return from exception (rfe)” instruction does not have a
sub-opcode field. The unused bits in this instruction are left
as “don’t-cares.” The alarming observation is that several
instructions that occur commonly in several benchmarks
have sub-opcode fields and instructions that rarely occur in a
regular instruction execution have no sub-opcode field. This
can have a significant impact on energy.

V. OPCODE-OPTIMIZATION METHODOLOGY
In this work one representative benchmark is sampled and

the opcodes are re-designed such that commonly-occurring
instructions in this benchmark are decoded easily. In
addition, the opcodes are distributed such that the
instructions that are adjacent to each-other have minimal
switching. Solving this problem manually is exponentially
difficult.

To extract the instruction trace of the training
benchmarks, an OR1000 instruction-set simulator was
written in C++. To find adjacent instructions, Markov chains
were created from the instruction trace. In the beginning,
two, three and four-instruction chains were considered, but
the three and four-instruction chains contributed minimally,
thus we do not discuss them in detail in this paper.

To create the optimal opcode-distribution, the traces are
analyzed using the algorithm described in Figure 4. The
function accepts the instruction-trace of the training
benchmark and a list of instructions the compiler is able to
represent in its machine description.

This trace is then stepped through by another function that
creates another list to hold all the instructions that the
current trace is able to represent. This list holds all the
instructions in descending value of the instruction-type’s
occurrence. This list is usually a subset of the GCC
represented traces.

The instruction trace, along with the two lists, is fed into
another function to prioritize the opcodes. For example, if
“ADD” is the highest occurring instruction in the training
list, then the priority encoder will try and make sure the
ADD instruction gets a unique primary opcode and no sub-
opcode.

When all the elements of the “Trace_Rep_Insns” list is
visited, the optimizer visits all the instructions that GCC is

able to represent, not found in “Trace_Rep_Insns.” The rest
of instructions in the ISA are given primary and secondary
opcode fields. This function outputs the “Prio_Insn_Trace.”

Next, the Prio_Insn_Trace is analyzed to make sure
adjacent instructions have the lowest switching. This is
dependent on the issue-width. For example, a processor with
an issue-width ‘n,’ the adjacent instructions consists of
instructions that are ‘n’ instructions apart.

Figure 4: Opcode Optimization Algorithm

This adjacent-instruction chain along with the

Prio_Insn_Trace is sent to a minimum-distance genetic
algorithm [22] that minimizes switching among the
adjacent instructions. This function gives an instruction
template that contains information about the placement of
various components of the instruction.

This template is used to remap the instructions from the
original OpenRISC encoding to the new optimized encoding.
Similarly, this template is used to remap all testing
benchmark to the newly optimized encoding.

Figure 5 gives a flow-diagram for designing a new opcode
and how a new benchmark is remapped using the template of
the new opcode configuration.

Figure 5: Flow-Diagram of our Methodology

VI. RESULTS

A. Single Issue Results
Each of the six benchmarks was used as a training-

benchmark. Each of the benchmarks was then tested on all
the “trained” processors. Figure 6 and Figure 7 displays the
dynamic and static energy values for the base case. The
results for static and dynamic energy savings are indicated in
Table 2 and Table 3.

4.
06

38
.6

8

0.
22

34
.0

1

2.
58

20
.0

5

6.
19

6

62
.5

32

0.
31

2

54
.6

88

2.
51

9

40
.0

92

8.
41

9

73
.3

03

0.
34

0

74
.4

91

2.
90

3

53
.3

75

16
.6

94

13
6.

13
2

0.
69

6

15
7.

84
4

4.
50

9

10
6.

32
3

0

20

40

60

80

100

120

140

160

180

aifirf01 conven ospf puwmod routelookup viterb00

M
ill

ijo
ul

es
(m

J)

1 ISSUE 2 ISSUE 4 ISSUE 8 ISSUE
Figure 6: Dynamic Energy Distribution for Base Processor

0.
36

5.
18

0.
03

3.
37

0.
46 1.

85

0.
60

4

9.
67

6

0.
04

3

6.
00

9

0.
54

3

4.
07

3

0.
93

9

12
.7

11

0.
05

3

9.
37

0

0.
69

7

6.
12

7

1.
62

7

21
.0

67

0.
09

7

17
.3

52

0.
97

2

10
.7

96

0

5

10

15

20

25

aifirf01 conven ospf puwmod routelookup viterb00

m
ill

iJ
ou

le
s

(m
J)

1 ISSUE 2 ISSUE 4 ISSUE 8 ISSUE
Figure 7: Static Energy Distribution for Base Processor

Table 2: Percentage Reduction in Dynamic Energy

Table 3: Percentage Reduction in Static Energy

If the decoder contributes 15-20% of the total energy

dissipated by the processor, then how can Ospf have an
energy reduction as high as 19%? To answer this, the energy
dissipation of all the processor components that were trained
with ospf and tested on ospf was measured. Switching in all
the major ports was captured using $display statements
added into the processor. This was done on the non-
synthesized processor since design analyzer cannot
synthesize $display statements

The switching in the instruction port was reduced by 23%.
The number of latches inside the decoder was reduced by
65%. Overall, a 60% reduction in the decoder energy
(dynamic) dissipation was noticed. This translated to an
approximate 11% reduction in energy in the processor. The
freeze-unit and the exception unit each obtained
approximately 5% reduction in energy, which contributed to
1% (of the 19% seen) of the total energy reduction. The
fetch-unit had approximately 20% reduction, amounting to
~3% total energy reduction. The reduction in switching
among the connecting busses contributed another 2% overall
energy reduction.

As a result, even though the only component that was
modified in the processor was the decoder, the
reconfiguration of the opcodes created a domino effect for
energy reduction in the processor. Previous high-level
simulators have not been able to measure or achieve such
fine-grained reductions.

To understand further about the characteristics of the
benchmarks, we studied the high-level C code. Figure 8
show the number of function-calls done by each benchmark
during their execution.

During each function-call all the registers used by the
callee are saved on the stack and restored from the stack in
the beginning and the termination of each call. In OpenRISC
assembly, the only method to implement push and pop
information into the stack is by using a load-word or store-
word to access the stack. After all the loads or stores, the
stack pointer (register r1) is incremented or decremented
accordingly using an add-immediate.

When the dynamic trace of aifir01 was observed, there
were a significant amount of memory operations. Similarly,
the benchmark calls a function called “GetInputValues”
which loads a significant amount of data from a global
variable (inpVariableROM). To load from a global variable
in OpenRISC, the 16 least significant bits of the variable is
“ORed” with register zero that holds a constant zero into a
target register. Then the 16 most significant bits are loaded
into the register using a “movhi” instruction that loads its
immediate value into the top 16 bits of a register. “Movhi”
and “ori” instructions are analogous to the movw and movt
instruction in the ARM architecture [23]. Pulse-width
modulate also has a large number of function-calls, but that
instruction-contribution is overshadowed by the excess
number of computation done between the function-calls.

0

2000

4000

6000

8000

10000

12000

14000

16000

aifirf01 conven00 ospf puwmod routelookup viterb00

Figure 8: Function-calls in each Benchmark

It is popularly known that viterbi decoding is used to
decode convolutional codes in communication systems. Both
convolutional encoders (conven00) and viterbi decoders
(viterb00) have significant amount of shifts, adds and
memory operations. However, as per Table 2, an instruction-
set that is optimized for one fails to give a significant energy
reduction on the other.

After examining the instruction trace and the high-level
code, it was found that conven00 did all computations on the

4-byte and 1 byte data widths, that is, they had variables and
data that were either “int” or “char.” Viterb00 did all
computations on 2-byte data-widths (short). OpenRISC has
different instructions for each data-size. Thus, most of the
half-word instructions were given smaller opcodes and the
word-level and byte-level ones were given longer opcodes.
The opposite was done for conven00.

Next, the number of instruction-chains required to obtain
50% coverage was captured. Figure 9 shows this result. This
number illustrates the diversity in the benchmark. For
example, ospf requires only 4 chains to get 50% coverage;
this implies that if another benchmark contains some of
these chains, then a good energy reduction can be seen.
Aifir01 and ospf have 2 chains in common that falls in this
range. Thus, a high dynamic energy reduction can be seen in
ospf when the opcodes are optimized for aifir01.

0

2

4

6

8

10

12

14

aifirf01 conven00 ospf puwmod routelookup viterb00

Figure 9: Number of Chains to gain 50% Coverage

Many of the explanations thus far in this section apply
primarily to dynamic energy. Sub-threshold leakage is a
dominating issue only in the memory hierarchy [8]. For this
work, memory was not modeled since we were unable to find
a synthesizable memory that can be interfaced with the
Verilog core. Figure 7 show that leakage energy, on average,
contributes only 9% of the total energy consumption. As per
Table 3, leakage energy tends to increase slightly when there
is some decrease in dynamic energy. This is because the
primary way to reduce dynamic energy is to reduce switching
in the processor interconnects. After further analysis of
individual components of the processor, the increase in
leakage energy was in components where switching is
greatly reduced: the decoder and the instruction ports.

B. Energy-Saving Patterns with Issue-Width Scaling
Wider issue-widths are typically used to increase

performance in processors. In statically scheduled machines,
when the issue-width is changed, the whole benchmark, in
general, must be re-compiled to gain the full-effectiveness of
the compiler. In the previous section, the opcode-
configuration (trained using a single-issue benchmark), was
tested using single-issue benchmarks. In this section, the
effect of scaling issue-widths on the trained processor is
explored. The processor was trained with single-issue
benchmarks and tested using 2-issue, 4-issue and 8-issue

executables. The static and dynamic energy reduction is
reported in Table 4-Table 9

Table 4: Percentage Reduction in Dynamic Energy (2 Issue)

Table 5: Percentage Reduction in Dynamic Energy (4 Issue)

Table 6: Percentage Reduction in Dynamic Energy (8 Issue)

When the processor is scaled, the major components that

handle instructions (and thus opcodes) are scaled as well.
For example, an 8-issue processor had 8 decoders, 8
instruction ports output from the fetch unit, and the freeze-
unit and the except-unit took 8 instructions as inputs. Thus,
the energy distribution also scaled accordingly in Figure 6
and Figure 7.

In all the cases, the dominating instructions in the trace
remained the same (since the algorithm or the operations in
the C-code is unchanged). The copy instruction, in all cases
accounted for << 0.1% of the dynamic total instruction. With
the same dominating instructions, the reduction in the
number of latches charged and discharged remained the
same. This contributed to the major energy reduction in all
cases. All benchmarks except routelookup had very low IPC.
The IPCs barely changed between 1-issue and 2-issue
configurations. IPC distribution for all issue-widths is given
in Figure 10.

Table 7: Percentage Reduction in Static Energy (2 Issue)

Table 8: Percentage Reduction in Static Energy (4 Issue)

Table 9: Percentage Reduction in Static Energy (8 Issue)

0

0.5

1

1.5

2

2.5

3

aifirf01 conven00 ospf puwmod routelookup viterb00

1 Issue 2 Issue 4 Issue 8 Issue

Figure 10: IPC for EEMBC Benchmarks

Several instructions that were adjacent in single-issue
were adjacent in multi-issue executable, thus they had
similar energy-reduction values. A more powerful compiler
that has a larger view of the instructions can show a change
in this result. Routelookup is the most parallel benchmark.
When the issue-width changed, the adjacent-instruction
chains changed that causes some minor difference in energy.

VII. CONCLUSION
Energy reduction is an important issue in an embedded

system. Low-energy systems help increase the battery life of
the system. There are several components in a processor that
can be optimized to improve energy consumption. It is
necessary to save energy in all ways possible while not
sacrificing the performance.

In this work, a technique to optimize the instruction-set
based on a sample of the workload for which the processor is
designed is presented. The presented technique neither
causes any additional cycle-count nor increase the clock
period of the base processor. The only hardware modification
that is necessary is the instruction decoder. The newly
generated instruction-decoder can be swapped with the
original without any further modifications to the processor.
Finally, it was shown that when the issue-width was scaled
in this VLIW processor, the energy-savings scale
accordingly.

This paper shows that if the sample set is selected
correctly, a 15-20% energy reduction is achieved by

intelligently assigning opcodes and no performance is lost.
In addition, it also provides a loose-rubric to design software
for the particular processor. If the new software that is to be
added to the system is designed in a similar structure and
contains similar characteristics (e.g. memory intensive vs.
computationally intensive or word-length vs. byte-length),
there can be an energy reduction with no performance loss.

REFERENCES
 [1] A. Bechini, T. M. Conte, C. A. Prete, “Opportunities and

Challenges in Embedded Systems,” IEEE Micro, 2004
 [2] L. Benini, et al., “Reducing Power Consumption of

Dedicated Processors Through Instruction-set Encoding,”
Proceedings of the Great Lakes Symposium on VLSI
Design, pp. 8-12, February 1998

 [3] A. C. Cheng, G. S. Tyson, “An Energy Efficient
Instruction Set Synthesis framework for Low Power
Embedded System Designs,” IEEE Transactions on
Computers, Vol. 54, No. 6, pp. 698-712, June 2005

 [4] S. Haga, et al., “Dynamic Functional Unit Assignment for
Low-Power,” Proceedings of the Design, Automation and
Test in Europe Conference, 2003

 [5] R. Goering, “Synopsys Launches Power-Tool”, EE-Times,
2000

 [6] W. A. Havanki, S. Banerjia, T. M. Conte, “Treegion
scheduling for wide-issue processors,” HPCA, 1998

 [7] A. Kalambur and M. J. Irwin, “An Extended Addressing
Mode for Low-Power,” Proceedings of the IEEE
Symposium on Low Power Electronics, 1997

 [8] N. S. Kim et al., “Leakage current: Moore’s law meets
static power,” IEEE Computer, Vol. 26, Issue 12, 2003

 [9] S. Kim, J. Kim, “Low-power data representation,”
Electronic Letters, Vol. 36, No. 11, 25th May 2000

 [10] S. Kim, J. Kim, “Opcode encoding for low-power
instruction fetch,” Electronic Letters, Vol. 35, No. 13, 24th
June 1999

 [11] U. Ko, P. T. Balsara, W. Lee, “Low-Power Design
techniques for High-Performance CMOS adders,” IEEE
Transactions on VLSI Systems, Vol. 3, No. 2, June 1995

 [12] D. Lampret, “OpenRISC 1200 IP Core Specification,”
www.opencores.org, 2001

 [13] M. Lorenz, R. Leupers, P. Marwedel, “Low-Energy DSP
Code Generation Using a Genetic Algorithm,” ICCD,
2001

 [14] D. Novillo, “GCC- An Architectural Overview, Current
Status and Future Directions,” Proceedings of the Linux
Symposium, Vol. 2, July 19-22nd, 2006

 [15] E. Ozer, S. Banerjia, T. Conte, “Unified-Assign and
Schedule: a new approach to scheduling for clustered
register-files,” Proceedings of International Symposium on
Microarchitecture, 1998

 [16] D. A. Patterson, J. L. Hennessy, “Computer Organization
and Design,” Morgan Kauffman Publishers, 1998

 [17] G .G. Pechanek, S. Larin, T. Conte, “Any-size instruction
abbreviation technique for embedded DSPs,” 15th Annual
IEEE international ASIC/SOC conference, 2002

 [18] M. Pedram and A. Abdollahi, “Low-Power RT-level
synthesis techniques: a tutorial,” IEE Proceedings-

Computer and Digital Techniques, Vol. 152, No. 3, May
2005

 [19] L. Pickup, S. Tyson, “Hot Chips...Not!” Chip Design
Magazine, August/September, 2004

 [20] N. Ramsey, J. W. Davidson, “Machine Description to
build tools for embedded systems,” Lecture Notes in
Computer Science, Vol. 1474, 1998

 [21] M. C. Rosier, T. M. Conte, “Treegion Instruction
Scheduling in GCC,” GCC Developers Summit, 2006

 [22] Y. G. Saab, V. B. Rao, “Stochastic Evolution: A fast
effective heuristic for some generic layout problems,”
Proceedings of 27th IEEE/ACM Design and Automation
Conference 1990

 [23] A. N. Sloss, D. Symes, C. Wright, “ARM Systems
Developer’s Guide,” Elsevier Inc., 2004

 [24] R. Stallman, “GCC Internals Manual for GCC 4.0.2,”
FSF Press, 2006 (available with the compiler source)

 [25] A. Tannenbaum, “Structured Computer Organization,”
Pearson Education, 4th Edition, 1998

 [26] V. Tiwari, S. Malik, A. Wolfe, “Compilation Techniques
for Low Energy: An Overview.” ISLPED, 1994

 [27] V. Tiwari, et al., “Instruction Level Power Analysis and
Optimization of Software,” Journal of VLSI Signal
processing, pp. 1-18, 1996

 [28] A. Varma, E. Debes, I. Kozintsev, B. Jacob, “Instruction-
level power dissipation in the Intel XScale Embedded
Processor,” Proceedings of SPIE's 17th Annual
Symposium on Electronic Imaging Science & Technology,
San Jose CA, January 2005

 [29] S. Woo, J. Yoon, J. Kim, “Low-Power Instruction
Encoding Techniques,” Proceedings of SOC Design
Conference, 2001

 [30] “AVR32 Architecture Manual,” http://www.atmel.com,
321 Pages, Revision A, Updated: 02/06

 [31] “OpenRISC Architecture Manual,”
http://www.opencores.org, 2003

 [32] “The Embedded Microprocessor Benchmark Consortium,”
http://www.eembc.org

 [33] “CMOS 9SF (90 nm) RVT Process 1.0 Volt SAGE-X
v3.0 Standard Cell library Databook,” Revision 1.2, ARM
Ltd, 2006.

 [34] International Technology Roadmap for Semiconductors,
http://www.itrs.net

