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Abstract— Embedded processors are required to achieve 
high performance while running on batteries. Thus, they must 
exploit all the possible means available to reduce energy 
consumption while not sacrificing performance. In this work, 
one technique to reduce energy is explored to intelligently 
design the instruction-opcodes of a processor based on a target-
workload. The optimization is done using a heuristic that not-
only minimizes switching between adjacent instructions, but 
also simplifies the decoding to reduce latches to save dynamic 
energy. On average, an optimized opcode is able to be decoded 
using 40-60% less latches in the decoder. In addition, it is 
shown that a decoder optimized for algorithms that had similar 
program structure, similar data-types or similar behavior 
exhibited consistent patterns of energy reduction. The 
techniques presented in this paper yield an average 10% 
reduction in the total dynamic energy. It is also shown that this 
heuristic can be used to achieve similar results on different 
issue-width processors. 

I. MOTIVATION 
Embedded devices are required to perform several 

complex tasks that were once attempted by high-performance 
systems [18]. Moreover, the need for portability requires 
these devices to use batteries as primary source for energy [1] 
[4] [11] [18].  

One solution is to take a general-purpose processor and 
customize it for an embedded system  [1].  These embedded 
processors are simpler than their high-performance 
counterparts and require significant assistance from the 
compiler for scheduling, branch-handling etc. However, 
unlike high-performance systems, wide-availability of 
compilers, assemblers, and other utilities are limited [20]. 

The first logical step for designing (or choosing) such 
processors is to define the target application. This ONE 
target application represents the main workload of this 
processor. It is generally a good assumption that this target 
application is one of the most frequently executed 
applications in this system. If this one target application is 
able to be run at high performance while consuming less 
energy, then the overall system energy is reduced. 

The main concentration of this work is to provide a 
heuristic for intelligent-design of the instruction opcodes for 
an embedded processor using one application as the target 
(or training application). The new-opcode configuration is 
created by analyzing the code-generator and reducing 
switching among the adjacent instructions occurring in the 
target application. The opcodes are designed such that 

frequently occurring instructions are decoded easily, which 
reduces the internal decoder power.  

Unlike previous work, which requires the superset of all 
benchmarks to be run on the processor to gain any 
power/energy reduction ( [9] [29]), we prove that one 
benchmark is enough to provide a significant amount of 
energy reduction. In addition, we show that an energy-
efficient opcode-design can reduce energy in the decoder and 
other stages of the pipelined processor.  Finally, we show the 
effects of processor issue-width scaling on the overall power 
reduction using this methodology. 

For this work, the compiler is selected and designed before 
the processor. Using this design approach, the constraints 
imposed by the compiler (as shown in section 2) is known 
ahead of time, and the processor can be designed 
accordingly. 

The paper is organized as follows. The related works are 
explained in section 2. Section 3 gives a brief introduction of 
a Retargetable code-generator. The experimental framework 
and the benchmark-set are explained in section 4. Section 5 
explains the project methodology.  The discussion of results 
is given in section 6 and the paper is concluded in section 7. 

II. RELATED WORK 
Several works have been proposed for power and energy 

reduction using intelligent opcode-design. To our 
knowledge, the only work that closely resembles ours is by 
Benini et al.  [2]. The authors provide a methodology to 
reduce power of the decoder and the fetch units by 
examining the adjacent instructions in the trace and 
designing the ISA accordingly. The authors only consider 
instructions with fixed-size opcode and no sub-opcode fields. 
We show in later sections that this is an invalid assumption 
for several popular embedded-systems ISA. Second, the 
authors of [2] assume that switching directly corresponds to 
power consumption. We notice that blindly minimizing 
switching can lead to the addition of extra latches, which can 
make the power-savings contributed by the reduced 
switching. Finally, unlike [2] we present the power savings 
provided by an ISA trained using one application on a wide 
variety of applications. 

Kim & Kim [10] and Woo, Yoon & Kim [29] describe 
methods for reducing hamming distance between adjacent 
instructions. Their works fail to mention the effects of power 
or energy on any particular units. They report their results 



  

just on switching activity and ignore other aspects inside a 
processor such as latches, wire-length etc.  

Cheng and Tyson [3] provide frameworks for tuning 
instruction-sets. They tailor the instruction-set to the target 
application by compiling the program and then using a 
reconfigurable decoder to only decode instructions that are 
going to be used by the processor. Our method avoids this 
extra reconfiguration step, yet provides very comparable 
results. 

Varma et al.  [28] studies the power reduction of 
switching in the register-bus and the bypass logic for the 
Intel X-scale processor. They indicate that switching in the 
register-port increases the instruction-energy by 10%. 
Similarly, Haga et al.  [4] explore dynamically assigning 
function-units to reduce switching. They show a 26% power 
reduction in integer ALU. 

Pechanek, Larin and Conte [17] present a technique for 
entropy-based encodings of the ISA. The primary concern 
for this work is on variable-size instruction which frequently 
occur in DSP architecture. Kalambur and Irwin [7] study 
ways to reduce data-fetch energy by adding an addressing 
mode for the ALU instructions to access operands from 
memory. 

Tiwari, Malik and Wolfe in  [26] and Tiwari et al. in  [27] 
describe ways to reduce power and energy by modifying the 
amount of switching in software. They give detailed 
descriptions for instruction-level power reduction techniques 
for a specific set of applications. They claim that opcode-
distribution typically only gives energy/power reduction in 
the decoder. In our work, we prove that up to 30% of the 
energy reduction is gained from other units of the processor, 
not just the decoder. 

III. CODE GENERATION USING RETARGETABLE COMPILERS 
Retargetable compilers make generating codes for 

multiple architectures easier by splitting the compiler tasks 
into architecture-independent and architecture-dependent 
sections. Figure 1 shows components of the most popular 
Retargetable compiler, the GNU Compiler Collection 
(GCC). 

 

 
Figure 1: Components of the GNU Compiler [14] 
 

GCC can be configured to accept several sources and 
provide executables for the wanted target architecture. The 
source code is parsed using an appropriate parser by the 
front-end, and converted to an intermediate language format, 
called GIMPLE, that is language-independent (GENERIC is 
a subset of GIMPLE). GIMPLE retains much of the structure 
of the parse-trees. GIMPLE is then translated to the three-

operand, machine-independent format, Register-transfer-
language (RTL).  

Instruction scheduling is done on the RTL instructions. 
For this work, an aggressive scheduler using Treegion 
scheduling [6] is used to maximize the compiler’s 
scheduling ability. Treegion-scheduling for GCC is 
implemented by Rosier and Conte on a gcc-4.0.2 branch 
available at GNU website [21]1. 

Register allocation is done on the RTL instructions using 
the constraints of the target architecture provided by the 
compiler-architect. The RTL is then mapped to appropriate 
instructions available in the target architecture. This 
mapping is done using the machine-description code 
provided by the compiler-architect. If a one-to-one mapping 
is not found, the architect must provide an appropriate 
combination of instructions to handle such an RTL. 

If the architect cannot represent a certain instruction in 
the machine-description, the instruction will not be emitted. 
In addition, two applications that contain the same RTL will 
contain the same instruction(s) in the executable. 

IV. EXPERIMENTAL FRAMEWORK 

A. Processor Architecture 
In order to gain a fine-grain understanding of energy 

dissipation in processors, a hardware-level model of the 
embedded processor is necessary. For this work, OpenRISC 
1000 core is used [12] [31]. This is a five stage processor, 
with basic DSP capabilities. The instruction-set is similar to 
several popular embedded architectures such as ARM [23], 
MIPS [16], Atmel [30] etc. 

The processor is synthesized at 13ns for all runs without 
any slack-violation using Artisan Physical IP 1 Volt, SAGE-
X 90 nm RVT standard-cell library by ARM [33] using 
Synopsys Design Analyzer. This standard-cell library is 
equivalent to low-operating power libraries described by 
ITRS [34]. Such libraries are most-often used for embedded 
processors today [34] [19]. 

The synthesized processor is then placed-and routed using 
Cadence Encounter to obtain the parasitic information. 
Then, appropriate benchmarks are run through the 
synthesized cores using the Verilog VERA simulator to 
capture the switching activity in VCD format.  

The switching information, the synthesized Verilog core, 
the parasitic information and the timing information is 
analyzed using Synopsys Primetime (formerly Primepower) 
to gain static and dynamic power values. These values are 
converted to energy values using the cycle-time information 
obtained from VERA simulator. Energy values are used 
because energy is more analogous to battery-life than power 
[27]. As per EE Times, after SPICE, Primetime currently 
provides the most accurate power values [5]. 
 

1 For this work, we took a patch from Rosier and Conte and applied it onto 
the GCC port made available by OpenRISC 



  

Measuring power in this format is very time consuming. 
This work was made possible using 6 SPARC and 6 Linux 
multiprocessor systems that were solely dedicated for this 
work for 40 days. This extra expense allows for accurate and 
authoritative energy values and helps reveal the fine-grain 
effects that are unable to be captured in high-level 
simulators. 

B. Issue-Width Modification 
To study the scalability of the new opcode-configuration, 

we combined two-issue OR32 data-paths and created a 
cluster. These clusters were combined together to create a 4-
issue (2-Cluster) and 8-issue (4-Cluster) statically scheduled 
processor. To do inter-cluster copy of register-values, a 
specialized “l.copy” instruction was added into the ISA.  

To compile benchmarks for this clustered-architecture, we 
added a UAS scheduler [15] on top of the Treegion-
scheduler. GCC provides several hooks that intercept the 
instruction scheduler to manipulate and rearrange the ready-
list. We used the “TARGET_SCHED_FINISH_GLOBAL” 
hook. There are several priority-assignments available in 
UAS, but the cycle-weighted-placement (CWP) was used 
since it gives the most optimal results. 

C. Benchmark Selection and Execution Methodology 
To accurately represent embedded system workloads, 6 

benchmarks from Embedded Microprocessor Benchmarking 
Consortium (EEMBC) were chosen [32]. Table 1 explains 
the benchmarks in detail. 

 
Table 1: EEMBC Benchmarks 

Benchmarks Description 
aifir01 FIR Filter 
conven00 Convolutional encoder 
ospf Open-shortest path first/Dijkstra’s Algorithm 
puwmod Pulse Width Modulation Algorithm 
routelookup IP Datagram forwarding Algorithm 
viterb00 Viterbi Decoder 

 
EEMBC benchmarks are created by an independent 

consortium whose primary objective is providing 
representative workloads for embedded systems. These 
benchmarks must be run as per the specifications provided 
by EEMBC. Figure 2 shows the structure of an EEMBC 
benchmark. All performance evaluation metrics must be 
measured only for the code between “th_signal_start” and 
“th_signal_finished.” Also, EEMBC provides a minimal 
number of iterations that will guarantee the correct execution 
of all the benchmarks. 

 

 
Figure 2: Structure of EEMBC Benchmarks 
 

To run EEMBC on synthesized Verilog model, register 
and memory values available after the “th_signal_start” were 
inserted into the processor during the enabling of the reset 
signal. The program counter is then pointed to the start of 
the for-loop and the execution is begun. To check the 
accuracy, several debug-runs were performed by manually 
adding “$display” statements into the Verilog code (after 
synthesis) and the test-bench to monitor the control flow. 
The memory values were checked by comparing values 
obtained by the C simulator. Since the execution 
environment does not provide a way to interface an 
Operating System, system calls could not be handled 
correctly in hardware, thus only the benchmarks that had no 
system-calls inside the for-loop were selected. 

D. RISC Opcode Configuration 
Several major RISC instruction-sets have telescoping 

encoding [25]. In telescoping encoding, two similar 
instructions of same type (e.g. Arithmetic instructions) have 
the same primary opcode, and different secondary opcodes. 
There are two ways to decode instructions following such 
encoding: using either a parallel or serial approach. Figure 3 
shows examples of parallel and serial approaches for 
decoding an “OR” instruction in OpenRISC. 

In the parallel approach, the opcode and sub-opcodes are 
compared in a single step. Thus, as per Figure 3, to decode an 
OR instruction, the parallel approach takes 12 comparisons, 
regardless of a match. In the serial approach, the primary 
opcode is compared, then if there is a match, then the 
secondary opcode is compared. Such cascaded comparisons 
can introduce additional latches into the system 

Suppose that there are 1 million OR instructions in a 
benchmark. If the decoder is written using a parallel 
approach, then to decode this instruction, there must be 12x1 
million comparisons. In the serial approach, in addition to 
12x1 million comparisons, 6x1 million additional latches are 
charged and discharged, which can consume significant 
amount of energy. 
   



  

 
      (a)                                                       (b) 

Figure 3: Decoding Approaches for Telescoping Encoding 
 

Not all instructions have multiple fields. For example, the 
“return from exception (rfe)” instruction does not have a 
sub-opcode field. The unused bits in this instruction are left 
as “don’t-cares.” The alarming observation is that several 
instructions that occur commonly in several benchmarks 
have sub-opcode fields and instructions that rarely occur in a 
regular instruction execution have no sub-opcode field. This 
can have a significant impact on energy. 

V. OPCODE-OPTIMIZATION METHODOLOGY 
In this work one representative benchmark is sampled and 

the opcodes are re-designed such that commonly-occurring 
instructions in this benchmark are decoded easily. In 
addition, the opcodes are distributed such that the 
instructions that are adjacent to each-other have minimal 
switching. Solving this problem manually is exponentially 
difficult.  

To extract the instruction trace of the training 
benchmarks, an OR1000 instruction-set simulator was 
written in C++. To find adjacent instructions, Markov chains 
were created from the instruction trace. In the beginning, 
two, three and four-instruction chains were considered, but 
the three and four-instruction chains contributed minimally, 
thus we do not discuss them in detail in this paper. 

To create the optimal opcode-distribution, the traces are 
analyzed using the algorithm described in Figure 4. The 
function accepts the instruction-trace of the training 
benchmark and a list of instructions the compiler is able to 
represent in its machine description. 

This trace is then stepped through by another function that 
creates another list to hold all the instructions that the 
current trace is able to represent. This list holds all the 
instructions in descending value of the instruction-type’s 
occurrence. This list is usually a subset of the GCC 
represented traces.  

The instruction trace, along with the two lists, is fed into 
another function to prioritize the opcodes. For example, if 
“ADD” is the highest occurring instruction in the training 
list, then the priority encoder will try and make sure the 
ADD instruction gets a unique primary opcode and no sub-
opcode.  

When all the elements of the “Trace_Rep_Insns” list is 
visited, the optimizer visits all the instructions that GCC is 

able to represent, not found in “Trace_Rep_Insns.” The rest 
of instructions in the ISA are given primary and secondary 
opcode fields. This function outputs the “Prio_Insn_Trace.” 

Next, the Prio_Insn_Trace is analyzed to make sure 
adjacent instructions have the lowest switching. This is 
dependent on the issue-width. For example, a processor with 
an issue-width ‘n,’ the adjacent instructions consists of 
instructions that are ‘n’ instructions apart.  

 

 
Figure 4: Opcode Optimization Algorithm 

 
This adjacent-instruction chain along with the 

Prio_Insn_Trace is sent to a minimum-distance genetic 
algorithm  [22] that minimizes switching among the 
adjacent instructions. This function gives an instruction 
template that contains information about the placement of 
various components of the instruction.  

This template is used to remap the instructions from the 
original OpenRISC encoding to the new optimized encoding. 
Similarly, this template is used to remap all testing 
benchmark to the newly optimized encoding.  

Figure 5 gives a flow-diagram for designing a new opcode 
and how a new benchmark is remapped using the template of 
the new opcode configuration. 

 
Figure 5: Flow-Diagram of our Methodology 

VI. RESULTS 

A. Single Issue Results 
Each of the six benchmarks was used as a training-

benchmark. Each of the benchmarks was then tested on all 
the “trained” processors. Figure 6 and Figure 7 displays the 
dynamic and static energy values for the base case. The 
results for static and dynamic energy savings are indicated in 
Table 2 and Table 3.  
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Figure 6: Dynamic Energy Distribution for Base Processor 
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Figure 7: Static Energy Distribution for Base Processor 

 
Table 2: Percentage Reduction in Dynamic Energy 

 
 

Table 3: Percentage Reduction in Static Energy 

 
 
If the decoder contributes 15-20% of the total energy 

dissipated by the processor, then how can Ospf have an 
energy reduction as high as 19%? To answer this, the energy 
dissipation of all the processor components that were trained 
with ospf and tested on ospf was measured. Switching in all 
the major ports was captured using $display statements 
added into the processor. This was done on the non-
synthesized processor since design analyzer cannot 
synthesize $display statements 

The switching in the instruction port was reduced by 23%. 
The number of latches inside the decoder was reduced by 
65%. Overall, a 60% reduction in the decoder energy 
(dynamic) dissipation was noticed. This translated to an 
approximate 11% reduction in energy in the processor. The 
freeze-unit and the exception unit each obtained 
approximately 5% reduction in energy, which contributed to 
1% (of the 19% seen) of the total energy reduction. The 
fetch-unit had approximately 20% reduction, amounting to 
~3% total energy reduction. The reduction in switching 
among the connecting busses contributed another 2% overall 
energy reduction.  

As a result, even though the only component that was 
modified in the processor was the decoder, the 
reconfiguration of the opcodes created a domino effect for 
energy reduction in the processor. Previous high-level 
simulators have not been able to measure or achieve such 
fine-grained reductions.  

To understand further about the characteristics of the 
benchmarks, we studied the high-level C code. Figure 8 
show the number of function-calls done by each benchmark 
during their execution.  

During each function-call all the registers used by the 
callee are saved on the stack and restored from the stack in 
the beginning and the termination of each call. In OpenRISC 
assembly, the only method to implement push and pop 
information into the stack is by using a load-word or store-
word to access the stack. After all the loads or stores, the 
stack pointer (register r1) is incremented or decremented 
accordingly using an add-immediate.  

When the dynamic trace of aifir01 was observed, there 
were a significant amount of memory operations. Similarly, 
the benchmark calls a function called “GetInputValues” 
which loads a significant amount of data from a global 
variable (inpVariableROM). To load from a global variable 
in OpenRISC, the 16 least significant bits of the variable is 
“ORed” with register zero that holds a constant zero into a 
target register. Then the 16 most significant bits are loaded 
into the register using a “movhi” instruction that loads its 
immediate value into the top 16 bits of a register. “Movhi” 
and “ori” instructions are analogous to the movw and movt 
instruction in the ARM architecture [23]. Pulse-width 
modulate also has a large number of function-calls, but that 
instruction-contribution is overshadowed by the excess 
number of computation done between the function-calls. 
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Figure 8: Function-calls in each Benchmark 
 

It is popularly known that viterbi decoding is used to 
decode convolutional codes in communication systems. Both 
convolutional encoders (conven00) and viterbi decoders 
(viterb00) have significant amount of shifts, adds and 
memory operations. However, as per Table 2, an instruction-
set that is optimized for one fails to give a significant energy 
reduction on the other.  

After examining the instruction trace and the high-level 
code, it was found that conven00 did all computations on the 



  

4-byte and 1 byte data widths, that is, they had variables and 
data that were either “int” or “char.”  Viterb00 did all 
computations on 2-byte data-widths (short). OpenRISC has 
different instructions for each data-size. Thus, most of the 
half-word instructions were given smaller opcodes and the 
word-level and byte-level ones were given longer opcodes. 
The opposite was done for conven00. 

Next, the number of instruction-chains required to obtain 
50% coverage was captured. Figure 9 shows this result. This 
number illustrates the diversity in the benchmark. For 
example, ospf requires only 4 chains to get 50% coverage; 
this implies that if another benchmark contains some of 
these chains, then a good energy reduction can be seen. 
Aifir01 and ospf have 2 chains in common that falls in this 
range. Thus, a high dynamic energy reduction can be seen in 
ospf when the opcodes are optimized for aifir01. 
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Figure 9: Number of Chains to gain 50% Coverage 
 

Many of the explanations thus far in this section apply 
primarily to dynamic energy. Sub-threshold leakage is a 
dominating issue only in the memory hierarchy [8]. For this 
work, memory was not modeled since we were unable to find 
a synthesizable memory that can be interfaced with the 
Verilog core. Figure 7 show that leakage energy, on average, 
contributes only 9% of the total energy consumption. As per 
Table 3, leakage energy tends to increase slightly when there 
is some decrease in dynamic energy. This is because the 
primary way to reduce dynamic energy is to reduce switching 
in the processor interconnects. After further analysis of 
individual components of the processor, the increase in 
leakage energy was in components where switching is 
greatly reduced: the decoder and the instruction ports. 

B. Energy-Saving Patterns with Issue-Width Scaling 
Wider issue-widths are typically used to increase 

performance in processors. In statically scheduled machines, 
when the issue-width is changed, the whole benchmark, in 
general, must be re-compiled to gain the full-effectiveness of 
the compiler. In the previous section, the opcode-
configuration (trained using a single-issue benchmark), was 
tested using single-issue benchmarks. In this section, the 
effect of scaling issue-widths on the trained processor is 
explored. The processor was trained with single-issue 
benchmarks and tested using 2-issue, 4-issue and 8-issue 

executables. The static and dynamic energy reduction is 
reported in Table 4-Table 9 

 
Table 4: Percentage Reduction in Dynamic Energy (2 Issue) 

 
 

Table 5: Percentage Reduction in Dynamic Energy (4 Issue) 

 
 

Table 6: Percentage Reduction in Dynamic Energy (8 Issue) 

 
 
When the processor is scaled, the major components that 

handle instructions (and thus opcodes) are scaled as well. 
For example, an 8-issue processor had 8 decoders, 8 
instruction ports output from the fetch unit, and the freeze-
unit and the except-unit took 8 instructions as inputs. Thus, 
the energy distribution also scaled accordingly in Figure 6 
and Figure 7. 

In all the cases, the dominating instructions in the trace 
remained the same (since the algorithm or the operations in 
the C-code is unchanged). The copy instruction, in all cases 
accounted for << 0.1% of the dynamic total instruction. With 
the same dominating instructions, the reduction in the 
number of latches charged and discharged remained the 
same. This contributed to the major energy reduction in all 
cases. All benchmarks except routelookup had very low IPC. 
The IPCs barely changed between 1-issue and 2-issue 
configurations. IPC distribution for all issue-widths is given 
in Figure 10. 

 
Table 7: Percentage Reduction in Static Energy (2 Issue) 

 
 



  

Table 8: Percentage Reduction in Static Energy (4 Issue) 

 
 

Table 9: Percentage Reduction in Static Energy (8 Issue) 
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Figure 10: IPC for EEMBC Benchmarks 
 

Several instructions that were adjacent in single-issue 
were adjacent in multi-issue executable, thus they had 
similar energy-reduction values. A more powerful compiler 
that has a larger view of the instructions can show a change 
in this result. Routelookup is the most parallel benchmark. 
When the issue-width changed, the adjacent-instruction 
chains changed that causes some minor difference in energy. 

VII. CONCLUSION 
Energy reduction is an important issue in an embedded 

system. Low-energy systems help increase the battery life of 
the system. There are several components in a processor that 
can be optimized to improve energy consumption. It is 
necessary to save energy in all ways possible while not 
sacrificing the performance.  

In this work, a technique to optimize the instruction-set 
based on a sample of the workload for which the processor is 
designed is presented.  The presented technique neither 
causes any additional cycle-count nor increase the clock 
period of the base processor. The only hardware modification 
that is necessary is the instruction decoder. The newly 
generated instruction-decoder can be swapped with the 
original without any further modifications to the processor. 
Finally, it was shown that when the issue-width was scaled 
in this VLIW processor, the energy-savings scale 
accordingly. 

This paper shows that if the sample set is selected 
correctly, a 15-20% energy reduction is achieved by 

intelligently assigning opcodes and no performance is lost. 
In addition, it also provides a loose-rubric to design software 
for the particular processor. If the new software that is to be 
added to the system is designed in a similar structure and 
contains similar characteristics (e.g. memory intensive vs. 
computationally intensive or word-length vs. byte-length), 
there can be an energy reduction with no performance loss. 
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