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Reduction is an operation performed on the values of two or more key-value pairs that share the same key.
Reduction of sparse data streams finds application in a wide variety of domains such as data and graph analyt-
ics, cybersecurity, machine learning, and HPC applications. However, these applications exhibit low locality
of reference, rendering traditional architectures and data representations inefficient. This article presents
MetaStrider, a significant algorithmic and architectural enhancement to the state-of-the-art, SuperStrider.
Furthermore, these enhancements enable a variety of parallel, memory-centric architectures that we propose,
resulting in demonstrated performance that scales near-linearly with available memory-level parallelism.
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1 INTRODUCTION

The utility of sparse data is well known to the community due to its prevalence in machine-learning
algorithms (e.g., support vector machines (SVM) [58], text analytics [55]), in scientific-computing
applications [29] (e.g., Schur complement method in hybrid linear solvers [78], algebraic multi-
grid (AMG) methods [12], finite element analysis [39], molecular dynamics [41], many-atom
systems [46]), in graph analytics (e.g., breadth-first-search (BFS) [34], PageRank [16], minimum
spanning tree (MST), single source shortest path (SSSP) [19], matching [62], contraction [18],
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Fig. 1. Reduction of key-value pairs in a sparse data stream.

reachability [65], clustering [71], triangle counting [10], and cycle detection [79]), and in cyber-
security [8, 45]. Furthermore, novel deep-learning algorithms that are being proposed employ
network pruning and effectively “sparsify” [9, 37, 38, 51, 53, 77] them to reduce memory footprint
as well as required computation.

A significant and important operation for sparse data streams occurs during associative array
reduction (Figure 1). This is a set of associative operations performed on the values of two or more
key-value pairs that share the same key. General terms for key-value pairs are typically kv-pairs,
records, index-nonzeros (for sparse matrices), or tuples, where the key, value, and reduction operator
are application dependent.

We focus on important applications of reduction with a variety of workloads (Table 1) that span
several domains:

• General sparse matrix-matrix multiplication (SpGEMM) is used in various domains men-
tioned above [57]. Sparse reduction occurs during partial products accumulation.

• Firehose [8] is a collection of open-source stream processing benchmarks designed to rep-
resent cyber-security applications. It models a variety of sparse network event distributions
and their subsequent (soft) real-time analysis, requiring incremental updates to sparse data.
Sparse reduction occurs in the form of counter increments of a given IPv6 address.

Low locality of reference, low degree of reuse, and low compute-to-communicate ratios are in-
trinsic characteristics of sparse data streams, rendering even large caches ineffective. Therefore,
main memory (DRAM) access latency and redundant data movement through the memory hier-
archy are fundamental bottlenecks.

Numerous proposals to improve the status quo in sparse data research have been made by paral-
lelizing the application to maximize use of memory level parallelism (MLP) and parallel compute
resources (CPU [7, 27, 40, 61, 68, 70, 75] and GPU [22, 27, 35, 50, 54, 59]). With intelligent and
careful design, these techniques are by and large successful in hiding memory latency, although
they come at the cost of increased data movement, a significant fraction of which is often redundant.

For instance, as representative examples, consider three recent SpGEMM implementations: a
CPU-GPU performance portable framework [27], a GPU-only implementation [50], and an Intel
KNL-based analysis [57]. It is known that the outer-product algorithm (OP) for SpGEMM is more
efficient [60] than Gustavson’s original row-wise algorithm (RW) [36], because RW does signifi-
cantly less useful work per unit input data read compared to OP. Yet, all of these works (as well
as a majority of the literature [57]) employ RW instead of OP simply because caches cannot hold
the large number of temporaries (partial products) that OP generates. Such favoring of redundant
gather for optimized scatter is understandable as their focus is to maximize cache usage. However,
these are not necessarily tailored towards DRAM operational inefficiencies such as row activation
(ACT) and precharge (PRE) overheads.

Proposals in the hardware accelerator space recognize that even large caches do not capture
locality in such sparse data streams, and are often designed in a DRAM-centric manner. However,
these either specifically target SpGEMM [49, 60, 69] or are not suited for handling incremental/
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streaming updates to sparse data (GraFBoost [43]), and therefore are incapable of accelerating
applications such as Firehose. An exception to this is SuperStrider [24, 42, 72], although it still
suffers from significant DRAM overheads despite being a memory-centric design.

SuperStrider (Section 2.3) employs a vectorized binary search tree in DRAM and a bitonic merge
network near memory. To maximize useful bytes read per ACT (CAS per ACT), a DRAM row is
treated as a first-class citizen and is the fundamental unit of operation. The row logically forms
a node in the tree, where each node contains a vector of records sorted by key, as well as a pivot
(key) and a pair of child pointers.

The tree is built in two phases. Phase 1 (Addvec()) sends records across a dynamically deter-
mined path of the tree from the root node to a leaf node while performing any possible reductions
along that path. As a result, Addvec() results in possibly duplicate keys in different paths of the
tree, that are yet to be reduced. Phase 2 (Normalize()) performs two depth-first-searches (DFS)
on the entire tree to reduce and de-duplicate such records.
Addvec() is repeated multiple times to incrementally build the tree as new input that needs

to be reduced is streamed in. Normalize() is performed once, at the end. However, our analysis
indicates that the energy overhead of Normalize() is equivalent to re-running Addvec() on the
entire input stream again, a significantly excessive overhead.

Contributions

This article proposes novel algorithms and scalable architectures, known as MetaStrider, to
perform energy-efficient, memory-centric acceleration of sparse reductions. When compared
with state-of-the-art hardware accelerators for reduction, namely, SuperStrider [24, 42, 72] and
GraFBoost [43], MetaStrider realizes un-core energy savings of 5.3× and 14.9×, while also improv-
ing performance by 11% and 30% on average across all workloads, respectively (Section 7.2). The
key contributions of MetaStrider are three-fold:

Algorithmic improvements. MetaStrider uses expressive metadata (Section 3) to significantly
enhance SuperStrider operation, especially its Normalize() functionality. When combined with
metadata decoupling described below, a 10× reduction in DRAM ACT is seen in this context for a
5.2× reduction in Normalize() runtime (Section 7.3).

Architectural improvements. First, MetaStrider decouples metadata from the key-value store
(DRAM). Therefore, the latter is accessed only when absolutely necessary. This also enables tree
density improving techniques such as tree balancing (Section 3) that would otherwise have been
significantly more expensive in SuperStrider, where no such decoupling is done. As a result,
MetaStrider’s performance is within 8% of that of an idealized accelerator that performs reduc-
tion (compute and memory) in zero time.

Second, a light-weight merger is designed that performs merging, reduction and de-duplication
in O(K) time rather than O(K lg K) time (SuperStrider’s bitonic network). Furthermore, our merger
is designed to work on natively incremental data bursts (such as 64-/128-bit DRAM bursts) to
fundamentally maximize overlap of logic and memory (Section 4).

Leveraging MLP. Once the fundamental impact of DRAM latency on performance has been
significantly reduced, scalable algorithms and architectures are co-designed to further hide la-
tency via parallelism (Section 5). MetaStrider is able to achieve high bandwidth utilization and its
performance scales near-linearly.

Paper outline. Related work is summarized in Sections 1 and 2. Section 2 also presents charac-
terizations of the two benchmark sets used in this article, and details state-of-the-art software and
hardware approaches for sparse reduction. Section 3 introduces enhancements MetaStrider makes
to the metadata of SuperStrider. Section 4 describes the underlying architecture and formalizes
system integration via an API. Section 5 presents a systematic design space exploration for
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extracting MLP efficiently. Experimental evaluation is presented in Sections 6 and 7. We conclude
in Section 8.

2 BACKGROUND AND RELATED WORK

2.1 Workload Characterization

SpGEMM. As described in Section 1,C = A × B can be performed using row-wise (RW) or outer-
product (OP). Both of these algorithms generate a sparse set of partial products that need to be
reduced (summed / accumulated, in this case).

With RW, C is computed one row at a time by fetching one row of A and all rows of B in a
row-wise manner such thatCi, : =

∑
k Ai,k × Bk, :. As a result, all partial products generated in this

manner prior to reduction (accumulation) are confined to a single output row of C .
With OP, the kth column of A is multiplied by the kth row of B to generate the kth partial

product matrix. Reduction of all such partial product matrices results in the final output matrix
such that C =

∑
k C

k =
∑

k A:,k × Bk, :.
Observe that OP fetches the input exactly once but generates a large space of temporaries (partial

products), whereas RW fetches the input several times although it enables caching of temporaries.
It can be theoretically shown that OP fetches a factor ofN fewer inputs than RW assuming uniform
random matrices. When these are simulated with real input considered in this article, 30,000×
fewer input accesses are seen with OP. This insight is also demonstrated by [60]. Given its higher
ops per byte fetched, OP is chosen as the choice of implementation. MetaStrider is designed to
fundamentally be capable of handling the large number of temporaries that OP generates.

Firehose models soft real-time events of cyber-security applications. It consists of three stream
generator algorithms as its front-end, namely power law, active set and two-level, to simulate a
variety of network traffic. As with SpGEMM, each generator produces a stream of key-value pairs.
Here, key is a proxy for an IPv6 address and value is a counter (+bias bits) associated with each key.
The goal of the benchmark suite is to track the number of identical keys received, and whenever
the number of identical keys exceeds a certain threshold, the key is flagged (and the bias bits
associated with such keys are then tested against the ground-truth bias bits included in the input).

As can be expected of anomalous network events, these three generators are designed to be
unpredictable and to have a varied dynamic range. Therefore, the incoming key-value stream is
sparse and anomaly detection can be performed by applying a reduction (increment) operator on
elements with identical keys.

The reduction operator for SpGEMM is integer/floating-point addition (i.e., accumulation),
while Firehose requires saturating counter-increment and comparison operations. Note that other
applications that can be implemented as associative array reduction kernels may use other op-
erators as the reducer (known as collision function) [21, 31]. For example, the Bellman-Ford al-
gorithm [14] for single source shortest path (SSSP) can benefit from min as a collision function.
MetaStrider is designed to accelerate the reduction of any of these sparse data streams. For the
remainder of this article, 32-bit addition is used as the default reducer as an example.

Table 1 presents key features of the workloads used in this article. Matrices for SpGEMM are
obtained from the SuiteSparse collection [23], with the matrix selection being guided by prior
research in the field [22, 35, 60, 70] to span a wide variety of domains. Inputs for Firehose are
generated to insert a similar number of non-zeros into the sparse stream. Note that the primary
focus of this article is on addressing the fundamental memory latency problem (in a manner that
also scales gracefully). Therefore, the initial configuration is constrained to use a single memory
channel, which is fixed at 128MB for commodity high bandwidth memory (HBM), and the input
size is chosen accordingly to fit in memory. For the software baselines (below), an LLC (last level
cache) size of 4MB is used, which is a relatively massive cache given the small amount of memory.
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Table 1. Sparse Input and Application Properties

Application Input Domain nnzstream % repeated Amdahl’s LLC Miss

keys fraction Ratio of kernel

SpGEMM

2cubes_sphere (2cu) Electromagnetics 6.3M 50 0.8 0.24

belgium_osm (bel) Road Networks EU 1.5M <1 0.5 0.49

ca-CondMat (caC) Undirected Graph 700K 28 0.9 0.36

mario002 (mar) 2D/3D Problem 2.7M 22 0.8 0.58

netherlands_osm (net) Road Networks EU 2M <1 0.5 0.57

p2p-Gnutella31 (p2p) Directed Graph 500K <1 0.7 0.45

patents_main (pat) Wt. Directed Graph 2.6M 12 0.8 0.56

roadNet-CA (roa) Road Networks US 3M 1.5 0.6 0.55

Firehose

Power Law (pl)

Cyber Security 500K/1M/5M

88/91/96 n/a 0.01

Active Set (as) 5/8/17 n/a 0.33/0.41/0.54

Two Level (tl) 28/30/31 n/a 0.29/0.38/0.53

nnzstream denotes the number of non-de-duplicated kv-pairs in the input stream, out of which %repeated of the pairs

have identical keys whose values have to be reduced. The Amdahl’s fraction is calculated using a scalar binary tree-

based reducer (described in Section 2.2), and indicates a high relative importance from accelerating reduction (compute

operations and associated memory reads/writes). Finally, all workloads, with the exception of pl, exhibit low locality

of reference in their streams. The pl stream has a high degree of reuse owing to the fact that it was generated using a

relatively low range of static keys (100,000) by default. Therefore, we report MetaStrider results for pl, but omit them from

averages.

*The Amdahl’s fraction for Firehose is not shown because the kernel is the application.

MetaStrider exhibits over an order of magnitude improvement in performance for all these
workloads when compared to the baseline (with the exception of pl, for which traditional caching
is clearly more suited—see Table 1).

2.2 Software Reducers

Given that MetaStrider is a vectorized binary search tree, a scalar binary tree (where the keys in
the sparse stream form the nodes of the tree) forms a natural baseline to compare against. std::map
is a CPU-only associative container that contains unique key-value pairs, and is implemented as a
balanced red-black binary tree [1], allowing for lg N insertion complexity, where N is the number
of unique key-value pairs inserted.

A similar possibility is std::unordered_map. However, its performance with real workloads con-
sidered in this article is similar to, or worse than std::map. This is attributed to an inefficient default
hash function with long chains. Instead, a non-STL reducer built using the kokkos framework is a
more suitable hashmap, and is in-fact the state-of-the-art software reducer for SpGEMM.

The Kokkos HashMap Accumulator [27] is representative of a CPU-GPU sparse reducer,
consisting of four parallel arrays where the hashmap is stored in a linked list structure. The Ids
and Values arrays store the keys and values, respectively. The Begins array holds the beginning
indices of the linked list corresponding to the hash values, and the Nexts array holds the indices
of the next elements within the list. While this approach is significantly better than the baseline,
it is not explicitly designed to reduce DRAM ACT/PRE overheads.

2.3 Hardware Reducers

SuperStrider [72] introduces a novel, explicitly managed DRAM layout for sparse data to improve
row locality, where each DRAM row forms a node in a vector binary tree. To manage the tree,
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Fig. 2. Data layout of records and control fields/metadata in a DRAM-centric vectorized binary tree. The
Metadata fields of MetaStrider are more expressive than the control fields of SuperStrider and are decoupled
from the kv-rows. This results in direct and indirect benefits as described qualitatively in Section 3 and
quantitatively in Section 7. The values are omitted (in the figure) from the kv-rows for brevity.

Fig. 3. Example functionality of Addvec() with K = 5.
Step 1: Front-end supplies a pre-sorted 5-vector to insert and reduce.
Step 2: ReduceAndDedup() is applied on the root node, given the input. In this example, records with key =
802 were reduced and de-duplicated.
Step 3: The pivot of the root node partitions the resultant vector, to determine which records need to be
written back to the root, and which serve as input to recursively apply ReduceAndDedup() to one of the
node’s children. The relative direction of the larger partition determines the direction of recursion.

control fields in the form of a pivot (key) and a pair of child pointers are needed at each node, i.e.,
for every block of K-sorted key-value pairs that constitute the node, as shown in Figure 2. K=170
is used as the default in this article unless otherwise mentioned. This is derived assuming a 2KB
row [2] consisting of records whose keys are 64-bit and values are 32-bit (Section 2.1).

In general, two properties are desired of the tree:

(1) Property 1: For each node, all records in its left subtree have keys smaller than the pivot
key of the node, which, in turn, is smaller than the keys of its right subtree.

(2) Property 2: For each node, all keys in its left subtree are less than all keys of the node,
which are, in turn, less than those of its right subtree.

Property 1 is guaranteed to be true of the tree at any time including during incremental con-
struction. Property 2, which is more strict, is guaranteed to be true for the final state of the tree,
such that no duplicate keys exist.

The operational granularity being that of a DRAM row, the tree is built K records at a time.
K pre-sorted records are added to the tree (and reduced and de-duplicated with existing records
in the tree) via an operation known as Addvec(), which recursively applies a ReduceAndDedup()
function along a path P of nodes (rows) of the tree, as shown in Figure 3. This function takes two
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Fig. 4. Overhead of Normalize() in SuperStrider is >100% on average, thus motivating an improved, energy-
efficient design. (See Figures 11 and 14 for a quick look at how much MetaStrider reduces this.)

K-sorted vectors and generates a deduplicated vector of size at-most 2K , post reduction. Depending
on the pivot key at that node, the larger partition (of sizeK , in general) is sent as an input vector to
be applied recursively to the left or right child of the node, and the smaller partition (of size ≤ K ,
in general) is written back to the node. This acyclic path P traverses the tree starting at the root
and ends in a leaf of the tree (potentially creating a new leaf), or when there are no records left as
a result of ReduceAndDedup(), whichever is earlier. When a new leaf node is created, a constant
pivot key is chosen for that node as the median of its associated records.

In traversing P , a key observation that enables SuperStrider performance is that Addvec() visits
at most 1 node (row) per level in the tree while simultaneously performing the reduction operation
and avoiding random accesses to DRAM. The downside, however, is that there may be duplicates
along other paths of the tree, which have to be consolidated. A detailed example is available in our
previous work [72], but is omitted here for space constraints. In the operation of Addvec(), Prop-
erty 1 is always maintained. As a result, duplicates along different paths of the tree can be reduced
and deduplicated as a final post-processing step that fixes any nodes in violation of Property 2.

This step, known as Normalize(), consolidates the left and right subtrees of each node in a
DFS manner. This is done by traversing the left (right) subtree, extracting the leaf that houses the
maximum (minimum) key, and performing an Addvec() at the parent node with the contents of
the leaf as the input vector whenever Property 2 above is violated. However, this tree traversal for
Normalize() in SuperStrider is rather expensive in terms of energy, as quantified in Figure 4.

Furthermore, the latest version of SuperStrider employs a bitonic merge-based systolic network
to realize the ReduceAndDedup() functionality [42]. The control logic (and stride management)
is such that the inputs to the network are always K-sorted, an invariant that is re-enforced by
Addvec(). This means that ReduceAndDedup() can be done in O(K) steps rather than O(K lg K)
steps that the bitonic merger would require.

GraFBoost [43] is the most recent, state-of-the-art, out-of-core approach (such as
GraphChi [48], X-stream [66], etc.) that accelerates random key-value pair updates through a spe-
cialized sort-reduce accelerator, which sequentializes fine-grained random accesses for data pairs
stored in secondary (Flash) storage. The accelerator makes use of increasingly larger levels of re-
ductions, all of which are based on multi-level merge sort. The in-memory reducer relevant to this
work is a 16-1 merge tree composed of 2-1 bitonic mergers. GraFBoost requires the entirety of the
data stream that has to be reduced be made available in memory before the in-memory reducer
can be launched, rendering it unsuitable for accelerating the Firehose benchmark set. As such,
this article performs comparison for the SpGEMM workloads alone in this regard, with a “batch
mode” configuration, where all the partial products are available a priori in memory. Even so, the
MetaStrider approach of carefully managing a vector binary tree is superior (by about 30% in per-
formance and 15× in energy) to re-reading large chunks of memory in the style of a hierarchical
merge-sort (GraFBoost).
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Table 2. Description of MetaStrider’s Metadata Fields

MetaStrider “metadata”

SuperStrider “control fields’’ Additional fields unique to MetaStrider

Field Description Bytes Field Description Bytes

RowAddr DRAM row ID of node 2 Min Min key of node 8

Pivot Pivot key associated with node 8 Max Max key of node 8

Addr L DRAM row ID of left child 2 Max L Max key of left subtree 8

Addr R DRAM row ID of right child 2 Min R Min key of right subtree 8

2.4 Key Takeaways for Metastrider Design

Key design decisions based on analysis of the state-of-the-art are now summarized.
First, sparse streams have low locality of reference, rendering automatic caching ineffective.

MetaStrider chooses to bypass caches to save energy.
Given that DRAM accesses are on the critical path of the application, maximizing row locality

is key. The vectorized binary tree approach proposed by SuperStrider for optimizing data layout is
a promising one, but it can be made better via improved Metadata and its management (Section 3).

DRAM access occurs in bursts (64-bit for DDR4 and 128-bit for HBM). ReduceAndDedup() is the
fundamental compute operation in MetaStrider, and is implemented using a light-weight merge net-
work at the memory controller (Section 4). Designing the merge network such that it incrementally
constructs the output by consuming the input in this manner would natively hide merge network
latency without additional mechanisms such as write buffer, row re-map memory, and so on [72],
as described in Section 4.

Given that the merge network is small, it can be replicated to enable parallel operations on the
tree (Section 5) to leverage MLP. Finally, two variants of MetaStrider are considered:

• One that uses the memory-centric design without any extra hardware, at the cost of po-
tentially increased energy consumption due to traffic on the system interconnect. In such
a design, ReduceAndDedup() is performed by the front-end core instead of dedicated hard-
ware.

• One that uses dedicated logic for merging “near” memory, at the DRAM controller. Such
near data processing (NDP) not only reduces data movement but also enables an even
tighter logic-memory integration for future variants as technologies evolve in the third
dimension [30]. Therefore, unless otherwise mentioned, we assume this variant (and not
the non-NDP variant) to be the default for MetaStrider.

3 METASTRIDER METADATA

Recall from Section 2.3 that SuperStrider’s Normalize() is rather inefficient. Our analysis reveals
the reason for this as redundant DRAM row activations in traversing down a given subtree in
determining whether or not Property 2 is violated at the root node of the subtree. As a solution,
MetaStrider chooses to “memoize” certain range information such that testing for the property can
be done without pointer chasing. If the range information indicates that Property 2 is not violated,
then no further actions are necessary (meaning no DRAM ACT) at that node, and the DFS super-
step can continue. Typically, it is found that this is the majority scenario, which means that such
extra “metadata” is worth the extra spatial overhead (a classic speed vs space tradeoff).

Table 2 describes the resultant Metadata fields with numerical examples apparent in Figure 2.
Observe that Property 2 can now be translated as follows: maxL <min <max <minR for any node.
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To avoid confusion, in this article, the terminology of Metadata is unique to MetaStrider,
and “control fields” are used to describe the equivalent for SuperStrider. Since SuperStrider’s
Normalize() is now updated to benefit from these Metadata as described above, it is called
GlobalReduce() in the context of MetaStrider.

The primary advantage, a direct one, therefore stems from the introduction of these extra
fields. The overhead of DRAM ACT is paid only when absolutely necessary.

The secondary advantage, an indirect one, stems from decoupling the Metadata from the kv-
rows into a separate Metadata Store. This helps in improving structural properties of the tree such
as density and worst-case guarantees. For example, with AVL tree balancing [33],1 the tree is guar-
anteed to be dense irrespective of nature of sparse input, and such balancing can be done efficiently
on the Metadata Store alone (without disturbing the kv-rows). We find that decoupling and AVL
balancing alone reduce the average number of DRAM ACTs by over 20% when compared to an
implementation where all the Metadata fields above are present but are not decoupled. Formally,
the number of ACTs per call to Addvec(), irrespective of input, is bounded by the number of levels
of the tree, which, in turn, thanks to the AVL property, is bound to lg N , where N = nnz

K
is the

number of nodes in the tree.
Such decoupling also enables other downstream tree-optimizations such as partitioning, fanout,

and so on (Section 5) to be made without having to re-build the system from scratch.
The overhead due to the Metadata Store is a small fraction of the data being stored. From

Table 2, each node needs 46 bytes’ worth of Metadata, 32 bytes of which are key-range informa-
tion. For a 2 KB wide row being treated as a node, the overhead is therefore just about 2%. This
overhead can be reduced via partial omission or compression of fields, the details of which are be-
yond the scope of this article. These mechanisms may be designed based on the following insights:
(a) MetaStrider performance is not very sensitive to average access times of the Metadata Store
(Section 7), (b) key-range information accounts for a significant fraction of the Metadata overhead
(70%), (c) ranges are useful only during GlobalReduce(), (d) lower levels of the tree are less likely
to be accessed, and (e) range re-computation can replace memoization for nodes with shallow
sub-tree depths.

4 ARCHITECTURE AND INTEGRATION

Figure 5 presents, at a high-level, the micro-architecture that MetaStrider implements. Recall from
Section 2.4 that the non-NDP variant utilizes the CPU to perform the functionality of the NDP
unit. It can be deployed using off-the-shelf devices given the following two capabilities: ability
to bypass caches, and ability to control row management (possibly via partial knowledge of row
address interleaving). The remainder of this section focuses on describing the components of the
NDP unit and then discussing techniques of integrating MetaStrider with conventional system
software.

Merger Unit is responsible for performing ReduceAndDedup(), which is the recurrent sub-
step used in Addvec(). It reads records in bursts from DRAM on one side and the front-end on
the other. The ALU then compares the keys and performs reduction on their values if necessary.
If no reduction is performed (i.e., distinct keys are input from both sides), then the record with
the higher key is retained in the ALU input register for subsequent comparison, and that with the
lower key is pushed to the tail of the output FIFO. This process is repeated until K records are

1An Adelson-Velsky and Landis (AVL) self-balancing binary search tree ensures that the heights of the two child subtrees

of any nodes differ by at most one. In the context of MetaStrider’s vectorized binary tree, AVL balancing is applied on the

pivots of the nodes, without moving actual row contents.
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Fig. 5. A schematic of MetaStrider microarchitecture, implemented as part of the memory controller. In
this article, the memory controller is designed to be able to access both, system memory and MetaStrider
memory (pre-segmented at the beginning of the program using the Init() API).

read from each side. As described in Section 2.3, the output controller then sends the first/last few
(≤K ) records (depending upon the pivot) back to the open DRAM row, and retains the remaining
(typically K ) records in the FIFO. These latter records are then internally streamed to the ALU for
the next sub-step when records from one of the child DRAM rows are streamed-in.

For example, in the example from Figure 3, the first record read from DRAM and the input,
respectively, contain the keys 795 and 802. The ALU subsequently retains 802 and pushes 795 to
the tail of the FIFO. Next, the record with key 802 is read from DRAM, and the ALU detects a
collision and accordingly updates the associated value. Then, the record with key 900 is read from
the input, causing the ALU to retain 900 and push the record with key 802 and its updated value
to the FIFO. This process is repeated until both, the DRAM row and the input batch are read, and
this results in the FIFO containing 9 records in this example. As the output controller finds that a
majority of records are less than the pivot, it retains the lower 5 records in the FIFO to stream as
the input batch for the next ReduceAndDedup() operation (on the left child). The higher 4 records
are written back to the open DRAM row.

Note that this design, unlike SuperStrider’s bitonic network, interleaves logic (ALU) and mem-
ory operations at the granularity of a DRAM burst. Furthermore, the complexity is linear in K , as
opposed to log-linear (SuperStrider).

Metadata Store is akin to an SRAM cache in utility and dimensions, although it is explicitly
managed as a scratchpad. Ideally, it would be housed on-chip with the memory-controller for fast
access. Alternately, the LLC, which is largely unused for MetaStrider, can be used for this purpose.
However, either of these strategies may not be possible when the size of the tree grows such that
the total Metadata overhead is over several MB. In such a scenario, realizing the following key
insight is helpful: the first few levels of the tree (and therefore their Metadata) are significantly
more likely to be accessed frequently. Therefore, it would be advisable to “cache” these on-chip,
and spill the rest off-chip, perhaps into system memory. A detailed analysis of off-chip Metadata
Store is beyond the scope of this article. However, Section 7.3 demonstrates that nominal values
of average access latencies have an insignificant impact (<0.5%) on overall performance.

Control State Machine. The control logic is able to issue load and store commands to the Meta-
data Store and to the memory controller, in addition to Merger Unit data routing. These functions
are well within the capabilities of modern, smart memory controllers that perform sophisticated
scheduling, queue coalescing, address interleaving, idle row closure decision making, and so on
[56, 74].
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Table 3. MetaStrider Application Programming Interface (API)

API Comment

Init (sz, n, f) MetaStrider configures its K , MLP-strategy (Section 5),
reserves corresponding segment(s) of memory.

EnqReduce (k, v) Each core sends to memory K sorted records one by one.
Addvec() Each core signals Addvec() on its tree after K

EnqReduce() or end of input, whichever is earlier.
GlobalReduce() Each core signals end of input.
Lookup(key) Lookup the value of key or initiate in-order traversal.

API. Table 3 summarizes a simple, offload-based blocking API to integrate with the MetaStrider
engine. Note that the front-end producer of sparse data may be a general purpose CPU, accelerator,
external flash device [43] or network I/O [8]. Without loss of generality, “core” is used to abstract
these producers of sparse data. Sufficient memory is assumed available to house all records.

The most straightforward use-case scenario is where the programmer (or in certain cases, the
compiler) identifies a sparse data stream to be reduced, and accordingly initializes MetaStrider
with the size of records, number of cores supplying packed sparse data in parallel, and the de-
sired reduction operator. MetaStrider accordingly configures itself based on available resources,
reserves corresponding segment(s) of memory and returns the value of K to the program. Each
core then scatters the gathered sparse data to be reduced by first pre-sorting these, K at a time,
and then dispatching them in-order via EnqReduce(). Recall from Section 2.3 that this pre-sorting
is a necessary requirement for scalable Addvec() functionality. Note that standard sparse input
formats (see below) are pre-sorted by themselves. If the application is such that it is not possible
to obtain a pre-sorted input, then an incrementally sorted paradigm, such as a priority queue, may
be used while K records are gathered and buffered at the front-end. Even if it is decided to perform
a K lg K sort as a separate pre-processing step, our analysis in Section 7.4 reveals that the core
frequency required for this to be in parallel with a preceding Addvec() is modest (<1GHz) for
typical values of K (recall that Addvec() typically involves reading and writing multiple DRAM
rows in succession, and is therefore a relatively longer latency operation).

AfterK such EnqReduce() calls, an Addvec() call signals the MetaStrider controller that the end
of this batch (of size K or end of input) is reached. This process is repeated until the input is con-
sumed. GlobalReduce() is then called to ensure the entire dataset is reduced and de-duplicated,
thereby priming the data for downstream operations.

For clarity, the above is also explained via a specific example in the form of how the MetaStrider
API may be used in the context of a single-core SpGEMM, as shown in Listing 1.

Conversion to/from other representations. Commonly used linear sparse formats include
ordered-coordinate, (doubly) compressed sparse row (D)CSR [15, 17, 28, 44, 76]. For hyper-sparse
matrices such as those of interest in this article, CSR offers little benefit over ordered-coordinate
as there are few non-zeros per row. DCSR offers benefits only when a group of consecutive rows
are all zero. Thus, ordered-coordinate (typically stored as arrays of keys and values) are most
commonly used in this space [3]. All of these representations have the disadvantage of not being
able to support dynamic updates efficiently as they fundamentally require insertion into the middle
of an array. Nevertheless, MetaStrider operation is independent of and is compatible with inputs
in any of these formats. Note that the MetaStrider representation most closely resembles ordered-
coordinate with DRAM-friendly enhancements.

Conversion from these formats into MetaStrider format is a direct application of the API when
the original input is streamed record-by-record into the MetaStrider engine. Thus, no explicit con-
version is required as conversion can be combined (implicitly) with downstream operations.
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Listing 1. Demonstration of MetaStrider API.

Converting back to a conventional linear ordered format from the MetaStrider format can be
achieved easily by reading out the records back from the tree via an in-order DFS traversal. How-
ever, further operations on MetaStrider data do not require conversion to a traditional format as
long as the operations are associative. In other words, downstream algorithms can stream in data
from the MetaStrider tree in a DFS or BFS manner directly without having to store an intermedi-
ate linear matrix format into memory. Furthermore, several hash-based applications do not even
require ordered input data [57]. As such, we envision such explicit write-out to occur only once
all processing on data is complete, and only if necessary for backward compatibility.

Explicit or implicit conversion to/from these formats can thus be done on the fly, in parallel with
downstream operations. Therefore, there is negligible impact on performance due to conversion.

Lookup. Finally, one can extract the value associated with key κ via Lookup(κ), where the
Metadata is consulted to perform a binary search over the nodes of the tree (using the pivots)
to locate the node whose key-range includes κ. If such a node is found, then the corresponding
DRAM row is opened. Then, a binary search within the row is performed to locate κ as the records
in the row are already sorted.

5 LEVERAGING MLP

So far, the article has focussed on MetaStrider from the perspective of a single bank of memory
(MLP = 1). Modern memory systems have significant MLP available via bank, rank, and channel
level parallelism. For example, HBM has 8 channels, each of which comprises 8 banks, resulting
in an MLP of 64. This section explores several mechanisms for parallelizing a MetaStrider tree to
leverage available MLP and obtain improved performance (assuming the input rate (front-end) can
keep up).

Figure 6(a) depicts the baseline MetaStrider tree (N nodes and lg N levels) sprawling a single
bank of DRAM, as well as parallel approaches described below.

This section focuses on Addvec() and not on GlobalReduce(). This is because our Metadata
improvements (Section 3) have significantly reduced the overhead of the latter (Section 7.3) such
that Addvec() is now the most critical step. Furthermore, parallelizing GlobalReduce() can ben-
efit from years of parallel DFS research [63] and is therefore not necessarily a novel contribution
of this article in itself.
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Fig. 6. Four novel techniques of vectorized binary tree management to leverage MLP. Different colors indi-
cate different banks of memory that can be accessed in parallel.

Note that with the exception of Tree Partitioning approach, none of the other three approaches
require the programmer or compiler to make any code changes. If a power user wishes to override
the default strategy, then it is sufficient to simply extend the Init() API to specify a bit-mask to
indicate which mode(s) to deploy.

5.1 Tree Partitioning

The single tree can be spatially partitioned by key intoT trees, each containing N

T
nodes and lg N

T

levels. This enables the trees to function independently and in parallel (Figure 6(b) shows T = 2).
Furthermore, the unit of work for each tree is reduced as they each have fewer nodes and levels
are significantly reduced when compared to the baseline MetaStrider tree. For these benefits to
fully manifest, the following are desirable:

Load balancing. For shortest critical path, all the trees should have approximately an equal
number of records to reduce. A round-robin distribution of keys (tree t gets keys such that
key%T == t , where % is the modulo operator) is a simple, yet effective approach at this. Load bal-
ancing can be further improved via hashing, provided the hash is perfect and preferably minimum
and uniformly distributing.

For example, it is known that the Residue Number System (RNS) [32] can help distribute contigu-
ous data to a wider range [25, 26, 73]. Such a hash function would be computed by concatenating
the set of residues (moduli) R (κ) of key κ against a pre-determined set of co-prime bases B such
that R (κ) = {κ%b,b ∈ B}. For keys generated by indexing into a matrix of at most 100M × 100M
dimensions, it can be shown that B = {45, 46, 47, 49, 53, 59, 61, 67}, B = {2049, 2050, 2051, 2053}, or
B = {4194305, 4194306} for T = 8, 4, 2, respectively, are suitable for such RNS hashing. Other sim-
ilar hash functions that help extract MLP in modern systems, such as XOR-based hashes [64, 80]
may also help improve load balancing. Finally, note that any such record-to-tree assignment is to
be applied by the front-end prior to the call to EnqReduce() to satisfy the pre-sorted input con-
dition. Our evaluation therefore is bounded by T = 8 to limit the amount of intra-front-end state
communication.

Parallel NDP and front-end hardware. The front-end should be capable of feeding all trees
in parallel for maximum benefit. In other words, the front-end should be able to issueT Addvec()
calls in parallel. Next, the control logic, Merger Unit, and Metadata Store need to be replicated at
some level. Note that the former two are relatively light-weight by design and can therefore be
replicated.
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Fig. 7. The “EX” stage can be sub-pipelined to leverage MLP.

The Metadata Store need not increase in size as the total number of nodes (hence total Metadata)
doesn’t change with tree partitioning. For example, if the unpartitioned tree has 100 nodes, then
with T = 4 partitions, each partition would nominally have 25 nodes (resulting in each partition
being a shallower/faster tree). However, it is desirable to implement the Metadata Store as a multi-
banked store for parallel access.

API usage. The programmer or compiler must perform the following for updating T trees in
parallel, to benefit from the tree partitioning strategy:

(1) Specify n = T in Init().
(2) Create T threads, each with a thread-private version of sortedQueue (cf. Listing 1).
(3) Each thread produces records, applies the load-balancing hash to its keys and then sends

to appropriate thread.
(4) Each thread then calls EnqReduce(), Addvec(), and GlobalReduce().

5.2 Pipelining

Given sufficient resources, pipelining is a compelling mechanism of extracting parallelism from
a stream of independent instructions. For pipelining MetaStrider, resource is equivalent to MLP
and instructions are equivalent to recurrent calls to Addvec(). Recall that each such call typically
traverses several levels of the tree, accessing exactly one unique DRAM row (assume F = 2) per
level (hence, no data stalls are possible). Therefore, given sufficient MLP (read no resource stalls),
consecutive calls to Addvec() can occur at every time step (τ ) as shown in Figure 7, where τ is
the time required to perform ReduceAndDedup() on a row. This is similar to deep-pipelining or
sub-pipelining the function units in the execute stage of a traditional processor.

Resource allocation. The intuition of our approach to minimize resource stalls stems from the
following insight: assigning each pair of consecutive levels of the tree to different memory banks
eliminates resource stalls for a (sub)pipeline depth of 2. It can then be seen that, for a tree of depth
D ≤ MLP , assigning each level to a different bank (level-partitioning) enables pipelines of depth
MLP (Figure 6(a) shows D = MLP = 4).

However, beyond a sufficiently deep level Dthres ≤ D, the number of rows in that level may
exceed the size of a bank. For example, with a 128MB (64K x 2 KB rows) bank, Dthres = 16. To
account for bank capacity, this level-partitioning approach is applied only to the first Dthres − 1
levels of the tree, and subsequent levelsd ≥ Dthres are each sliced equally across the banks, resulting

in batches of 2d

MLP
rows of level d per bank.

Load balancing. When D > MLP , the above level-partitioning mechanism requires further
thought for levels at depth d , where MLP ≤ d < Dthres. In other words, a relatively small MLP
would result in increased resource stalls in the pipeline if the load distribution to the banks is not
uniform. A simple mechanism to address this is to assign such levels to different banks in a round-
robin (RR) manner. Note two properties of the tree, as one goes down the tree: (i) the number of
rows in each level doubles and (ii) the probability of a level being accessed decreases. RR is not
cognizant of either of these properties, thus begetting an improved heuristic.
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If D were known a priori, then levels 0 and D would be mapped to bank 0, levels 1 and D − 1 to
bank 1, and so on. Such an allocation factors in both of these properties above to realize a balance
that is as close to the ideal as possible. However, as the size and percentage of repeated keys of
the input is not known, D is not static and hence cannot guide resource allocation. Therefore, we
propose an incremental variant of this heuristic where levels are assigned in a ping-pong (PP)
manner such that level d maps to bank (d%MLP ) if d%(2 ×MLP ) ≤ MLP , else, it maps to (MLP −
d%MLP ).

More complicated approaches that are not level-partitioned are possible when this is expressed
as a graph coloring problem. However, according to our analysis, a simple heuristic such as PP is
able to leverage about 80% of available MLP on average (and reduces resource stalls by over 35%
when compared to RR). Yet other designs may choose to literally cache the “rows” of the first few
levels of the tree that tend to be accessed most frequently, although those approaches may not
scale easily with increased number of trees.

Supporting hardware. Explicit pipeline buffers are not necessary as the DRAM rows implicitly
serve as buffers. The Merger Unit needs to be replicated to take advantage of MLP, similar to
Section 5.1. The Metadata Store capacity remains unchanged but requires parallel access to serve
multiple inputs simultaneously. The front-end still produces a single input to Addvec() at a time,
its rate being determined by pipeline depth (MLP).

5.3 Grouping

Yet another mechanism of leveraging multiple banks is to group two rows of the same index across
two banks into the same node (Figure 6(c)). The motivation is that it would increase K logically,
thus improving algorithmic efficiency because of denser trees and higher probability of parallel
reduction. For example, say K = 170 records fit in a row. By grouping such rows across 4 banks
and associating them with a single tree node, K = 680 is realized.

This results not only in trees with reduced depth but also in lower Metadata overhead thanks to
the reduced number of nodes. However, grouping increases the load on front-end as it now has to
pre-sort gathered data in batches of 680 records rather than 170 records before sending it across
for scatter, although it reduces the Metadata Store overhead by 4×. Also, MLP is not utilized within
a tree if the same Merger Unit as baseline MetaStrider is used. If MLP has to be utilized, then a
log-hierarchical network similar to SuperStrider’s bitonic merger is better suited, although it does
not fully support fine-grained logic-memory overlap.

5.4 Fanout

The arity/fanout (F ) of a binary tree can be increased to F > 2 to decrease the number of levels
of the tree to logFN (Figure 6(d) shows F = 3), thereby facilitating faster MetaStrider operation.
However, it then becomes necessary to increase the number of DRAM rows associated with any
given node to F − 1 to maintain the granularity of operation to be that of a DRAM row (recall
from Section 2.3 that row-granularity operations are fundamental to increasing row locality in a
vectorized tree design).

As an example of contradiction, assume each node in a 3-ary tree is still associated with a single
DRAM row. A 3-ary node would by definition have 2 pivots instead of 1 to result in 3 partitions
corresponding to its 3 children. During ReduceAndDedup(), consider the task of partitioning (at
most) 2K records in the output buffer of the Merger Unit into 3 partitions. Depending on the na-
ture of the 2 pivots, it cannot be guaranteed that at least one partition has at least K records in
it. Therefore, it is not possible to propagate any single partition to a child without violating the
row-granularity of operations. Propagating < K records to a child would result in significantly
diminishing returns (increasingly lower useful bytes accessed per subsequent ACT) as we traverse
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down the tree. However, propagating two partitions down the same direction would violate Prop-
erty 1 (when generalized to F ≥ 2, see below). Instead, if 2 DRAM rows are associated with a 3-ary
node, then the task of partitioning would involve (2K + K = 3K ) records. It can then be guaranteed
that at least one partition has at least K records.

The conclusion is that MLP ≥ F − 1 is necessary to retain the row-granularity of operations.
Increasing F is, in essence, another way of leveraging MLP. Note, increasing fanout can leverage
MLP without requiring a parallel front-end.

The Merger Unit architecture is similar to the F = 2 case, with the output buffer being of size
F × K and the control logic being updated to support F partitions.

Changes to the algorithm. One may gain intuition for the general working of updated
Addvec() and GlobalReduce() based on the text above and on the generalized version of Prop-
erty1, 2 (Section 2.3) below, for each F -ary node:

(1) Property 1: All records in its f th subtree have keys smaller than the f th pivot key of the
node, which is, in turn, smaller than the keys of its ( f + 1)th subtree, where 0 ≤ f < F .

(2) Property 2: All keys in its f th subtree are less than all keys of the node, which are, in turn,
less than those of its ( f + 1)th subtree, where 0 ≤ f < F .

Impact on Metadata. An F -ary node requires storage of (F − 1) pivots, addresses of its (F )
children, and key-ranges of each of the following: (F ) partitions of the node, (F − 1) rows associated
with the node and (F ) subtrees of the node (some of these metadata overlap and are rendered
redundant when F = 2). As a result, when compared to the per node Metadata size in bytes of
F = 2 (46 bytes: Section 3), an F -ary node’s Metadata experiences an increase by a factor of about
0.7F where F > 2. However, note that upon increasing F , the number of nodes reduces, because
each node now consists of upto (F − 1)K records. As a result, the total overhead of Metadata in
bytes, when compared to F = 2, is an input-dependent factor α , where α ∈[ 0.7F

F−1 , 0.7F ] and F > 2.
A detailed derivation of these details is omitted for space constraints.

Summary of Section 5. In this section, 4 orthogonal approaches to leveraging MLP are pro-
posed, all of which can be used in conjunction with each other. This results in a tradeoff-rich design
space, given hardware constraints and availability. Based on recent industry trends, the authors’
preference of these are as follows: Partitioning > Pipelining > Grouping > Fanout. In particular,
a combination of Partitioning and Pipelining is found to be most practical and efficient. A more
quantitative treatment is available in Section 7.4.

6 EVALUATION METHODOLOGY

Recall from Section 2.1, the focus of this work is to tackle main memory latency for sparse data. As
such, the first-round of simulations deploy a single channel of 128MB of HBM main memory with a
relatively liberal 4MB of LLC to favor the software reducers conservatively. The software baselines
benefit from bank-level parallelism (8 banks in a channel), whereas MetaStrider conservatively
does not leverage this in these first round of simulations. As is standard practice, an FR-FCFS
memory scheduler, and an open-adaptive row management policy are used. Although the reducers
in this article (including MetaStrider) would perform with any DRAM without significant changes
in efficiency, HBM is chosen because its stacked architecture naturally lends scalability to near-
data processing (NDP), allowing for easier comparisons in future works.

Since the workloads have low compute intensity, the LLC and DRAM are driven with an inorder
core (with 8-way 32KB L1 I/D caches). The system is simulated using the gem5 full system simu-
lator. In particular, MetaStrider is implemented as a separate MemObject connected to the system
interconnect. MetaStrider API is implemented using gem5’s pseudo-instructions at the front-end.
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Table 4. Simulation Infrastructure

Section Tool
Baseline, kokkos 2.2 Unmodified gem5 [13]
MetaStrider 4 gem5 + cache bypass
SuperStrider 2.3 + dedicated accelerator memory
GraFBoost 2.3 + hardware at memory controller
Rapid design space 5 Cycle-accurate, in-house simulator
exploration using HBM timing parameters [2]

Power, area
Logic ALU [52, 67]

Memory SRAM-CACTI [11], DRAM [20]
(22nm models) System Interconnect OpenSMART [47]

A second round of simulations are designed to evaluate the scalability of MetaStrider with avail-
able MLP. For simulation speed, a cycle-accurate, in-house simulator is used for this purpose.

A summary of the simulation infrastructure is in Table 4. This article makes an effort to compare
MetaStrider against other state of the art reducers (Sections 2.2, 2.3) across various domains (CPU,
GPU, accelerator, out-of-core) to provide reasonable insights. For fair comparison, we have re-
implemented these original works using the infrastructure above to better suit them for sparse
associative reduction, making assumptions in their favor where possible (for example, ignoring
the overhead of SuperStrider’s control fields and row-remap memory). Finally, to compare against
GraFBoost, which requires all the partial products to be available in memory a priori, a “batch”
mode is also implemented.

7 EXPERIMENTAL RESULTS

7.1 DRAM Performance

Row activation. Figure 8(a) shows a significant reduction in ACTs (and subsequent PRE). An
average reduction of over 17× and 37× is seen for kernels in SpGEMM and Firehose, respectively,
when compared to the baseline. Furthermore, these are 1.8× and 1.6× better than SuperStrider
thanks to MetaStrider’s improved Metadata capability.

Row hit rate and CAS per ACT. Bytes read per ACT of a 2KB DRAM row is close to 64 for the
baseline, because the default read-out is the cache line size. Kokkos significantly improves locality
characteristics, reading over 300 bytes per ACT, for a row hit rate of close to 80%. MetaStrider and
SuperStrider achieve a row hit rate in excess of 95% and bytes per ACT of over 2000.

DRAM bytes read. As a result of the above observations, MetaStrider reduces DRAM pressure
by 1.9× and 4.9× for SpGEMM and Firehose, respectively, when compared with the baseline, as
shown in Figure 8(b). These are significantly superior when compared with the other reducers
(both hardware and software). In fact, SuperStrider ends up reading more bytes from DRAM on
average for SpGEMM workloads on average when compared to the baseline because of its row-
heavy operations, especially during its Normalize() phase.

7.2 Full System Results

Energy Savings. For space constraints, a summary of un-core kernel energy savings due to
MetaStrider is depicted in Figure 9(a), when averaged across all workloads. (For fairness, for the
non-NDP MetaStrider variant, the front-end core’s contribution to ReduceAndDedup() is viewed
as un-core energy, and is denoted by “Merger Unit”). Clearly seen, when compared to the base-
line, MetaStrider reduces energy consumption significantly for all system components. The added
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Fig. 8. MetaStrider significantly reduces the number of activates as well as DRAM traffic, when compared
to the baseline (higher reduction is better), thanks to its memory-centric design and intelligent Metadata.

Fig. 9. The most energy efficient reducer is the NDP variant of MetaStrider, realizing 5.3× energy savings
when compared with the next best reducer, upon averaging across all workloads. Furthermore, it does so
with a 11% performance improvement.
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Fig. 10. When all of the input kv-pairs are already available in memory, MetaStrider reduces un-core energy
consumption by almost 15× and is 30% faster than the state-of-the-art approach for such merging because
of its superior handling of DRAM rows.

overheads due to the Merger Unit and Metadata Store are dwarfed by these savings. Even when
compared to SuperStrider, there is significant improvement in energy savings due to DRAM and
the Merger Unit.

Area Overhead. The Metadata Store requires 7.74mm2 for 3MB of Metadata required, which
can be significantly reduced if techniques such as grouping (Section 5.3) or compression (Section 3)
are used. Furthermore, the store can also use existing LLC-SRAM or system DRAM if a dedicated
budget is not available, as described in Section 4. The Merger Unit requires a mere 0.06 mm2,
which, when compared to an HBM die size of 40–100mm2 [4–6], is a very small fraction. There-
fore, techniques that leverage MLP (Section 5) that may require some form of replication of the
Merger Unit can also be easily realized on the same die. Note that this is significantly less resource
intensive when compared with SuperStrider’s bitonic merge network (0.24mm2) and GraFBoost’s
hierarchical merge tree (2.36mm2).

Kernel Speedup. Figure 9(b) depicts the kernel speedup over the baseline when averaged across
all the workloads. The relative trend among the configurations can be explained easily based on
the detailed breakdown presented thus far. For SpGEMM workloads, MetaStrider approaches the
Amdahl limit with a deficit of less than 8%. Note that in the case of the Firehose benchmark set,
the kernel is the application.

Batch Mode. When all the input kv-pairs are already available in memory, i.e., when the input
is no longer an incremental stream of records, the state-of-the-art approach for such merging
is GraFBoost. Note that while such batch-mode input may be possible for SpGEMM workloads,
it is infeasible for other incremental / streaming applications such as Firehose, for which only
MetaStrider would be applicable. Figure 10 shows that in batch mode, MetaStrider reduces un-core
energy consumption by almost 15× and while also improving performance by 30%, when compared
with GraFBoost, thanks to its improved DRAM behavior and more efficient merger unit. Recall that
GraFBoost uses a 16-1 merge network (and successively merges exponentially increasing batches
of records), contributing to over 94% of its un-core energy.

7.3 Sensitivity Analysis

Overhead of GlobalReduce(). The performance overhead incurred due to GlobalReduce() is
just about 2% on average for MetaStrider, shown in Figure 11. Thanks to enhanced Metadata, this
is over 5.2× faster than SuperStrider’s Normalize().

Benefit of near data processing. Figure 12 shows that even the non-NDP variant of
MetaStrider reduces traffic on the system interconnect when compared to the baseline by 1.5×
and 3.2× for kernels in SpGEMM and Firehose workloads, respectively. Upon deploying NDP,
there is a further reduction of over 22× in traffic that is compounded. NDP helps further reduce
energy consumption (without affecting performance despite its slower logic, because the merger
unit operation is completely overlapped with DRAM operation).
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Fig. 11. The % performance overhead incurred due to GlobalReduce() (lower is better) is just over 2% for
MetaStrider, when averaged across all workloads.

Fig. 12. Primary benefit of near data processing (NDP) portrayed via the reduction in bytes of traffic on the
system interconnect (higher reduction is better). Note that MetaStrider reduces traffic even without NDP.

Speed of Metadata Store. When the Metadata size exceeds area budget, the Metadata Store
needs to be adapted to use a combination of slow-fast memories (Section 4), or pay the penalty
of extracting key-ranges via decompression or re-computation (Section 3). In either approach, an
increase in average access time is the result. However, no significant impact (<0.5%) on kernel
speedup was observed when the following representative access times were simulated across all
workloads: (i) Idealized, where there is no overhead in accessing the store, (ii) SRAM, and (iii)
DRAM, where all the Metadata is in an SRAM/DRAM store, respectively.

Real-time capability. When GlobalReduce() is omitted, a call to extract the value for a key κ
via Lookup(κ) may yield one of the following cases: (i) Exact match (record with key=κ found and
correct value returned), (ii) Partial match (key found but incorrect value, prompting incomplete
reduction), and (iii) Missing key (key not found). This is of specific importance to Firehose, where
real-time flagging is necessary. In this context, MetaStrider achieves a favorable distribution of
96.5%, 2% and 1.5%, respectively. When no tree balancing is done, case (iii) is no longer a possibility.
Recall that after a call to GlobalReduce(), both (ii) and (iii) would be eliminated.

Benefit of Metadata decoupling and tree balancing. Decoupling the Metadata from the
kv-rows and tree-balancing independently improve DRAM efficiency. However, tree balancing is
practical only with decoupling, because of the metadata-heavy nature of re-balancing. As a result,
MetaStrider deploys a combination of tree balancing and Metadata decoupling. Figure 13 shows
that a 20% reduction in DRAM ACTs is observed due to AVL-balancing of the tree (when Metadata
is decoupled), upon averaging across all workloads.

7.4 Scalability Analysis

This section demonstrates quantitatively the tradeoffs described in Section 5.
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Fig. 13. Benefit of Metadata decoupling and tree balancing (lower #ACT is better). UB = UnBalanced, B =
Balanced. ND = Not Decoupled, D = Decoupled.

Fig. 14. Performance of various fanout/partitioning configurations when averaged across all workloads, in
terms of DRAM rows accessed (lower is better). MLP = (F − 1) * T, where F = fanout, T = #trees. Perfor-
mance fundamentally improves with either technique, even in the absence of tree balancing. Furthermore,
GlobalReduce() overhead is significantly reduced when compared to SuperStrider (Figure 4).

Fig. 15. A pareto-style tradeoff analysis in DRAM delay and energy for various combinations of tree parti-
tioning and fanout, when averaged across all workloads.

Partitioning vs Fanout. Figure 14 evaluates various design points that combine partitioning
and fanout, while also depicting the scalability of the performance overhead of GlobalReduce().
Although the height of the tree decreases with increasing fanout, note that fragmentation increases
as each node in an F -tree spans (F − 1) rows, resulting in an increased average depth per node
insertion. Increasing T rather than F is therefore favorable, assuming sufficient front-end core
parallelism is available to scatter to each partition.
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Fig. 16. MetaStrider performance scales near-linearly with available hardware resources using techniques
from Section 5. The number of partitions (trees) is always equal to the number of front-end cores. A sub-1
GHz core frequency is sufficient to drive MetaStrider, unless a largeK is needed. From Figure 15, partitioning
is favored over fanout. Therefore, in (a, b), partitioning+pipelining is used. In (c), the impact of row-grouping
(alone) is depicted.

Figure 15 shows that increasing T rather than F is more favorable from both, an energy stand-
point and performance stand-point. Furthermore, a load balancing hash for the partitions such
as RNS hashing further improves gains. In the figure, note that iso-T frontiers are indicated with
green dashed lines and iso-MLP with black dashed lines.

Pipelining. Ideally, one would therefore allocate a partition for every unit of MLP. However, in
a system that is constrained by the number of front-end cores driving MetaStrider, that may not
be possible. Instead, pipelining across banks may be used, although perfect MLP utilization would
be traded off. Figures 16(a) and 16(b) demonstrate that this is still largely effective in providing
near-linear scalability in performance.

Grouping. As the reader may have guessed, the effect of grouping is similar to that of log-
ically increasing K of the system. This is attractive provided the front-end can provide batches
of K-sorted vectors accordingly. Figure 16(c) shows super-linear benefits of increasing K when a
correspondingly fast front-end core is used.
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8 CONCLUSION

Sparse data applications are widely used in several domains today. Because of their unique char-
acteristics of having low compute-to-communicate ratio and little-to-no locality of reference,
these sparse data streams perform poorly when traditional algorithms and architectures are used.
MetaStrider addresses these fundamental latency-bound inefficiencies in these streams in a man-
ner that also scales with available parallel resources. The proposed memory-centric architectures
and algorithms are significantly more efficient than comparable approaches to the problem. Fur-
thermore, the resultant performance of sparse applications is within 8% of that of an idealized
accelerator that performs the compute and memory operations associated with sparse reduction
in zero time. MetaStrider has been designed such that future technologies that further improve
logic-memory integration would result in even more efficient operation. The authors hope that
this work will motivate even more novel, memory-centric architectures that tackle sparse, data-
irregular streams in the future.
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