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ABSTRACT
Memory latency is a critical bottleneck in today’s systems. The
organization of the DRAM main memory necessitates sensing and
reading an entire row (around 4KB) of data in order to access a single
cache block. The benefit of this organization is that subsequent
accesses to the same row can be served faster (row hits). However,
accesses to other rows incur high latency to prepare the DRAM
bank for a subsequent access and read the contents of the new row
(row conflicts). Therefore, the decision on how long a row is held
open for is a key factor that determines the access latency incurred
by requests to memory.

While prior work has tackled this problem, existing solutions
are either complex or ineffective. Our goal, in this work, is to build
a row management scheme that is simple yet effective. Towards
this end, we first build a scoreboard scheme that determines how
long to hold a row open, by i) predicting the number of row hits
and row conflicts for different lengths of time rows are held open
and ii) picking the time that maximizes row hits without increasing
row conflicts significantly. We then observe that a small set of
rows tend to experience a large number of back-to-back accesses.
We build a row exclusion scheme that identifies such rows and
prevents them from being closed until the next access to a different
row arrives. Our evaluations show that our scoreboard and row
exclusion policies together incur less than 0.4% of the additional
storage cost of themost effective prior mechanism, while surpassing
it in terms of performance.
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1 INTRODUCTION
Memory latency is a critical performance bottleneck in today’s
systems. Requests that miss in the on-chip caches and need to access
the main memory experience significant delays and cause high
performance degradation. The key reason for such high latencies
is the organization of the DRAM main memory system. While a
DRAM memory system offers parallelism at multiple levels of the
hierarchy, requests to the same memory bank cannot benefit from
bank-level parallelism, causing serialization. Furthermore, there are
many key timing constraints that limit how quickly back-to-back
requests to a bank can be served. When a cache block worth of
data needs to be read from a bank, an entire row (around 4KB)
worth of data needs to be sensed and read into an internal row
buffer/sense amplifier (activation). Subsequent accesses to data in
the same row can be served from the row buffer (called a row hit).
However, before the next access to a different row can be served at
the same bank (called a row conflict), the bitlines that enable sensing
and reading data from the DRAM cells need to be precharged to
a certain voltage level. An access to a bank whose bitlines have
already been precharged incurs only the activation latency (called
a row miss). The activation and precharge latencies are significant
(around 12-18 ns) in typical DDR memories.

Holding a row open until the next request to a different row
arrives (known as open row policy) maximizes the number of possi-
ble row hits, but incurs the precharge latency every time a request
to a different row than the currently open one is served. On the
other hand, closing the row after each request (closed row pol-
icy) incurs the activation latency even for consecutive requests
to the same row. Prior work has sought to find a middle ground
between these two extremes by managing when to hold a row open
vs. when to close a row. Some prior works [13, 26, 28, 29] employ
low complexity schemes that predict whether or not to hold a row
open based on recent past behavior or probabilistic estimates. Other
prior works [1, 17, 34, 37] have explored schemes that track row
hit/miss behavior at a per-row/address granularity and employ
such per-row/address information to determine when to close a
row, incurring high complexity.We observe that these schemes
are either simple, but ineffective or effective, but complex.

Our goal in this work is to achieve the best of both performance
and complexity. We seek to build a DRAM row management scheme
that is simple yet effective.

Towards this end, we make two key observations. First, we ob-
serve that we can determine an optimal length of time (timeout
window) for which rows should be held open globally, (i.e., irre-
spective of row address) if we knew the row hit and conflict counts
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for different timeout windows. Such knowledge of row hit and con-
flict counts across different timeout windows would enable us to
determine the length of the timeout window that would maximize
row hits, while not increasing row conflicts significantly. We build
a scoreboard mechanism to project whether each request would
result in a row hit, miss or conflict for different timeout windows.
Specifically, a row conflict could become a row miss if a row is
closed earlier or a row miss could become a row hit if a row is held
open longer. Our scoreboard mechanism projects such conversions
for different timeout windows for each request. The row hit and
row conflict counts computed from such projections for different
timeouts are then employed to determine the best timeout window
periodically, to adapt to various application phases.

Second, we observe that although the scoreboard mechanism is
effective in capturing global row hit and conflict trends to determine
a timeout window that is effective across rows, there is a small set
of rows that experience a large number of back to back accesses.
We build a row exclusion mechanism that identifies such rows
and holds them open even after the timeout window has expired
and closes such rows only after the next access to a different row
arrives at the same bank. This enables us to capture the inherent
row locality that is available for such rows.

1.1 Contributions
Managing the row buffer effectively is an important aspect of DRAM
access latencymitigation. Prior works have explored various DRAM
row management policies, however, they are either simple but
ineffective or effective but complex. As such, we make the following
contributions:
• We develop the key insight that the knowledge of row hit and con-
flict counts for different timeout windows enables determination
of the best timeout window to maximize row hits, without in-
creasing row conflicts significantly. Towards this end, we build a
scoreboardmechanism to project the row hit and conflict counts
for different timeout windows. As a result, our cycle-accurate
simulations indicate a performance improvement of 6.3%, on
average for memory intensive workloads, over a static timeout
window.
• We design a row exclusionmechanism that identifies a small set
of rows with inherently high row buffer locality and subsequently
holds such rows open beyond the global timeout window. When
used in conjunction with our scoreboard mechanism, an average
performance improvement of 6.8% is seen over a static timeout
window, for memory intensive workloads.
• The scoreboard and row exclusion mechanisms together incur an
additional storage overhead of less than 0.4% of that of the
most effective previousmechanism, while, in fact, surpassing
it in terms of performance improvement.

2 BACKGROUND AND MOTIVATION
In this section, we first describe the organization of a typical DRAM
mainmemory, its operation and the different timing constraints that
contribute to the high DRAM access latency. We then focus on the
row management policy and its impact on performance, motivating
why we seek to specifically tackle the DRAM row management
policy.

2.1 DRAM Organization and Operation
The DRAM main memory is organized hierarchically as channels,
ranks and banks, as shown in Figure 1a. Banks represent the smallest
exposed unit of parallel access in a DRAM memory system. Banks
that are part of the same rank share some peripheral access circuitry,
whereas banks in different ranks are decoupled, providing more
potential for parallelism than banks in the same rank. In some cases
(such as DDR4), banks are clustered into bankgroups, such that
accessing them in a time division multiplexed manner hides the
speed difference between the faster interface and slower DRAM
core. The ranks (and banks) on a channel share the address and data
buses. The DRAM memory system is designed to support different
degrees of parallelism at multiple levels of the hierarchy. However,
requests to the same bank are serialized and experience delays in
access, due to the internal organization of a DRAM bank.

A DRAM bank is a 2 dimensional array of capacitive cells that
store data in the form of charge. Cells are connected to wordlines
in the horizontal direction and bitlines in the vertical direction, to
enable access, as shown in Figure 1b. Each bitline is connected to a
sense amplifier that senses and amplifies the charge stored in the
cell. A bank is in turn implemented as a collection of subarrays; the
collective array of sense-amplifiers associated with all the subarrays
of a bank is commonly referred to as a row buffer. Before the data
in a cell can be accessed, the bitline needs to be precharged to a
Vdd/2 voltage level (precharge or PRE operation). When the data in
a cell needs to be accessed, the corresponding wordline is activated,
connecting the cell to a bitline. The charge in the cell perturbs the
bitline from its Vdd/2 voltage level. This perturbation is amplified
by the sense amplifier and the bitline voltage is raised to 0 or Vdd
depending on the data value (charge) in the cell. This constitutes
an activate operation. Only after a row has been activated and read
into the sense amplifier/row buffer, can the data in the row be read
through a Column Access Strobe (CAS) operation.

In order to save command bandwidth, modern memory systems
support additional commands such as auto-precharge (RDA/WRA),
which would automatically close a row after a column access. How-
ever, when not command bandwidth limited, the difference between
RDA and RD+PRE is insignificant. The larger question is to deter-
mine when such row-closing commands (auto-precharge or other-
wise) have to be issued, and this is indeed the focus of this paper.
For example, always using auto-precharge commands effectively
emulates a closed row policy, which is evaluated in this paper.

2.2 Impact of the precharge and activation
latencies

These precharge and activate operations are time consuming (12-18
ns in typical DDR DRAM memories) and contribute significantly to
overall memory access latency. Any memory access to a different
row than the one currently open incurs the precharge and activation
latencies (called a row conflict). A memory access to the same row
as the one that is currently open does not incur the precharge and
activation latencies (row hit) whereas a memory access to a bank
that has no row currently open incurs only the activation latency
(row miss).

Figure 2 shows the results of a limit study, in which the ACT
latency is avoided whenever possible for a request, and the PRE
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Figure 2: Performance benefits from perfect row close.

latency is hidden altogether, for a set of representative workloads.
Specifically, we assume that the row buffer can be kept open for
all subsequent requests to an already open row (resulting in row
hits), while closing it just in time to not incur the precharge latency
for an access to a new row (preventing row conflicts). The results
are normalized to a scheme where a row is kept open for 50 cycles
after the last CAS, if no other request arrives to a different row
within the same bank. As can be seen, the performance gains from
avoiding the precharge and activation latencies are 8.2% across
all these workloads. Therefore, a row buffer management policy
that keeps a row open just long enough to capture the most row
hits, while closing the row just in time to minimize row conflicts
and transforming them into row misses instead, could achieve
significant performance benefits.

In some cases, for more targeted domains, the application can
be adapted to reduce the number of redundant row activations and
precharges by co-designing the layout of data in DRAM and its
access pattern [6, 33]. However, it is highly improbable that this
approach would scale to general purpose workloads, and a runtime
mechanism in some form becomes necessary.

2.3 Balancing Performance and Complexity
Several prior works have explored policies that seek to manage the
row buffer open/close policy to maximize row hits and minimize
row conflicts. On the one hand, there are schemes [13, 26, 28, 29]
that seek to employ low complexity schemes to maximize row hits
and minimize row conflicts towards improving performance. For
instance, Jagtap et al. [13] adapt the basic open/close policy to make
the idle row closure decision depending on which row of the given

bank would be accessed by the pending request queue.With slightly
more overhead, Park and Park [26] employ a two-bit saturating
counter to track row hit and conflict outcomes and depending on
the prediction from the saturating counter, either keep a row open
until the next activate closes it, or precharge immediately after a
read from a row. A patent by Rokicki [28] presents the high level
idea of probabilistically keeping rows in only a subset of banks
open at any time. These schemes are very rudimentary and do
not capture applications’ memory access characteristics effectively,
thereby not resulting in significant performance gains (as we show
in Sections 7.2).

On the other hand, other prior works [1, 17, 34, 37] have explored
schemes that track row hit/miss behavior at a per-row granularity,
incurring high complexity. Specifically, Xu et al. [37] propose to
employ a two-level access based predictor (similar to branch pre-
diction). Khurshid et al. [17] propose to employ a global history
buffer like structure to store sequences of previous accesses and
predict row open/close behavior based on tracking such previous
access sequences. Awasthi et al. [1] propose to track the number
of reads to a row the last time it was open and hold the row open
until the same number of reads have occurred when it is accessed
in the future. Stankovic et al. [34] propose a two-pronged approach,
the first of which is a liveness detector using a 2-bit counter per
row of memory, and a global dead time predictor that keeps track
of per bank access intervals. These schemes incur high cost and
complexity to track access characteristics for each row/address.

In summary, prior works in idle row closure are either inef-
fective or very expensive. As a result, industry-strength memory
controllers have resorted to the simplest implementation – that
does not suffer from the polarizing drawbacks of the open/close
policy – a fixed (static) timeout policy [2], which forms the baseline
used in this paper.

Our goal in this work is to achieve the best of both performance
and complexity. Specifically, we seek to manage the row buffer to
maximize row hits and minimize row conflicts towards effectively
reducing memory access latencies and improving performance,
while incurring low hardware cost.

3 KEY OBSERVATIONS
Having described the need for a DRAM row management scheme
that is effective in reducing latency/achieving high performance at
low cost, we describe our key observations that enable us to build
such a mechanism. We seek to achieve an effective balance between
performance and complexity by employing a combination of two
schemes that i) effectively capture and employ global DRAM row
access behavior and ii) augment this global row access information
with per-row access characteristics, for a small set of rows.

3.1 Effectively Capturing Global Behavior
The ideal length of time to hold a row open after an access, can be
effectively predicted by determining the row hit and conflict counts
for different timeout windows.

As we describe in Section 2.2, after a read access to an open
DRAM row, if the DRAM row is held open, subsequent accesses
to the same row would hit in the row buffer and incur low access
latencies. Whereas, if the row were closed immediately after the
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first access, subsequent accesses to the same row would miss in the
row buffer and incur the activation latency. However, if the row
is held open indefinitely, the next access to a different row would
result in a row conflict and incur the precharge latency. An ideal
row management policy would hold the row open just long enough
to capture all the subsequent row hits, and would then close it so
the next request to a different row results in a row miss, rather than
a row conflict.

If we knew the number of row hits and conflicts we would incur
if we held DRAM rows open for different lengths of time or timeout
windows, as we call them through the rest of the paper, we could
pick the timeout window that maximizes row hits without increas-
ing row conflicts significantly. Table 1a shows row hit and conflict
counts from a representative phase of execution of length 10000
memory requests, for one of our workloads. The current timeout
window of 50 cycles results in 7263 row hits and 684 row conflicts.
Increasing the timeout window to 100, 150 and 200 cycles increases
the number of row hits steadily. However, it is for a timeout window
of 150 cycles that the relative increase in hits vs. conflicts – calcu-
lated as difference between the increase in hits and the increase in
conflicts with respect to the current timeout – the highest.

Table 1: Row hits, conflicts and speedup for diff. timeouts

(a) Row hit and conflict counts

Timeout
Window

Row
hits

Row
conflicts

HitIncr-
ConflictIncr

50-current 7263 684 0
100 8223 662 982
150 8933 717 1637
200 8959 762 1618

(b) Speedup

Speedup
(%)
0%
7.6%
19.5%
17.35%

Table 1b shows the speedup (with respect to the current time-
out window) for these different timeout windows, for the same
representative workload phase. As can be seen, there is a clear cor-
relation between the relative increase in row hits vs. conflicts and
the speedup. This is because the activation and precharge penalties
are similar to each other in most typical DDR technologies. Hence,
the latency benefit of converting a potential row miss to a row
hit and the latency increase from converting a row miss to a row
conflict are similar. Therefore, measuring/estimating the row hit
and conflict counts for different timeout windows serves as an effec-
tive mechanism to capture the latency impact of different timeout
windows.

We observe that the row hit and conflict counts for different timeout
values can be determined by projecting each request to be a row hit,
miss or a conflict for each of the different timeout values. Figure 3
shows an example command sequence for three different timeout
windows, where 100 is the current timeout window. The first CAS is
treated similarly for all timeout windows. The second CAS, though,
would become a miss with a shorter timeout window of 50 cycles,
since it arrives more than 50 cycles after the first CAS. It would
still remain a hit though for larger timeout windows. The third
CAS, on the other hand, would hit in the row buffer with a larger
timeout window of 200 cycles, since it arrives within 200 cycles of
the second CAS. We propose to project such hit, miss and conflict

100

50

200

ACT CAS CAS

CAS

ACT CAS CAS CAS

ACT CAS

ACT CAS

MISS

MISS

MISS

MISS

MISS

MISS

HIT

HIT

HIT

PRE

PRE

PRE

tRCD tRP

ACT CAS ACT

50

Timeout
window
(cycles)

Figure 3: Hit conversions for requests to the same bank, for
different timeout windows.

outcomes for each request, for different timeout windows. These
projections enable us to determine the best timeout window for
different program phases, as we describe in detail in Section 4.1.

3.2 Accounting for Local Variations
We observe that a small set of DRAM rows experience a large number
of consecutive accesses. In such cases, holding the row open until a
read to the next row arrives can enable these accesses to hit in the row
buffer.

While the scoreboard mechanism described in Section 3.1 cap-
tures global DRAM row access characteristics, some rows might
experience a very different access pattern and the globally deter-
mined timeout window might not be effective in capturing the
inherently high row locality available for such rows. We seek to
identify such rows and employ a different, localized timeout win-
dow for such rows alone, that is better tuned to capture row hits
while not increasing row conflicts significantly for such rows.

Figure 4: Histogram of number of CASes per ACT, averaged
over the benchmark suite. Several instances of row activa-
tion are associated with a high number of subsequent con-
secutive accesses. A closed page policy is equivalent to set-
ting the number of CASes per ACT to unity.

Specifically, we observe that some rows experience a large num-
ber of consecutive accesses, which could be row hits if the row were
held open long enough, but would result in row misses if it were
closed early. Figure 4 shows a histogram of the number of CASes to
an open row, across all our workloads, when the row is kept open
until an access to a different row arrives. As can be seen, a small
set of rows experience significantly higher number of CASes as
compared to other rows. The global scoreboard mechanism would
pick a timeout window that would maximize the number of row
hits overall without increasing the number of row conflicts signifi-
cantly. However, this globally determined timeout window might
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not capture row hits effectively for rows that tend to experience a
larger than average number of consecutive accesses.

We propose to identify such rows that experience a large number
of consecutive accesses and prevent such rows from being closed
even after the timeout window expires. We detect such rows by
tracking instances when a row is closed upon expiration of the
timeout window and the same row is opened again. Once we detect
such a row, we place it in a row history structure and prevent the
row from being closed upon expiration of the timeout window,
thereby enabling more row hits to such rows. This selective row
exclusion mechanism enables us to capture differences in local row-
level access behavior from the global row access characteristics and
effectively augment the scoreboard scheme. Furthermore, since we
track row-level behavior only selectively for a small number of rows
(a 64 entry row tracking structure is effective in our evaluations),
the additional hardware cost we incur is minimal.

4 MECHANISM
In this section, we describe the details of our proposed row manage-
ment mechanisms. First, we describe our global scoreboard scheme
that predicts how long DRAM rows should remain open after an ac-
cess, in order to capture possible accesses to the same row (row hits),
while not increasing the number of row conflicts (Section 4.1). Next,
we describe a local scheme that predicts which rows would benefit
from staying open for longer, beyond what the global scoreboard
scheme dictates (Section 4.2).

4.1 Global Scoreboarding
Overview. Figure 5 shows a high level depiction of our scoreboard-
ing mechanism to determine the timeout window. The scoreboard
is maintained at the memory controller at a per-bank level and
determines the timeout window for all rows in that bank. For every
incoming request, the hit, miss or conflict status is determined for
each of the different timeout windows being tracked and evaluated
in the scoreboard, as we describe below. The scoreboard is then
updated accordingly. These row hit and conflict counts are then
used to periodically determine the timeout window, as we describe
below.

Scoreboard update. Upon each request, the possible row hit,
miss, conflict status of the request is determined for each of the
timeout windows tracked in the scoreboard. We seek to maximize
row hits without increasing row conflicts significantly, since doing
so effectively reduces/hides the activate and precharge latencies.
Hence, we track only the row hit and conflict counts in the score-
board. The hit, conflict status is projected for each request, for
different timeout windows, using the basic idea illustrated in Fig-
ure 3. Specifically, a row miss request could be converted to a row
hit request for larger timeout windows than the currently employed
timeout window. On the other hand, a row conflict request could
be converted to a row miss when the projected timeout window is
shorter than the current timeout window. These conversions are
projected for different timeout windows, with respect to the time
of the previous CAS (as shown in Figure 3).

The algorithm in the flow chart in Figure 6 shows the details of
how these conversions are projected for a request, for all timeout
windows. Upon an activate command, if the activate is to a different

row than the previously open row, it would result in a row conflict
for a specific timeout window if there would not have been enough
time to safely (timing constraint wise) issue a precharge after the
given timeout window expires. This is evaluated for each timeout
window, with lower values of the timeout window more likely to
result in a row miss, while larger values of the timeout window are
more likely to result in a row conflict. On the other hand, if the
activate command is to the same row as previously open, it would
have resulted in a row hit for a specific timeout window had the
time between the current request and the last CAS been smaller
than that timeout window. Similarly, for a CAS command, the time
between the current request and the last CAS would determine if
the command would result in a row hit or a row miss.

Scoreboard use and reset. The row hit and conflict counts that
are tracked in the scoreboard are used to periodically evaluate the
timeout window, as shown in the procedure below. The timeout
window with the largest difference between the hit count increase
and the conflict count increase reflects the timeout window that
maximizes row hits, without increasing row conflicts significantly.
Hence, we pick this timeout window for the next N requests. We
further define a parameter, variation threshold, to only update the
timeout if there was a substantial benefit projected.

Repeat Every N Requests:
T = currTimeout
# Compute hit and conflict increments from scoreboard
for t in {timeout windows in scoreboard }:

hitsIncr [ t ] = hits [ t ] − hits [T]
conflictsIncr [ t ] = conflicts [ t ] − conflicts [T]
hits [ t ] = conflicts [ t ] = 0

# Pick the timeout that maximizes hits ,
# and minimizes conflicts
nextT = argmax ( hitsIncr [] − conflictsIncr [])

# If variation is not substantial , do not change timeout
if max(hitsIncr [] − conflictsIncr []) <

(1 + variationThreshold ) ∗ min( hitsIncr [] −
conflictsIncr []) :

nextT = T
# nextT represents the timeout for the next N requests

4.2 Local Row Exclusion
Some rows tend to be closed upon expiration of the timeout window
only to be opened immediately after several times over consecu-
tively, as shown in Section 3.2. The timeout window determined
by the global scoreboard mechanism would not be able to capture
the potential row hits effectively for such rows. Our row exclusion
policy strives to identify such rows and prevent such rows from
being closed upon expiration of the timeout window. It consists of
two key components - detection of such rows and exemption of
such rows from closure upon the timeout window expiration, in
the future.

Detection.We detect rows that tend to be closed due to timeout
expiration and opened again immediately, by tracking the last open
row and if it was closed due to timeout expiration. If an activated
row is the same as the previous row and was closed due to the
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Figure 6: Scoreboard update

expiration of the timeout window the previous time it was open,
it is placed in a row exclusion store. We explore two variants of
tracking rows in the row exclusion store – i) track the full address of
the row, including the channel, rank, bank information, ii) track only
the row address, since a physical page could be distributed across
the same row in multiple channels, banks due to the interleaving
policy and rows containing the same physical page could behave
similarly (we call this row aliasing). We observe that tracking the
entire address provides better performance (Section 7.4) without
increasing cost significantly, since even a small row exclusion store
(64 entries) is effective.

Exemption from timeout based closure. The rows tracked
in the row exclusion store are exempt from closure upon expiration
of the timeout window. Specifically, when the timeout window for
a row has expired and the row is being considered for closure, the
row exclusion store is looked up. If the row is present in the row
exclusion store, it is not closed right away. Instead, the row is only
closed when a request to another row in the same bank arrives.

Managing the row exclusion store. We explored multiple re-
placement policies for when the row exclusion store is full and a
new row needs to be placed in it. We observe that a policy that
picks a row that caused the most recent row conflict as a result of
its row exclusion to provide the best performance.

5 HARDWARE OVERHEAD
In this section, we provide details of the implementation overhead
of our proposed mechanisms. Both of our mechanisms are intended
to be integrated into the memory controller, with no modification
required to commodity DRAM itself.

5.1 Scoreboard
The scoreboard itself consists ofN entries per bank, with each entry
storing three values:

• Timeout value for which the scoreboard entry is maintained.
[8 bits].
• Number of (projected/measured) row hits during a window
of operation, for this timeout. [16 bits].
• Number of (projected/measured) row conflicts during a win-
dow of operation, for this timeout. [16 bits].

This amounts to a total of 5 bytes per scoreboard entry, per bank.
Our evaluated configuration (Section 6) implements 2 channels
with 8 banks each, thereby rendering a storage overhead of 560
bytes for N = 7 entries.

In updating the scoreboard entries (Figure 6), the memory con-
troller needs to store the following, for each bank:

• Previous open row address. [16 bits].
• Last CAS cycle. [32 bits].
• Next CAS type. [(N =)7 bits].
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Table 2: Baseline Configuration

Parameter Dimensions

OoO Fetch/Retire width/ROB 4/4/128
L1 size/associativity 32kB/8-way
L2 size/associativity 256kB/8-way
L3 size/associativity 2MB/8-way

Load to use latency L1/L2/L3 4/4+12/4+12+31 cycles
MSHR per cache 16
Caching policy Non-inclusive/LRU

Core-Memory frequency ratio 8:3
DRAM JEDEC Standard LPDDR4 (2ch: 1ra/8ba each)
Address interleaving Channel (RoBaRaCoCh)
Scheduling policy FRFCFS_prioritizeHit
Scoreboard entries 7 per bank

Timeouts 50/100/150/200/300/400/800
Variation threshold 3%
Update window 30000 requests

Row exclusion store 64 entries
Replacement policy Most recent to cause conflict

This amounts to an additional overhead of 110 bytes, for a total
footprint of 670 bytes for the scoreboard.

5.2 Row exclusion
We now quantify the storage overhead of a 64-entry row exclusion
store, with and without row aliasing (Section 4.2):

• Previous open row address, already available due to score-
board.
• Row closure type. [1 bit].
• Counter to assist replacement policy. [6 bits per entry].
• Excluded row address. [16 bits (with row aliasing) or 20 bits
(without) per entry].

Maintained at a channel granularity, this amounts to a total
overhead of at most 432 bytes. Together with a scoreboard, the total
overhead is a little over a kilobyte.

The logic to implement either of our mechanisms is achievable
with a small set of comparators and other simple logic gates.

6 METHODOLOGY
We extend ramulator [20] to simulate our scoreboarding and row
exclusionmechanisms at thememory controller, in addition to other
row closure mechanisms that we compare against. Ramulator [20]
models the DRAM main memory system in detail. It employs a
simple out of order core frontend that is driven by a Pin [23] tool.
The pin traces collected store both, the memory instructions as well
as the number of non-memory-ops between successive memory ops.
The front-end does not stall due to data dependencies originating
from non-memory-ops and prefetches are turned off. The cache
hierarchy consists of non-inclusive L1, L2, L3 caches.We summarize
our baseline system and mechanism parameters in Table 2. We
evaluate single-core traces from the SPEC 2006 benchmark suite
[36] and use multi-programmed traces from the same suite for
evaluating two-core systems in Section 7.3.

7 EVALUATION
7.1 Performance Results
Figure 7 shows the performance of our combined scoreboard and
row exclusion mechanisms against several variants of open, closed
and fixed timeout policies. We draw two observations. First, we
increase the idle row closure timeout from 0 (closed), to 100 (time-
out_100), to 200 (timeout_200) and then all the way to infinity
(opened). We observe that increasing the timeout yields gains ini-
tially owing to increased row hits rather than row misses. However,
with an open row policy, row conflicts begin to negate the bene-
fits of row hits. The mechanisms proposed in this paper strive to
minimize the relative number of row conflicts while also trying
to achieve as many conversions to row hits as possible. Second,
our proposed mechanisms not only provide improved performance
over canonical idle row closure mechanisms on average, we provide
the added benefit of not causing slowdowns when the applications
do not benefit from such optimizations. This is possible because of
the dynamic, adaptive nature of our mechanisms, both at the global
and local levels.

7.2 Comparison to Prior Work
Static timeouts are most ubiquitous although there have been pro-
posals that aim to update the timeout dynamically to a certain
extent (Sections 2.3 and 8). This is mainly because such proposals
provide little benefit or are expensive to implement.

Instead, more successful proposals try and capture global behav-
ior or local behavior of idle row closure. In this section, we present
a more detailed look into examples that capture global behavior –
smith [26], local behavior – abp [1] as well as the scheme that is
the most performant among the prior works evaluated – ldp [34].
Recall of prior works.We first present a brief recall of these prior
mechanisms before we present quantitative comparisons to them.

Smith employs a 2-bit saturating counter per bank, that is incre-
mented/decremented respectively on row hits/row conflicts. The
value of the saturating counter is used to predict if a row hit or a
row conflict would occur and the DRAM row is correspondingly
held open or closed following a memory request.

Abp is a row management scheme that tracks the number of
potential row hits at a per-row level. ABP employs a tracking struc-
ture with a large number of entries ( 8192) to track the number of
row hits seen to each of these rows the previous time the row was
accessed. The row is held open until the same number of requests
is seen. This tracking structure is updated when the number of
requests to a row is different from the predicted value.

Ldp proposes to use i) per-row saturating counters to predict if a
row is likely to see a hit or a conflict upon the next access (similar to
smith, but at a per-row level, for every row of memory), ii) per-bank
counters that track, on average, when a row is not likely to see
any more accesses. These two predictors are employed together to
make row management decisions.
Performance vs. area overhead. Figure 9 summarizes the perfor-
mance and hardware cost of these prior works and our proposal, in
a pareto-style chart. Four key conclusions are in order.

First, while the implementation overhead of smith is low, it’s
performance is also low. This is because of its inability to capture
local behavior.
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Figure 7: Our mechanisms outperform static idle row closure timeouts and do so without negatively impacting the perfor-
mance of any single workload. Workloads on the left are memory intensive, while workloads on the right are memory-non-
intensive.

Figure 8: Our mechanisms outperform prior work that adapt to global or local behavior individually. Workloads on the left
are memory intensive, while workloads on the right are memory-non-intensive.

Figure 9: Not only do our mechanisms outperform prior work that adapt to global or local behavior, but also do so at an
overhead that is insignificant.

Second, abp provides improved performance, however, it comes
at an increased overhead - 8K entries per channel (as published)

requiring over 56 kilobytes of total storage (20 bits for row address,
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Figure 10: Weighted speedups are calculated for the work-
load mixes when used with scoreboarding and row inclu-
sion, with timeout_50 as the baseline. Workload mixes are
separated by memory intensity, where M stands for mem-
ory intensive andN stands for non-memory-intensivework-
load.

8 bits for threshold, and ignoring the overhead due to LRU counters).
Note that this is over 50× the storage overhead than our proposal.
Furthermore, abp causes significant performance degradation in
certain workloads, as shown in Figure 8.

Third, ldp extends this tradeoff to achieve more improved perfor-
mance, again, at an even higher overhead. Recall that the liveness
predictor alone requires a 2-bit counter per row, therefore causing
the overhead to be over 256 kilobytes of storage.

Finally, our scoreboarding and history buffer proposals are not
only effective in improving performance, but do so at a very low
hardware cost. In fact, we achieve performance that is on par or
better than the fastest prior work, at an overhead that is less than
1
250

th of its cost.

7.3 Sensitivity to System Parameters
We simulate multi-programmed workloads on a 2 core system and
find that our proposed mechanisms are capable of yielding signifi-
cant benefits under a wide variety of workload mixes, as shown in
Figure 10. The workload mixes are arbitrarily chosen, but are clas-
sified based on their memory intensity to include all combinations
of memory-intensive and memory-non-intensive applications.

Figure 11 depicts the impact of changing the memory configu-
ration. As our mechanisms target DRAM latency, we see similar
performance improvements upon increasing the number of chan-
nels. Using a suboptimal address interleaving policy (such as row
interleaving - ChRaBaRoCo) that does not exploit sufficient mem-
ory level parallelism causes a significant performance slowdown of
the entire system, thereby also lowering the impact idle row clo-
sure mechanisms have on system performance. In conclusion, our
proposed mechanisms provide for application speedup irrespective
of memory configuration, although the relative impact depends
upon the sensitivity of the configuration to idle row closure.

7.4 Sensitivity to Mechanism Parameters
Table 3 summarizes the relative impact that row exclusion as well
as row aliasing (if row exclusion is used) has on performance. Using
scoreboard alone (without row exclusion) renders superior perfor-
mance when compared to both smith and abp. However, further
capturing local behavior via the proposed row exclusionmechanism
yields an added performance boost that is sufficient to outperform
the fastest prior scheme. We observe that storing the entire address,

Figure 11: Impact of memory system configuration on our
proposed mechanisms. Scoreboard and row exclusion pro-
vide application speedup, but their extent depends upon
how sensitive the configuration is to optimal idle row clo-
sure.

including channel, bank information avoids aliasing and provides
better performance.

Table 3: Impact of row exclusion and row aliasing

% Speedup No row Row No Row
over timout_50 exclusion Aliasing Aliasing
Memory Intensive 6.34% 6.41% 6.79%
All Benchmarks 3.35% 3.47% 3.95%

While we evaluate several replacement policies, we find that a
policy that eliminates the most recent entry that excluded a row
from idle row closure only to cause a row conflict after the fact, to be
best performing. For scoreboard parameters, we find that varying
the variation threshold, update window and number of scoreboard
entries still render superior performance to other schemes. We omit
detailed results for these as they do not provide any further insight
than what has already been discussed in this paper thus far, to the
community.

However, we wish to point out the following methodology in
terms of selecting scoreboard entries. With the ACT and PRE la-
tencies in the order of 25-30 cycles, it is only logical to space the
timeout windows by at least 50 cycles or so. Our simulations indi-
cated that this was indeed beneficial. Later, to explore the impact of
larger jumps, scoreboard entries with much higher timeout values
were also included, for an added performance boost with little-to-no
additional cost.

8 RELATEDWORK
DRAM rowmanagement policies.We describe the closest prior
DRAM row management policies qualitatively in Section 2.3 and
compared to them quantitatively in Section 7.2. Patents on DRAM
row management have proposed the high level idea of a hill climb-
ing scheme [16, 29] that increments or decrements the timeout
window based on row hit and conflict counts. However, these, be-
ing patents lack concrete mechanisms and descriptions. In principle,
the notion of hill climbing suffers from the fundamental challenge
of being stuck in local minima. Our scoreboard mechanism has
a much more holistic view of the benefits/pitfalls of potentially
employing each timeout window when it makes the decision of
picking the timeout window.
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HAPPY [9] builds on the concepts introduced by other mech-
anisms; their focus being on reducing implementation overhead
by aggregating performance counters at the granularity of address
bit positions instead of maintaining counters for each DRAM row.
While HAPPY is complementary to our scoreboard mechanism and
could be augmented with it, it would not be useful to combine it
with our row exclusion mechanism as the fine grained behavior
leveraged by row exclusion would not be captured by HAPPY en-
coding. Loss of fine grained sensitivity is indeed acknowledged in
their paper.

Relaxing DRAM timing parameters. Prior work [3, 21] ob-
serve that DRAM timing parameters are derived by building large
margins that account for temperature and process variations. Hence,
they propose to relax timing parameters when the operating con-
ditions permit to do so. Hassan et al. [11] observe that recently
accessed cells store higher charge due to their capacitive nature
and relax timing constraints for accesses to recently accessed rows.
Scoreboard and row exclusion are complementary to these tech-
niques and can be used along with them to better tackle DRAM
latency.

Prefetching to tackle latency.A large body of prior work [7, 8,
12, 14, 15, 25, 32] has explored various different kinds of prefetchers
that understand access patterns and exploit knowledge of access
patterns to prefetch data from memory into the caches, ahead of
when the data is accessed by a demand request. Our proposed mech-
anisms are complementary to such prefetching. Specifically, our
proposed DRAM row management mechanisms can mitigate the
DRAM precharge and activation latency latencies for prefetch and
demand requests alike, thereby enabling more timely prefetches.

Changes to DRAM internals. Kim et al. propose sub-array
level parallelism [19] that enables access to subarrays in paral-
lel, resulting in fewer bank conflicts and lower latencies. Lee et
al. propose tiered-latency DRAM (TL-DRAM) [22], a scheme that
partitions a sub-array into two regions using an isolation transis-
tor and enables faster access to the closer region. Several other
previous works [4, 5, 10, 30, 31] also propose changes to DRAM
architecture/organization to enable latency reduction. All of these
techniques, unlike our scoreboard and row exclusion mechanisms,
require changes to DRAM internals, which makes them hard to
adopt, given the cost conscious nature of DRAM manufacturing.
Furthermore, our proposals can be employed in conjunction with
these schemes to enable even better latency reduction and perfor-
mance enhancement.

Managing contention at the memory controller. Prior
works [18, 24, 27, 35, 38] have tackled the problem of contention be-
tween multiple applications’ requests at the memory controller. Our
proposals, on the other hand, tackle the inherent DRAM precharge
and activation latencies, rather than queueing from contention and
hence, can be effectively combined with these techniques.

In summary, tackling the fundamental DRAM precharge and
activation latencies is orthogonal to the multitude of DRAM im-
provements and memory controller optimizations that have been
proposed over the past couple of decades. Furthermore, because
the effects of queuing delay are often exacerbated by poor service
delays, lowering the fundamental latency-bound inefficiencies can
help compound the benefits due to bandwidth-centric improve-
ments.

9 CONCLUSION
We tackle the problem of DRAM access latency, which is a critical
performance bottleneck. We observe that row management, specif-
ically, decisions on how long a row is held open play a key role in
hiding/avoiding the activation and precharge latencies, which are
key components of DRAM access. We propose two schemes that
tackle the problem of DRAM row management both globally across
rows in a bank and locally at the individual row level for a small
set of rows that require different treatment. Our proposed schemes
are effective in tackling the DRAM access latency and can act as
effective substrates for current and future memory systems.
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