
	 1	

Pattern-Aware Dynamic Thread Mapping Mechanisms for Asymmetric
Manycore Architectures

Abstract

Recent factors in the architecture community such as the power wall and on-chip complexity have
caused a shift to manycore architectures and multi-threaded workloads. An emerging architecture for
general purpose processing is an asymmetric chip layout composed of cores with varying levels of
complexity and power. This work considers thread behavior that results from parallel programs and
proposes four new thread mapping schemes for this asymmetric architecture. These schemes leverage the
behavior of common programming patterns used in parallel programming to target typical thread
behavior. The patterns targeted include the pipeline parallelism, divide and conquer, and recursive data
patterns. The proposed predictors out-perform base asymmetry aware schemes by at most 40% and
existing dynamic schemes by as much as 23% for the PARSEC and SSCA2 benchmarks. Additionally,
this work demonstrates the relationship between thread heterogeneity and the parallel pattern used to
create the workload, thus creating a link between programmer and architect that can be leveraged to
create more intelligent thread mapping schemes.

1. Introduction

During the last decade factors such as the power wall and on-chip complexity have resulted in the

shift towards manycore architectures and multi-threaded workloads. Rather than invest transistors and

chip area in a single, complex out-of-order core that may prove to exceed the power envelope, the trend is

to include more and more simpler cores on a single chip. This has led to several visions for the

“architecture of the future.” Commercial desktop processors have trended towards a few large, powerful

“heavyweight cores” [1, 2], whereas GPU developers and the scientific community have focused on

manycore chips consisting of 1000s of simple “lightweight cores” on a single chip [3-5]. An alternative

view of our multi-threaded future is that neither the heavyweight- or lightweight-core designs will

become the new “general purpose.” Multicore microprocessors will instead have a combination of both

types of cores. Prior work has demonstrated that with only a few heavyweight cores supplemented by

several simpler, lightweight cores, it is possible to achieve performance comparable to many heavyweight

cores [6-8]. The key to maximizing the gain of these heavyweight cores is to intelligently map a

program’s threads to the appropriate core types.

Thread mapping for operating systems and architecture has been a heavily investigated field [9-16].

Prior work has focused primarily on mapping compute-intensive threads to the heavyweight cores and

communication-intensive threads to the smaller cores [14]. The compute-intensive threads are often

REVIEW COPY DO NOT REDISTRIBUTE HIGHLY CONFIENTIAL

conte
Typewritten Text

conte
Typewritten Text

conte
Typewritten Text
Jason A. Poovey, Michael C. Rosier, Thomas M. Conte -- Georgia Institute of Technology

	 2	

termed the critical thread. Several parallel programming styles result in applications that have imbalance

in execution time among executing threads. For example, a common pattern for parallelizing legacy

serial code is to create a parallel pipeline [17]. Creation of these pipeline stages results in imbalance

between the execution requirements of each stage [18]. When this occurs, the thread with the highest

execution demands dictates the overall performance, thus creating a critical thread.

When writing parallel applications, programmers attempt to perform load balancing statically or

algorithmically. However, without a detailed knowledge of the architecture and compiler, it is difficult to

predict load balancing prior to run-time. Many prior approaches have suggested a profiling based

approach to determine the compute-intensive threads [10, 15, 19], while others measure various

architecture statistics to predict thread criticality [13-16]. In this work we propose four new hardware-

assisted thread mapping schemes that leverage runtime statistics: maximum average dependence depth

mapping (MAX_DEP), maximum average dependence length mapping (MAX_LEN), child-parent aware

mapping (CPAM), and static pipeline aware mapping (SPAM). We compare our approaches to versions

of recently published mapping schemes such as thread age using instruction count (IC) [15], and L1/L2

miss rate criticality prediction (L2) [14]. We find that our new mapping schemes outperform prior

approaches particularly well for pipeline parallel, divide and conquer, imbalanced geometrically

decomposed, and recursive data benchmarks. In imbalanced workloads, we see a performance gain over

basic asymmetry aware mapping as high as 40% for real benchmarks and as large as 23% for patter-

centric microbenchmarks.

We also investigate the relationship between the parallel pattern used to write the benchmark and its

thread behavior. By determining a link between parallel algorithm classes and thread behavior,

programmers are better able to understand which load balancing schemes are optimal for their program.

This enables a new level of exposure to the programmer and/or compiler to judiciously manage which

thread mapping policy to enable prior to execution.

2. Motivation

Due to increasing core counts, a renewed focus has emerged for parallel programming to provide

performance scaling. For many years the scientific community has leveraged thread parallelism to

REVIEW COPY DO NOT REDISTRIBUTE HIGHLY CONFIENTIAL

	 3	

perform massive calculations [20] and large simulations [21]. Often, these problems were either

embarrassingly parallel or easily parallelizable through regular data structures. With the renewed focus

on multi-threaded programming, the application space has grown dramatically and more irregular

programs and application characteristics have emerged [22]. Asymmetric architectures are an ideal

architecture for such workloads due to the inherent task imbalance that occurs between threads.

 In order to understand this task imbalance and how to effectively counter it, one must first

understand the reason for its existence. Despite the variety of parallel applications, programmers

typically approach parallelization using only a small set of distinct patterns of design. Although

sometimes a complex program may use a mixture of patterns, the understanding of the included patterns

leads to an understanding of a unique set of thread characteristics.

2.1. Parallel Patterns and Thread Behavior

Figure 1 - Parallel Programming Patterns [23] showing the conceptual organization based on
parallelization scheme.

Several efforts have been made to standardize parallel programming patterns [4, 17, 23]. These

efforts codify the standards and characteristics in a manner similar to the programming patterns used in

the software engineering community for object-oriented programming. What these standards reveal are

five main patterns, each with unique architectural characteristics to exploit. The five parallel patterns are

originally defined in [23] and are shown in Figure 1 (note we have combined event coordination and

pipeline patterns, since the definition of event coordination in [23] reduces to a generalized pipeline as

defined by Patel in Davidson in [24]).

REVIEW COPY DO NOT REDISTRIBUTE HIGHLY CONFIENTIAL

	 4	

 As shown in Figure 1 the parallel programming patterns are grouped based on the type of

conceptual parallelization performed. When the problem consists of a group of independent tasks or task

groups to be run in parallel, the parallel pattern employed is task parallelism. This class of problems has

also been generally referred to as embarrassingly parallel. When there is a problem task that naturally

subdivides into several smaller tasks that can be done in parallel, then the divide and conquer pattern is

applied. Both of these parallel patterns involve the organization of tasks, and of the two divide and

conquer has the greater potential for heterogeneous behavior.

	
Figure 2 - Thread Behavior of Task Centric Patterns1 (a) Task Parallel (b) Symmetric Divide and
Conquer (c) Asymmetric Divide and Conquer

Task parallel workloads are generally written in a SIMD or SPMD program style where tasks are very

balanced and have low communication overhead. Divide and conquer splits tasks until a work

“threshold” is met and the subtask works on a subset of the data serially. When the divide and conquer is

performed symmetrically, the opportunity for load balancing through task scheduling is low; when the

division is more asymmetric, task scheduling presents an opportunity for improvements. For example, if

a parallel quicksort algorithm is divided symmetrically, then all threads will continue to split their

subarrays in half until some fixed threshold resulting in a uniform distribution of work. However, an

asymmetric implementation would allow some threads to cease the recursive split with larger subarrays

than others. Figure 2(a),(b),(c) illustrate the typical task behaviors of task parallel and divide and conquer

patterns.

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
1	 Dashes represent communication between threads	

Main Thread

Worker
Threads

Main Thread

Split

Join

Main Thread

Split

Join

(a) (b) (c)

REVIEW COPY DO NOT REDISTRIBUTE HIGHLY CONFIENTIAL

	 5	

	
Figure 3 - Thread Behavior of Data Centric Patterns (a) Geometric Decomposition (b) Recursive Data

Many parallel problems are solved through the decomposition of data by creating threads to work on

the data in parallel. The two standard patterns for data parallelization are geometric decomposition and

recursive data. The geometric decomposition pattern operates on data in a regular structure, such as an

array, that is split into sub-structures operated on in parallel. This pattern is typically characterized by

sharing between threads, particularly threads with neighboring data. Task heterogeneity is limited in

geometrically decomposed workloads. Typically there is only one thread (usually the main thread) that

exhibits heterogeneity as it maintains global data, bookkeeping, and thread management. If the data is not

in a regular structure, but rather a structure such as a graph, data decomposition parallelization is done via

the recursive data pattern. This pattern creates parallelism by doing redundant work to decrease

communication between threads. For example, an algorithm to find every node’s root requires a full

graph traversal. A recursive data approach would create a thread for every node in the graph and perform

a graph-climbing algorithm independently for each node. This causes some nodes’ depths to be

calculated more than once, but has performance gains due to the enhanced parallelism. Figure 3 (a) and

(b) illustrates the typical task behaviors of the geometric decomposition and recursive data patterns.

Figure 4 - Thread Behavior of the Pipeline Programming Pattern

Main Thread

Worker
Threads

Main Thread

Worker
Threads

(a) (b)

Stage 0

Stage 1

Stage 2

Stage 3

Main Thread

REVIEW COPY DO NOT REDISTRIBUTE HIGHLY CONFIENTIAL

	 6	

As programmers continue to shift legacy sequential code to a parallel domain, an increasingly

common parallel pattern used is the pipeline pattern [18]. This pattern is performed by taking a flow of

data through tasks and splitting it into pipeline stages. The parallelism is achieved by keeping all stages

full with data such that each stage can operate simultaneously. However, balancing the computational

and communication requirements of each pipeline stage is very difficult. Moreover, not all pipeline

parallel workloads are completely feed-forward pipelines. Simulations, such as discrete event

simulations, leverage the pipeline pattern but with more complex interactions between stages. Therefore,

pipeline programs typically exhibit a high degree of thread imbalance that can be exploited through thread

remapping. Figure 4 illustrates the typical task behavior of the pipeline programming pattern.

Table 1 - Microbenchmark descriptions. Each benchmark represents unique thread behaviors exhibited
by parallel design patterns.

	
As the above discussion on patterns illustrates, thread heterogeneity is an important problem for

current and emerging parallel workloads. We found that three out of five of the parallel programming

patterns typically result in load imbalance that could be exploited by asymmetric cores. To show this

pattern-based heterogeneity quantitatively, a set of experiments to measure thread imbalance was

conducted. First, a set of microbenchmarks was created to represent each pattern. A summary of these

microbenchmarks is given in Table 1. Two divide and conquer style benchmarks are included to provide

a mix of symmetric and asymmetric behavior. In order to vary the mix of communication and

Task Parallel 2d array split into chunks with no communication
between nodes.

Graph traversal to find root nodes of all nodes. A
thread is created per node.Recursive

Pipeline
11 stage pipeline with imbalanced stages. Data is

passed between stages using shared memory
queues

Alternative implementation of aboveGeometric 2

2d array decomposed program. Neighboring array
chunks communicate to calculate average of

neighbors
Geometric

Asymmetric Quicksort algorithm. Divides until a
threshold. Two threads have a higher threshold.

Once split insertion sort is used serially.
Divide and
Conquer 2

Divide and
Conquer

Symmetric divide and conquer algorithm. Splits a
size N array into subarrays, and finds the sum of

the elements. Final output is the total sum

DescriptionBenchmark

REVIEW COPY DO NOT REDISTRIBUTE HIGHLY CONFIENTIAL

	 7	

computation ratios, two geometric decomposition benchmarks were created with varying working set

sizes and sharing volume.

	 	

	
Figure 5 - Pattern Heterogeneity – top left: Heterogeneity Scores – top right: Symmetric Divide and
Conquer thread behavior – bottom: Asymmetric Divide and Conquer thread behavior

We investigated the number of instructions per thread for each parallel pattern to show thread

heterogeneity. Heterogeneity is quantized as the ratio of the standard deviation of the threads’ instruction

counts / the average of the instruction counts. Therefore a lower score indicates less heterogeneity, and

vice versa. As Figure 5 illustrates, the patterns with the most heterogeneity are pipeline, recursive, and

divide and conquer. Both symmetric and asymmetric divide and conquer exhibit heterogeneity, but as

Figure 5 also shows, the heterogeneity in the symmetric divide and conquer is between levels of thread

groups. Asymmetric divide and conquer exhibits no grouping of threads with similar instruction

behavior.

0
0.2
0.4
0.6
0.8

1

Heterogeneity Scores

N
um

be
r

of
 In

st
ru

ct
io

ns

Thread ID

Symmetric Divide and Conquer

In
st

ru
ct

io
ns

Thread IDs sorted by Instruction Count

Asymmetric Divide and Conquer

REVIEW COPY DO NOT REDISTRIBUTE HIGHLY CONFIENTIAL

	 8	

Table 2 - Dependence Depth and Length Mapping Algorithms. "OOO_PROC" is a heavyweight (i.e.,
out-of-order) core

Dependence Length (MAX_LEN):

On Fetch:

(1) Update the dependence graph with the new
instruction

(2) Update length of all paths in the dependence
graph

On Schedule:
(1) Collect average dependence lengths from all

threads
(2) Select the two threads with the highest average

dependence length to map to the OOO_PROC
(3) If threads are not already on OOO_PROC,

remove any current running threads for the core
and replace with the new critical threads

(4) Reset length counters

Dependence Depth (MAX_DEP):

On Fetch:

(1) Update the dependence graph with the new
instruction utilizing the latest use times of the
sources and destination and last completion
times of the destination

(2) Collect dependence depth of instruction based
on the anti-, output-, and true- dependences

(3) Use predicted latency values for ALU ops, and
if a predicted L1 hit set latency to 3 cycles,
otherwise latency is 100 cycles

On Schedule:

(1) Collect average dependence depths from all
threads

(2) Select two threads with the highest average
dependence depth to map to the OOO_PROC

(3) If threads are not already on OOO_PROC,
remove any current running threads from the
core and replace with new critical threads

(4) Reset depth counter

2.2. Pattern-centric thread prediction

Exploitation of each of the parallel patterns’ heterogeneity is a unique and challenging problem. Any

heterogeneity predictor must be balanced to consider that many workloads leverage more than a single

parallel pattern. The first classes of predictors proposed in this work are dependence depth (MAX_DEP)

and dependence length (MAX_LEN). These predictors are intended to target all three heterogeneous

patterns, but primarily pipeline and recursive data. When there exists an inherent load imbalance, it is

caused by one of two factors: varying thread length, varying thread complexity, or a combination of both.

Thread length variance has been previously studied using instruction counts and thread age prediction

[15]. Our predictors instead measure varying thread complexity through dependence chain analysis.

The dependence length algorithm (MAX_LEN) creates a data dependence graph at run-time as

instructions are fetched from threads. It is undesirable for the dependence length to depend upon the type

of core currently running the thread, therefore the weights of all dependence edges are set to 1 cycle.

Table 2 summarizes the steps of the MAX_LEN algorithm. The dependence information is reset every

REVIEW COPY DO NOT REDISTRIBUTE HIGHLY CONFIENTIAL

	 9	

100ms during the standard thread scheduling interval. At every scheduling interval, the lengths of all

dependence paths are averaged for each thread. The two threads with the highest average dependence

length are predicted to be critical and are selected to run on the out of order cores.

The dependence depth algorithm (MAX_DEP) targets the same goal as dependence length, but

instead of assuming all instructions have a dependence edge of one cycle, latency values are estimated

using the predicted execution time. These latencies are fixed based on the opcode for non-memory

instructions. Memory instructions peek into the L1 cache’s tag store to predict if a hit will occur. If a hit

is likely, the memory instruction is considered short latency and is set to 3 cycles; otherwise it is a long

latency load and is set to 100 cycles to approximate a canonical miss penalty. The algorithm for

dependence depth is summarized in Table 2.

Table 3 - SPAM and CPAM Mapping Algorithms

Static Pipeline Aware Mapping (SPAM):

On Fetch:

(1) Update dependence graphs using MAX_DEP
algorithm

On Thread Resume:

(1) If resuming thread is a critical thread (based on
data from last scheduling interval) schedule on
an OOO_PROC

(2) If all OOO_PROCs are occupied, evict a non-
critical thread from the core

Child-Parent Aware Mapping (CPAM):

On Thread Spawn:

(1) Mark the child as critical and move to an
OOO_PROC if not already occupied by critical
threads

(2) Mark the parent as non-critical
(3) If parent was on OOO_PROC it gives up its

core for its child

On Thread Exit:

(1) If a parent exists, mark as critical.
(2) If child was on an OOO_PROC, give up core

for parent

The stability of pipeline characteristics led us to develop the static pipeline aware mapping

algorithm (SPAM). SPAM leverages the dependence depth algorithm from above, but does not reset the

depth score at the end of a scheduling interval. SPAM is motivated by the behavior of pipeline

benchmarks, which contain many suspend and resume events. These events are largely due to lock

contention for the queues between stages. This then results in shorter running threads, and less

opportunity for migration. Additionally, pipelines with large working sets have a higher cache migration

penalty. Therefore it is important to map critical threads to heavyweight cores on thread-resume since

REVIEW COPY DO NOT REDISTRIBUTE HIGHLY CONFIENTIAL

	 10	

mid-thread migration will be costly and will not be mitigated by a long uninterrupted thread. The SPAM

algorithm is summarized in Table 3.

SPAM utilizes the most recent criticality predictions to predict the critical threads. When a thread

resumes, if it is one of the critical threads it will evict a non-critical thread from the OOO_PROC if

needed and immediately get scheduled on the OOO_PROC. In order for SPAM to work properly the

parallel pipeline must have stages that repeat several times. While the pipeline fills, the depth predictor

will slowly learn which threads are critical. After the pipeline fills, the critical thread will remain largely

static, and thus it will experience a consistent speedup throughout execution. For pipeline benchmarks

with many shorter stages, SPAM provides better performance potential than MAX_LEN or MAX_DEP,

because it mitigates costly mid-thread migrations.

The final proposed mapping algorithm is child-parent aware mapping (CPAM). This scheduling

algorithm targets thread scheduling on thread spawn and exit. CPAM is motivated by the divide and

conquer pattern in which threads recursively spawn sub-threads until the problem is split into a small

enough unit to be operated on serially. In this pattern, it is true that when a parent spawns a child, the

child becomes more critical than the parent. This is because the parent waits for the child to return with

the subsolution, while the child performs the critical work. The CPAM algorithm is described in Table 3.

CPAM gives the child thread preference to the out-of-order core. If the parent thread is currently

scheduled on an out of order core, it will give up its core for the child. Once subsolutions are complete,

the child will return its solution to the parent. The parent becomes the critical thread as it now has data on

which to operate. Therefore, once the child exits, it gives its parent a preference for an out-of-order core.

If the child is currently on an out-of-order core, it additionally gives up its core for the parent.

CPAM also complements the task-stealing algorithm leveraged for the dynamic predictors in the

following fashion; when a thread suspends on an OOO_PROC, the task stealer attempts to find a thread to

replace it. The task stealer first looks for cores with a preference for OOO_PROC. Because the CPAM

algorithm will give preference to the children, as threads exit, other children will be available that are

critical to replace the completed thread. Also, as the children complete, more and more parents become

critical and begin to migrate to the OOO_PROC.

REVIEW COPY DO NOT REDISTRIBUTE HIGHLY CONFIENTIAL

	 11	

2.3. Hybrid Schemes

The above schemes were also hybridized to create predictors that combine criticality metrics. To add

CPAM or SPAM to any of the other predictors is uncomplicated, since they are disjoint from the regular

scheduling interval mappings. However to hybridize the remaining mappings a hybrid score is created.

For each mapping scheme, the results are collected as normal. During scheduling, each statistic

undergoes a global normalization to re-scale it between 0 and 1 based on its global maximum. Once

scaled, each thread’s counter values are summed to create the hybrid score. The two threads with the

highest hybrid scores are considered critical and are given to the heavyweight cores.

2.4. Existing Prediction Schemes

In addition to the new mapping schemes, we also evaluated several existing schemes. We target

recent work on dynamic prediction with similar goals to our work to create a cache miss-rate scheme (L2)

using recent cache miss rates, and an instruction count (IC) scheme using the recent instruction counts.

The L2 scheme is motivated by [14], which found that the L2 miss rate correlates highly to the critical

thread for several workloads. This scheme uses a similar base scheduling policy as our new schemes,

except that the critical threads are the two threads with the highest L2 miss rate during the last scheduling

interval.

IC uses the recent instruction counts to determine overall thread progress to predict criticality. Every

scheduling interval, the instruction counts are reset and re-evaluated. This implementation is similar to

[15], except barrier points are not used as the evaluation points. Many of the benchmarks evaluated have

little to no barriers at which to remap. This scheme uses a similar base scheduling policy as our new

schemes, except that critical threads are chosen as the two threads with the least progress in the last

scheduling interval.

The baseline asymmetry aware mapping performs no dynamic migration. Instead it schedules a

spawning or resuming thread on an OOO_PROC if one is available.

3. Implementation Details

To collect the data for the new predictors, hardware counters are added to each core for tracking.

When control returns to the operating system during the regular scheduling interval, the scheduler collects

REVIEW COPY DO NOT REDISTRIBUTE HIGHLY CONFIENTIAL

	 12	

all of the counter values and calculates the necessary averages to make a global decision. The operating

system may then migrate or move threads based upon the scheduling policies discussed in Section 2.

3.1. MAX_LEN hardware requirements

The MAX_LEN predictor must maintain the dependence graph in an iterative process and maintain

the length of all paths in the dependence graph. Each instruction represents a node in the dependence

graph, and each instruction has a single destination register. To maintain the graph, only the most recent

writers of each register must be recorded. Therefore MAX_LEN maintains a structure with the number

of entries equal to the number of registers (this may be stored alongside the registers in the register file,

for example). Each entry stores the cumulative path length into the node as well as the number of paths

leading into the node. Each entry requires 24 bits of storage for the total path length, and 8 bits of storage

for the total path count. The table is reset and the average is stored in a collection register when an

overflow occurs. For our configuration, this results in a table size of 512B per node (128 entries * 4 bytes

per entry). This structure is updated at the decode stage when the registers are decoded.

3.2. MAX_DEP hardware requirements

The MAX_DEP predictor maintains a weighted dependence graph that considers output and anti-

dependencies in addition to true dependences. The algorithm requires the latest use time of each register

and last completion time to be maintained. A new instruction’s depth is the maximum of the length

resulting from anti-, output-, and true- dependences. Latency weights are based upon the opcode type.

The latency values match the function unit’s execution time for each opcode. For memory instructions,

the latency is assumed to be 3 cycles for L1 hits, and 100 cycles on an L1 miss. This feedback is

provided in the MEM stage when inspecting the L1. The table requires an entry for each register and

each entry maintains the latest use times and completion times. This requires a table of size of 1kB per

node (128 entries * 8 bytes per entry).

3.3. CPAM/SPAM hardware requirements

The CPAM mapping scheme only requires each thread to maintain the thread id of its parent. This is

already standard information maintained in the operating system. Therefore, no additional hardware is

required for the CPAM mapping scheme.

REVIEW COPY DO NOT REDISTRIBUTE HIGHLY CONFIENTIAL

	 13	

The SPAM mapping scheme can leverage either MAX_LEN or MAX_DEP to make its scheduling

decisions on thread resume. This requires the appropriate table to be implemented, and the updates to the

operating system of the most recent values every scheduling interval. Otherwise, no additional hardware

is required.

4. Simulation Methodology

	
Figure 6 - Simulated Architecture Layout

To evaluate the various thread mapping schemes, an in-house cycle accurate simulator is used which

is part of a larger, multi-agency-funded simulation framework being developed by the authors and other

collaborators. The execution model leverages a MIPS based emulator that feeds the timing model. The

system is an execute-at-fetch model except at synchronization points (LL, SC, and SYNC) where an

execute-at-execute model is used. For these instructions, the emulator “peeks” without committing state,

and then allows the timing model to resolve the lock winner. Thus thread interleaving is accurate to the

simulated system rather than the host system.

The simulated architecture, shown in Figure 6, is a 34-core system with 32 in-order cores and 2 out-

of-order cores. Out-of-order cores (OOO_PROCs) are assumed to take approximately 4x the die area of

an in-order core (IO_PROC). Table 4 lists the parameters of the processor models, network, and cache

hierarchy. Scheduling decisions are made when threads spawn, suspend, or resume. Additionally, every

100ms (100,000 cycles) thread re-scheduling occurs based upon the mapping scheme used. Similar to

[15], the thread remapping penalty is assumed to be dominated by cache transfer, and thus that is the only

penalty incurred for transfer. Cache warming is performed by setting the off-chip access latency to one

cycle during warm-up to remove startup effects.

OOO
Processor

OOO
Processor

In
order

In
order

In
order

In
order

In
order

In
order

In
order

In
order

In
order

In
order

In
order

In
order

In
order

In
order

In
order

In
order

In
order

In
order

In
order

In
order

In
order

In
order

In
order

In
order

In
order

In
order

In
order

In
order

In
order

In
order

In
order

In
order

REVIEW COPY DO NOT REDISTRIBUTE HIGHLY CONFIENTIAL

	 14	

Table 4 - Simulation Parameters

In-order cores 32 Network Topology Mesh (X-Y routing)
Out-of-order cores 2 Coherence Protocol Blocking MESI
Memory Controllers 1 Inclusive Caches
Off-chip latency 200 cycles Distributed shared directory

Out-of-order core
L1 Cache 32 kB L1 Cache Latency 3 cycles
L2 Cache 128 kB L2 Cache Latency 8 cycles
Branch Predictor Gshare
ROB size 256 insns Scheduling Interval 100 ms (100,000 cycles)
Issue width 4
 Chip Frequency 1 Ghz
In-order core
L1 Cache 32 kB Virtual Channels 3
L2 Cache 64 kB Buffer Entries per VC 2
Branch Predictor Gshare Router link latency 3 cycles
Issue Width 2

Results are collected for a large subset of the PARSEC [22] benchmarks. Additionally, the SSCA2

OpenMP benchmark [25] is included to provide an additional graph traversal multi-threaded workload.

The benchmark descriptions are summarized in Table 5. Both benchmark sets were run to completion to

obtain accurate execution time measurements. For PARSEC, only the instructions in the region of

interest were simulated and measured.

The benchmarks evaluated represent a variety of parallel programming patterns and thread behavior.

Table 5 summarizes the primary pattern(s) used to program each benchmark. As is evident from the

table, PARSEC has a diverse set of parallel patterns and thread behaviors. Therefore it is likely to

provide promising potential and challenges for optimal thread mapping

Table 5 - Evaluated benchmark descriptions and patterns

PARSEC
blackscholes Blackscholes option pricing. Exhibits task parallelism.
bodytrack Computer vision algorithm. Image is geometrically decomposed
canneal Simulated annealing using a fine-grained pipeline pattern
dedup Data compression using deduplication. Uses the pipeline programming model
ferret Content similarity search using a pipeline model
fluidanimate Animation using fluid dynamics. Combination of Divide and Conquer and Pipeline.
streamcluster Online clustering of streaming data. Task parallel algorithm
swaptions Monte Carlo simulation for options pricing. Exhibits task parallelism.
x264 H.264 video encoding using pipeline parallel programming model
SSCA
SSCA #2 Graph analysis of a weighted directed graph. Uses a recursive data pattern.

REVIEW COPY DO NOT REDISTRIBUTE HIGHLY CONFIENTIAL

	 15	

5. Results and Analysis

In this section we present our findings regarding the performance of the proposed schedulers for the

microbenchmarks, PARSEC, and SSCA#2. The performance is presented as the percent reduction in

execution time (speedup) versus all in-order cores for all schemes.

5.1. Microbenchmark results

As discussed earlier, seven microbenchmarks were created to represent the five common parallel

programming patterns. The execution time results for these runs are shown in Figure 7. The motivation

section showed that the greatest potential for speedup exists in the divide and conquer (DandC, DandC2),

pipeline, and recursive microbenchmarks. As the results indicate, these benchmarks exhibit the most

intriguing behavior of the parallel patterns.

Figure 7 - Speedup results for pattern-centric microbenchmarks

Both divide and conquer benchmarks get the greatest benefit from the CPAM and SPAM mapping

schemes. It is no surprise that CPAM performs well considering that it is targeting the thread spawn/exit

inherent to the divide and conquer algorithm. SPAM is also effective since it will often predict parent

threads are critical when they resume. SPAM works better on DandC2 because the length of the parent

threads is greater than the children. The children are sorting a small subset of the array, while the parents

are merging increasingly large sub-arrays. Complexity based thread remappings such as MAX_LEN and

MAX_DEP are not as effective on divide and conquer patterns. This is largely because within thread

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

DandC DandC2 Geometric Geometric2 Pipeline Recursive Task Parallel

Speedup vs. all in-order

Base

IC

L2

MAX_LEN

MAX_DEP

CPAM

SPAM

Hybrid

Hybrid+CPAM

Hybrid+SPAM

REVIEW COPY DO NOT REDISTRIBUTE HIGHLY CONFIENTIAL

	 16	

groups, complexity is fairly homogenous. Even when the divide and conquer is asymmetric in nature, the

homogenous behavior stems from a difference in thread lengths, rather than thread complexity. Thus, IC

is able to outperform complexity mappings for the divide and conquer microbenchmarks.

The geometric benchmark benefits from the MAX_LEN algorithm, which measures dependence

length. However, this method is not nearly as effective for the smaller geometric2 benchmark. The

difference arises from the heterogeneity in the geometric benchmark that results from one thread

collecting data and doing extra work. Additionally, threads persist for a longer period because of the

larger data set. This allows the benefit of a small amount of imbalance to grow slowly. Geometric2 does

not respond well to any of the interval scheduling schemes. This is more typical of completely symmetric

geometrically decomposed workloads. Since complexity and instruction counts will be very similar,

constant remapping will cause extra cache thrashing that results in a slowdown. Furthermore, the shorter

thread lengths from the small data set cause less chance to overcome the thread migration penalty.

The pipeline microbenchmark benefits only slightly from the SPAM mapping scheme. The reason

this method is not as effective as MAX_LEN or MAX_DEP is due to the pipeline stages’ lengths. When

threads are shorter they are more sensitive to migration overheads. This benchmark, however, is

complexity bound as two pipeline stages were deliberately written to have extra computational work.

Because of this, MAX_LEN and MAX_DEP are therefore more effective at predicting criticality than IC.

The hybrid scheme suffers from the inclusion of the IC metric, whose measurements conflict with the

complexity predictors, resulting in more homogeneous criticality scores.

For all of the microbenchmarks, the reasons for fetch stalls were collected during simulations (Branch

mispredictions, Memory dependence stalls, ALU dependence stalls, etc.). These results are omitted for

space reasons; however, what they reveal is that the pipeline benchmark bottleneck is due to thread

imbalance resulting in idle cores. By balancing the thread complexities, the pipeline benchmark is able to

reduce the number of cycles cores spend idle, thus reducing the overall execution time.

The recursive data pattern consists of many varying length threads of similar complexity. Thus, the

best mapping scheme would likely be the IC scheme, which is corroborated by the speedup results. The

hybrid scheme outperforms IC, because in this benchmark, the complexity predictors prevent over-

REVIEW COPY DO NOT REDISTRIBUTE HIGHLY CONFIENTIAL

	 17	

migration and over-prediction by the IC scheme. The stall distribution for the IC scheme reveals

additional memory access stalls. A deeper analysis revealed that the increase is due to an increased L1

miss rate (1.2% for IC and 0.05% for Hybrid). Thus, migration is causing thrashing in the L1 that is

slowing down overall performance.

The task parallel benchmark has largely similar results across all schemes, due to its homogeneous

thread behavior, which has low potential for thread remapping benefit. A more appropriate mapping

scheme for this type of parallel pattern would focus on fairness or overall power savings rather than

aggressive remapping.

5.2. Full Benchmark Results

	
Figure 8 - Speedup results for PARSEC and SSCA#2

The results of the full benchmark runs are shown in Figure 8. The varying performance illustrates

that thread remapping is highly dependent upon the programming pattern and data behavior of the

benchmarks. The SSCA benchmark works best for the IC and MAX_LEN mapping patterns. SSCA is an

example of a recursively parallelized benchmark, and the results are in line with the expected behavior

shown in the recursive microbenchmark. The disparity between thread length and complexity is lower

than in the associated microbenchmark, thus the performance of IC and MAX_LEN are more similar.

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

Speedup vs. all in-order

Base

IC

L2

MAX_LEN

MAX_DEP

CPAM

SPAM

Hybrid

Hybrid+CPAM

Hybrid+SPAM

REVIEW COPY DO NOT REDISTRIBUTE HIGHLY CONFIENTIAL

	 18	

Additionally, there are a large percentage of stalls due to the pipeline flushing from LL, SC, and SYNC

instructions. These stalls limit the overall performance gains of the SSCA benchmark and explain why

even the best thread balancing schemes for the recursive data pattern can only achieve slightly less than

10% improvement over the baseline.

Blackscholes is a task parallel style benchmark, which already has mostly homogeneous thread

instruction counts. Therefore, mapping schemes such as IC should not perform well, as the predicted

critical threads will change constantly due to small variations. The MAX_LEN mapping performs

surprisingly well, however. An investigation of the distribution of stall cycles found that in the

MAX_LEN experiments, stalls due to memory latency were reduced, specifically time spent on L1

misses. This result suggests that complexity imbalance was more stable than instruction counts. In the

blackscholes algorithm, there are two types of options, put options and call options. In the input data set,

each option represents about half of the input data. Code inspection reveals that call options require some

extra data manipulation compared to put options. The MAX_LEN predictor is able to detect this more

readily than IC, which fails due to the balanced instruction counts.

The bodytrack benchmark is a geometrically decomposed workload that is balanced, and thus little

performance gain is found through thread remapping. The L2 scheme, however, performs poorly as it

does for most of the PARSEC workloads. We found that in more traditionally balanced geometrically

decomposed workloads, such as SPLASH-2, the L2 scheme performs much better. However the

homogeneous task behavior of SPLASH-2 presented little opportunity for any of the dynamic schemes.

The traditional pipeline parallel benchmarks in PARSEC: dedup, ferret, and x264, all perform the best

using the SPAM mapping scheme. Unlike the pipeline microbenchmark, the cost of mid-thread migration

causes too much cache thrashing. A look at the stall type distribution revealed that by preventing mid-

thread migration the number of stalls due to memory was reduced by as much as 33%, which translates to

a reduction in the number of overall stalls by 25%. In x264, this behavior was the most pronounced, as

the parallel section accounts for a small portion of the benchmark (data input and output), and the threads

are short and thus very sensitive to migration.

REVIEW COPY DO NOT REDISTRIBUTE HIGHLY CONFIENTIAL

	 19	

SPAM works exceptionally well for ferret due to the nature in which threads are managed. Ferret

makes use of thread pools for each pipeline stage. The initial stage, which reads in data, is given only a

single thread, while the other stages are each given up to 32 threads to work with. The passing of data

between the threads results in more suspend/resume events for CPAM to decide upon. Secondly, by

having many threads per pipeline stage, threads from the same stage will stay at the top of the complexity

list. The SPAM mapping scheme limits the amount of thrashing between these threads by only

scheduling threads from within a stage to an OOO_PROC when they begin, whereas MAX_DEP will

cause threads for the same stage to thrash from having similar complexities.

Fluidanimate is an interesting case as it exhibits thread heterogeneity and benefits from complexity

mapping. Typically, fluid dynamics problems are geometrically decomposed as particles are distributed

among threads, and each thread works on a fixed subset of particles. However, fluidanimate divides the

frame to animate into segments and particles move through fixed segments from frame to frame. The

particles are therefore not evenly divided among the threads. This creates a thread imbalance that is

similar to a pipeline style pattern. Fluidanimate is a different style of pipeline pattern than either the

microbenchmark or any of the pipeline benchmarks discussed above. Instead of a pure feed-forward

pipeline, pipeline stages are interconnected in a grid and data flows around the grid. The varying number

of particles each thread must process causes a complexity imbalance that is exploited by the MAX_LEN

predictor. Therefore, like the pipeline microbenchmark, which was also complexity bound, MAX_LEN

best predicts the critical thread. Overall, our schemes achieve upwards of 40% performance improvement

over the base asymmetric mapping and a 25% improvement over current dynamic schemes.

6. Related Work

Load balancing and thread scheduling for asymmetric processors is a heavily studied field. Original

work focused on the benefit of heterogeneity as a low power alternative for CMPs that is adaptive to

multiple program types [7, 8]. It was found that only a few powerful cores are needed to achieve near-

optimal performance gains for a wide class of programs. Leveraging this potential, however, requires a

mapping scheme that best utilizes the powerful cores. Several works have analyzed static schemes based

on profiling or a mathematical model [8-10, 12]. Additionally [26] investigated the trade-off between

REVIEW COPY DO NOT REDISTRIBUTE HIGHLY CONFIENTIAL

	 20	

receiver-initiated and sender-initiated load balancing policies. In receiver-initiated polices, the lightly

loaded core seeks out a task to steal. In sender-initiated policies, the heavy loaded core seeks a core to

offload take some of its tasks. The MAX_DEP and MAX_LEN policies in this paper are a type of

sender-initiated policy, while CPAM and SPAM are receiver-initiated policies.

Thread mapping for heterogeneity provides power benefits as well as performance. Many prior

works have focused on leveraging thread mapping to achieve optimal performance for a fixed power

budget [27-29]. Also, asymmetry has been leveraged in the multi-programmed domain for optimal

program mapping [16, 29]. In addition to fixed asymmetry, additional studies have investigated dynamic

architecture reconfiguration through voltage-frequency scaling and reconfigurable pipelines [30].

Dynamic thread mapping schemes have proposed several mechanisms for predicting, migrating, and

scheduling the critical thread. In [11] batches of tasks are scheduled as a group based on the thread

throughput. Because throughput is tied to the core type running the thread, this creates the potential for

thrashing as threads may be overly remapped. In [19], task graphs are leveraged to group subtasks and

schedule the group on the appropriate core type. [13] extends traditional operating system scheduling to

weight the load factor of the scheduling queues by the processing power of the core. [14] and [16]

observe that thread criticality can be predicted using the L1 and L2 miss rates. Thread criticality

predictors in [14] leverage hardware counters similar to the ones evaluated in this work based upon cache

miss rates. Also, especially in homogenous workloads, instruction count can provide a good indicator of

thread criticality. In [15] the length between synchronization regions is recorded and the instruction count

between previous intervals is used to measure criticality. The IC based scheme used for comparison in

this work represents this scheme.

Pattern aware thread mapping has also been studied in a couple of prior works. [31] provides an API

for programmers using a pipeline model to delimit pipeline stages. Additionally this work finds that the

communication and computation behavior of a pipeline is relatively stable. This fact was the basis for the

SPAM predictor used in this work. Recently [18] has leveraged a pipeline friendly API to profile which

pipeline stage is the LIMITER stage. This work attempts to allocate more cores to the LIMITER stage to

improve load balancing and maintain a higher throughput. This approach is solving the same problem as

REVIEW COPY DO NOT REDISTRIBUTE HIGHLY CONFIENTIAL

	 21	

our SPAM mapping algorithm; however, our SPAM mapping algorithm is agnostic of the pipeline

boundaries and requires no software modification.

7. Conclusion and Future Work

In this work we have proposed four novel, hybrid hardware/software, pattern-based thread mapping

predictors. Two predictors, MAX_DEP and MAX_LEN focus on thread remapping during the regular

scheduling interval. They perform well on criticality caused thread heterogeneity. Our other two

predictors, CPAM and SPAM make effective thread mapping decisions during spawn/exit and

suspend/resume, respectively. Overall these predictors were shown to improve the base asymmetry aware

scheme by as much as 40% and existing dynamic schemes by as much as 23%. Furthermore, this paper

provided a better understanding of the relationship between thread behavior and the parallel pattern used

to develop the workload. We found that pipeline parallel, divide and conquer, and recursive data exhibit

the most heterogeneity and thus benefit the most from thread scheduling.

Future work will focus on extending the current predictors to reduce thrashing among a group of

similar threads and expanding the architecture design space. The 100 ms reset interval was chosen so that

idle threads during the last scheduling interval are not considered. However, pipeline benchmarks

typically exhibit stable behavior [31], and a periodic refresh of the dependence counters may cause false

criticality predictions. Future work will study adding aging mechanisms to address patterns that exhibit

relatively stable behavior throughout their execution.

8. Bibliography

[1] Intel Core 2 Quad Core Processors. Available: http://www.intel.com/products/processor/core2quad/
[2] Intel Xeon Processor. Available: http://www.intel.com/p/en_US/products/server/processor/xeon6000
[3] Nvidia Tesla. Available: http://www.nvidia.com/object/product_tesla_c1060_us.html
[4] K. Asanovic, "The Landscape of Parallel Computing Research: A View from Berkeley," University of

California, Berkeley, Berkeley, CA, Technical ReportDec 2006.
[5] P. Kongetira, et al., "Niagara: a 32-way multithreaded Sparc processor," Micro, IEEE, vol. 25, pp. 21-29,

2005.
[6] D. C. Pham, et al., "Overview of the architecture, circuit design, and physical implementation of a first-

generation cell processor," Solid-State Circuits, IEEE Journal of, vol. 41, pp. 179-196, 2006.
[7] R. Kumar, et al., "Single-ISA heterogeneous multi-core architectures for multithreaded workload

performance," in Computer Architecture, 2004. Proceedings. 31st Annual International Symposium on,
2004, pp. 64-75.

[8] R. J. O. Figueiredo and J. A. B. Fortes, "Impact of heterogeneity on DSM performance," in High-
Performance Computer Architecture, 2000. HPCA-6. Proceedings. Sixth International Symposium on,
2000, pp. 26-35.

REVIEW COPY DO NOT REDISTRIBUTE HIGHLY CONFIENTIAL

	 22	

[9] N. G. Shivaratri and P. Krueger, "Two adaptive location policies for global scheduling algorithms," in
Distributed Computing Systems, 1990. Proceedings., 10th International Conference on, 1990, pp. 502-509.

[10] D. A. Menasce, et al., "Processor assignment in heterogeneous parallel architectures," in Parallel
Processing Symposium, 1992. Proceedings., Sixth International, 1992, pp. 186-191.

[11] L. Chin and L. Sau-Ming, "An adaptive load balancing algorithm for heterogeneous distributed systems
with multiple task classes," in Distributed Computing Systems, 1996., Proceedings of the 16th International
Conference on, 1996, pp. 629-636.

[12] H. Oh and S. Ha, "A Static Scheduling Heuristic for Heterogeneous Processors," presented at the
Proceedings of the Second International Euro-Par Conference on Parallel Processing-Volume II, 1996.

[13] T. Li, et al., "Efficient operating system scheduling for performance-asymmetric multi-core architectures,"
presented at the Proceedings of the 2007 ACM/IEEE conference on Supercomputing, Reno, Nevada, 2007.

[14] A. Bhattacharjee and M. Martonosi, "Thread criticality predictors for dynamic performance, power, and
resource management in chip multiprocessors," presented at the Proceedings of the 36th annual
international symposium on Computer architecture, Austin, TX, USA, 2009.

[15] N. B. Lakshminarayana, et al., "Age based scheduling for asymmetric multiprocessors," presented at the
Proceedings of the Conference on High Performance Computing Networking, Storage and Analysis,
Portland, Oregon, 2009.

[16] J. C. Saez, et al., "A comprehensive scheduler for asymmetric multicore systems," presented at the
Proceedings of the 5th European conference on Computer systems, Paris, France, 2010.

[17] J. L. Ortega-Arjona, Patterns for Parallel Software Design. West Sussex: Wiley, 2010.
[18] M. A. Suleman, et al., "Feedback-directed pipeline parallelism," presented at the Proceedings of the 19th

international conference on Parallel architectures and compilation techniques, Vienna, Austria, 2010.
[19] L. De Giusti, et al., "AMTHA: An Algorithm for Automatically Mapping Tasks to Processors in

Heterogeneous Multiprocessor Architectures," in Computer Science and Information Engineering, 2009
WRI World Congress on, 2009, pp. 481-485.

[20] R. C. Agarwal, et al., "A high performance parallel algorithm for 1-D FFT," in Supercomputing '94.
Proceedings, 1994, pp. 34-40.

[21] J. P. Singh, et al., "Scaling parallel programs for multiprocessors: methodology and examples," Computer,
vol. 26, pp. 42-50, 1993.

[22] C. Bienia, et al., "The PARSEC benchmark suite: characterization and architectural implications,"
presented at the Proceedings of the 17th international conference on Parallel architectures and compilation
techniques, Toronto, Ontario, Canada, 2008.

[23] T. G. S. Mattson, Beverly A.; Massingill, Berna L., Patterns for Parallel Programming: Addison-Wesley,
2004.

[24] J. H. Patel and E. S. Davidson, "Improving the throughput of a pipeline by insertion of delays," presented at
the 25 years of the international symposia on Computer architecture (selected papers), Barcelona, Spain,
1998.

[25] D. Bader and K. Madduri, "Design and Implementation of the HPCS Graph Analysis Benchmark on
Symmetric Multiprocessors," in High Performance Computing – HiPC 2005. vol. 3769, D. Bader, et al.,
Eds., ed: Springer Berlin / Heidelberg, 2005, pp. 465-476.

[26] D. L. Eager, et al., "A comparison of receiver-initiated and sender-initiated adaptive load sharing (extended
abstract)," SIGMETRICS Perform. Eval. Rev., vol. 13, pp. 1-3, 1985.

[27] M. Annavaram, et al., "Mitigating Amdahl's law through EPI throttling," in Computer Architecture, 2005.
ISCA '05. Proceedings. 32nd International Symposium on, 2005, pp. 298-309.

[28] A. Fedorova, et al., "Maximizing power efficiency with asymmetric multicore systems," Commun. ACM,
vol. 52, pp. 48-57, 2009.

[29] R. Kumar, et al., "Core architecture optimization for heterogeneous chip multiprocessors," presented at the
Proceedings of the 15th international conference on Parallel architectures and compilation techniques,
Seattle, Washington, USA, 2006.

[30] M. Pericas, et al., "A Flexible Heterogeneous Multi-Core Architecture," presented at the Proceedings of the
16th International Conference on Parallel Architecture and Compilation Techniques, 2007.

[31] W. Thies, et al., "A Practical Approach to Exploiting Coarse-Grained Pipeline Parallelism in C Programs,"
presented at the Proceedings of the 40th Annual IEEE/ACM International Symposium on
Microarchitecture, 2007.

REVIEW COPY DO NOT REDISTRIBUTE HIGHLY CONFIENTIAL

