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Abstract 
As technology continues to scale, the need for more sophisticated 
coherence management is becoming a necessity.  The likely 
solution to this problem is the use of coherence hierarchies, 
analogous to how cache hierarchies have helped address the 
memory-wall problem in the past.  Previous work in the 
construction of large-scale coherence protocols, however, 
demonstrates the complexity inherent to this design space. 

The difficulty with hierarchical coherence protocol design is 
the complexity increases exponentially with the increase in 
coherence states, due in turn to interactions between hierarchy 
tiers.  Additionally, because of the large development investment, 
choices regarding coherence hierarchy are often made statically 
with little knowledge of how changes to the organization would 
affect the system.  In this work, we present Manager-Client 
Pairing (MCP) as a unifying methodology for designing multi-tier 
coherence protocols by formally defining and limiting the 
interactions between levels within a coherence hierarchy to 
enable composition.  Using MCP, we then implement a variety of 
hierarchical coherence protocol configurations for a 256-core 
system comprised of 4 64-core manycores, and provide insights 
into what impact different hierarchy depth and width choices can 
have on system performance. 

Categories and Subject Descriptors 
B.3.2 [Hardware]: Memory Structures—Cache Memories, Shared 
Memory; C.1.4 [Computer Systems Organization]: Processor 
Architectures—Parallel Architectures 

Keywords 
Cache Coherence, Coherence Hierarchies, Manycore, Memory 
Hierarchies, Multicore 

1. Introduction 
Over the past ten years, the architecture community has witnessed 
the end of single-threaded performance scaling and a subsequent 

shift in focus toward multicore and future manycore processors 
[1].  Within the realm of manycore, the two leading programming 
methodologies are message passing and shared memory.  While 
arguments can be made for both sides, it is widely accepted that 
shared memory systems are easier to program, and that the 
programs thus developed are more portable.  For these reasons, 
shared memory is more likely to be adopted in the future by 
programmers provided that it scales.  The scaling issue is directly 
due to the burden of coherent data management, which with 
shared memory is shifted away from the programmer and onto the 
hardware designer. 

 Data coherence management is a non-trivial concern for 
hardware design as we move into the manycore era.  Efficient 
coherence protocol design and validation is already a complex 
task [2-7].  To make matters worse, we hypothesize that just as 
broadcast-based systems have an upper limit, monolithic 
directory-based systems too will reach scalability limits, thus 
requiring coherence hierarchies to overcome this performance 
bottleneck.  This notion is reinforced by the prevalence of 
coherence hierarchies in many existing and prior large-scale, high-
performance architectures [8-12].  However, before future 
advances can be made in hierarchical coherence protocol design, a 
flexible framework that provides coherence composition is needed 
that supports variable hierarchy width and depth, as well as 
providing insights into how coherence and hierarchy decisions 
affect system performance. 

Compared to their monolithic counterparts, hierarchies are 
considerably harder to reason about, making composition from 
“known working parts” attractive.  The current general solution is 
to design an ad-hoc glue layer to tie low-level coherence protocols 
together.  However, this often results in changes to the low-level 
protocols, specifically the introduction of complex sub-state 
replication to encode all hierarchy information into protocol state 
for permission and request handling [14, 15].  This in turn requires 
management of more states, and thus a more complex state 
machine.  The ad-hoc glue methodology also makes evaluating 
changes to the hierarchy more difficult, since a new ad-hoc 
solution must be developed for each change. 

 The combined result of current practices is an abundance of 
large, complex, inflexible and highly-specialized coherence 
protocols, especially where hierarchies are employed [8-15]. In 
this work we develop a powerful new way to design coherence 
hierarchies, Manager-Client Pairing (MCP).  MCP defines a clear 
communication interface between users of data (clients) and the 
mechanisms that monitor coherence of these users (managers) on 
the two sides of a coherence protocol interface.  This client-
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manager model is the basis of the interface used by MCP for 
coherence hierarchy tiers.  Application of MCP provides 
encapsulation within each tier of the hierarchical protocol so each 
component coherence protocol can be considered in isolation, 
mitigating the problem of state space explosion problem of ad-hoc 
solutions, and reducing the design complexity normally inherent 
to coherence hierarchies.  Furthermore, because the interface is 
standardized and tiers are independent, MCP can be applied in a 
divide-and-conquer manner (Figure 1) to partition a manycore 
processor into arbitrarily deep hierarchies.  This enables rapid 
design of hierarchical coherence protocols using community-
validated building blocks that can be readily compared and 
evaluated.   

In short, MCP is a framework for modular and composable 
hierarchical coherence protocol development.  The contributions 
of MCP as presented in this paper are as follows: 

• It defines and delineates coherence responsibilities 
between Client and Manager agents to distill the 
fundamental requirements of a coherence protocol into a 
modular and generic set of base functions; 

• The definition of a generic protocol Manager-Client 
interface based on these base functions standardizes 
coherence protocol communication; this in turn enables 
rapid development of multi-tier coherence hierarchies 
by converting stand-alone coherence protocols into 
coherence-tier building blocks; 

• The MCP Hierarchy Permission Checking Algorithm and 
associated terminology to formalize hierarchical 
protocol description are also presented; and, 

• A qualitative proof of concept, evaluating the impact 
different hierarchy width and depth choices have on 
performance for a 256-core system (four connected, 64-
core manycores), is shown; this level of analysis is only 
possible because of the flexibility and rapid design 
afforded by the MCP framework. 

 The remainder of this paper is structured as follows.  First, 
Section 2 will discuss previous work in coherence hierarchy 
design and highlight how MCP differs from these.  In Section 3, 

the base functions of cache coherence are presented based on a 
definition of client and manager responsibilities.  Section 4 
describes base function use in the MCP hierarchical permissions 
algorithm through examples.  Section 5 then demonstrates the 
power and flexibility of MCP by providing new insights through 
experiments that evaluate the impact of different hierarchy design 
choices.  The paper ends with concluding remarks. 

2.  Related Work 
MCP eases hierarchical coherence protocol design through 
composition, distributing the coherence responsibility throughout 
the hierarchy’s tiers via encapsulation.  The earliest reference to 
coherence distribution hierarchies is by Wilson [27].  Hierarchical 
coherence scope is restricted to interconnected buses, where 
directories for each lower bus snoops on the higher bus for 
relevant traffic (effectively bus-bus-…-bus hierarchies).  Wilson 
points out many design concerns, especially those regarding the 
high bandwidth required at the top-tier.  Wallach’s master’s thesis 
[28] describes an extension to Wilson’s approach, using a tree-
based coherence protocols for k-ary n-cube topologies, rather than 
broadcast-based distributed-bus systems.  Read requests are 
satisfied at the lowest common subtree, and write invalidations 
only include the smallest subtree that encompasses all sharers, 
thus reducing traffic. 

With the recent resurgence of interest in multicore, Marty, et al. 
[14] described a solution to extend coherence across a multi-CMP 
through the use of token coherence as an additional decoupled 
connecting layer.  Marty and Hill [20] later exploit the coherence 
decoupling provided by hierarchies to turn coherence realms into 
coherence domains to enable virtual-machine hierarchies on a 
manycore substrate. 

Recently Ladan-Mozes and Leiserson [18] propose 
Hierarchical Cache Consistency (HCC), a deadlock-free, tree-
based coherence protocol that ensures forward progress in a fat-
tree network.  They do so by enumerating invariant properties that 
ensure all children in the tree are coherent with parents, forming 
the basis of their distributed coherence mechanism. The most 
closely related work, due to the recursive nature of the interfaces 
we proposed in MCP, is Fractal Coherence [16].  In Fractal 
Coherence, Zhang et al. propose a tree-based coherence protocol, 
but with the intention of simplifying coherence verification 
through perfect self-similarity.  By designing a fractal based 
hierarchical coherence protocol, where children are coherent with 
their parents, the entire coherence hierarchy can be validated 
through the validation of only the kernel coherence protocol.  
MCP is more general than Fractal Coherence, and our focus in this 
work is on easing integration of layers, design space evaluation 
and design reasoning (compared to ad-hoc approaches), as 
opposed to Fractal’s emphasis on verification.   

Despite having different goals, Fractal Coherence, HCC and 
MCP all share a similarity with respect to the permission inclusion 
property discussed by the authors of HCC in [18].  Parent/upper-
tier state in many respects can be viewed as a summary of the 
child/lower-tiers, having to have permissions at least as strong as 
the lower children/tiers’.  However, there is a very important 
distinguishing feature that sets MCP apart; Both Fractal 
Coherence and HCC use protocol implementation-specific details 
to ensure this property is enforced between parents and children, 
whereas tiers in MCP need not have any understanding of each 

Figure 1 – Coherence hierarchy labeled with MCP 
terminology 
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other’s states as long as each protocol support the permission 
queries interface discussed in Section 3.  Therefore, despite 
differing goals, both Fractal Coherence and HCC are compatible 
with MCP through the addition of permission query support. 

It is worth noting that while not a necessary requirement, both 
HCC and Fractal Coherence only implement uniform MSI 
protocols. More importantly, each assumes a network topology 
(tree-based) that matches the organization of the coherence 
mechanism, that in turn can limit portability and imposes 
limitations (e.g., requiring strict network ordering).  Each also 
only evaluates binary tree implementations, which have the 
disadvantage of increasing the height of the hierarchy 
logarithmically with node count.  This height increase results in 
more hardware overhead for tag structures as well as indirection 
delays as compared to flatter hierarchies (as we demonstrate in 
Section 5).  Additionally, neither can provide support for 
coherence hierarchy heterogeneity (i.e., the use of different 
protocol components to create a globally coherent system), 
whereas MCP does. 

3. Division of Labor for Cache Coherence as a 
Template 
In a shared memory machine, the cache coherence protocol is 
responsible for enforcing a consistent view of memory across all 
caches of all nodes within a coherence domain.  This includes 
defining the mechanisms that control acquisition and holding of 
read permissions, write permissions, the respective restrictions on 
each, and how updates to data are propagated through the system.  
The responsibilities of this effort can be divided between two 
kinds of agents: managers that manage permission propagation 
and clients that hold these permissions. 

We begin by formally defining these roles and interactions for a 
flat, non-hierarchical MOESI directory protocol [13].  These roles 
are then re-examined to derive interfaces that enable composition 
of complex coherence hierarchies.  Finally, we demonstrate that 
these interfaces are compatible with broadcast protocols as well, 
despite having been derived from a directory protocol design. 

3.1 Defining Base Functions of Coherence via 
MOESI example 
As a starting point, an EI protocol is perhaps as simple as a 
protocol can be.  Each client can either have the only copy of data 
in the exclusive (E) state, or not have the data at all (the invalid (I) 
state).  Tracking of this state from the manager’s perspective is 
straightforward since there can only be one exclusive client at any 
time.  Propagation is straight forward as well: if another client 
requests permission to a block, the manager can take permission 
away from one client and give it to the new client. 

 As simple as this example may be, it immediately highlights 
the most basic responsibilities of the agents involved in coherence.  
Clients need to be capable of answering whether or not they have 
sufficient permission to satisfy a request.  When unable to satisfy a 
request, clients need a mechanism to request permission.  
Manager agents are responsible for permission allocation and de-
allocation.  This includes the capabilities for accepting permission 
requests, tracking sufficient client state to satisfy such requests, 

and mechanisms for modifying permissions to carry out these 
actions.1    

Let us now consider the question of how a write is handled in 
an EI protocol.  State management for data modification becomes 
a matter of whom most readily uses this information, or rather, 
which agent should maintain knowledge of the ‘dirty’ state 
associated with a write.  Assuming a write-back cache, modified 
data is a matter of permissions when a later cache eviction is being 
made (i.e., can this block be evicted immediately or does some 
action have to be taken first).  Since permission queries have 
already been defined as a client-side responsibility, the client 
agent would need an additional state, the Modified (M) state. 

This new M state brings about two important revelations.  First, 
the manager does not have to be aware of an internal change from 
the E to M states within it’s client since, as long as the block is 
exclusive, the client can silently upgrade state to M.  As a result, 
the manager and client states do not have to be perfectly 
congruent (i.e., client states include M, E and I, while manager 
states include only E and I).  Second, this addition also 
demonstrates another requirement for client agents: the ability to 
downgrade or forfeit permissions.  Before a cache can evict dirty 
data, it has to be written back to memory and the manager must be 
notified.  This is subtly related to manager permission de-
allocation, but with a significant difference: this is client initiated 
instead of manager initiated.  As a result, manager agents also 
have the additional need of permission downgrade processing 
when a client wants to voluntarily relinquish permissions. 

 In order to fully expand the MEI protocol into an MOESI 
protocol, two additional states require consideration: the shared 
(S) and the owned (O) states.  The shared state enables multiple 
clients to have read permissions simultaneously.  This complicates 
permission handling since these sharers need to be invalidated 
before write permission can be granted by the manager.  In an 
invalidation-based protocol, downgrade messages are sent to 
sharers before write permissions can be granted.  A common 
implementation optimization is to have sharers directly send 
invalidation acknowledgements to the originating requestor rather 
than back to the directory, advocating the need for client-to-client 
communication via forwarding.  This forwarding is also necessary 
to take advantage of the owned state, which introduces the ability 
to transfer data between caches by giving a client special status as 
a data supplier (often dirty data with respect to main memory).   
On a new read request, the manager will forward the request to the 
owner instead of memory, who will then respond to the client with 
data. 

Table 1 summarizes and enumerates a comprehensive list of the 
base functions required for communication between processors, 
clients, managers and memory in a flat protocol. These will be 
used as an aid in the developing a generic protocol interface.  

 

1 In a directory-based coherence schemes, the manager agent is 
synonymous with the directory.  Manager agent is used in place of 
directory, however, to avoid strict association of state management with 
directory-based coherence protocols. 



   
 
 

 

 

3.2 MCP Interface for Coherence Hierarchy 
Construction 
We now turn our attention to coherence hierarchies.  Reviewing 
the base functions outlined in Table 1, it is evident that there are 
considerable similarities between the agents involved in 
coherence.  Specifically, the relationship between processor and 
client agents has similarities to that between manager agents and 
memory: in both cases, data suppliers are asked to supply data 
from a mechanism closer to main memory in the memory 
hierarchy.  This is a critically important insight into how to 
develop an interface that allows for recursion and thus hierarchies.  
Examining Figure 2, if manager agents were given the ability to 
issue permissions-query upwards like processors do towards their 
client, then replacing the implementation details of the coherence 
protocol with a black box yields a self-similar upper and lower 
interface.  Not only does this insight enable recursion through a 
simple interface definition, but also allows encapsulation of the 
coherence protocols used in the hierarchy, reducing design 
complexity. 
 From this we can see that there are at least three necessary 
components to the MCP interface: upward permission querying, 
lower-to-upper permission/data acquisition, and upper-to-lower 
data supply.  Introducing permission querying capabilities to 

 

Figure 2 - The addition of permissions-query capabilities 
enable recursive coherence. 
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Table 1 - Base functions for standardized communication between processors, clients and managers.  The following is an 
example of how a read sequence would operate on an invalid block. First a Processor issues a (1) ReadP to its client.  This 
client replies with ‘false’, where upon the Processor takes another action, (2) GetReadD.  This results in the client 
executing its GetReadD action, which in turn will cause the Manager to execute its GetReadD action.  The Manager 
GetReadD action is a forward request.  Assuming there is no client owner, Memory is regarded as the owner of the data 
and asked to execute its GrantReadD action.  This results in Memory supplying Data to the client, completing the 
GetReadD.  Upon completion, the processor can retry its ReadP action, which the client will respond with ‘true’.  The 
processor can safely execute its DoRead action for which the client will supply data. 

 Origin Agent Action Type Action Description Destination Agent(s) Response Action(s)

Processor Permission Query ReadP Have read permission? Client Reply with True/False (1), (6)
WriteP Have write permission? Client Reply with True/False
EvictP Have eviction permission? Client Reply with True/False

Permission and/or GetReadD Get read permission and Data Client GetReadD (2)
Data Acquire GetWriteD Get write permission and Data Client GetWriteD

GetWrite Get write permission Client GetWrite
GetEvict Get eviction permission Client GetEvict
DoRead Supply Data to Processor Client DoRead (7)
DoWrite Issue Dirty Data from Processor Client DoWrite

Client Data Supply/Consume DoRead Supply Data to Processor Processor Complete DoRead
DoWrite Issue Dirty Data from Processor Processor Complete DoWrite

Permission and/or GetReadD Get read permission with Data Manager GetReadD (3)
Data Acquire GetWriteD Get write permission with Data Manager GetWriteD

GetWrite Get write permission Manager GetWrite
GetEvict Get eviction permission Manager GetEvict

Permission and/or GrantReadD Forward Data, Downgrade Self Client Complete GetReadD
Data Supply GrantWriteD Forward Data; Invalidate Self Client Collect all Acks to Complete GetWriteD

GrantWrite Forward Ack; Invalidate Self Client Collect all Acks to complete GetWrite

Manager Permission and/or GetReadD Grant read permission with Data Memory/Owner GrantReadD (4)
Data Acquire GetWriteD Grant write permission with Data Memory/Owner; Sharers GrantWriteD; GrantWrite

GetWrite Grant write permission Owner; Sharers GrantWrite; GrantWrite
GetEvict Grant eviction permission Memory; Client Consume Dirty Data; Complete GetEvict

Memory Data Supply/Consume GrantReadD Forward Data Client Complete GetReadD (5)
GrantWriteD Forward Data Client Collect all Acks to Complete GetWriteD



   
 
 

 

 

manager agents is the origin of Manager-Client Pairing’s 
namesake.  Manager queries are accomplished by pairing the 
manager agent of each coherence realm in a tier with a client in 
the next higher-up tier in the hierarchy (or an all-permission client 
if there is no higher tier, e.g., memory).  Since there is one logical 
manager agent per coherence realm, this allows the client to 
represent the permissions of the entire realm and all tiers beneath 
this realm.  This is explained in more detail when describing the 
permissions algorithm in Section 4.  

 Permission/Data acquisition and supply are also possible due to 
the pairing of managers with clients in the next tier.  The manager 
requires no details regarding the operation of the higher coherence 
protocol provided; it can defer that responsibility to it’s paired 
client.   By systematically asking the paired client for either read 
or write permission, the client can take part in its native coherence 
scheme until it has completed the request.  This is much like how 
a processor is unaware of how coherence in the caches are 
implemented; it simply asks if it has permissions and receives 
data, as shown in the example described with Table 1. 

One important detail that must be accounted for is the 
propagation of a paired-client downgrade. Since a client agent 
effectively represents the coherence state of all its paired 
manager’s lower tiers, the paired client cannot give up its 
permission rights and transition into another lower permission 
state until the entire coherence realm below it has been made to 
match these new permissions.  This is addressed in MCP by 
allowing the paired-client to issue downgrade requests to its 
paired manager.  When the manager executes this downgrade 
action, it executes its ‘Permission and/or Data acquire’ action 
from Table 1, where the forward destination is its paired client.  
Thus the local sharers will send their invalidation, downgrade 
acknowledgements and/or data to the manager’s paired client.  
This provides us with our fourth and final interface component: 
upper-to-lower downgrades.  Figure 3 shows how the MCP 
interface enables coherence tier communication while respecting 
the encapsulation of the component protocols. 

3.3 Broadcast compatibility 
The argument can be made that the base functions, and thus the 
MCP interface, may be insufficient to encompass broadcast 
coherence schemes since it was developed specifically for a 
directory-based implementation.  In this subsection we 
demonstrate that popular broadcast coherence protocols, such as 
Snoopy-MOSI [13] and TokenB [19], are MCP compliant.  
Additionally we point out the restrictions of these protocols that 
need to be accounted for by any architecture employing these 
protocols as building blocks in an MCP coherence hierarchy. 

3.3.1 Snoopy Coherence 
In a snoopy protocol, all agents are connected together via a 
shared medium (i.e. a bus) and residents on the shared medium 
observe coherence traffic through snooping agents.  This need for 
a shared medium represents a limitation specific to broadcast 
protocols; either broadcast or multicast functionality is required in 
the network to ensure correctness.  However, a benefit of this is 
that there is no single manager agent responsible for permission 
allocation and deallocation, as opposed to in a directory scheme; 
rather, this is a distributed responsibility.  In this sense the 
manager mechanism is spread across all the snooping 
mechanisms; the functionality of GetReadD, GetWrite and 
GetWriteD, downgrades and invalidation are preserved by the 
bus-initiated state-machine of the snoopers.  For example, a 
BusReadMiss placed on the shared medium as the result of a 
client GetReadD action causes the snooping mechanism of the 
cache with the block in modified state to execute a client 
GrantReadD, providing data on the bus and causing a self-
downgrade transition into the owned State. 

The only manager responsibility of MCP not immediately 
obvious in broadcast-based protocols is GetEvict, used during 
writebacks of dirty data.  However, in a non-hierarchical 
broadcast protocol, the shared memory controller plays a special 
role when data needs to either enter or exit the shared 
environment.  In this sense the memory controller acts as a 
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gateway beyond the boundaries of the broadcast protocol’s 
coherence realm, much how the MCP interface is the gateway for 
a coherence realm.  On a GetReadD from a client where no other 
caches can respond (e.g., because data is not present locally), it is 
the memory controller’s responsibility to acquire data from 
outside the coherence realm and respond as if it owned the block 
by in-turn executing an upward GetReadD.  Because of this extra 
responsibility, it is straight forward to assign the memory 
controller’s snooping agent with the responsibility for issuance of 
a Manager GetEvict on a Client GetEvict request (i.e., by pushing 
dirty data back out to memory).  In essence, it is as if the memory 
controller client agent represents the coherence state of everything 
outside the coherence realm, including memory (where memory 
initially owns all data).  While compliant with MCP, this does 
introduce another limitation: not only does the architecture need 
broadcast/multicast functionality, but also at least one enhanced 
snooper for handling these requests.  The architects of the HP 
Superdome leverage a similar notion, where a larger, hierarchical 
broadcast system was constructed using commodity broadcast 
coherent components tied together by a shared medium for 
intelligent broadcast distribution.  In the HP Superdome, 
specialized logic at the boundary between the local busses and an 
intra-cell crossbar behaves like the memory controller described 
above, converting bus broadcasts that miss locally into system 
messages that request the data from the rest of the system [12]. 

3.3.2 TokenB Coherence 
Since TokenB coherence is based on MOSI broadcast coherence, 
there are only two additional concerns that need addressing for 
MCP compliance:  token handling and persistent requests.  Token 
handling is a relatively trivial concern since token message 
support as well as token accumulation/distribution logic is no 

more complex than the message extensions and state machine 
logic required by other component coherence protocols.  The 
largest hurdle for TokenB is the correctness substrate’s need for 
persistent requests.  This can be accomplished by adding an 
extension to the protocol actions to incorporate a Boolean 
signifying whether the request is persistent or not.  In TokenB, 
persistent requests are activated by the memory controller, which 
is congruent with the previous notion of the memory controller 
being a special client agent (i.e., responsible for the extra, non-
distributed manager responsibilities).  At this point it becomes the 
responsibility of the underlying implementation to handle 
persistent requests commands as a special version of the same 
actions presented in Table 1.  Furthermore, because the protocols 
are encapsulated, this concern does not extend beyond the scope 
of the coherence realm.  Token management and persistent 
requests are restricted to only the relevant coherence realm. 

4.  Permission Hierarchy Algorithm 
With a common interface defined, we can begin using coherence 
protocol agents as building blocks in the construction of 
hierarchical coherence protocols.  By expanding the scope of 
client agents to also monitor coherence realms in addition to 
processor caches, the coherence effort can be distributed over 
several protocols by layering the protocols in a tiered fashion.  In 
order to enforce the permission-inclusion property described by 
Ladan-Mozes and Leiserson [18], the client agent must behave as 
a gateway for the manager of the coherence realm, restricting what 
permissions can be awarded, and taking action when permissions 
must be upgraded in the coherence realm before the manager can 
begin request resolution.  The manager agents now must consult 
the gateway client before allocating permission, which in turn may 
recursively send another permission request to another manager-
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client pair.  The flowchart in Figure 4 demonstrates the Manager-
Client Pairing algorithm for processing permission acquires. 

To aid in understanding and to highlight some important details 
of MCP, two examples are presented.  In both examples we have a 
top-tier coherence realm, A, that implements a low-overhead MEI 
protocol to manage two lower coherence realms, B and C, both 
implementing MOESI.  Manager A resides at memory and 
therefore has no need for a gateway client— being the highest 
manager agent in the system it always has permission to satisfy 
queries.  Similarly, clients B0, B1 and C1 do not have a matching 
manager agent because there are no lower tiers to be tracked— 
they are gateways for processors’ private caches, not further 
coherence realms. 

 In Figure 5(a), an example of a realm-hit from a read request is 
shown.  The processor below client B0 initiates the sequence with 
a read request, resulting in a ReadP permissions query.  Since the I 
state has insufficient permission to satisfy the read request, ReadP 
yields false, causing the request to propagate up to the manager 
agent via a GetReadD (Figure 4’s ‘Get issued to Manager-Agent’ 
arc).  At that level, the gateway client state is checked in the next-
higher tier where in turn a ReadP yields true due to Client A0 
being in the M state (e.g., it has sufficient permissions for a read).  
Client A0 is a gateway to a manager agent, thus manager B 
receives the request and responds with a GrantReadD action.  For 
the MOSI protocol implemented, this involves issuing a FwdRead 
to the current modified owner, client B1.  Upon receipt, B1 will 
downgrade to the O state and execute a GrantReadD, providing 
data and permissions to the originating client B0.  Now B0 can 
supply data to the core. 

From this example we see a clear demonstration of the 
encapsulation of the coherence realm provided by MCP.  The 
request in the example was serviced only within the scope of 
coherence realm B because the gateway client A0 had sufficient 
permissions to allow the request to proceed in a coherent manner.  
Furthermore, despite a change in the state of the coherence 
realm’s manager B from M to O, the change does not need to be 
reflected in client A0 since it is a silent downgrade.  Because there 
is no need to notify manager A of this activity, there is the benefit 
of reduced traffic while preserving encapsulation.  Additionally, if 

either client B0 or B1 were to issue a later write request, the 
coherence realm still has enough permissions to allow a silent 
upgrade back into the M state without having to forward the query 
up to manager A, much like an E-to-M transition in MESI. 

 Requests can however cross coherence realm boundaries, 
referred to as a realm-miss, when more permission is needed than 
is available as shown in Figure 5(b).  Here the MCP algorithm 
propagates the request all the way to the top tier where it 
encounters manager A and memory instead of a client agent.  
Since there is no higher tier to consult, the top manager always 
has sufficient permissions to make forward progress; there is no 
gateway client at the top level.  Upon receipt at manager A, a 
GrantWriteD request is issued to client A0.  Just as in a flat 
protocol, where a cache would invalidate the block locally before 
forwarding an invalidation acknowledgement and data, so too 
does client A0 need to invalidate its manager B before forwarding.  
This results in invalidations being issued down to B’s clients, 
which can continue recursively down multiple tiers in a larger 
coherence hierarchy.  Once manager-client pair B has collected all 
the acknowledgements and the invalidation is complete, the 
modified data that once resided in B1 can be forwarded to client 
A1.  Now that manager C has sufficient permissions and data, it 
can issue data to the originating requestor, completing the 
transaction with client C0 in the M state.  

 Although more complex, this second example further serves to 
demonstrate the decoupling of the protocol coherence realms from 
one another.  When a gateway client’s permissions are not high 
enough, the entire coherence realm effectively collapses into a 
single node from the perspective of the manager in the next tier.  
The next-tier manager does not need to be aware of any details of 
how the coherence realm guarded by the gateway client operates 
just as long as it knows how to interact with the gateway client 
(which obviously it will being the manager).  Similarly, when 
coherence realm B was being invalidated, this was done opaquely 
from the perspective of manager A.  This coherence realm 
encapsulation is what enables efficient composition of coherence 
protocol hierarchies without the need for ad-hoc sub-state 
replication.  Despite the MEI protocol of manager A managing 
two realms using different protocols (with additional, independent 
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Figure 5 – (a) Realm-hit Read example and (b) Realm-Miss Write example 
 



   
 
 

 

 

S and O states), the protocol of realm A was never aware of this 
since it had no need to store information outside its own protocol 
scope.  Furthermore, each component protocol may be validated 
in isolation.  Extending this to enable full scale validation, as 
demonstrated in [16] except for more general protocols, is 
reserved future work. 

5.  Using MCP to Compare Hierarchy 
Decisions 
There are both hardware and performance issues associated with 
coherence hierarchies that need to be considered when designing a 
coherence mechanism for a given architecture.  These will be 
discussed, followed by experiments that provide insights into how 
these design tradeoffs influence execution. 

5.1 Hardware cost 
From a hardware perspective, each coherence tier in the hierarchy 
has an associated structural cost, most specifically regarding the 
Manager Agents Tag Structures (MATS) for tracking owner state 
and sharers.  There have however been several proposals in the 
literature to address MATS-related sizing concerns for directory 
protocols [21-24].  While there is generally a set of MATS per 
coherence realm, employing hierarchies creates natural width 
reduction within the tracking structure, since each realm’s 
manager is designed for the realm degree (number of clients in the 
realm), not the number of system-wide nodes.  For example, in a 
256 node, 2-tier hierarchy with realm degrees of 16-16 (one top 
tier (T1) protocol managing 16 2nd tier (T2) protocols, each 
managing 16 clients), utilizing a simple directory bit-vector, M/O 
bit and owner field the MATS entries have a hardware cost of 16 
+ 1 + 4 = 21 bits in addition to the tag. In comparison, in a flat 
protocol using full-bit vectors, the overhead would be 128 + 1 + 7 
= 136 bits per entry assuming no height or width reduction 
techniques.  Albeit, there can be several T2 entries per T1, so the 
system-wide cost can range dynamically depending on the degree 
of replication.  The costs are in favor of hierarchies, however, if 

we assume less than 5 realms are sharing on average and that data-
cache tag reuse is an option. 

There is also a double-edged memory latency impact when 
hierarchies are employed. Since the local manager has to be 
consulted while traversing up the hierarchy, there is an additional 
indirection cost added by either compulsory misses or misses that 
only hit in the upper/remote tiers.  However, successful realm hits 
result in better physical locality since the manager and data 
responder are both closer than the home location of a flat protocol.  
There is also a similar effect regarding local on-chip network 
bandwidth.  These are considerations MCP allows for that should 
be acknowledged during hierarchy design yet have not previously 
been evaluated to our knowledge. 

5.2 Evaluated Hierarchies 
In order to evaluate the impact that coherence hierarchies design 
decisions have, we use MCP to implement a variety of 
hierarchical configurations on a 256-core system composed of 
four interconnected 64-core manycore, where each 64-core 
manycore uses an on-chip torus network.  The implemented MCP 
configurations were verified through a combination of random test 
case generation and hand-written sequences to stress potential 
corner-cases, similar to the approach discussed in [6].  In all 
instances, the hierarchy is a composition of only MOESI protocols 
to reduce the scope of analysis by removing any biases 
heterogeneity in protocol choice may introduce. We feel 
heterogeneity is important analysis, however, and will investigate 
it in future work. 

There are several options regarding how to partition 256 cores 
into a coherence hierarchy.  The two most obvious choices are to 
use a flat, single tier protocol or a simple 2-tier protocol where 
coherence realms are restricted to each chip and inter-chip 
coherence is maintained in the top-tier (these configuration will be 
referred to as a ‘1-Tier 256’ and ‘2-Tier 64x4’, respectively). 
There are, however, other viable partitioning choices without 
introducing an additional tier and its associated hardware tag 
structures.  Both a 2-Tier 16x16 and 2-Tier 4x64 organization 

L

H

(a) 

L

H

(b) 

Figure 6 - Coherence realms (shaded) and local tier miss traffic in (a) 2-Tier 64x4 and (b) 2-Tier 16x16 system.  In each 
instance the originating node must first access the local home (indicated by L) where it misses and traverses to the Tier 1 
home (indicated by H).  While 2-Tier 64x4 encompasses more nodes, increasing the likelihood of local realm hits, in the 
event of a miss (b) shows that 2-Tier 16x16 has the advantages of faster miss acquisition and lower network bandwidth 
consumption. 
 



   
 
 

 

 

exploit different trade-offs with regard to locality and indirection 
delay by varying the width of the hierarchy.  Figure 6 
demonstrates this difference in behavior for a compulsory miss 
between 2-Tier 64x4 and 2-Tier 16x16. It is worth noting that 
local home node selection is the equivalent position of the tier 1 
home within its realm to provide a deterministic local-home look-
up policy that can vary as realm sizes vary. 

Finally, allowing for the required hardware tag structures, 
additional tiers can rapidly be added to the hierarchy through 
MCP’s composability feature.  To this end, both a 3-Tier 16x4x4 
and a 4-Tier 4x4x4x4 configuration are implemented to 
demonstrate tradeoff evaluation at more extreme hierarchical 
design points is possible without the complexity of implementing 
adhoc glue layers. 

5.3 Empirical Examples of Applied MCP 
An internal execution-driven simulator is used in this work that 
models a manycore system with a detailed network infrastructure.  
The MIPS based emulator front-end from SESC [25] is used as 
the front-end to a simple execution model and detail memory 
hierarchy that supplies back-end timing information.  
Synchronization primitives (i.e., load link and store conditional) 
and fences are modeled as execute-at-execute to enforce 
consistency, while all other instructions are execute-at-fetch.  The 
execute-at-execute model "peeks" at the state of the emulator 
without modifying state.  This allows lock contention to be 
faithfully modeled based on simulated timing and not emulation.  
Each node contains a simple 2-issue in-order processor, a 32k 
private L1 cache and a 128k slice of the shared L2 cache.  For the 
non-hierarchical run (1 Tier-256) the manager state reuses the L2 
caches tags.  For the hierarchical configurations, an additional 
distributed hardware tag structure is added per tier (MATS from 
Section 5.1), with entry volume equal to that of the L2 cache slice 
(2048 entries).  Assuming approximately 64 bits per entry for tag, 
owner and sharer state (exact values vary with configuration), this 
would introduce an additional overhead of about 16KB worth of 
cache space per node per MATS.  While we are aware that 
dedicating this additional overhead to increasing the cache size 
could improve performance, this is not taken into consideration 
for this evaluation since so many tag structure reduction 
techniques exist and inclusion makes reasoning about the 

collected hierarchy results more difficult (e.g. is a change in 
performance due to a change in the cache size, the hierarchy 
configuration, or a combination).  

 A small subset of the SPLASH-2 benchmark suite [26] is used 
to aid in demonstrating MCP’s flexibility.  To remove cold start 
effects and to ensure execution of parallel code, hooks were added 
to each benchmark to indicate the starting point for sampling and 
results are collected at barrier exits.  For evaluation purposes, an 
unlimited version of the network topology is used in evaluation, 
where only delay due to the three-stage router pipeline is modeled; 
virtual channel allocation, switch allocation, and link traversal are 
contention free.  This choice is made to remove network 
parameter decision bias from the presented results.  Considering 
the large design space involved, evaluation of network and 
hierarchy co-design is left for future work. 

5.3.1 Comparison of Hierarchy Width 
In this sub-section, using MCP, comparisons are drawn between 
several two-tier hierarchies of varying widths to demonstrate the 
different behaviors benchmarks can exhibit as lower-tier scope 
changes.  To begin discussion, we first present L1 miss latency 
comparisons in Figure 7.  
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 These results demonstrate that hierarchy width selection is not 
a one-size fits all design choice; benchmark behavior diversity can 
influence what width is ideal. For both Ocean benchmarks, 
variation in the width has little impact on performance, and these 
variations are overshadowed by the performance difference when 
moving from a flat protocol to a two-tier hierarchy.  Water 
Spatial, however, benefits most from a 16x16 hierarchy. To gain 
better insight into these differences, we can inspect the histograms 
of L1 miss latency behavior, shown below in Figure 8 and 9. 

The first thing worth noting in both figures is the difference in 
the first set of humps (0-150 cycle latency).  These represent 
accesses that miss in the L1, but succeed in getting data from the 
distributed L2 and thus do not suffer an off-chip memory access 
penalty.  It is also clear in both histograms that 4x64 has the 
fastest response time of the configurations, which matches our 
intuition that success hits in the smaller realms will result in 
accelerated L2 hit times.  The plot for 1-Tier 256, however, shows 
a wider, shallower response, demonstrating that access time varies 
based on home-node distance from the requestor. Nearby nodes 
satisfy some requests, while many require access to nodes that are 
on the other side of the chip or even reside in another chip’s L2 
cache. 

The insights discussed in Figure 6 regarding variation in realm 
size are confirmed by these figures as well.  In both Figure 8 and 9 
we see that, by examining the second hump (>300 cycle latency), 
2-Tier 64x4 incurs the highest miss penalty due to the indirection 
of going to the local home prior to the global home; it’s pattern is 
skewed to the right compared to the other configurations 
histograms.  While 2-Tier 16x16 and 2-Tier 4x64 have to pay this 
indirection cost as well, the distance to the local home is shorter 
so less indirection penalty is incurred.  For Water Spatial, 
however, 2-Tier 16x16 strikes the best balance between fast hit 
access latency, local hit rate (overall <150 cycle hit count is higher 
than 2-Tier 4x64’s narrow spike), and low indirection penalty. 
 As for explaining Ocean_c, the histogram of Figure 9 gives us 
some additional important information; compared to Water spatial 
the ratio of off-chip accesses to L2 hits is much higher.  This in 
turn emphasizes the negative effects of increased indirection as 
well as reducing the positive effect of local hits. 

5.3.2 Comparison of Hierarchy Height 
In addition to width design considerations, the choice to introduce 
additional tiers must be considered as well.  This can be done 
quickly, however, using a composition of the MCP compliant 
MOESI protocol tiers as building blocks for these larger 
hierarchies.   In the previous subsection it was demonstrated that 
performance in general favors two-tier hierarchies over a single 
tiered, non-hierarchical coherence protocol.  Despite the cost of 
indirection, it is relatively low compared to the cost of global-
home traversal (in figures 8 and 9 the left skew of 1-Tier 256, 
which has no indirection penalty, compared to the others at >300 
cycles is noticeable but not dramatic).  Further, this small 
performance penalty can easily be offset by the frequent, closer 
realm hits in the presence of high L2 cache hit rates.  However, 
when increasing hierarchy height too much, aggregation of 
indirection penalty can become a concern as demonstrated in 
Figure 10. 

To verify this, we again examine a histogram of Water 
Spatial’s L1 miss latency behavior (Figure 11).  It is clear that the 
curve for the off-chip accesses flattens out and shifts to the right 
as the hierarchy height increases.  This makes sense, however, 
since indirection penalty is not just from distance, but also 
includes router entry/exit at each tier’s realm home node and 
MATS lookup/access time; each additional hop incurs a penalty 
that accumulates. 

6. Conclusion 
The primary goal of this qualitative study is to define the 
Manager-Client Pairing interface in order to create a generic 
hierarchical coherence implementation framework to support the 
continued scaling of massively coherent systems.  This work 
demonstrates the impact coherence hierarchies can have on large-
scale machines and shows how MCP’s rapid design process 
enables effective reasoning about design decision trade-offs.  
Further, while hierarchies beyond two-tiers may seem superfluous 
now, MCP enables the design of arbitrarily deep, diverse 
coherence hierarchies for future, 1024 and greater core systems.  
By making different protocols adhere to this unifying interface, 
more intelligent design decisions regarding coherence solutions 
can be made.  As of this writing, MCP is currently the initial 
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starting point of an IEEE standards working group seeking to 
create a standard for coherent inter-operability between multi-
vendor ensemble systems.  In addition to the standards work, the 
inarguable benefit of protocol modularity provided by MCP will 
enable architects to compare and communicate their designs 
decisions more effectively in the future. 
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