

Manager-Client Pairing: A Framework for Implementing
Coherence Hierarchies

Jesse G. Beu

Georgia Institute of Technology
Atlanta, GA USA

Jesse.Beu@gmail.com

Michael C. Rosier
Apple Inc.

Cupertino, CA USA
Chad.Rosier@gmail.com

Thomas M. Conte
Georgia Institute of Technology

Atlanta, GA USA
Tom@conte.us

Abstract
As technology continues to scale, the need for more sophisticated
coherence management is becoming a necessity. The likely
solution to this problem is the use of coherence hierarchies,
analogous to how cache hierarchies have helped address the
memory-wall problem in the past. Previous work in the
construction of large-scale coherence protocols, however,
demonstrates the complexity inherent to this design space.

The difficulty with hierarchical coherence protocol design is
the complexity increases exponentially with the increase in
coherence states, due in turn to interactions between hierarchy
tiers. Additionally, because of the large development investment,
choices regarding coherence hierarchy are often made statically
with little knowledge of how changes to the organization would
affect the system. In this work, we present Manager-Client
Pairing (MCP) as a unifying methodology for designing multi-tier
coherence protocols by formally defining and limiting the
interactions between levels within a coherence hierarchy to
enable composition. Using MCP, we then implement a variety of
hierarchical coherence protocol configurations for a 256-core
system comprised of 4 64-core manycores, and provide insights
into what impact different hierarchy depth and width choices can
have on system performance.

Categories and Subject Descriptors
B.3.2 [Hardware]: Memory Structures—Cache Memories, Shared
Memory; C.1.4 [Computer Systems Organization]: Processor
Architectures—Parallel Architectures

Keywords
Cache Coherence, Coherence Hierarchies, Manycore, Memory
Hierarchies, Multicore

1. Introduction
Over the past ten years, the architecture community has witnessed
the end of single-threaded performance scaling and a subsequent

shift in focus toward multicore and future manycore processors
[1]. Within the realm of manycore, the two leading programming
methodologies are message passing and shared memory. While
arguments can be made for both sides, it is widely accepted that
shared memory systems are easier to program, and that the
programs thus developed are more portable. For these reasons,
shared memory is more likely to be adopted in the future by
programmers provided that it scales. The scaling issue is directly
due to the burden of coherent data management, which with
shared memory is shifted away from the programmer and onto the
hardware designer.

 Data coherence management is a non-trivial concern for
hardware design as we move into the manycore era. Efficient
coherence protocol design and validation is already a complex
task [2-7]. To make matters worse, we hypothesize that just as
broadcast-based systems have an upper limit, monolithic
directory-based systems too will reach scalability limits, thus
requiring coherence hierarchies to overcome this performance
bottleneck. This notion is reinforced by the prevalence of
coherence hierarchies in many existing and prior large-scale, high-
performance architectures [8-12]. However, before future
advances can be made in hierarchical coherence protocol design, a
flexible framework that provides coherence composition is needed
that supports variable hierarchy width and depth, as well as
providing insights into how coherence and hierarchy decisions
affect system performance.

Compared to their monolithic counterparts, hierarchies are
considerably harder to reason about, making composition from
“known working parts” attractive. The current general solution is
to design an ad-hoc glue layer to tie low-level coherence protocols
together. However, this often results in changes to the low-level
protocols, specifically the introduction of complex sub-state
replication to encode all hierarchy information into protocol state
for permission and request handling [14, 15]. This in turn requires
management of more states, and thus a more complex state
machine. The ad-hoc glue methodology also makes evaluating
changes to the hierarchy more difficult, since a new ad-hoc
solution must be developed for each change.

 The combined result of current practices is an abundance of
large, complex, inflexible and highly-specialized coherence
protocols, especially where hierarchies are employed [8-15]. In
this work we develop a powerful new way to design coherence
hierarchies, Manager-Client Pairing (MCP). MCP defines a clear
communication interface between users of data (clients) and the
mechanisms that monitor coherence of these users (managers) on
the two sides of a coherence protocol interface. This client-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.

MICRO 44, December 3–7, 2011, Porto Alegre, Brazil.
Copyright © 2011 ACM 978-1-4503-1053-6/11/12…$10.00.

manager model is the basis of the interface used by MCP for
coherence hierarchy tiers. Application of MCP provides
encapsulation within each tier of the hierarchical protocol so each
component coherence protocol can be considered in isolation,
mitigating the problem of state space explosion problem of ad-hoc
solutions, and reducing the design complexity normally inherent
to coherence hierarchies. Furthermore, because the interface is
standardized and tiers are independent, MCP can be applied in a
divide-and-conquer manner (Figure 1) to partition a manycore
processor into arbitrarily deep hierarchies. This enables rapid
design of hierarchical coherence protocols using community-
validated building blocks that can be readily compared and
evaluated.

In short, MCP is a framework for modular and composable
hierarchical coherence protocol development. The contributions
of MCP as presented in this paper are as follows:

• It defines and delineates coherence responsibilities
between Client and Manager agents to distill the
fundamental requirements of a coherence protocol into a
modular and generic set of base functions;

• The definition of a generic protocol Manager-Client
interface based on these base functions standardizes
coherence protocol communication; this in turn enables
rapid development of multi-tier coherence hierarchies
by converting stand-alone coherence protocols into
coherence-tier building blocks;

• The MCP Hierarchy Permission Checking Algorithm and
associated terminology to formalize hierarchical
protocol description are also presented; and,

• A qualitative proof of concept, evaluating the impact
different hierarchy width and depth choices have on
performance for a 256-core system (four connected, 64-
core manycores), is shown; this level of analysis is only
possible because of the flexibility and rapid design
afforded by the MCP framework.

 The remainder of this paper is structured as follows. First,
Section 2 will discuss previous work in coherence hierarchy
design and highlight how MCP differs from these. In Section 3,

the base functions of cache coherence are presented based on a
definition of client and manager responsibilities. Section 4
describes base function use in the MCP hierarchical permissions
algorithm through examples. Section 5 then demonstrates the
power and flexibility of MCP by providing new insights through
experiments that evaluate the impact of different hierarchy design
choices. The paper ends with concluding remarks.

2. Related Work
MCP eases hierarchical coherence protocol design through
composition, distributing the coherence responsibility throughout
the hierarchy’s tiers via encapsulation. The earliest reference to
coherence distribution hierarchies is by Wilson [27]. Hierarchical
coherence scope is restricted to interconnected buses, where
directories for each lower bus snoops on the higher bus for
relevant traffic (effectively bus-bus-…-bus hierarchies). Wilson
points out many design concerns, especially those regarding the
high bandwidth required at the top-tier. Wallach’s master’s thesis
[28] describes an extension to Wilson’s approach, using a tree-
based coherence protocols for k-ary n-cube topologies, rather than
broadcast-based distributed-bus systems. Read requests are
satisfied at the lowest common subtree, and write invalidations
only include the smallest subtree that encompasses all sharers,
thus reducing traffic.

With the recent resurgence of interest in multicore, Marty, et al.
[14] described a solution to extend coherence across a multi-CMP
through the use of token coherence as an additional decoupled
connecting layer. Marty and Hill [20] later exploit the coherence
decoupling provided by hierarchies to turn coherence realms into
coherence domains to enable virtual-machine hierarchies on a
manycore substrate.

Recently Ladan-Mozes and Leiserson [18] propose
Hierarchical Cache Consistency (HCC), a deadlock-free, tree-
based coherence protocol that ensures forward progress in a fat-
tree network. They do so by enumerating invariant properties that
ensure all children in the tree are coherent with parents, forming
the basis of their distributed coherence mechanism. The most
closely related work, due to the recursive nature of the interfaces
we proposed in MCP, is Fractal Coherence [16]. In Fractal
Coherence, Zhang et al. propose a tree-based coherence protocol,
but with the intention of simplifying coherence verification
through perfect self-similarity. By designing a fractal based
hierarchical coherence protocol, where children are coherent with
their parents, the entire coherence hierarchy can be validated
through the validation of only the kernel coherence protocol.
MCP is more general than Fractal Coherence, and our focus in this
work is on easing integration of layers, design space evaluation
and design reasoning (compared to ad-hoc approaches), as
opposed to Fractal’s emphasis on verification.

Despite having different goals, Fractal Coherence, HCC and
MCP all share a similarity with respect to the permission inclusion
property discussed by the authors of HCC in [18]. Parent/upper-
tier state in many respects can be viewed as a summary of the
child/lower-tiers, having to have permissions at least as strong as
the lower children/tiers’. However, there is a very important
distinguishing feature that sets MCP apart; Both Fractal
Coherence and HCC use protocol implementation-specific details
to ensure this property is enforced between parents and children,
whereas tiers in MCP need not have any understanding of each

Figure 1 – Coherence hierarchy labeled with MCP
terminology

Client Client Client Client

Manager

Client Client Client Client

Manager

Coherence Realm

$ $ $ $

Manager

Coherence Realm

Tier 1

Tier 2

Tier 3

Coherence Domain

other’s states as long as each protocol support the permission
queries interface discussed in Section 3. Therefore, despite
differing goals, both Fractal Coherence and HCC are compatible
with MCP through the addition of permission query support.

It is worth noting that while not a necessary requirement, both
HCC and Fractal Coherence only implement uniform MSI
protocols. More importantly, each assumes a network topology
(tree-based) that matches the organization of the coherence
mechanism, that in turn can limit portability and imposes
limitations (e.g., requiring strict network ordering). Each also
only evaluates binary tree implementations, which have the
disadvantage of increasing the height of the hierarchy
logarithmically with node count. This height increase results in
more hardware overhead for tag structures as well as indirection
delays as compared to flatter hierarchies (as we demonstrate in
Section 5). Additionally, neither can provide support for
coherence hierarchy heterogeneity (i.e., the use of different
protocol components to create a globally coherent system),
whereas MCP does.

3. Division of Labor for Cache Coherence as a
Template
In a shared memory machine, the cache coherence protocol is
responsible for enforcing a consistent view of memory across all
caches of all nodes within a coherence domain. This includes
defining the mechanisms that control acquisition and holding of
read permissions, write permissions, the respective restrictions on
each, and how updates to data are propagated through the system.
The responsibilities of this effort can be divided between two
kinds of agents: managers that manage permission propagation
and clients that hold these permissions.

We begin by formally defining these roles and interactions for a
flat, non-hierarchical MOESI directory protocol [13]. These roles
are then re-examined to derive interfaces that enable composition
of complex coherence hierarchies. Finally, we demonstrate that
these interfaces are compatible with broadcast protocols as well,
despite having been derived from a directory protocol design.

3.1 Defining Base Functions of Coherence via
MOESI example
As a starting point, an EI protocol is perhaps as simple as a
protocol can be. Each client can either have the only copy of data
in the exclusive (E) state, or not have the data at all (the invalid (I)
state). Tracking of this state from the manager’s perspective is
straightforward since there can only be one exclusive client at any
time. Propagation is straight forward as well: if another client
requests permission to a block, the manager can take permission
away from one client and give it to the new client.

 As simple as this example may be, it immediately highlights
the most basic responsibilities of the agents involved in coherence.
Clients need to be capable of answering whether or not they have
sufficient permission to satisfy a request. When unable to satisfy a
request, clients need a mechanism to request permission.
Manager agents are responsible for permission allocation and de-
allocation. This includes the capabilities for accepting permission
requests, tracking sufficient client state to satisfy such requests,

and mechanisms for modifying permissions to carry out these
actions.1

Let us now consider the question of how a write is handled in
an EI protocol. State management for data modification becomes
a matter of whom most readily uses this information, or rather,
which agent should maintain knowledge of the ‘dirty’ state
associated with a write. Assuming a write-back cache, modified
data is a matter of permissions when a later cache eviction is being
made (i.e., can this block be evicted immediately or does some
action have to be taken first). Since permission queries have
already been defined as a client-side responsibility, the client
agent would need an additional state, the Modified (M) state.

This new M state brings about two important revelations. First,
the manager does not have to be aware of an internal change from
the E to M states within it’s client since, as long as the block is
exclusive, the client can silently upgrade state to M. As a result,
the manager and client states do not have to be perfectly
congruent (i.e., client states include M, E and I, while manager
states include only E and I). Second, this addition also
demonstrates another requirement for client agents: the ability to
downgrade or forfeit permissions. Before a cache can evict dirty
data, it has to be written back to memory and the manager must be
notified. This is subtly related to manager permission de-
allocation, but with a significant difference: this is client initiated
instead of manager initiated. As a result, manager agents also
have the additional need of permission downgrade processing
when a client wants to voluntarily relinquish permissions.

 In order to fully expand the MEI protocol into an MOESI
protocol, two additional states require consideration: the shared
(S) and the owned (O) states. The shared state enables multiple
clients to have read permissions simultaneously. This complicates
permission handling since these sharers need to be invalidated
before write permission can be granted by the manager. In an
invalidation-based protocol, downgrade messages are sent to
sharers before write permissions can be granted. A common
implementation optimization is to have sharers directly send
invalidation acknowledgements to the originating requestor rather
than back to the directory, advocating the need for client-to-client
communication via forwarding. This forwarding is also necessary
to take advantage of the owned state, which introduces the ability
to transfer data between caches by giving a client special status as
a data supplier (often dirty data with respect to main memory).
On a new read request, the manager will forward the request to the
owner instead of memory, who will then respond to the client with
data.

Table 1 summarizes and enumerates a comprehensive list of the
base functions required for communication between processors,
clients, managers and memory in a flat protocol. These will be
used as an aid in the developing a generic protocol interface.

1 In a directory-based coherence schemes, the manager agent is
synonymous with the directory. Manager agent is used in place of
directory, however, to avoid strict association of state management with
directory-based coherence protocols.

3.2 MCP Interface for Coherence Hierarchy
Construction
We now turn our attention to coherence hierarchies. Reviewing
the base functions outlined in Table 1, it is evident that there are
considerable similarities between the agents involved in
coherence. Specifically, the relationship between processor and
client agents has similarities to that between manager agents and
memory: in both cases, data suppliers are asked to supply data
from a mechanism closer to main memory in the memory
hierarchy. This is a critically important insight into how to
develop an interface that allows for recursion and thus hierarchies.
Examining Figure 2, if manager agents were given the ability to
issue permissions-query upwards like processors do towards their
client, then replacing the implementation details of the coherence
protocol with a black box yields a self-similar upper and lower
interface. Not only does this insight enable recursion through a
simple interface definition, but also allows encapsulation of the
coherence protocols used in the hierarchy, reducing design
complexity.
 From this we can see that there are at least three necessary
components to the MCP interface: upward permission querying,
lower-to-upper permission/data acquisition, and upper-to-lower
data supply. Introducing permission querying capabilities to

Figure 2 - The addition of permissions-query capabilities
enable recursive coherence.

Upper

Lower

Manager

Clients

Upper

Lower

Protocol

Memory

Manager

Clients

Processor

QueryAcquire

Acquire

Acquire

Permission
Allocation

Supply

Supply

Query

Supply

Protocol
QueryAcquire

Acquire SupplyQuery

Supply

Table 1 - Base functions for standardized communication between processors, clients and managers. The following is an
example of how a read sequence would operate on an invalid block. First a Processor issues a (1) ReadP to its client. This
client replies with ‘false’, where upon the Processor takes another action, (2) GetReadD. This results in the client
executing its GetReadD action, which in turn will cause the Manager to execute its GetReadD action. The Manager
GetReadD action is a forward request. Assuming there is no client owner, Memory is regarded as the owner of the data
and asked to execute its GrantReadD action. This results in Memory supplying Data to the client, completing the
GetReadD. Upon completion, the processor can retry its ReadP action, which the client will respond with ‘true’. The
processor can safely execute its DoRead action for which the client will supply data.

 Origin Agent Action Type Action Description Destination Agent(s) Response Action(s)

Processor Permission Query ReadP Have read permission? Client Reply with True/False (1), (6)
WriteP Have write permission? Client Reply with True/False
EvictP Have eviction permission? Client Reply with True/False

Permission and/or GetReadD Get read permission and Data Client GetReadD (2)
Data Acquire GetWriteD Get write permission and Data Client GetWriteD

GetWrite Get write permission Client GetWrite
GetEvict Get eviction permission Client GetEvict
DoRead Supply Data to Processor Client DoRead (7)
DoWrite Issue Dirty Data from Processor Client DoWrite

Client Data Supply/Consume DoRead Supply Data to Processor Processor Complete DoRead
DoWrite Issue Dirty Data from Processor Processor Complete DoWrite

Permission and/or GetReadD Get read permission with Data Manager GetReadD (3)
Data Acquire GetWriteD Get write permission with Data Manager GetWriteD

GetWrite Get write permission Manager GetWrite
GetEvict Get eviction permission Manager GetEvict

Permission and/or GrantReadD Forward Data, Downgrade Self Client Complete GetReadD
Data Supply GrantWriteD Forward Data; Invalidate Self Client Collect all Acks to Complete GetWriteD

GrantWrite Forward Ack; Invalidate Self Client Collect all Acks to complete GetWrite

Manager Permission and/or GetReadD Grant read permission with Data Memory/Owner GrantReadD (4)
Data Acquire GetWriteD Grant write permission with Data Memory/Owner; Sharers GrantWriteD; GrantWrite

GetWrite Grant write permission Owner; Sharers GrantWrite; GrantWrite
GetEvict Grant eviction permission Memory; Client Consume Dirty Data; Complete GetEvict

Memory Data Supply/Consume GrantReadD Forward Data Client Complete GetReadD (5)
GrantWriteD Forward Data Client Collect all Acks to Complete GetWriteD

manager agents is the origin of Manager-Client Pairing’s
namesake. Manager queries are accomplished by pairing the
manager agent of each coherence realm in a tier with a client in
the next higher-up tier in the hierarchy (or an all-permission client
if there is no higher tier, e.g., memory). Since there is one logical
manager agent per coherence realm, this allows the client to
represent the permissions of the entire realm and all tiers beneath
this realm. This is explained in more detail when describing the
permissions algorithm in Section 4.

 Permission/Data acquisition and supply are also possible due to
the pairing of managers with clients in the next tier. The manager
requires no details regarding the operation of the higher coherence
protocol provided; it can defer that responsibility to it’s paired
client. By systematically asking the paired client for either read
or write permission, the client can take part in its native coherence
scheme until it has completed the request. This is much like how
a processor is unaware of how coherence in the caches are
implemented; it simply asks if it has permissions and receives
data, as shown in the example described with Table 1.

One important detail that must be accounted for is the
propagation of a paired-client downgrade. Since a client agent
effectively represents the coherence state of all its paired
manager’s lower tiers, the paired client cannot give up its
permission rights and transition into another lower permission
state until the entire coherence realm below it has been made to
match these new permissions. This is addressed in MCP by
allowing the paired-client to issue downgrade requests to its
paired manager. When the manager executes this downgrade
action, it executes its ‘Permission and/or Data acquire’ action
from Table 1, where the forward destination is its paired client.
Thus the local sharers will send their invalidation, downgrade
acknowledgements and/or data to the manager’s paired client.
This provides us with our fourth and final interface component:
upper-to-lower downgrades. Figure 3 shows how the MCP
interface enables coherence tier communication while respecting
the encapsulation of the component protocols.

3.3 Broadcast compatibility
The argument can be made that the base functions, and thus the
MCP interface, may be insufficient to encompass broadcast
coherence schemes since it was developed specifically for a
directory-based implementation. In this subsection we
demonstrate that popular broadcast coherence protocols, such as
Snoopy-MOSI [13] and TokenB [19], are MCP compliant.
Additionally we point out the restrictions of these protocols that
need to be accounted for by any architecture employing these
protocols as building blocks in an MCP coherence hierarchy.

3.3.1 Snoopy Coherence
In a snoopy protocol, all agents are connected together via a
shared medium (i.e. a bus) and residents on the shared medium
observe coherence traffic through snooping agents. This need for
a shared medium represents a limitation specific to broadcast
protocols; either broadcast or multicast functionality is required in
the network to ensure correctness. However, a benefit of this is
that there is no single manager agent responsible for permission
allocation and deallocation, as opposed to in a directory scheme;
rather, this is a distributed responsibility. In this sense the
manager mechanism is spread across all the snooping
mechanisms; the functionality of GetReadD, GetWrite and
GetWriteD, downgrades and invalidation are preserved by the
bus-initiated state-machine of the snoopers. For example, a
BusReadMiss placed on the shared medium as the result of a
client GetReadD action causes the snooping mechanism of the
cache with the block in modified state to execute a client
GrantReadD, providing data on the bus and causing a self-
downgrade transition into the owned State.

The only manager responsibility of MCP not immediately
obvious in broadcast-based protocols is GetEvict, used during
writebacks of dirty data. However, in a non-hierarchical
broadcast protocol, the shared memory controller plays a special
role when data needs to either enter or exit the shared
environment. In this sense the memory controller acts as a

Coherence Realm Boundary

Client Manager

Client Client Client

Manager

Client Client Client Client

Coherence Realm

$ $ $ $

Manager

Coherence Realm

Tier 1

Tier 2

Tier 3

Coherence Domain

Client

Manager

Lower
Clients

Upper Manager

Permission
Queries

Downgrade
Requests

Lower
Clients

Lower
Clients

Lower
Clients

Permission/
Data Acquire

Permission/
Data Supply

Figure 3 - Manager-Client Pairing and associated interfaces to preserve encapsulation.

gateway beyond the boundaries of the broadcast protocol’s
coherence realm, much how the MCP interface is the gateway for
a coherence realm. On a GetReadD from a client where no other
caches can respond (e.g., because data is not present locally), it is
the memory controller’s responsibility to acquire data from
outside the coherence realm and respond as if it owned the block
by in-turn executing an upward GetReadD. Because of this extra
responsibility, it is straight forward to assign the memory
controller’s snooping agent with the responsibility for issuance of
a Manager GetEvict on a Client GetEvict request (i.e., by pushing
dirty data back out to memory). In essence, it is as if the memory
controller client agent represents the coherence state of everything
outside the coherence realm, including memory (where memory
initially owns all data). While compliant with MCP, this does
introduce another limitation: not only does the architecture need
broadcast/multicast functionality, but also at least one enhanced
snooper for handling these requests. The architects of the HP
Superdome leverage a similar notion, where a larger, hierarchical
broadcast system was constructed using commodity broadcast
coherent components tied together by a shared medium for
intelligent broadcast distribution. In the HP Superdome,
specialized logic at the boundary between the local busses and an
intra-cell crossbar behaves like the memory controller described
above, converting bus broadcasts that miss locally into system
messages that request the data from the rest of the system [12].

3.3.2 TokenB Coherence
Since TokenB coherence is based on MOSI broadcast coherence,
there are only two additional concerns that need addressing for
MCP compliance: token handling and persistent requests. Token
handling is a relatively trivial concern since token message
support as well as token accumulation/distribution logic is no

more complex than the message extensions and state machine
logic required by other component coherence protocols. The
largest hurdle for TokenB is the correctness substrate’s need for
persistent requests. This can be accomplished by adding an
extension to the protocol actions to incorporate a Boolean
signifying whether the request is persistent or not. In TokenB,
persistent requests are activated by the memory controller, which
is congruent with the previous notion of the memory controller
being a special client agent (i.e., responsible for the extra, non-
distributed manager responsibilities). At this point it becomes the
responsibility of the underlying implementation to handle
persistent requests commands as a special version of the same
actions presented in Table 1. Furthermore, because the protocols
are encapsulated, this concern does not extend beyond the scope
of the coherence realm. Token management and persistent
requests are restricted to only the relevant coherence realm.

4. Permission Hierarchy Algorithm
With a common interface defined, we can begin using coherence
protocol agents as building blocks in the construction of
hierarchical coherence protocols. By expanding the scope of
client agents to also monitor coherence realms in addition to
processor caches, the coherence effort can be distributed over
several protocols by layering the protocols in a tiered fashion. In
order to enforce the permission-inclusion property described by
Ladan-Mozes and Leiserson [18], the client agent must behave as
a gateway for the manager of the coherence realm, restricting what
permissions can be awarded, and taking action when permissions
must be upgraded in the coherence realm before the manager can
begin request resolution. The manager agents now must consult
the gateway client before allocating permission, which in turn may
recursively send another permission request to another manager-

Client-Agent
Permission

New
Incoming
Request

Has
Manager?

Manager
issue Grant
Permission

Get PermissionFalse

True

True

Waiting for
permission

'Get' Issued to
Manager-Agent

Response to
Client-Agent

Satisfy
Processor
Request

Processor

 Request Up a Tier
 Reply Down a Tier

Legend

False

Figure 4 - Coherence hierarchy permission checking algorithm.

client pair. The flowchart in Figure 4 demonstrates the Manager-
Client Pairing algorithm for processing permission acquires.

To aid in understanding and to highlight some important details
of MCP, two examples are presented. In both examples we have a
top-tier coherence realm, A, that implements a low-overhead MEI
protocol to manage two lower coherence realms, B and C, both
implementing MOESI. Manager A resides at memory and
therefore has no need for a gateway client— being the highest
manager agent in the system it always has permission to satisfy
queries. Similarly, clients B0, B1 and C1 do not have a matching
manager agent because there are no lower tiers to be tracked—
they are gateways for processors’ private caches, not further
coherence realms.

 In Figure 5(a), an example of a realm-hit from a read request is
shown. The processor below client B0 initiates the sequence with
a read request, resulting in a ReadP permissions query. Since the I
state has insufficient permission to satisfy the read request, ReadP
yields false, causing the request to propagate up to the manager
agent via a GetReadD (Figure 4’s ‘Get issued to Manager-Agent’
arc). At that level, the gateway client state is checked in the next-
higher tier where in turn a ReadP yields true due to Client A0
being in the M state (e.g., it has sufficient permissions for a read).
Client A0 is a gateway to a manager agent, thus manager B
receives the request and responds with a GrantReadD action. For
the MOSI protocol implemented, this involves issuing a FwdRead
to the current modified owner, client B1. Upon receipt, B1 will
downgrade to the O state and execute a GrantReadD, providing
data and permissions to the originating client B0. Now B0 can
supply data to the core.

From this example we see a clear demonstration of the
encapsulation of the coherence realm provided by MCP. The
request in the example was serviced only within the scope of
coherence realm B because the gateway client A0 had sufficient
permissions to allow the request to proceed in a coherent manner.
Furthermore, despite a change in the state of the coherence
realm’s manager B from M to O, the change does not need to be
reflected in client A0 since it is a silent downgrade. Because there
is no need to notify manager A of this activity, there is the benefit
of reduced traffic while preserving encapsulation. Additionally, if

either client B0 or B1 were to issue a later write request, the
coherence realm still has enough permissions to allow a silent
upgrade back into the M state without having to forward the query
up to manager A, much like an E-to-M transition in MESI.

 Requests can however cross coherence realm boundaries,
referred to as a realm-miss, when more permission is needed than
is available as shown in Figure 5(b). Here the MCP algorithm
propagates the request all the way to the top tier where it
encounters manager A and memory instead of a client agent.
Since there is no higher tier to consult, the top manager always
has sufficient permissions to make forward progress; there is no
gateway client at the top level. Upon receipt at manager A, a
GrantWriteD request is issued to client A0. Just as in a flat
protocol, where a cache would invalidate the block locally before
forwarding an invalidation acknowledgement and data, so too
does client A0 need to invalidate its manager B before forwarding.
This results in invalidations being issued down to B’s clients,
which can continue recursively down multiple tiers in a larger
coherence hierarchy. Once manager-client pair B has collected all
the acknowledgements and the invalidation is complete, the
modified data that once resided in B1 can be forwarded to client
A1. Now that manager C has sufficient permissions and data, it
can issue data to the originating requestor, completing the
transaction with client C0 in the M state.

 Although more complex, this second example further serves to
demonstrate the decoupling of the protocol coherence realms from
one another. When a gateway client’s permissions are not high
enough, the entire coherence realm effectively collapses into a
single node from the perspective of the manager in the next tier.
The next-tier manager does not need to be aware of any details of
how the coherence realm guarded by the gateway client operates
just as long as it knows how to interact with the gateway client
(which obviously it will being the manager). Similarly, when
coherence realm B was being invalidated, this was done opaquely
from the perspective of manager A. This coherence realm
encapsulation is what enables efficient composition of coherence
protocol hierarchies without the need for ad-hoc sub-state
replication. Despite the MEI protocol of manager A managing
two realms using different protocols (with additional, independent

Client B0 Client B1

Client A1

Manager C

Client C0

Manager A

I

IMI

Client A0

Manager B

E2) GetReadD

4) GrantReadD

5) Data

3) ReadP

1) ReadP

E

M I

Memory -

Processor - Processor - Processor -

(a)

Client B0 Client B1

Client A1

ManagerC

Client C0

Manager A

I

IOS

Client A0

Manager B

E 2) GetWriteD

9) Data

3) WriteP

1) WriteP

4) GetWriteD5) GrantWriteD

6b) GrantWriteD

7a) Ack

8) Data

E

O I

6a) GrantWrite

7b) Data

Processor - Processor - Processor -

Memory -

(b)

Figure 5 – (a) Realm-hit Read example and (b) Realm-Miss Write example

S and O states), the protocol of realm A was never aware of this
since it had no need to store information outside its own protocol
scope. Furthermore, each component protocol may be validated
in isolation. Extending this to enable full scale validation, as
demonstrated in [16] except for more general protocols, is
reserved future work.

5. Using MCP to Compare Hierarchy
Decisions
There are both hardware and performance issues associated with
coherence hierarchies that need to be considered when designing a
coherence mechanism for a given architecture. These will be
discussed, followed by experiments that provide insights into how
these design tradeoffs influence execution.

5.1 Hardware cost
From a hardware perspective, each coherence tier in the hierarchy
has an associated structural cost, most specifically regarding the
Manager Agents Tag Structures (MATS) for tracking owner state
and sharers. There have however been several proposals in the
literature to address MATS-related sizing concerns for directory
protocols [21-24]. While there is generally a set of MATS per
coherence realm, employing hierarchies creates natural width
reduction within the tracking structure, since each realm’s
manager is designed for the realm degree (number of clients in the
realm), not the number of system-wide nodes. For example, in a
256 node, 2-tier hierarchy with realm degrees of 16-16 (one top
tier (T1) protocol managing 16 2nd tier (T2) protocols, each
managing 16 clients), utilizing a simple directory bit-vector, M/O
bit and owner field the MATS entries have a hardware cost of 16
+ 1 + 4 = 21 bits in addition to the tag. In comparison, in a flat
protocol using full-bit vectors, the overhead would be 128 + 1 + 7
= 136 bits per entry assuming no height or width reduction
techniques. Albeit, there can be several T2 entries per T1, so the
system-wide cost can range dynamically depending on the degree
of replication. The costs are in favor of hierarchies, however, if

we assume less than 5 realms are sharing on average and that data-
cache tag reuse is an option.

There is also a double-edged memory latency impact when
hierarchies are employed. Since the local manager has to be
consulted while traversing up the hierarchy, there is an additional
indirection cost added by either compulsory misses or misses that
only hit in the upper/remote tiers. However, successful realm hits
result in better physical locality since the manager and data
responder are both closer than the home location of a flat protocol.
There is also a similar effect regarding local on-chip network
bandwidth. These are considerations MCP allows for that should
be acknowledged during hierarchy design yet have not previously
been evaluated to our knowledge.

5.2 Evaluated Hierarchies
In order to evaluate the impact that coherence hierarchies design
decisions have, we use MCP to implement a variety of
hierarchical configurations on a 256-core system composed of
four interconnected 64-core manycore, where each 64-core
manycore uses an on-chip torus network. The implemented MCP
configurations were verified through a combination of random test
case generation and hand-written sequences to stress potential
corner-cases, similar to the approach discussed in [6]. In all
instances, the hierarchy is a composition of only MOESI protocols
to reduce the scope of analysis by removing any biases
heterogeneity in protocol choice may introduce. We feel
heterogeneity is important analysis, however, and will investigate
it in future work.

There are several options regarding how to partition 256 cores
into a coherence hierarchy. The two most obvious choices are to
use a flat, single tier protocol or a simple 2-tier protocol where
coherence realms are restricted to each chip and inter-chip
coherence is maintained in the top-tier (these configuration will be
referred to as a ‘1-Tier 256’ and ‘2-Tier 64x4’, respectively).
There are, however, other viable partitioning choices without
introducing an additional tier and its associated hardware tag
structures. Both a 2-Tier 16x16 and 2-Tier 4x64 organization

L

H

(a)

L

H

(b)

Figure 6 - Coherence realms (shaded) and local tier miss traffic in (a) 2-Tier 64x4 and (b) 2-Tier 16x16 system. In each
instance the originating node must first access the local home (indicated by L) where it misses and traverses to the Tier 1
home (indicated by H). While 2-Tier 64x4 encompasses more nodes, increasing the likelihood of local realm hits, in the
event of a miss (b) shows that 2-Tier 16x16 has the advantages of faster miss acquisition and lower network bandwidth
consumption.

exploit different trade-offs with regard to locality and indirection
delay by varying the width of the hierarchy. Figure 6
demonstrates this difference in behavior for a compulsory miss
between 2-Tier 64x4 and 2-Tier 16x16. It is worth noting that
local home node selection is the equivalent position of the tier 1
home within its realm to provide a deterministic local-home look-
up policy that can vary as realm sizes vary.

Finally, allowing for the required hardware tag structures,
additional tiers can rapidly be added to the hierarchy through
MCP’s composability feature. To this end, both a 3-Tier 16x4x4
and a 4-Tier 4x4x4x4 configuration are implemented to
demonstrate tradeoff evaluation at more extreme hierarchical
design points is possible without the complexity of implementing
adhoc glue layers.

5.3 Empirical Examples of Applied MCP
An internal execution-driven simulator is used in this work that
models a manycore system with a detailed network infrastructure.
The MIPS based emulator front-end from SESC [25] is used as
the front-end to a simple execution model and detail memory
hierarchy that supplies back-end timing information.
Synchronization primitives (i.e., load link and store conditional)
and fences are modeled as execute-at-execute to enforce
consistency, while all other instructions are execute-at-fetch. The
execute-at-execute model "peeks" at the state of the emulator
without modifying state. This allows lock contention to be
faithfully modeled based on simulated timing and not emulation.
Each node contains a simple 2-issue in-order processor, a 32k
private L1 cache and a 128k slice of the shared L2 cache. For the
non-hierarchical run (1 Tier-256) the manager state reuses the L2
caches tags. For the hierarchical configurations, an additional
distributed hardware tag structure is added per tier (MATS from
Section 5.1), with entry volume equal to that of the L2 cache slice
(2048 entries). Assuming approximately 64 bits per entry for tag,
owner and sharer state (exact values vary with configuration), this
would introduce an additional overhead of about 16KB worth of
cache space per node per MATS. While we are aware that
dedicating this additional overhead to increasing the cache size
could improve performance, this is not taken into consideration
for this evaluation since so many tag structure reduction
techniques exist and inclusion makes reasoning about the

collected hierarchy results more difficult (e.g. is a change in
performance due to a change in the cache size, the hierarchy
configuration, or a combination).

 A small subset of the SPLASH-2 benchmark suite [26] is used
to aid in demonstrating MCP’s flexibility. To remove cold start
effects and to ensure execution of parallel code, hooks were added
to each benchmark to indicate the starting point for sampling and
results are collected at barrier exits. For evaluation purposes, an
unlimited version of the network topology is used in evaluation,
where only delay due to the three-stage router pipeline is modeled;
virtual channel allocation, switch allocation, and link traversal are
contention free. This choice is made to remove network
parameter decision bias from the presented results. Considering
the large design space involved, evaluation of network and
hierarchy co-design is left for future work.

5.3.1 Comparison of Hierarchy Width
In this sub-section, using MCP, comparisons are drawn between
several two-tier hierarchies of varying widths to demonstrate the
different behaviors benchmarks can exhibit as lower-tier scope
changes. To begin discussion, we first present L1 miss latency
comparisons in Figure 7.

!"

!#!$"

!#%"

!#%$"

!#&"

!#&$"

!#'"

!#'$"

!#("

!" '!")!" *!"%&!"%$!"%+!"&%!"&(!"&,!"'!!"''!"')!"'*!"(&!"($!"(+!"$%!"$(!"$,!")!!"

!"
#$
"%

&'(
)'*

$$
"+
+"
+'

,-'./++',*&"%$0'1/%'

,-'./++',*&"%$0'2/+&(3#*4'

&$)"

)(-("

%)-%)"

(-)("

Figure 8 – Histogram of L1 Miss Latency for Water
Spatial when varying hierarchy width Figure 7 - Impact of hierarchy width on L1 miss latency

!"

!#$"

!#%"

!#&"

!#'"

("

(#$"

)*+,-.*")*+,-.-*" /,0123145" 6,4+7"89,:,;"

!
"#
$
%&
'(
)*

+,
-)
#%
.)
+/
0+
1
'2
2+/

%3
)4

56
+

7')#%#586+9"4:.;#%<"4+

7')#%#586+='*38+>%#'%<"4+?$@%53++

$<&"

&%=%"

(&=(&"

%=&%"

!"

!#!$"

!#!%"

!#!&"

!#!'"

!#("

!#($"

!")!" &!" *!" ($!"(+!"('!"$(!"$%!"$,!")!!"))!")&!")*!"%$!"%+!"%'!"+(!"+%!"+,!"&!!"

!"
#$
"%

&'(
)'*

$$
"+
+"
+'

,-'./++',0&"%$1'2/%'

,-'./++',0&"%$1'3/+&(4#05'

$+&"

&%-%"

(&-(&"

%-&%"

Figure 9 – Histogram of L1 Miss Latency for Ocean_c
when varying hierarchy width

 These results demonstrate that hierarchy width selection is not
a one-size fits all design choice; benchmark behavior diversity can
influence what width is ideal. For both Ocean benchmarks,
variation in the width has little impact on performance, and these
variations are overshadowed by the performance difference when
moving from a flat protocol to a two-tier hierarchy. Water
Spatial, however, benefits most from a 16x16 hierarchy. To gain
better insight into these differences, we can inspect the histograms
of L1 miss latency behavior, shown below in Figure 8 and 9.

The first thing worth noting in both figures is the difference in
the first set of humps (0-150 cycle latency). These represent
accesses that miss in the L1, but succeed in getting data from the
distributed L2 and thus do not suffer an off-chip memory access
penalty. It is also clear in both histograms that 4x64 has the
fastest response time of the configurations, which matches our
intuition that success hits in the smaller realms will result in
accelerated L2 hit times. The plot for 1-Tier 256, however, shows
a wider, shallower response, demonstrating that access time varies
based on home-node distance from the requestor. Nearby nodes
satisfy some requests, while many require access to nodes that are
on the other side of the chip or even reside in another chip’s L2
cache.

The insights discussed in Figure 6 regarding variation in realm
size are confirmed by these figures as well. In both Figure 8 and 9
we see that, by examining the second hump (>300 cycle latency),
2-Tier 64x4 incurs the highest miss penalty due to the indirection
of going to the local home prior to the global home; it’s pattern is
skewed to the right compared to the other configurations
histograms. While 2-Tier 16x16 and 2-Tier 4x64 have to pay this
indirection cost as well, the distance to the local home is shorter
so less indirection penalty is incurred. For Water Spatial,
however, 2-Tier 16x16 strikes the best balance between fast hit
access latency, local hit rate (overall <150 cycle hit count is higher
than 2-Tier 4x64’s narrow spike), and low indirection penalty.
 As for explaining Ocean_c, the histogram of Figure 9 gives us
some additional important information; compared to Water spatial
the ratio of off-chip accesses to L2 hits is much higher. This in
turn emphasizes the negative effects of increased indirection as
well as reducing the positive effect of local hits.

5.3.2 Comparison of Hierarchy Height
In addition to width design considerations, the choice to introduce
additional tiers must be considered as well. This can be done
quickly, however, using a composition of the MCP compliant
MOESI protocol tiers as building blocks for these larger
hierarchies. In the previous subsection it was demonstrated that
performance in general favors two-tier hierarchies over a single
tiered, non-hierarchical coherence protocol. Despite the cost of
indirection, it is relatively low compared to the cost of global-
home traversal (in figures 8 and 9 the left skew of 1-Tier 256,
which has no indirection penalty, compared to the others at >300
cycles is noticeable but not dramatic). Further, this small
performance penalty can easily be offset by the frequent, closer
realm hits in the presence of high L2 cache hit rates. However,
when increasing hierarchy height too much, aggregation of
indirection penalty can become a concern as demonstrated in
Figure 10.

To verify this, we again examine a histogram of Water
Spatial’s L1 miss latency behavior (Figure 11). It is clear that the
curve for the off-chip accesses flattens out and shifts to the right
as the hierarchy height increases. This makes sense, however,
since indirection penalty is not just from distance, but also
includes router entry/exit at each tier’s realm home node and
MATS lookup/access time; each additional hop incurs a penalty
that accumulates.

6. Conclusion
The primary goal of this qualitative study is to define the
Manager-Client Pairing interface in order to create a generic
hierarchical coherence implementation framework to support the
continued scaling of massively coherent systems. This work
demonstrates the impact coherence hierarchies can have on large-
scale machines and shows how MCP’s rapid design process
enables effective reasoning about design decision trade-offs.
Further, while hierarchies beyond two-tiers may seem superfluous
now, MCP enables the design of arbitrarily deep, diverse
coherence hierarchies for future, 1024 and greater core systems.
By making different protocols adhere to this unifying interface,
more intelligent design decisions regarding coherence solutions
can be made. As of this writing, MCP is currently the initial

!"

!#!$"

!#%"

!#%$"

!#&"

!#&$"

!#'"

!#'$"

!#("

!" '!")!" *!" %&!"%$!"%+!"&%!"&(!"&,!"'!!"''!"')!"'*!"(&!"($!"(+!"$%!"$(!"$,!")!!"

!"
#$
"%

&'(
)'*

$$
"+
+"
+'

,-'./++',*&"%$0'1/%'

,-'./++',*&"%$0'2/+&(3#*4'

&$)"

%)-%)"

%)-(-("

(-(-(-("

Figure 11 – Histogram of L1 Miss Latency for Water
Spatial when varying hierarchy height

Figure 10 - Impact of hierarchy height on L1 miss latency

!"

!#$"

!#%"

!#&"

!#'"

("

(#$"

(#%"

)**" +,-./0/," 1.2345367" 8.6-9":;.<.="

!
"#
$
%&
'(
)*

+,
-)
#%
.)
+/
0+
1
'2
2+/

%3
)4

56
+

7')#%#586+9"4:.;#%<"4+

7')#%#586+7)'.83+=%#'%<"4+>$?%53++

$>&"

(&?(&"

(&?%?%"

%?%?%?%"

starting point of an IEEE standards working group seeking to
create a standard for coherent inter-operability between multi-
vendor ensemble systems. In addition to the standards work, the
inarguable benefit of protocol modularity provided by MCP will
enable architects to compare and communicate their designs
decisions more effectively in the future.

7. References
[1] L. A. Barroso, "The Price of Performance," Queue, vol. 3,

pp. 48-53, 2005.

[2] E. M. Clarke and J. M. Wing, "Formal methods: state of the
art and future directions," ACM Comput. Surv., vol. 28, pp.
626-643, 1996.

[3] K. L. McMillan, "Parameterized Verification of the FLASH
Cache Coherence Protocol by Compositional Model
Checking," presented at the Proceedings of the 11th IFIP WG
10.5 Advanced Research Working Conference on Correct
Hardware Design and Verification Methods, 2001.

[4] S. Park and D. L. Dill, "Verification of FLASH cache
coherence protocol by aggregation of distributed
transactions," presented at the Proceedings of the eighth
annual ACM symposium on Parallel algorithms and
architectures, Padua, Italy, 1996.

[5] U. Stern and D. L. Dill, "Improved probabilistic verification
by hash compaction," presented at the Proceedings of the
IFIP WG 10.5 Advanced Research Working Conference on
Correct Hardware Design and Verification Methods, 1995.

[6] D. A. Wood, et al., "Verifying a Multiprocessor Cache
Controller Using Random Test Generation," IEEE Des. Test,
vol. 7, pp. 13-25, 1990.

[7] F. Pong and M. Dubois, "Verification techniques for cache
coherence protocols," ACM Comput. Surv., vol. 29, pp. 82-
126, 1997.

[8] S. Haridi and E. Hagersten, "The Cache Coherence Protocol
of the Data Diffusion Machine," presented at the Proceedings
of the Parallel Architectures and Languages Europe, Volume
I: Parallel Architectures, 1989.

[9] D. Lenoski, et al., "The directory-based cache coherence
protocol for the DASH multiprocessor," SIGARCH Comput.
Archit. News, vol. 18, pp. 148-159, 1990.

[10] E. Hagersten and M. Koster, "WildFire: A Scalable Path for
SMPs," presented at the Proceedings of the 5th International
Symposium on High Performance Computer Architecture,
1999.

[11] L. A. Barroso, et al., "Piranha: a scalable architecture based
on single-chip multiprocessing," presented at the Proceedings
of the 27th annual international symposium on Computer
architecture, Vancouver, British Columbia, Canada, 2000.

[12] G. Gostin, et al., "The architecture of the HP Superdome
shared-memory multiprocessor," presented at the
Proceedings of the 19th annual international conference on
Supercomputing, Cambridge, Massachusetts, 2005.

[13] M. M. K. Martin, et al., "Multifacet's general execution-
driven multiprocessor simulator (GEMS) toolset," SIGARCH
Comput. Archit. News, vol. 33, pp. 92-99, 2005.

[14] M. R. Marty, "Cache Coherence Techniques for Multicore
Processors," Doctor of Philosophy, Computer Science,
University of Wisconsin, 2008.

[15] M. R. Marty, et al., "Improving Multiple-CMP Systems
Using Token Coherence," presented at the Proceedings of the
11th International Symposium on High-Performance
Computer Architecture, 2005.

[16] A. L. Meng Zhang, Daniel Sorin, "Fractal Coherence:
Scalably Verifiable Cache Coherence," presented at the
International Symposium on Microarchitecture, Atlanta,
Georgia, 2010.

[17] J. Kuskin, et al., "The Stanford FLASH multiprocessor,"
presented at the Proceedings of the 21st annual international
symposium on Computer architecture, Chicago, Illinois,
United States, 1994.

[18] E. Ladan-Mozes and C. E. Leiserson, "A consistency
architecture for hierarchical shared caches," presented at the
Proceedings of the twentieth annual symposium on
Parallelism in algorithms and architectures, Munich,
Germany, 2008.

[19] M. M. K. Martin, et al., "Token coherence: decoupling
performance and correctness," presented at the Proceedings
of the 30th annual international symposium on Computer
architecture, San Diego, California, 2003.

[20] M. R. Marty and M. D. Hill, "Virtual hierarchies to support
server consolidation," presented at the Proceedings of the
34th annual international symposium on Computer
architecture, San Diego, California, USA, 2007.

[21] M. E. Acacio, et al., "A Two-Level Directory Architecture
for Highly Scalable cc-NUMA Multiprocessors," IEEE
Trans. Parallel Distrib. Syst., vol. 16, pp. 67-79, 2005.

[22] J. Zebchuk, et al., "A tagless coherence directory," presented
at the Proceedings of the 42nd Annual IEEE/ACM
International Symposium on Microarchitecture, New York,
New York, 2009.

[23] A. Ros, et al., "A scalable organization for distributed
directories," J. Syst. Archit., vol. 56, pp. 77-87, 2010.

[24] J. H. Kelm, et al., "WAYPOINT: scaling coherence to
thousand-core architectures," presented at the Proceedings of
the 19th international conference on Parallel architectures
and compilation techniques, Vienna, Austria, 2010.

[25] J. Renau, et al. (Jan. 2005, SESC Simulator. Available:
http://sesc.sourceforge.net.

[26] S. C. Woo, et al., "The SPLASH-2 programs:
characterization and methodological considerations,"
SIGARCH Comput. Archit. News, vol. 23, pp. 24-36, 1995.

[27] J. A. W. Wilson, "Hierarchical cache/bus architecture for
shared memory multiprocessors," presented at the
Proceedings of the 14th annual international symposium on
Computer architecture, Pittsburgh, Pennsylvania, United
States, 1987.

[28] D. A. Wallach, "PHD: A Hierarchical Cache Coherent
Protocol," Master of Science, Electrical Engineering and
Computer Science, MIT, 1990.

