
Extrapolation Pitfalls When Evaluating Limited
Endurance Memory

Rishiraj A. Bheda, Jesse G. Beu, Brian P. Railing, Thomas M. Conte,

Georgia Institute of Technology (rbheda3, jbeu3, brian.railing, conte @gatech.edu)

Abstract

Many new non-volatile memory technologies have been
considered as a future scalable alternative to DRAM. Memory
technologies such as MRAM, FeRAM, PCM have emerged as the
most viable alternatives. But these memories have limited wear
endurance. Practically realizable main memory systems
employing these memory technologies are possible only if the wear
across these memories is reduced as well as uniformly distributed.
Limited endurance has resulted in extensive wear leveling
research with the goal of uniformly distributing write traffic
throughout available physical memory. Basic support for wear
leveling is already present in existing systems, in the form of
operating system paging. The Operating System (OS) changes
virtual to physical translations over time. As a result, write traffic
is naturally spread out. Proper evaluation of the need for wear
leveling as well as the impact of the corresponding technique must
take this phenomenon into account. Ignoring the effect of OS
paging mechanism can result in highly inaccurate memory
lifetime extrapolations. We demonstrate through simulation
results, the effects of inaccurate extrapolations in the absence of
OS modeling. Accurate memory lifetime simulation can take from
many months to years. Although sampling techniques are
commonly employed for speedup, our results show that naïve
extrapolation techniques can lead to wildly different lifetime
estimates. We show how sampling can be accurately applied by
accounting for the different components in the write stream
observed by main memory. Finally, we present a heuristic to
quickly estimate memory lifetime for a given application.

Index Terms—PCM, Wear Leveling, Operating System

I. INTRODUCTION
Existing DRAM designs will not be able to scale due to

power and feature size limitations beyond a few generations.
As a result, non-volatile memory technologies, such as
Magneto-Resistive Memory [13], Ferro-Electric Memory [13],
and Phase Change Memory (PCM) [1] are being evaluated as
alternatives for the future. However, many non-volatile
memory technologies suffer from limited write endurance, like
Flash Memory [1]. In the wake of this problem, many research
studies have emerged to address the issue of limited write
endurance for such memories. These can be broadly
categorized into three classes of solutions: write filtering [14],
wear leveling [2] and write prevention [3]. It has been widely
accepted that limited endurance memory systems will likely
have a combination of several such techniques to increase their
lifetime.

Evaluation of such systems is challenging for several
reasons. Simulation time for a single execution run is already
prohibitively slow for large applications and/or large-scale
systems. This problem is greatly exacerbated when measuring
Mean Time to Failure (MTTF), which is often in years.

Further, designers of such systems are trying to evaluate future
systems with projected future memory densities, resulting in
simulated systems that have memories several times larger than
the native system on which, the simulation is running on. Out
of necessity, designers are forced to take several short cuts
when estimating MTTF of limited endurance memory systems.
These include the use of reduced benchmark traces to reduce
the simulated execution time for a single benchmark run,
extrapolating years worth of execution from a single process’s
results, and simulating with a reduced memory size.

In this work, we show the impact that these commonly
employed extrapolation techniques have on MTTF estimates.
Specifically we show that the operating system (OS) plays a
prominent role both in single-process and memory-size
extrapolation, but is often ignored. Meanwhile, estimates not
taking the OS into account can be off by several orders of
magnitude due to paging effects.

The contributions of this work are as follows:

• Highlight the impact of the operating system and
importance of inter-process simulation with respect to
write endurance evaluation. We show that the operating
system’s paging mechanism acts as a natural wear-
leveling mechanism over time and must be taken into
consideration.

• Propose a simple heuristic for estimating write endurance
from a single run of a benchmark for normal benchmark
execution (i.e., in the absence of an attack) as an accurate
alternative to naïve single-process to multiple-process
extrapolation.

• Demonstrate the importance of memory size selection
when evaluating wear endurance. We show that care
must be taken when extrapolating MTTF from smaller
memory sizes for estimating MTTF at larger memory
sizes due to OS intra-process effects, such as page-
replacements, and wear distribution across larger
memories.

• We also present accuracy result for reduced trace
execution and propose a simple sampling methodology as
an alternative to commonly employed ‘skip X and
execute Y instruction’ techniques. Our results show that
non-sampling bias does not have a significant impact on
MTTF and thus no warm-up techniques between samples
need be applied.

The remainder of the paper is organized as follows. We
first give an overview of the leading limited endurance memory

technologies and discuss prior work for improving MTTF, with
emphasis on wear-leveling mechanisms. This is followed by a
section dedicated to the impact OS paging has on limited
endurance memory research. Results are then presented
showing the impact of naive extrapolation for single to multi-
process extrapolation and small to large memory extrapolation.
Correct extrapolation methodologies are presented that take the
OS into consideration. For completeness, the impact of
reduced trace to full-run extrapolation is demonstrated, as well
as an accurate sampling methodology alternative. We provide a
heuristic to quickly estimate maximum achievable memory
lifetime for a given application and show results for the same.

II. LIMITED ENDURANCE MEMORY AND RELATED
RESEARCH

The ever-increasing need for higher main memory capacity
has driven the search for a memory technology that is scalable,
denser, and faster with every generation while preferably
consuming less energy. While many new non-volatile memory
technologies are emerging as viable replacements for DRAM,
they come with the downside of limited write capability. The
following subsections will discuss some of the leading
technologies, and solutions proposed in the literature for
improving wear endurance for write limited memory.

A. Magneto-Resistive Memory

The MRAM (Magneto-resistive Random Access Memory)
concept is based on the TMR (Tunneling Magneto-Resistance)
effect. In each memory cell, there is an MTJ (Magnetic Tunnel
Junction), which in its simplest form is a MIM (Metal-
Insulator-Metal) structure with ferromagnetic electrodes. By
applying a small bias voltage between the electrodes, a tunnel
current can flow. The tunnel resistance depends on the relative
orientation of the magnetization vector of the ferromagnetic
electrodes. If the magnetization vectors are parallel, then the
tunnel resistance is small. If the magnetization vectors are anti
parallel, then the tunnel resistance is large. In an MRAM MTJ
the direction of magnetization of one of the two ferromagnetic
electrodes is fixed, whereas the magnetization of the other
electrode can be switched via on-chip currents (free magnetic
layer). By exposing the MTJ to an external magnetic field a
hysteresis loop is formed. The two stable states of the MTJ
correspond to a ‘0’ or a ‘1’ in the absence of an external
magnetic field. The information stored in the memory cell is
read by determining the tunnel resistance of the MTJ. In order
to write information into the MRAM cell, current is passed
through the two orthogonal metal lines, so that the magnetic
field at the intersection is large enough to flip the
magnetization of the free magnetic layer. After a limited
number of writes, the free magnetic layer can no longer be
magnetized. MRAM can tolerate ~1015 writes per cell [13].

B. Ferro-Electric Memory

In FeRAMs (Ferro-electric Random Access Memories) the
remnant polarization of a ferro-electric thin film is used for
information storage. With an externally applied electric field
the polarization can be switched and the information is retained
even if the external field is removed. In the absence of an
external field, the polarization has two distinct stable states. In
order to read data from a FeRAM memory cell the ferro-

electric capacitor is connected to the pre-charged bit line. The
plate line then is pulsed to a certain potential and thus a voltage
is applied across the serially connected cell and bit line
capacitance. Depending on the polarization state of the memory
cell, a smaller amount of charge (“non-switching” case, ‘0’) or
a larger amount of charge (“switching” case, ‘1’) flows onto
the bit line capacitance. This charge is transformed into a read
voltage and two different signal levels are obtained
accordingly. Applying a positive or negative voltage across the
memory capacitor programs the FeRAM memory cell. This
programming voltage sets the polarization to either of the two
possible states. Constant change in polarization causes material
degradation resulting in a limited write capability. FeRAM can
tolerate ~109 -1010 writes per cell [13].

C. Phase Change Memory

Phase Change Memory (PCM), is a form of resistive
memory that has gained a lot of interest due to its scalability
and low power. PCM is a type of non-volatile memory that
uses the unique behavior of chalcogenide (or GST)
glass for storing data bits. The state of this material can be
altered between an amorphous and a crystalline state by
application of a current pulse that heats and cools the material
either slowly or quickly, thus changing the state and resistance
of the material. The resistance of the phase change material
determines the data value stored by a PCM cell. However, this
frequent phase change due to heating and cooling of the
material causes it to wear out and eventually get stuck in an
undefined state. Thus PCM cells can tolerate ~107-109 writes
per cell [1].

D. Improving Lifetime of Limited Endurance Memory

With the emergence of so many limited endurance memory
technologies, there has been a surge of research in recent years
on ways to improve MTTF for such devices. While most
research focuses primarily on PCM, most mechanisms do not
take advantage of any specific PCM details, and thus are in
general applicable to any limited endurance memory. We
identify three categories to give a higher-level perspective of
research in this area. They are:

1. Write Filtering (Caching) – System Level [14]

2. Wear Leveling (Distribution of writes across physical
memory) – Memory Level [2]

3. Write Prevention (Comparing data and writing only as
necessary, and prevention of malicious write attacks)
– Data Dependent [3], PCM Security [6,7]

Figure 1, shows the most common arrangement of these

!

Ge2Sb2Te5

!"#$#%&'(#
%)*&+#

,-./#%)*&+#
0!(12")34#

5%/#
/+6278#

57297+::'"9#;7'<+#=<7+)6#

>?#;7'<+#@'3<+7'"9# >?#;7'<+#@'3<+7'"9#
A?#;7'<+#=+*B7'<8#

A?#;7'<+#=+*B7'<8#

C?#;+)7#D+E+3'"9#
F?#;7'<+#57+E+"12"#

Figure 1 : System level overview of wear-leveling research

components in a memory hierarchy. The memory reference
stream from the processor is filtered by the on-chip cache
hierarchy. If the last-level cache is write-back, temporal
locality will prevent many repeated accesses from being seen at
main memory. Upon leaving the memory controller and
entering the main-memory module, another level of caching
may be encountered, such as a DRAM cache. This has a
multitude of benefits, including latency reduction and write
endurance protection and is explored in detail by Qureshi et al.
in [14]. Additionally, a structure for malicious attack detection
and handling may be present in this stage (monitoring traffic
either before, after, or in parallel with the DRAM cache) [6,7].

In preparation for accesses that will reach the main
memory, wear leveling is employed in an effort to distribute
memory access density evenly across the address space. In
doing so, write-heavy locations are spread out, avoiding non-
uniform wear on the cells. This results in a shift in mean time
to failure (MTTF) estimates, moving MTTF closer to the
theoretical maximum.

A final preventive measure can be applied to reduce the
number of bits being modified on a write. These techniques are
data-dependent, relying on comparisons between the previously
stored values and the soon-to-be-written data, based on
minimizing the Hamming distance between the two data
values.

III. COMMON EXTRAPOLATION PITFALLS

A. Wear Leveling, Multiple Processes and the Operating
System
The primary objective of wear leveling research is to

achieve an even distribution of writes across physical memory
in order to avoid early failure from premature wear out of some
cells. During the execution of a program, certain memory
locations are more heavily stressed than others and hence tend
to wear out faster. For example, lower-order bits have a
tendency to change more frequently than high-order bits within
a machine word [3], and lower-numbered blocks within a page
frame tend to be written to more heavily than other blocks [5],
and even at the page granularity some pages are much more
active than others.

It is a common practice to use a single execution of a
benchmark for evaluation of memory behaviors. On the
surface this does not seem to pose any problems, so time
extrapolation for MTTF estimates seems reasonable. However,
for write endurance, specifically wear leveling, the OS plays a
significant role in lifetime estimation because it induces natural
wear leveling across multiple runs. This is because the OS
maintains a mapping between virtual and physical addresses
that changes over time, both as a program executes (intra-
process effects) and during process termination and creation
(inter-process effects). In a real system both intra- and inter-
process effects migrate hot locations, at the page granularity,
during a memory’s lifetime. While there is still potentially
wear-leveling opportunity at the intra-page level, the natural
wear leveling due to OS paging already improves lifetime by
several orders of magnitude for applications that do not pin
virtual-to-physical page mappings, as our simulation results
will show. Even when an OS is modeled, a single run will not

capture inter-process effects. As a result, this kind of
extrapolation causes gross under-estimation of baseline MTTF
for limited endurance memories.

Additionally, there is another inter-process effect from the
OS when multiple processes execute simultaneously. As each
program starts, the operating system allocates a set of available
physical pages to the different processes. During execution,
the OS will continue to provide each process with a reasonable
set of physical pages; as the working sets of an individual
process change, the OS will provide new pages or reclaim
infrequently used pages from one program’s use for reuse by
other contending processes. This process of page allocation
and reclamation can change the set of physical pages of a
process even during single run of a workload, further removing
a single, isolated execution from being representative of actual
behavior on a real system.

B. Proper Main-Memory Sizing

A majority of the write endurance community has ignored
memory size as a concern, either modeling only a single
memory block [3] or simulating memories much smaller than
the projected future memory sizes[6]. Meanwhile, PCM
memory is projected to provide upwards of 32GB of memory
or more as the technology matures [1, 13], and magento-
resistive memory and FeRAM both have similar expected high-
density trends[13].

Simple extrapolation of memory behavior from these
smaller sizes, however, may be flawed because an artificially
small memory size can result in frequent page faults. As a
result, writes to memory become increasingly correlated with
page replacements rather than the actual write behavior of
benchmarks, artificially inflating the write counts. This
behavior is especially pronounced for write prevention
techniques that rely on hamming distance information, such as
[3], when page-faults cause cell-writes from a page-fill that
overwrites old data from an evicted page. When sized
properly, this intra-process cross-page writing would occur far
less frequently, or maybe even not at all if the benchmark fits
within memory.

As shown in Figure 2, we demonstrate that for the cg
benchmark from the NAS suite [9], write behavior increase by
as much as 25% when modeling a 512MB Memory in lieu of
16GB. For multi-workload experiments this effect will be even
more pronounced as applications are now competing for
limited resources, increasing or creating inter-process conflict
pressure that may not exist at all at the full memory size.

!"

#!"

$!!"

$#!"

%!!"

%#!"

&!!"

&#!"

#$%'(" $)(" %)(" *)(" +)(" $,)("

!
"#$
%&
'()

#**#
+,

&-'

)%.+"/'0#1%'

230'4'56'4'!"#$%'5+.7++,'
9:;%'<%7*:=%.%,$'!"#$%&'

>%.:,?'!"#$%&'

Figure 2 : Write composition breakdown into page
replacements and demand writes

Another contributing factor when using reduced memory
extrapolation is simply the volume of cells being written to. As
discussed previously, the operating system induces natural
wear-leveling, even in the absence of other wear leveling
mechanisms. Over time, memory traffic behavior will be
spread out over all of memory, and a larger memory has more
cells to distribute this traffic across. Therefore, the MTTF
estimate for a modeled memory that is ¼ the projected size of
an actual non-volatile main memory system will be at least 4
times lower than it should be, due just to this increase in cells.

C. Benchmark Execution Region

A well-established problem in the architecture community
is the long simulation times when fully simulating benchmark
execution. Many cycle-accurate simulation frameworks
operate in the 10s of thousands of instructions per second
(KIPS) to several 100s of KIPS range. However, instruction
traces (as shown in Table 1) for full execution of benchmarks is
measured in billions, or even trillions, of instructions. Even
when assuming an aggressive 500 KIPS simulator, 1 trillion
instructions still takes 555 hours (~23 days) to simulate.

While many acceleration techniques already exist to
address this problem, such as SimPoints[16] and sampling
methodologies, many researchers still apply a naïve ‘skip X
instructions and execute Y instructions’ approach for
evaluation. Since this is already a well-documented problem,
we will only briefly present numbers demonstrating the errors
associated with this kind of naïve extrapolation, and focus on
what concerns need to be addressed when applying a more
intelligent acceleration technique, Simple Random Sampling
(SRS), to main-memory wear endurance simulation.

IV. SIMULATION METHODOLOGY

A. Simulation Environment
To demonstrate the impact of naive extrapolation,

simulations were run to show the errors associated with each of
the pitfalls discussed in Section III. Experimentation is done
via trace driven simulation through Pin [12]. For NAS [9] and
PARSEC [8], 8-threaded traces are captured on a machine with
8 Intel Xeon X5450 running at 3 GHz. For BioBench [11] and
SPEC [10], single-threaded traces are captured on the same
hardware. For all benchmarks, an on-chip 64K/4-way

associative L1 and 512K/8-way associative private L2 cache
per core/thread is modeled to filter the reference stream before
issuance to main memory. The cache line size is set to 64B for
both L1 and L2 caches.

To provide better understanding of the benchmark
behaviors in the following discussion, a characterization of the
benchmarks based on common metrics of interest affecting
wear endurance is provided in Table 1. For these evaluations,
results are collected from a single run of each benchmark,
executed to completion modeling a 16GB main memory. By
choosing 16GB, most benchmarks (except NAS’s mg and is)
do not exceed the main memory size, thus minimizing the OS
paging effects from this characterization. It is worth noting
that the values collected by our environment are consistent with
previous characterization of these benchmark suites. The
metrics of interest are as follows. The first data column holds
the instruction count for the collected traces. Next, the main
memory write count of the second column and read count of
the third column is an indication of how many requests reach
main memory after being filtered through the on-chip memory
hierarchy. The main memory footprint is an indication of how
many unique memory locations are touched during the
execution. Next, the max-write is the count of the largest
number of writes that map to a single cache-line sized memory
block. As a result, this metric is often used in the wear
endurance community for projecting MTTF. Even when
ignoring the inter-process OS wear leveling effects discussed in
this paper, we do not advocate using this methodology since
MTTF should be based on a percent of memory failing, rather
than first cell failure. These numbers, for all benchmarks
except mg and is, can be viewed as equivalent to an unlimited
memory simulation since their footprints do not exceed the
16GB main memory size.

Finally, native non-instrumented execution times for the
benchmarks were collected using /usr/bin/time and are shown
in last column. These values can be used to get a rough
approximation of per-iteration execution time in calculating
MTTF in terms of years. Benchmarks that ran for less than 30
seconds are executed a hundred times to obtain their average
execution time because measurement errors due to daemons
and other non-execution related effects may be too large of a
contribution to the reported time and skew the estimate.

!"#$%&'$()"#* +,("*+-.)%/*0%($-# +,("*+-.)%/*1-,2#* +-.)%/*3))$*4%("$ +,5*0%($-* 65-'&$()"*7(.-*

8(99()" +(99()" +(99()" :;<8*+-.)%/ #-'

8()8-"'= >=/9(> !"#$?@A %&' (&!)* #($! %('
'9&#$,9B !%!+ ; ((&%)* !"(+! ,(!
$(C-% #-! DD? !++!+ !&'.* ("!,'+- !!"!
=..-% !!$(AAA; ,!# '+&$)* $""!$- (%(

EFG*H*'9,##*I 'C* %(!, A?J ,(('" +&'.* '$ ("!%
KJ$=%-,2#L .C* '% MAN ,"- !#&!.* (,# #''-,

9&* ''- OANJ %%!! +&$.* %#'!'# !--+,
(#* !-', :::OA ,+%$% ((&!.* ,#,''! "$,$+

4,%#-'*H*#(.9,%C- P9,'Q#'=)9-#* # ?@D -&,(%&')* !-$(-&"
KJ$=%-,2#L R%-S.("- (# M '! !",&,)* ""'#' $&!

P)2/$%,'Q !% D !- !'&')* ,'(#' -&+
5N;A !% O? (% (")* %!-$$ -&+
R-%%-$," ;M !+- #"&$)* ,,-'" ,&,

G46T #)>9-5@>2#HM? !, UM !$- !'!)* !!$(+ '&+
>-%9P-"'=*H*2(RR.,(9 (+! ONJ $% ((!)* ,",'(#$ +!&#
=N;A@%-RVP,#-9("- '!(AND %#- (')* ,(!$"- $
.'R*H*%-R (", JM; ,"!+! !&#.* '(#+"'# #+$&%
PW(>N*H*#)&%'- %,$:?A? ,,,! +'")* %+""$(!!+&,
C''*H*CNO !$- O:M? ,,+' !&!.* (#("$% !!"&#

Table 1 : Benchmark Characteristics Sorted by Benchmark Suite (Lexical) and Main Memory Writes (Ascending)

B. Operating System Modeling
The operating system tracks page usage of a process by

maintaining an approximation of working set, via the reference
bits. On each reference to a physical page, the processor sets a
bit (the PG_referenced bit (PG) in Linux) in the page table
entry. Periodically, the OS will update the memory usage of
the process based on the pages with set reference bits and then
clear these bits. This process also provides the OS with LRU
information based on the granularity of the periods.

Beyond the reference set of an application, the OS must
also maintain memory in distinct sets based on usage. Dirty
memory is written in the background to the swap file on disk,
enabling it to be more quickly reclaimed for other usage. Many
pages are already holding copies of data that exist as files on
disk, both the process binaries as well as memory mapped files
and other constructs. This data is part of the file cache and can
be reused across processes, as it is a clean copy of what is on
disk.

Under normal client loads, most memory is dedicated to the
file cache, while a server load will have a larger share specific
to the single application. In either scenario, some pages will be
clean and therefore easy to repurpose. Too many clean pages
will require a heavy disk load to keep up with writes. Too few
pages and the OS will have to double page (write to disk before
reading in new data) to repurpose memory. And finally, the
OS will try to maintain a small number of free or zeroed pages
that are available for immediate allocation. Every free page is
effectively wasted memory, as that page is not holding useful
data but rather reserved for future usage.

The simulator provides an approximation of the OS paging
techniques, just as the simulator approximates the processor
and memory systems. While the following mechanism is
specifically based on Linux, it is similar to that used in all
modern Operating Systems. As shown in Figure 3, the OS
paging system consists of an active and an inactive list. A free
list is also included for new virtual to physical mapping
requests. When a page is requested for the first time, a new
translation entry is created, which is put on the front of the
active list (accesses when the page is not resident are treated
similarly). The new additions to the active list from the free list

are termed hard or major faults. When a page on the inactive
list is accessed, it is transferred onto the top of the active list.
This is termed a soft or minor fault, as there was no translation
present, but the page resided in memory. During its time on the
active list, if this page is accessed again, its PG bit is set

(PG = 1). Every second the page daemon interrupts to
rebalance the page lists. Equation 1 is commonly used in
Linux to determine the amount of rebalancing to attempt,
where nr_pages is a parameter usually set to 32, and nr_active
and nr_inactive are the current size of their respective lists. The
active list is traversed from bottom and any page with PG = 1 is
put on top of the active list and its PG bit is reset. Pages with
PG = 0 are transferred over to the top of the inactive list. The
list traversal continues until a sufficient number of pages
(Equation 1) have been moved onto the inactive list. Pages
needed for new translations are evicted from the inactive list
and put onto the free list [17].

Furthermore, as a simulated L2 has been used to filter the
memory access stream, the page usage information is based on
operations going to memory, whereas a real system would
update references on every memory operation including those
hitting in the cache. The memory references obscured by the
filter cache are proportional to the L2 cache size. Given the
disparity between cache and system memory sizes, this effect
should have minimal impact on the overall results.

A more significant effect would be to model the Operating
System’s file cache. Without modeling pages that may be
reused between iterations, the simulator introduces additional
writes to the system by filling pages with data that would
already be cached in memory. Properly modeling this behavior
would reduce the write load going to memory and therefore
improve the lifetime.

V. EXPERIMENTS
The experiments presented here will demonstrate the

degree of impact incorrect extrapolation methodologies can
have on estimating lifetime of limited endurance memories.
This section is divided into three subsections, covering the
pitfalls from Section III: time extrapolation, memory size
extrapolation and accelerated simulation. For all our results we
pessimistically assume 100% bit changes for every main
memory write.

A. Lifetime Extrapolation

When estimating lifetime from a single run, the basic
assumption is that the rate of endurance degradation is constant
over time, and therefore the results of a single execution can be
used to project the degradation after several consecutive runs of
a benchmark. However, due to the inter-process effects
discussed in Section IV, this assumption is actually incorrect.
To demonstrate this phenomenon, Figure 4 shows a plot of
MTTF (worst case, assuming first failure causes failure) vs.
number of consecutive executions for the cg benchmark from
the NAS suite.

!"#$%&
'()*&

+,-"#$%&
'()*&

./%%&
'()*&

!"#$%&"'()%

*+,%&"'()%

-"./0.%1"23+0%

Figure 3 : Transition of physical pages among page list

!"#$%&'(&)(*$& =&
+,-."#$%&&/&&+,-"01*$-."#$%&

2+,-3+"01*$-."#$%&4&56&&/&&7&

Equation 1 : Number of pages to move from Active List to
Inactive List

The most striking observation in Figure 4 (a), is that the
estimate for MTTF nearly doubles when comparing the
projection from a single run vs. two consecutive executions of
cg. This is because cg has a non-uniform write profile across
its memory footprint. In Figure 4 (b), only for visualization,
we have grouped physical memory pages. However, our
simulator models writes to every physical page at the
granularity of cache line sized blocks within a page.
Specifically, there is a spike (~6000 writes) in the write profile
to a single page in memory, shown in Figure 4 (b), while all
other pages have more uniform, lower write behavior (~700
writes). When run twice, the hot page has moved to another
location and there are now two spikes of ~6700 writes. The
max write count has only increased by 12%, but the execution
time doubled. After 4 executions, the spikes are even more

spread out. Hence, the wear does not increase at the rate a
single execution run would have predicted.

Meanwhile, a naïve extrapolation from a single run, that
assumes constant degradation, would have assumed the max
write count to increase linearly with the number of execution
runs. At a memory size of 512MB, there are approximately
128 thousand pages to select from, but only one is stressed per
execution. Even when taking the birthday paradox into
account, 128 consecutive executions have only a 0.405%
chance of collision to the same stressed page between any two
executions. Without collisions, the max written location after
128 executions would have ~95000 writes, yielding a lifetime
estimate of 15.8 years, compared to the 2 year lifetime
projected from a single run. This is supported by the empirical
results in Figure 4, collected from simulation. In general, there
are very few hot pages, which are largely responsible for the
MTTF projection.

 To demonstrate this, Figure 5 shows a plot of projected
MTTF vs. number of consecutive executions for different
benchmarks. Due to variations in execution times of individual

benchmarks, the number of executions is not the same for all
benchmarks.

The endurance degradation over multiple runs is clearly
non-linear. The write distribution over a large number of
execution runs tends to get uniformly distributed. The dips in
the lifetime curve in Figure 5 happen due to “hot page”
collisions. A “hot page” is a write-heavy page. When a hot
physical page gets re-mapped to a write-heavy virtual address,
a collision is said to occur. This implies that rate of memory
wear out temporarily jumps up resulting in a dip in estimated
lifetime. But gradually as number of execution runs becomes
large, due to law of large numbers, the effect of such collisions
on estimated lifetime is significantly reduced.

B. Memory Size Extrapolation

When observing results from the first run of a benchmark,
the estimated lifetime between different memory sizes can lead
to wildly different conclusions. A counter intuitive example is
that of SPEC CPU2006 – MCF benchmark. The MCF
benchmark has a high memory footprint and its memory access
pattern causes frequent page replacements at lower memory

sizes. This causes frequent changes in virtual to physical
address translations causing the writes to spread out over the
memory. Whereas at higher memory sizes, the number of
replacements are reduced and writes are not naturally
distributed. As we see from Figure 6, the lifetime estimates
after the first execution lead to a conclusion that lower memory
size yields better lifetime. But as the number of executions
increase, the wear leveling across the physical memory begins
to take effect. Also it should be noted that, lifetime estimates
do not increase linearly with increase in available memory size.
As noted earlier in case of NAS – CG, reduction in writes due
to page replacements at higher memory sizes leads to better
lifetime estimates.

C. Accelerated Simulation

Even the simulation of a single run can be prohibitively
expensive for certain benchmarks. We propose simple random
sampling (SRS) to reduce execution run time of the first run
itself. The Line Write Profile (LWP) is the write profile of the
benchmark, which captures all of the write accesses (demand
writes) to any physical main memory page. The LWP is a write
counter which, keeps count of the number of writes for every
cache line sized block within a single page. The profile
assumes significance over a very large number of simulation
runs, when even spreading of writes across the memory will
create a similar profile on every physical memory page. For a

!"

#"

$!"

$#"

%!"

!" %!" &!" '!" (!" $!!" $%!" $&!" $'!"

")
*+
,
-
./
0
"1
23
/
"2
4
"5
/
-
6*
"

78,9/6":3");/<8+:4"=84*"

7>?"@"AB"@"123/"C2,/"A86D/""

E-F"

!"

#!!!"

$!!!!"

!" $!!!" %!!!" G!!!" &!!!"

H
-
;
"I

62
./
""

J-K/"78,9/6"

I62./"L2*.6298+:4"><6:**"H/,:6M"

);/<8+:4$"

);/<8+:4%"

);/<8+:4&"

E9F"

Figure 4 : NAS - CG – 512MB memory size (a) Lifetime
Estimation vs. Number of Execution Runs (b) Physical

Memory Write Distribution for 1, 2 and 4 Execution Runs

!"

#"

$"

%"

&"

!" '!!!" ($!!!" #(!!!" #&!!!")*!!!"+,
-.

/0
12

"3
451

"46
"7
1/
8,
"

+91:;-<6"=;6,"

>/8,1:"?"@A/:B,:C<A1,"?"3451-.1"D;8E1"

!"

$*"

F!"

()*"

(&!"

!" *!!!" (!!!!" (*!!!" #!!!!"+,
-.

/0
12

"3
451

"46
"7
1/
8,
"

+91:;-<6"=;6,"

@4<@16:C"?"DA;,0/AG"3451-.1"D;8E1"

H/I" HJI"

Figure 5 : Estimated Life Time vs. Number of Execution
runs (a) BioBench – Clustalw (b) Parsec – Blackscholes

!"
!#$%"
!#%"
!#&%"

'"

%'$()" '*)" $*)" +*)" ,*)" '-*)".
/0
1
2
34
"5
6
71

2
89
:4
;
""

36
"%
'
$
(
)
"

(4167<"=9:4"

=>.?"?>@"$!!-"A"(?B"C9D4"E914"
?61F279/6G"

!"

'%!"

H!!"

+%!"

%'$()" '*)" $*)" +*)" ,*)" '-*)".
/0
1
2
34
"5
6
71

2
89
:4
;
""

36
"%
'
$
(
)
"

(4167<"=9:4"

=>.?"?>@"$!!-"A"(?B"C9D4"E914"
?61F279/6G"

I2J" IKJ"

Figure 6 : SPEC CPU 2006 – MCF Estimated Lifetime vs.
Memory Size (a) Estimate after First execution (b) Estimate

at Perfect Wear Leveling

cache line size of 64B and page size of 4KB, we have 64 cache
lines within a physical page. We observed that the LWP from
the 10% sampled execution and the full run are identical. The
only difference is in the actual write count. Scaling the 10%
LWP appropriately results in the same LWP as the full run.
The max write count from the LWP indicates maximum
memory wear out. Since the LWP is cumulative sum of writes
for every physical memory page, averaging the LWP by the
total number of physical pages allows us to calculate the
average memory wear per execution run. We perform SRS on
the memory accesses rather than instructions, as wear out is
determined by writes, and not the number of executed
instructions. Memory operations tend to happen in bursts
during phases and hence sampling must be performed on
number of memory accesses and not instructions. In Figure 7
for the Bio - Bench – Tiger workload we observe similarity in
the profile pattern for a full simulation and sampled simulation.
As seen in Figure 8, the LWP obtained when simulating only
the first 10 Billion or 100 Billion instructions for Tiger results
in very different profiles, which look very dissimilar to the
original profile in Figure 7. Needless to say, this must result in
wildly varying estimates for memory lifetime. We collected the
sampled LWP from 10, 15, 20, 25 percent sampled execution
runs and observed less than 2% error across all lines in the
LWP for BioBench – Tiger (Figure 9) and less than 5% error in
write counts per line in the LWP for all benchmarks. On the

contrary if we simulate only a fraction of the instructions from
a benchmark, we can see a stark contrast in the LWP obtained
between two such execution runs.

D. Heuristic

Although sampling can be used to considerably speedup
simulations, it is still impractical to simulate thousands or even
millions of execution runs to simulate for entire memory
lifetime. A quicker methodology is needed which estimates
point of memory failure accurately. We have already
demonstrated in Figure 4, that over multiple execution runs, the
write distribution across the physical memory tends to become
uniformly distributed. Under such assumptions we develop an
analytical model.

Let there be N pages in memory, each of which can be
written Wmax times. Let µ1 be the average writes per page and
σ1 be the standard deviation, during one execution run. Let us
focus on a generic physical address p. The physical address p
will be associated to a logical address. During the next
execution run, the physical address p will be associated with a
different logical address. Due to the randomness of the OS
paging mechanism we can assume that the new logical address
will be chosen at random. After a large number of execution
runs, the total writes for line p can be approximated with a
Gaussian distribution using the Central Limit Theorem [15].
After k execution runs, the expected value of sum of writes
(Sumk) and the standard deviation (σk) to page p is:

Sumk = k·µ1 (1)

σk =√k·σ1 (2)

The probability that the page p fails after k execution runs:

P{Page p fails} = P{Z > Wmax − Sumk } (3)

where Z is a zero mean unit variance Gaussian random
variable. The heuristic predicts the mean and standard
deviation of the write distribution for every execution run and
calculates the corresponding lifetime estimate. We observe in
Figure 10, that this estimate is very close to the results from the
actual execution runs. Thus not only does our heuristic follow
the simulation results, but it also shows that over a large
number of execution runs (or execution time) the OS paging
mechanism is fairly random in nature and causes uniform write
distribution across the physical memory.

!"

#"

$"

%"

!" #!" $!" %!" &!" '!" (!"

)
*+
,-
."
/0

+1
1+
2
3
.4
"

5+3-"6789-*"

5):";"#!<"=>8?1+3@"

!"

#!"

$!"

%!"

!" #!" $!" %!" &!" '!" (!"

)
*+
,-
."
/0

+1
1+
2
3
.4
"

5+3-"6789-*"

5):";"A711"=+871>B23"

/>4" /94"

Figure 7 : BioBench – Tiger LWP Memory Access Sampling (a)
10% Sampling (b) Full Simulation

!"

!#$"

!#%"

!#&"

!#'"

!" (!" $!")!" %!" *!" &!"

+
,-
./
0"
12

-33
-4
50
6"

7-5/"89:;/,"

7+<"="(!">-33-45"?50.,9@A450"

!"

!#)*"

!#B"

(#!*"

(#%"

!" (!" $!")!" %!" *!" &!"

+
,-
./
0"
12

-33
-4
50
6"

7-5/"89:;/,"

7+<"="(!!">-33-45"?50.,9@A450"

Figure 8 : BioBench Tiger LWP (Instruction Sampling)

!"#

!$#

%#

$#

"#

%# $%# "%# &%# '%# (%#)%#

*+
,-
+.

/#0
,,1

,#2
.#
3
,2/
+#
41

5.
/#

62.+#7589+,#

0,,1,#:-,1;;#63*#

$%<#!#=>8?@2.A#

$(<#!#=>8?@2.A#

"%<#!#=>8?@2.A#

"(<#!#=>8?@2.A#

Figure 9 : Percent error in write count across all lines in LWP of
Tiger for 10, 15, 20, 25% Sampling

!"

#$%"

&"

'($%"

')"

!" *!" #!" +!")!" '!!" '*!" '#!" '+!",
-
.
/
0
12
3
"4
56
2
"5
7
"8
2
0
9-
"

,:2;<.=7"><7-"

?@""

A<BBCD5/<B0.=7"

E2<95-.;"
!"

*"

#"

+"

)"

!" F!!!" '#!!!" *'!!!" *)!!!" (%!!!",
-
.
/
0
12
3
"4
56
2
"5
7
"8
2
0
9-
"

,:2;<.=7"><7-"

GB0;H-;I=B2-"

A<BBCD5/<B0.=7"

E2<95-.;"

J0K" JLK"

Figure 10 : Heuristic vs Full Simulation Lifetime Curve Comparison
(a) CG (b) Blackscholes

VI. RESULTS FOR ESTIMATED LIFETIME

A. Heuristic Estimates for Lifetime at Wear Out
We simulate using our heuristic model to find the true

lifetime of the memory. This true lifetime can be defined as the
point at which memory cells reach their endurance limit,
starting from a single run, until memory wears out.

Figure 11 shows maximum achievable lifetime for different
memory sizes. The effect of operating system wear leveling is
more pronounced for larger memory sizes. At smaller memory
sizes, there is a possibility of wear out due to aggressive page
replacements. By the time OS approaches uniform wear, a
smaller memory size faces the danger of having already worn
out enough to reach its maximum endurance. Whereas, for
larger memory sizes, most of the benchmarks achieve close to
perfect wear leveling and reach within 90 – 100% of perfect
lifetime. It can be inferred that the paging mechanism does play
a significant role in wear distribution for limited endurance
memories. Even in the absence of any wear leveling
techniques, the OS paging system causes near 100% wear
leveling for most applications.

B. Scope for Wear Leveling Beyond Perfect Page Leveling
The OS performs wear leveling at the page level by

remapping physical pages over time. This causes distribution of
writes across all pages in the memory. However, for certain
benchmarks, the LWP is not uniform and there is still scope for
further wear leveling at the intra page level. Lines within a
page can be further re-mapped to attain perfect wear leveling at
the intra–page level or the line level. Previous work by Qureshi
et al. [14] explores this area in detail. Although it must be noted
that any further wear leveling within a page is in addition to
wear leveling across all pages in the memory.

VII. CONCLUSION
Wear leveling research will be increasingly critical as new

types of write limited non-volatile memories emerge. Hence
accurate lifetime estimates for limited endurance memories
assumes greater importance. We have demonstrated the
importance of modeling the operating system effects on wear

leveling both within and between applications. The random
nature of OS page allocations, results in a near uniform write
distribution over the lifetime of the memory. As longer
simulations for memory wear out are prohibitive we have also
proposed a heuristic to derive faster lifetime estimates. We
have also provided a heuristic that enables evaluation of
memory endurance across its lifetime. This work provides
researchers with faster and accurate simulation methodology
for future wear leveling research.

VIII. REFERENCES
[1] Benjamin C. Lee, Engin Ipek, Onur Mutlu, Doug Burger,

“Architecting Phase Change Memory as a Scalable DRAM
Alternative”, in ISCA’ 09.

[2] Moinuddin K. Qureshi, John Karidis, Michelle Franceschini,
Vijayalakshmi Srinivasan, Luis Lastras, Bulent Abali, “Enhancing
Lifetime and Security of PCM Based Main Memory with Start-Gap
Wear Leveling”, in ISCA’ 09.

[3] Wei Xu, Jibang Liu, Tong Zhang, “Data Manipulation
Techniques to Reduce Phase Change Memory Write Energy”, in
ISLPED’09.

[4] Gaurav Dhiman, Raid Ayoub, Tajana Rosing, “PDRAM: A
Hybrid PRAM and DRAM Main Memory System”, in DAC’09.

[5] Alexandre P. Ferreira, Miao Zhou, Santiago Bock, Bruce
Childers, Rami Melhem and Daniel Mosse, “Increasing PCM Main
Memory Lifetime”.

[6] Moinuddin K. Qureshi, Andre Seznec, Luis A. Lastras,
Michele M. Franceschini, “Practical and Secure PCM Systems by
Online Detection of Malicious Write Streams”.

[7] Nak Hee Seong, Dong Hyuk Woo, Hsien Hsin Lee, “Security
Refresh: Protecting Phase Change Memory against Malicious Wear
Out”.

[8] Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh and Kai
Li, “The Parsec Benchmark Suite : Characterization and Architectural
Implications”, in PACT’2008.

[9] D. Bailey, E. Barszcz, J. Barton, D. Browning, R. Carter, L.
Dagum, R. Fatoohi, S. Fineberg, P. Frederickson, T. Lasinski, R.
Schreiber, H. Simon, V. Venkatakrishnan, S.

Weeratunga, “The NAS Parallel Benchmarks,” RNR Technical
Report RNR-94-007, March 1994.

[10] SPEC Benchmarks http://www.spec.org/
[11] K. Albayraktaroglu, A. Jaleel, X. Wu, M. Franklin, B. Jacob,

C.-W. Tseng, and D. Yeung, “BioBench: A Benchmark Suite of
Bioinformatics Applications”, in ISPASS’05.

[12] Vijay Janapa Reddi, Alex Settle, and Daniel A. Connors,
Robert S. Cohn, “PIN: A Binary Instrumentation Tool for Computer
Architecture Research and Education,” in WCAE’04

[13] Gerhard Müller, Nicolas Nagel, Cay-Uwe Pinnow, Thomas
Röhr, “Emerging Non-Volatile Memory Technologies”.

[14] Moinuddin K. Qureshi, Viji Srinivasan, Jude A. Rivers,
“Scalable High Performance Main Memory System Using PCM
Technology”, ISCA ’09.

[15] S. Ross, “A First Course in Probability”, Pearson Prentice
Hall, 2006.

[16] Erez Perelman, Greg Hamerly, Michael Van Biesbrouck,
Timothy Sherwood, and Brad Calder, “Using SimPoint for Accurate
and Efficient Simulation”, International Conference on Measurement
and Modeling of Computer Systems, June 2003.

[17] Mel. Gorman, “Understanding the Linux Virtual Memory
Manager”, Prentice Hall 2004

!"

#$"

$!"

%$"

&!!"

'(
"

)*
"

+,
"

-
("

.
(/
0"

'+
,*
12
+3
"

4-
-
/0
"

54
6+
)5
"

7+
2'
8*
'4
9+
/*
"

79
:6
10
2'
8"

;/
00
/1
"

;0
/<

-
)=
/"

>#
?@
"

5/
0+
7/

='
4"

7A
)5
#"

('
'"

-
';
"

*9
5+
/>
"

4#
?@
"

B/
0'
/=

1"
9;
"C

2>
"D
);/

.
-
/"
E/

2'
4/

:"
21
"F

/2
0"
G
,1
"

H/='4C208*"

@IH"

JIH"

&?IH"

Figure 11 : Effect of Natural Wear Leveling by OS

