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Abstract 

Many new non-volatile memory technologies have been 
considered as a future scalable alternative to DRAM. Memory 
technologies such as MRAM, FeRAM, PCM have emerged as the 
most viable alternatives. But these memories have limited wear 
endurance. Practically realizable main memory systems 
employing these memory technologies are possible only if the wear 
across these memories is reduced as well as uniformly distributed. 
Limited endurance has resulted in extensive wear leveling 
research with the goal of uniformly distributing write traffic 
throughout available physical memory. Basic support for wear 
leveling is already present in existing systems, in the form of 
operating system paging.  The Operating System (OS) changes 
virtual to physical translations over time. As a result, write traffic 
is naturally spread out. Proper evaluation of the need for wear 
leveling as well as the impact of the corresponding technique must 
take this phenomenon into account. Ignoring the effect of OS 
paging mechanism can result in highly inaccurate memory 
lifetime extrapolations. We demonstrate through simulation 
results, the effects of inaccurate extrapolations in the absence of 
OS modeling.  Accurate memory lifetime simulation can take from 
many months to years. Although sampling techniques are 
commonly employed for speedup, our results show that naïve 
extrapolation techniques can lead to wildly different lifetime 
estimates. We show how sampling can be accurately applied by 
accounting for the different components in the write stream 
observed by main memory. Finally, we present a heuristic to 
quickly estimate memory lifetime for a given application. 

Index Terms—PCM, Wear Leveling, Operating System 

I. INTRODUCTION 
Existing DRAM designs will not be able to scale due to 

power and feature size limitations beyond a few generations.  
As a result, non-volatile memory technologies, such as 
Magneto-Resistive Memory [13], Ferro-Electric Memory [13], 
and Phase Change Memory (PCM) [1] are being evaluated as 
alternatives for the future.  However, many non-volatile 
memory technologies suffer from limited write endurance, like 
Flash Memory [1].  In the wake of this problem, many research 
studies have emerged to address the issue of limited write 
endurance for such memories.  These can be broadly 
categorized into three classes of solutions: write filtering [14], 
wear leveling [2] and write prevention [3].  It has been widely 
accepted that limited endurance memory systems will likely 
have a combination of several such techniques to increase their 
lifetime. 

Evaluation of such systems is challenging for several 
reasons.  Simulation time for a single execution run is already 
prohibitively slow for large applications and/or large-scale 
systems.  This problem is greatly exacerbated when measuring 
Mean Time to Failure (MTTF), which is often in years.  

Further, designers of such systems are trying to evaluate future 
systems with projected future memory densities, resulting in 
simulated systems that have memories several times larger than 
the native system on which, the simulation is running on.  Out 
of necessity, designers are forced to take several short cuts 
when estimating MTTF of limited endurance memory systems.  
These include the use of reduced benchmark traces to reduce 
the simulated execution time for a single benchmark run, 
extrapolating years worth of execution from a single process’s 
results, and simulating with a reduced memory size. 

In this work, we show the impact that these commonly 
employed extrapolation techniques have on MTTF estimates.  
Specifically we show that the operating system (OS) plays a 
prominent role both in single-process and memory-size 
extrapolation, but is often ignored.  Meanwhile, estimates not 
taking the OS into account can be off by several orders of 
magnitude due to paging effects.  

The contributions of this work are as follows: 

• Highlight the impact of the operating system and 
importance of inter-process simulation with respect to 
write endurance evaluation.  We show that the operating 
system’s paging mechanism acts as a natural wear-
leveling mechanism over time and must be taken into 
consideration. 

• Propose a simple heuristic for estimating write endurance 
from a single run of a benchmark for normal benchmark 
execution (i.e., in the absence of an attack) as an accurate 
alternative to naïve single-process to multiple-process 
extrapolation. 

• Demonstrate the importance of memory size selection 
when evaluating wear endurance.  We show that care 
must be taken when extrapolating MTTF from smaller 
memory sizes for estimating MTTF at larger memory 
sizes due to OS intra-process effects, such as page-
replacements, and wear distribution across larger 
memories. 

• We also present accuracy result for reduced trace 
execution and propose a simple sampling methodology as 
an alternative to commonly employed ‘skip X and 
execute Y instruction’ techniques.  Our results show that 
non-sampling bias does not have a significant impact on 
MTTF and thus no warm-up techniques between samples 
need be applied. 

The remainder of the paper is organized as follows.  We 
first give an overview of the leading limited endurance memory 



technologies and discuss prior work for improving MTTF, with 
emphasis on wear-leveling mechanisms.  This is followed by a 
section dedicated to the impact OS paging has on limited 
endurance memory research.  Results are then presented 
showing the impact of naive extrapolation for single to multi-
process extrapolation and small to large memory extrapolation. 
Correct extrapolation methodologies are presented that take the 
OS into consideration.  For completeness, the impact of 
reduced trace to full-run extrapolation is demonstrated, as well 
as an accurate sampling methodology alternative. We provide a 
heuristic to quickly estimate maximum achievable memory 
lifetime for a given application and show results for the same. 

II. LIMITED ENDURANCE MEMORY AND RELATED 
RESEARCH 

The ever-increasing need for higher main memory capacity 
has driven the search for a memory technology that is scalable, 
denser, and faster with every generation while preferably 
consuming less energy.  While many new non-volatile memory 
technologies are emerging as viable replacements for DRAM, 
they come with the downside of limited write capability.  The 
following subsections will discuss some of the leading 
technologies, and solutions proposed in the literature for 
improving wear endurance for write limited memory. 

A. Magneto-Resistive Memory 

The MRAM (Magneto-resistive Random Access Memory) 
concept is based on the TMR (Tunneling Magneto-Resistance) 
effect. In each memory cell, there is an MTJ (Magnetic Tunnel 
Junction), which in its simplest form is a MIM (Metal-
Insulator-Metal) structure with ferromagnetic electrodes. By 
applying a small bias voltage between the electrodes, a tunnel 
current can flow. The tunnel resistance depends on the relative 
orientation of the magnetization vector of the ferromagnetic 
electrodes. If the magnetization vectors are parallel, then the 
tunnel resistance is small. If the magnetization vectors are anti 
parallel, then the tunnel resistance is large. In an MRAM MTJ 
the direction of magnetization of one of the two ferromagnetic 
electrodes is fixed, whereas the magnetization of the other 
electrode can be switched via on-chip currents (free magnetic 
layer). By exposing the MTJ to an external magnetic field a 
hysteresis loop is formed. The two stable states of the MTJ 
correspond to a ‘0’ or a ‘1’ in the absence of an external 
magnetic field. The information stored in the memory cell is 
read by determining the tunnel resistance of the MTJ. In order 
to write information into the MRAM cell, current is passed 
through the two orthogonal metal lines, so that the magnetic 
field at the intersection is large enough to flip the 
magnetization of the free magnetic layer. After a limited 
number of writes, the free magnetic layer can no longer be 
magnetized.  MRAM can tolerate ~1015 writes per cell [13]. 

B. Ferro-Electric Memory 

In FeRAMs (Ferro-electric Random Access Memories) the 
remnant polarization of a ferro-electric thin film is used for 
information storage. With an externally applied electric field 
the polarization can be switched and the information is retained 
even if the external field is removed. In the absence of an 
external field, the polarization has two distinct stable states. In 
order to read data from a FeRAM memory cell the ferro-

electric capacitor is connected to the pre-charged bit line. The 
plate line then is pulsed to a certain potential and thus a voltage 
is applied across the serially connected cell and bit line 
capacitance. Depending on the polarization state of the memory 
cell, a smaller amount of charge (“non-switching” case, ‘0’) or 
a larger amount of charge (“switching” case, ‘1’) flows onto 
the bit line capacitance. This charge is transformed into a read 
voltage and two different signal levels are obtained 
accordingly. Applying a positive or negative voltage across the 
memory capacitor programs the FeRAM memory cell. This 
programming voltage sets the polarization to either of the two 
possible states. Constant change in polarization causes material 
degradation resulting in a limited write capability.  FeRAM can 
tolerate ~109 -1010 writes per cell [13]. 

C. Phase Change Memory 

Phase Change Memory (PCM), is a form of resistive 
memory that has gained a lot of interest due to its scalability 
and low power.  PCM is a type of non-volatile memory that 
uses the unique behavior of chalcogenide (  or GST) 
glass for storing data bits. The state of this material can be 
altered between an amorphous and a crystalline state by 
application of a current pulse that heats and cools the material 
either slowly or quickly, thus changing the state and resistance 
of the material. The resistance of the phase change material 
determines the data value stored by a PCM cell.  However, this 
frequent phase change due to heating and cooling of the 
material causes it to wear out and eventually get stuck in an 
undefined state.  Thus PCM cells can tolerate ~107-109 writes 
per cell [1]. 

D. Improving Lifetime of Limited Endurance Memory 

With the emergence of so many limited endurance memory 
technologies, there has been a surge of research in recent years 
on ways to improve MTTF for such devices.  While most 
research focuses primarily on PCM, most mechanisms do not 
take advantage of any specific PCM details, and thus are in 
general applicable to any limited endurance memory.  We 
identify three categories to give a higher-level perspective of 
research in this area. They are: 

1. Write Filtering (Caching) – System Level [14] 

2. Wear Leveling (Distribution of writes across physical 
memory) – Memory Level [2] 

3. Write Prevention (Comparing data and writing only as 
necessary, and prevention of malicious write attacks) 
– Data Dependent [3], PCM Security [6,7] 

Figure 1, shows the most common arrangement of these 
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Figure 1 : System level overview of wear-leveling research 



components in a memory hierarchy. The memory reference 
stream from the processor is filtered by the on-chip cache 
hierarchy. If the last-level cache is write-back, temporal 
locality will prevent many repeated accesses from being seen at 
main memory.  Upon leaving the memory controller and 
entering the main-memory module, another level of caching 
may be encountered, such as a DRAM cache.  This has a 
multitude of benefits, including latency reduction and write 
endurance protection and is explored in detail by Qureshi et al. 
in [14].  Additionally, a structure for malicious attack detection 
and handling may be present in this stage (monitoring traffic 
either before, after, or in parallel with the DRAM cache) [6,7].   

In preparation for accesses that will reach the main 
memory, wear leveling is employed in an effort to distribute 
memory access density evenly across the address space.  In 
doing so, write-heavy locations are spread out, avoiding non-
uniform wear on the cells.  This results in a shift in mean time 
to failure (MTTF) estimates, moving MTTF closer to the 
theoretical maximum. 

A final preventive measure can be applied to reduce the 
number of bits being modified on a write.  These techniques are 
data-dependent, relying on comparisons between the previously 
stored values and the soon-to-be-written data, based on 
minimizing the Hamming distance between the two data 
values. 

III. COMMON EXTRAPOLATION PITFALLS 

A. Wear Leveling, Multiple Processes and the Operating 
System 
The primary objective of wear leveling research is to 

achieve an even distribution of writes across physical memory 
in order to avoid early failure from premature wear out of some 
cells. During the execution of a program, certain memory 
locations are more heavily stressed than others and hence tend 
to wear out faster.  For example, lower-order bits have a 
tendency to change more frequently than high-order bits within 
a machine word [3], and lower-numbered blocks within a page 
frame tend to be written to more heavily than other blocks [5], 
and even at the page granularity some pages are much more 
active than others. 

It is a common practice to use a single execution of a 
benchmark for evaluation of memory behaviors.  On the 
surface this does not seem to pose any problems, so time 
extrapolation for MTTF estimates seems reasonable.  However, 
for write endurance, specifically wear leveling, the OS plays a 
significant role in lifetime estimation because it induces natural 
wear leveling across multiple runs.  This is because the OS 
maintains a mapping between virtual and physical addresses 
that changes over time, both as a program executes (intra-
process effects) and during process termination and creation 
(inter-process effects).  In a real system both intra- and inter-
process effects migrate hot locations, at the page granularity, 
during a memory’s lifetime.  While there is still potentially 
wear-leveling opportunity at the intra-page level, the natural 
wear leveling due to OS paging already improves lifetime by 
several orders of magnitude for applications that do not pin 
virtual-to-physical page mappings, as our simulation results 
will show. Even when an OS is modeled, a single run will not 

capture inter-process effects.  As a result, this kind of 
extrapolation causes gross under-estimation of baseline MTTF 
for limited endurance memories. 

Additionally, there is another inter-process effect from the 
OS when multiple processes execute simultaneously.  As each 
program starts, the operating system allocates a set of available 
physical pages to the different processes.  During execution, 
the OS will continue to provide each process with a reasonable 
set of physical pages; as the working sets of an individual 
process change, the OS will provide new pages or reclaim 
infrequently used pages from one program’s use for reuse by 
other contending processes.  This process of page allocation 
and reclamation can change the set of physical pages of a 
process even during single run of a workload, further removing 
a single, isolated execution from being representative of actual 
behavior on a real system. 

B. Proper Main-Memory Sizing 

A majority of the write endurance community has ignored 
memory size as a concern, either modeling only a single 
memory block [3] or simulating memories much smaller than 
the projected future memory sizes[6].  Meanwhile, PCM 
memory is projected to provide upwards of 32GB of memory 
or more as the technology matures [1, 13], and magento-
resistive memory and FeRAM both have similar expected high-
density trends[13]. 

Simple extrapolation of memory behavior from these 
smaller sizes, however, may be flawed because an artificially 
small memory size can result in frequent page faults.  As a 
result, writes to memory become increasingly correlated with 
page replacements rather than the actual write behavior of 
benchmarks, artificially inflating the write counts.  This 
behavior is especially pronounced for write prevention 
techniques that rely on hamming distance information, such as 
[3], when page-faults cause cell-writes from a page-fill that 
overwrites old data from an evicted page.  When sized 
properly, this intra-process cross-page writing would occur far 
less frequently, or maybe even not at all if the benchmark fits 
within memory.  

As shown in Figure 2, we demonstrate that for the cg 
benchmark from the NAS suite [9], write behavior increase by 
as much as 25% when modeling a 512MB Memory in lieu of 
16GB.  For multi-workload experiments this effect will be even 
more pronounced as applications are now competing for 
limited resources, increasing or creating inter-process conflict 
pressure that may not exist at all at the full memory size. 
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replacements and demand writes 



Another contributing factor when using reduced memory 
extrapolation is simply the volume of cells being written to.  As 
discussed previously, the operating system induces natural 
wear-leveling, even in the absence of other wear leveling 
mechanisms.  Over time, memory traffic behavior will be 
spread out over all of memory, and a larger memory has more 
cells to distribute this traffic across.  Therefore, the MTTF 
estimate for a modeled memory that is ¼ the projected size of 
an actual non-volatile main memory system will be at least 4 
times lower than it should be, due just to this increase in cells. 

C. Benchmark Execution Region 

A well-established problem in the architecture community 
is the long simulation times when fully simulating benchmark 
execution.  Many cycle-accurate simulation frameworks 
operate in the 10s of thousands of instructions per second 
(KIPS) to several 100s of KIPS range.  However, instruction 
traces (as shown in Table 1) for full execution of benchmarks is 
measured in billions, or even trillions, of instructions.  Even 
when assuming an aggressive 500 KIPS simulator, 1 trillion 
instructions still takes 555 hours (~23 days) to simulate. 

While many acceleration techniques already exist to 
address this problem, such as SimPoints[16] and sampling 
methodologies, many researchers still apply a naïve ‘skip X 
instructions and execute Y instructions’ approach for 
evaluation.  Since this is already a well-documented problem, 
we will only briefly present numbers demonstrating the errors 
associated with this kind of naïve extrapolation, and focus on 
what concerns need to be addressed when applying a more 
intelligent acceleration technique, Simple Random Sampling 
(SRS), to main-memory wear endurance simulation. 

IV. SIMULATION METHODOLOGY 

A. Simulation Environment 
To demonstrate the impact of naive extrapolation, 

simulations were run to show the errors associated with each of 
the pitfalls discussed in Section III.  Experimentation is done 
via trace driven simulation through Pin [12].  For NAS [9] and 
PARSEC [8], 8-threaded traces are captured on a machine with 
8 Intel Xeon X5450 running at 3 GHz.  For BioBench [11] and 
SPEC [10], single-threaded traces are captured on the same 
hardware.  For all benchmarks, an on-chip 64K/4-way 

associative L1 and 512K/8-way associative private L2 cache 
per core/thread is modeled to filter the reference stream before 
issuance to main memory. The cache line size is set to 64B for 
both L1 and L2 caches. 

To provide better understanding of the benchmark 
behaviors in the following discussion, a characterization of the 
benchmarks based on common metrics of interest affecting 
wear endurance is provided in Table 1.  For these evaluations, 
results are collected from a single run of each benchmark, 
executed to completion modeling a 16GB main memory.  By 
choosing 16GB, most benchmarks (except NAS’s mg and is) 
do not exceed the main memory size, thus minimizing the OS 
paging effects from this characterization.  It is worth noting 
that the values collected by our environment are consistent with 
previous characterization of these benchmark suites. The 
metrics of interest are as follows.  The first data column holds 
the instruction count for the collected traces. Next, the main 
memory write count of the second column and read count of 
the third column is an indication of how many requests reach 
main memory after being filtered through the on-chip memory 
hierarchy.  The main memory footprint is an indication of how 
many unique memory locations are touched during the 
execution.  Next, the max-write is the count of the largest 
number of writes that map to a single cache-line sized memory 
block.  As a result, this metric is often used in the wear 
endurance community for projecting MTTF.  Even when 
ignoring the inter-process OS wear leveling effects discussed in 
this paper, we do not advocate using this methodology since 
MTTF should be based on a percent of memory failing, rather 
than first cell failure.  These numbers, for all benchmarks 
except mg and is, can be viewed as equivalent to an unlimited 
memory simulation since their footprints do not exceed the 
16GB main memory size.  

Finally, native non-instrumented execution times for the 
benchmarks were collected using /usr/bin/time and are shown 
in last column. These values can be used to get a rough 
approximation of per-iteration execution time in calculating 
MTTF in terms of years.  Benchmarks that ran for less than 30 
seconds are executed a hundred times to obtain their average 
execution time because measurement errors due to daemons 
and other non-execution related effects may be too large of a 
contribution to the reported time and skew the estimate. 
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B. Operating System Modeling 
The operating system tracks page usage of a process by 

maintaining an approximation of working set, via the reference 
bits.  On each reference to a physical page, the processor sets a 
bit (the PG_referenced bit (PG) in Linux) in the page table 
entry.  Periodically, the OS will update the memory usage of 
the process based on the pages with set reference bits and then 
clear these bits.  This process also provides the OS with LRU 
information based on the granularity of the periods. 

Beyond the reference set of an application, the OS must 
also maintain memory in distinct sets based on usage.  Dirty 
memory is written in the background to the swap file on disk, 
enabling it to be more quickly reclaimed for other usage.  Many 
pages are already holding copies of data that exist as files on 
disk, both the process binaries as well as memory mapped files 
and other constructs.  This data is part of the file cache and can 
be reused across processes, as it is a clean copy of what is on 
disk. 

Under normal client loads, most memory is dedicated to the 
file cache, while a server load will have a larger share specific 
to the single application.  In either scenario, some pages will be 
clean and therefore easy to repurpose.  Too many clean pages 
will require a heavy disk load to keep up with writes.  Too few 
pages and the OS will have to double page (write to disk before 
reading in new data) to repurpose memory.  And finally, the 
OS will try to maintain a small number of free or zeroed pages 
that are available for immediate allocation.  Every free page is 
effectively wasted memory, as that page is not holding useful 
data but rather reserved for future usage. 

The simulator provides an approximation of the OS paging 
techniques, just as the simulator approximates the processor 
and memory systems.  While the following mechanism is 
specifically based on Linux, it is similar to that used in all 
modern Operating Systems. As shown in Figure 3, the OS 
paging system consists of an active and an inactive list. A free 
list is also included for new virtual to physical mapping 
requests. When a page is requested for the first time, a new 
translation entry is created, which is put on the front of the 
active list (accesses when the page is not resident are treated 
similarly). The new additions to the active list from the free list  

are termed hard or major faults. When a page on the inactive 
list is accessed, it is transferred onto the top of the active list. 
This is termed a soft or minor fault, as there was no translation 
present, but the page resided in memory. During its time on the 
active list, if this page is accessed again, its PG bit is set       

(PG = 1). Every second the page daemon interrupts to 
rebalance the page lists.  Equation 1 is commonly used in 
Linux to determine the amount of rebalancing to attempt, 
where nr_pages is a parameter usually set to 32, and nr_active 
and nr_inactive are the current size of their respective lists. The 
active list is traversed from bottom and any page with PG = 1 is 
put on top of the active list and its PG bit is reset. Pages with 
PG = 0 are transferred over to the top of the inactive list. The 
list traversal continues until a sufficient number of pages 
(Equation 1) have been moved onto the inactive list. Pages 
needed for new translations are evicted from the inactive list 
and put onto the free list [17]. 

 

Furthermore, as a simulated L2 has been used to filter the 
memory access stream, the page usage information is based on 
operations going to memory, whereas a real system would 
update references on every memory operation including those 
hitting in the cache.  The memory references obscured by the 
filter cache are proportional to the L2 cache size.  Given the 
disparity between cache and system memory sizes, this effect 
should have minimal impact on the overall results. 

A more significant effect would be to model the Operating 
System’s file cache.  Without modeling pages that may be 
reused between iterations, the simulator introduces additional 
writes to the system by filling pages with data that would 
already be cached in memory.  Properly modeling this behavior 
would reduce the write load going to memory and therefore 
improve the lifetime. 

V. EXPERIMENTS 
The experiments presented here will demonstrate the 

degree of impact incorrect extrapolation methodologies can 
have on estimating lifetime of limited endurance memories.  
This section is divided into three subsections, covering the 
pitfalls from Section III: time extrapolation, memory size 
extrapolation and accelerated simulation. For all our results we 
pessimistically assume 100% bit changes for every main 
memory write. 

 
A. Lifetime Extrapolation 

When estimating lifetime from a single run, the basic 
assumption is that the rate of endurance degradation is constant 
over time, and therefore the results of a single execution can be 
used to project the degradation after several consecutive runs of 
a benchmark.  However, due to the inter-process effects 
discussed in Section IV, this assumption is actually incorrect.  
To demonstrate this phenomenon, Figure 4 shows a plot of 
MTTF (worst case, assuming first failure causes failure) vs. 
number of consecutive executions for the cg benchmark from 
the NAS suite. 
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The most striking observation in Figure 4 (a), is that the 
estimate for MTTF nearly doubles when comparing the 
projection from a single run vs. two consecutive executions of 
cg.  This is because cg has a non-uniform write profile across 
its memory footprint.  In Figure 4 (b), only for visualization, 
we have grouped physical memory pages. However, our 
simulator models writes to every physical page at the 
granularity of cache line sized blocks within a page. 
Specifically, there is a spike (~6000 writes) in the write profile 
to a single page in memory, shown in Figure 4 (b), while all 
other pages have more uniform, lower write behavior (~700 
writes).  When run twice, the hot page has moved to another 
location and there are now two spikes of ~6700 writes.  The 
max write count has only increased by 12%, but the execution 
time doubled.  After 4 executions, the spikes are even more 

spread out. Hence, the wear does not increase at the rate a 
single execution run would have predicted. 

Meanwhile, a naïve extrapolation from a single run, that 
assumes constant degradation, would have assumed the max 
write count to increase linearly with the number of execution 
runs.  At a memory size of 512MB, there are approximately 
128 thousand pages to select from, but only one is stressed per 
execution.  Even when taking the birthday paradox into 
account, 128 consecutive executions have only a 0.405% 
chance of collision to the same stressed page between any two 
executions.  Without collisions, the max written location after 
128 executions would have ~95000 writes, yielding a lifetime 
estimate of 15.8 years, compared to the 2 year lifetime 
projected from a single run.  This is supported by the empirical 
results in Figure 4, collected from simulation. In general, there 
are very few hot pages, which are largely responsible for the 
MTTF projection.  

  To demonstrate this, Figure 5 shows a plot of projected 
MTTF vs. number of consecutive executions for different 
benchmarks. Due to variations in execution times of individual 

benchmarks, the number of executions is not the same for all 
benchmarks. 

The endurance degradation over multiple runs is clearly 
non-linear. The write distribution over a large number of 
execution runs tends to get uniformly distributed. The dips in 
the lifetime curve in Figure 5 happen due to “hot page” 
collisions. A “hot page” is a write-heavy page. When a hot 
physical page gets re-mapped to a write-heavy virtual address, 
a collision is said to occur. This implies that rate of memory 
wear out temporarily jumps up resulting in a dip in estimated 
lifetime. But gradually as number of execution runs becomes 
large, due to law of large numbers, the effect of such collisions 
on estimated lifetime is significantly reduced. 

B. Memory Size Extrapolation 

When observing results from the first run of a benchmark, 
the estimated lifetime between different memory sizes can lead 
to wildly different conclusions. A counter intuitive example is 
that of SPEC CPU2006 – MCF benchmark. The MCF 
benchmark has a high memory footprint and its memory access 
pattern causes frequent page replacements at lower memory 

sizes. This causes frequent changes in virtual to physical 
address translations causing the writes to spread out over the 
memory. Whereas at higher memory sizes, the number of 
replacements are reduced and writes are not naturally 
distributed. As we see from Figure 6, the lifetime estimates 
after the first execution lead to a conclusion that lower memory 
size yields better lifetime. But as the number of executions 
increase, the wear leveling across the physical memory begins 
to take effect. Also it should be noted that, lifetime estimates 
do not increase linearly with increase in available memory size. 
As noted earlier in case of NAS – CG, reduction in writes due 
to page replacements at higher memory sizes leads to better 
lifetime estimates. 

C. Accelerated Simulation 

Even the simulation of a single run can be prohibitively 
expensive for certain benchmarks. We propose simple random 
sampling (SRS) to reduce execution run time of the first run 
itself. The Line Write Profile (LWP) is the write profile of the 
benchmark, which captures all of the write accesses (demand 
writes) to any physical main memory page. The LWP is a write 
counter which, keeps count of the number of writes for every 
cache line sized block within a single page. The profile 
assumes significance over a very large number of simulation 
runs, when even spreading of writes across the memory will 
create a similar profile on every physical memory page. For a 
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cache line size of 64B and page size of 4KB, we have 64 cache 
lines within a physical page. We observed that the LWP from 
the 10% sampled execution and the full run are identical. The 
only difference is in the actual write count. Scaling the 10% 
LWP appropriately results in the same LWP as the full run. 
The max write count from the LWP indicates maximum 
memory wear out. Since the LWP is cumulative sum of writes 
for every physical memory page, averaging the LWP by the 
total number of physical pages allows us to calculate the 
average memory wear per execution run. We perform SRS on 
the memory accesses rather than instructions, as wear out is 
determined by writes, and not the number of executed 
instructions. Memory operations tend to happen in bursts 
during phases and hence sampling must be performed on 
number of memory accesses and not instructions. In Figure 7 
for the Bio - Bench – Tiger workload we observe similarity in 
the profile pattern for a full simulation and sampled simulation. 
As seen in Figure 8, the LWP obtained when simulating only 
the first 10 Billion or 100 Billion instructions for Tiger results 
in very different profiles, which look very dissimilar to the 
original profile in Figure 7. Needless to say, this must result in 
wildly varying estimates for memory lifetime. We collected the 
sampled LWP from 10, 15, 20, 25 percent sampled execution 
runs and observed less than 2% error across all lines in the 
LWP for BioBench – Tiger (Figure 9) and less than 5% error in 
write counts per line in the LWP for all benchmarks. On the 

contrary if we simulate only a fraction of the instructions from 
a benchmark, we can see a stark contrast in the LWP obtained 
between two such execution runs.  

D. Heuristic 

Although sampling can be used to considerably speedup 
simulations, it is still impractical to simulate thousands or even 
millions of execution runs to simulate for entire memory 
lifetime. A quicker methodology is needed which estimates 
point of memory failure accurately. We have already 
demonstrated in Figure 4, that over multiple execution runs, the 
write distribution across the physical memory tends to become 
uniformly distributed. Under such assumptions we develop an 
analytical model.  

Let there be N pages in memory, each of which can be 
written Wmax times. Let µ1 be the average writes per page and 
σ1 be the standard deviation, during one execution run. Let us 
focus on a generic physical address p. The physical address p 
will be associated to a logical address. During the next 
execution run, the physical address p will be associated with a 
different logical address. Due to the randomness of the OS 
paging mechanism we can assume that the new logical address 
will be chosen at random. After a large number of execution 
runs, the total writes for line p can be approximated with a 
Gaussian distribution using the Central Limit Theorem [15]. 
After k execution runs, the expected value of sum of writes 
(Sumk ) and the standard deviation (σk) to page p is: 

Sumk = k·µ1      (1) 

σk =√k·σ1     (2) 

The probability that the page p fails after k execution runs: 

P{Page p fails} = P{Z > Wmax − Sumk }  (3) 

where Z is a zero mean unit variance Gaussian random 
variable. The heuristic predicts the mean and standard 
deviation of the write distribution for every execution run and 
calculates the corresponding lifetime estimate. We observe in 
Figure 10, that this estimate is very close to the results from the 
actual execution runs. Thus not only does our heuristic follow 
the simulation results, but it also shows that over a large 
number of execution runs (or execution time) the OS paging 
mechanism is fairly random in nature and causes uniform write 
distribution across the physical memory. 
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VI. RESULTS FOR ESTIMATED LIFETIME 

A. Heuristic Estimates for Lifetime at Wear Out  
We simulate using our heuristic model to find the true 

lifetime of the memory. This true lifetime can be defined as the 
point at which memory cells reach their endurance limit, 
starting from a single run, until memory wears out.  

Figure 11 shows maximum achievable lifetime for different 
memory sizes. The effect of operating system wear leveling is 
more pronounced for larger memory sizes. At smaller memory 
sizes, there is a possibility of wear out due to aggressive page 
replacements. By the time OS approaches uniform wear, a 
smaller memory size faces the danger of having already worn 
out enough to reach its maximum endurance. Whereas, for 
larger memory sizes, most of the benchmarks achieve close to 
perfect wear leveling and reach within 90 – 100% of perfect 
lifetime. It can be inferred that the paging mechanism does play 
a significant role in wear distribution for limited endurance 
memories. Even in the absence of any wear leveling 
techniques, the OS paging system causes near 100% wear 
leveling for most applications.  

 

B. Scope for Wear Leveling Beyond Perfect Page Leveling 
The OS performs wear leveling at the page level by 

remapping physical pages over time. This causes distribution of 
writes across all pages in the memory. However, for certain 
benchmarks, the LWP is not uniform and there is still scope for 
further wear leveling at the intra page level. Lines within a 
page can be further re-mapped to attain perfect wear leveling at 
the intra–page level or the line level. Previous work by Qureshi 
et al. [14] explores this area in detail. Although it must be noted 
that any further wear leveling within a page is in addition to 
wear leveling across all pages in the memory.   

VII. CONCLUSION 
Wear leveling research will be increasingly critical as new 

types of write limited non-volatile memories emerge.  Hence 
accurate lifetime estimates for limited endurance memories 
assumes greater importance. We have demonstrated the 
importance of modeling the operating system effects on wear 

leveling both within and between applications.  The random 
nature of OS page allocations, results in a near uniform write 
distribution over the lifetime of the memory. As longer 
simulations for memory wear out are prohibitive we have also 
proposed a heuristic to derive faster lifetime estimates. We 
have also provided a heuristic that enables evaluation of 
memory endurance across its lifetime. This work provides 
researchers with faster and accurate simulation methodology 
for future wear leveling research.  
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