
Accelerating Multi-threaded Application Simulation
Through Barrier-Interval Time-Parallelism

Paul D. Bryan, Jason A. Poovey, Jesse G. Beu, and Thomas M. Conte
College of Computing,

Georgia Institute of Technology
Atlanta, GA

{paul.bryan,japoovey,jbeu3,conte}@gatech.edu

Abstract— In the last decade, the microprocessor industry has
undergone a dramatic change, ushering in the new era of multi-
/manycore processors. As new designs incorporate increasing
core counts, simulation technology has not matched pace,
resulting in simulation times that increasingly dominate the
design cycle. Complexities associated with the execution of code
and communication between simulated cores has presented new
obstacles for the simulation of manycore designs. Hence, many
techniques developed to accelerate uniprocessor simulation
cannot be easily adapted to accelerate manycore simulation.

In this work, a novel time-parallel barrier-interval simulation
methodology is presented to rapidly accelerate the simulation of
certain classes of multi-threaded workloads. A program
delineated into intervals by barriers may be accurately simulated
in parallel. This approach avoids challenges originating from
unknown thread progressions, since the program location of each
executing thread is known. For the workloads tested, wall-clock
speedups range from 1.22x to 596x, with an average of 13.94x.
Furthermore, this approach allows the estimation of stable
performance metrics such as cycle counts with minimal losses in
accuracy (2%, on average, for all tested workloads). The
proposed technique provides a fast and accurate mechanism to
rapidly accelerate particular classes of manycore simulations.

Keywords-simulation; computer architecture; parallel
architectures; multicore processing; simulation

I. INTRODUCTION
Contemporary physical constraints, most notably the power

wall, have necessitated a paradigm shift in architecture design.
Although contemporary multi-core designs contain a small
number of cores, it is expected that future systems may contain
hundreds or even thousands of cores on a single die. In order
for such systems to become a reality, the industrial and
academic communities must first tackle a number of
challenges, that include determining the fundamental hardware
building blocks, designing efficient interconnection networks,
and providing new programming models to effectively and
efficiently use system resources [6]. In prototyping potential
solutions to these problems, detailed time-step simulation is
vital for exploring the design space of potential architectures.

During an iterative design cycle, long simulation times have
been and remain to be one of the primary bottlenecks for
architects [38]. The simulation of architectural designs is
typically orders of magnitude slower than native execution. In
uniprocessor systems, this has resulted in runtimes that are
intractable for the complete simulation of many realistically
sized workloads. The shift to manycore systems has only
further exacerbated the problem of simulation intractability.

Numerous strategies have been proposed to reduce the
simulation effort. Previous solutions include workload
reduction (e.g., reduced input sets [13], statistically synthesized
workloads [14], statistically sampled simulation [4], [9], [10],
[11], [12], [21], [30], SimPoints [7], and benchmark subsetting
[15]), optimizing simulation tasks (e.g., direct execution [22]),
and parallelization of the simulator itself [2], [4].
Unfortunately, many of these proposed techniques cannot be
easily applied to the simulation of shared memory
multiprocessor designs. Single-application, multi-threaded
workloads generally have higher degrees of inter-thread
communication and inter-thread dependence, rendering many
previous uniprocessor acceleration techniques ineffective.
Because of this, statistical simulation, sampled simulation, and
SimPoints, among others, have not been extended into the
domain of multi-threaded applications and cannot be relied
upon to safely reduce simulation times. Although certain
accelerative techniques have been extended to multiprocessors,
including SimPoints for multiprogrammed (i.e., multiple, non-
interacting processes) workloads [29], and sampled simulation
for throughput-oriented (i.e., multiple, non-interacting tasks)
workloads [28], these acceleration techniques are not easily
applied to the simulation of single-application, multi-threaded,
parallel-algorithmic workloads. One exception is [27], which
applies sampling to multi-threaded workloads. Unfortunately,
the technique suffers from high error (“usually within 15%”
[27]), and also cannot be used to estimate the execution time or
speedup.

The design, verification, and maintenance of an
architectural simulator are complicated tasks [25]. When the
simulator is the target of parallelization, system complexity can
increase significantly and introduce challenges of parallel
programming debugging and performance tuning. Indeed,
several contemporary manycore simulators currently execute
sequentially even though they simulate parallel systems [16],
[17], [18], [19]. This work presents a unique solution to
parallel simulation that does not significantly increase the effort
of simulator design, verification, or maintenance.

Simulator parallelization may be divided into two classes
characterized by the target parallelism extracted. The first class
is parallel discrete-event simulation (PDES), which parallelizes
the simulator itself. Simulator tasks and state variables are
decomposed into a number of parallel logical processes.
Logical processes communicate via timestamped event
messages when other logical processes need to be notified of a
particular event. PDES techniques have been leveraged to
obtain high levels of concurrency in architectural simulations
[1], and are a promising method to accelerate multi-threaded

simulation. Several state-of-the-art simulation environments
currently employ PDES [1], [23], [24]. PDES is completely
compatible with the proposed technique in this paper. The
second class of parallel simulation is time-parallel simulation,
which parallelizes simulator inputs (i.e., the workloads) rather
than the simulator. Time-parallel simulation separates
simulation inputs into a number of temporally adjacent
intervals, which are then simulated in parallel [5]. In order for
time-parallel methods to obtain accurate measurements, the
state-match problem must be overcome (see Section 2). Time-
parallel simulations have been successfully applied to cache
simulations [3], processor simulation [4][39], [38], and
performance modeling [5].

This work proposes a novel time-parallel based simulation
methodology to rapidly accelerate the simulation of an
important class of multi-threaded workloads. We leverage the
idea that barriers provide a natural, inter-thread independent
point at which to split multi-threaded simulations into discrete
time intervals. The proposed barrier interval simulation can
also be used in conjunction with other approaches, such as
PDES, to further parallelize simulation since the approaches
are orthogonal and compatible. Specifically, this work makes
the following contributions:

1) We quantitatively measure and define thread skew, a
component of cold-start specific to multiprocessor simulation.
Using the thread skew metric, we demonstrate why barriers are
useful constructs that may be leveraged to accurately
parallelize single-application, multi-threaded workloads.

2) Unlike prior work that focused on process-multi-
programmed or independent-task, throughput-oriented
workloads, our technique is the first to apply time-parallel
techniques to the simulation of single-application multi-
threaded, parallel-algorithmic workloads for manycore
architectures.

3) Our technique achieves extremely high wall-clock
speedups for multi-threaded, parallel simulations with minimal
losses in simulation accuracy.

4) Speedup is the most commonly used figure of merit for
parallel algorithms and parallel architectures. Our technique
provides an accurate measurement of cycle counts (a stable
performance metric) that can be used to calculate speedup
across multiple machine configurations.

5) Our technique is the first to evaluate the effectiveness of
detailed warming for single-application, multi-threaded
workloads, which allows us to minimize the state match
problem (Section 2).

The remainder of this paper is organized as follows: Section
2 provides a basic description of time-parallel simulation;
Section 3 discusses related work and describes how barrier
interval simulation avoids the obstacles presented by thread
skew; Section 4 describes the barrier-interval time-parallel
simulation methodology; and, Sections 5, 6, and 7 discuss the
experimental methodology, results, and conclusion,
respectively.

II. TIME PARALLEL SIMULATION
In traditional time-parallel simulation, the time axis is

decomposed into a set of non-overlapping intervals. Although
intervals are not required to be homogenous in size,
homogeneity benefits load balancing and improves parallel
speedup. Computation then consists of two phases: first, the

initial phase simulates each interval with a speculative initial
state (thus performance measurements obtained from the initial
phase may be inaccurate); and, the second phase, or the fix-up
computation phase, iteratively re-simulates each of the
intervals. Subsequent fix-up iterations continue until an
interval’s initial state matches that of the predecessor’s final
state (i.e., the state-matching problem [3]).

This paper presents a framework based upon time-parallel
simulation to speedup the simulation of single-application,
multi-threaded workloads. Unlike traditional time-parallel
simulation, we remove the iterative fix-up computation phase
(which may limit wall-clock speedups), and instead use a
warm-up based approach to approximate system state. As in
time-parallel simulation, the proposed technique parallelizes
the input workload. This work is based on the following
intuition: that barriers provide a natural segmentation point to
parallelize a workload.

III. THE CIRCULAR DEPENDENCE DILEMMA OF PARALLEL
WORKLOAD SIMULATION

Many strategies for accelerating simulation are only
applicable to single-threaded applications. Identification of
representative simulation points [7], benchmark subsetting
[15], statistically sampled approaches [4], [9], [10], [11], [12],
[21], reduced workload input sets and loop counts [13], and
statistically synthesized benchmarks [14], have all been used
with great success in the simulation of uniprocessor designs.
However, multiprocessor systems exhibit a circular dependence
dilemma, explained below, that introduce new challenges that
must be overcome to accurately and effectively accelerate their
simulation.

In multiprocessor systems, performance is a combination of
individual thread executions, which depend upon system state.
Thread interactions occur implicitly through shared resources
(e.g., a shared Last Level Cache) or explicitly through
synchronization constructs. Race conditions due to resource
locking may not be predictably modeled unless detailed state
information regarding cache contents, system coherence state,
core proximity to the home node, network contention, etc., are
known. For example, consider the common practice of
skipping initialization code at the beginning of a workload,
which leaves the system in a cold state at detailed simulation
startup. For uniprocessor systems, solutions to the cold-start
problem have been extensively studied and mitigated [8], [9],
[12], [21]. In multiprocessor systems, previously studied
solutions are limited to fast-forwarding over serial code
regions. If fast-forwarding terminates in a region of parallel
thread executions, not only is system state unknown, but the
relative thread progression and thread interleavings are
unknown as well. Effectively compensating for cold-start
involves reconstructing system state, and requires precise
knowledge of each individual thread’s progress. But, the
reconstructions of each thread’s progress requires knowledge
of system state to determine, for instance, the order that threads
acquire and release critical sections. The approximation of
system state, therefore, is dependent upon individual thread
progressions, and the approximation of thread progressions are
dependent upon system state, resulting in a circular dependence
dilemma.

In order to measure thread divergence quantitatively, and
thus the impact of the circular dependence dilemma, we
introduce thread skew. Thread Skew measures the divergence
of thread progressions between two simulations: one simulation
that uses functional fast-forwarding (where thread divergence
is introduced through imprecise skipping), and another that
performs full-simulation from the beginning of the program. A
formal definition of thread skew is shown in Figure 1. Skew
values are measured at the beginning of various program
locations. For each location with imprecise skipping, the fetch
counts1 of all threads are summed to obtain a total system fetch
count. Full simulations are performed to profile the fetch
counts of all threads when the system observes the same
system fetch count. The use of total fetched instructions
provides a system-wide estimator of progress that is used to
map divergent executions between the two simulations.

Thread skew is shown graphically in Figure 2 for ocean
contiguous executing with 16 cores and for lu contiguous
executing with 256 cores. Comparing thread progressions at a
constant system fetch count causes skew values for all threads
to sum to zero, since for every thread that leads true execution,
another must lag. Threads leading true execution have positive
thread skew, and those lagging have negative thread skew.
Barriers cause thread skew of all threads to collapse to zero.
This leads to an important observation: the circular dependence
dilemma can be avoided by parallelizing the simulation at
barrier events.

IV. BARRIER INTERVAL SIMULATION
Barriers are an important, and commonly used

synchronization construct found in many parallel algorithm
implementations. They are found within the SPLASH-2,
PARSEC [32], SpecOMP, and NAS parallel benchmark suites,
among others. The popularity of barrier based programs stems
directly from the popular parallel programming paradigms.

1 The fetch counts used in the calculation of the thread skew metric exclude

instructions that occur within thread synchronization functions.

Directive-based languages, such as OpenMP, implicitly define
barriers at parallel loop constructs. Barriers are also present in
fork/join models of parallelism (e.g., CUDA [36]). What’s
more, they are used in next-generation programming language
constructs such as Cilk’s synch operation [33] and X10’s finish
[34] operation. Barriers are of particular importance within
scientific applications, since many coarse-grained parallel
programs execute in phases separated by barriers [37]. Others,
such as Liu, et al. [31] leverage barriers to, for example,
conserve power in CMP systems, whereas our work exploits
barriers to accelerate architectural simulation.

The proposed barrier-interval simulation methodology is
illustrated in Figure 3. First, the input workload is
instrumented to identify, at runtime, barrier release events to
define discrete time intervals for parallelization. Barrier release
events are triggered following the last thread’s arrival at a
barrier, when all threads are allowed to continue execution.
Each workload, comprising a parallel algorithm, is functionally
executed to completion to determine the number of emulated
instructions before each barrier release. These functional
instruction counts provide the functional fast-forwarding values
necessary to begin each simulation at the appropriate barrier
release event. The functional profiling of barrier interval
locations is necessary only once per workload and core count,
irrespective of changes to the detailed simulator. Every
interval is then simulated in parallel with a specified warm-up
length. If a warm-up of W instructions were desired before an
interval occurring at instruction I, fast-forwarding would be
performed for I-W instructions. Detailed warming simulation
continues until the first barrier release, where simulator
statistics are reset. Execution of the interval then commences
until the subsequent barrier release, which terminates the
interval.

The extensions necessary for a sequential simulator to
support barrier-interval simulation are outlined below. In
addition to functional fast-forwarding, the simulator must be
notified of barrier release events to clear system statistics and
precisely terminate intervals. The clearing of system statistics

For each measurement, C,:

1) After functional fast-forwarding:

 - Record sys_fetch
C
 and all !! where,

 !! ,! = fetch&count&of&thread'i
 ! = #"threads
 !"!_!"#$ℎ! = !! ,!!

!!!

2) From the full simulation (no fast-forwarding)

 !!! = fetch&count&of&thread'i
 !"!_!"#$ℎ!! = !!!!

!!!

 when (sys_fetch
C
’ == sys_fetch

C
):

 !! ,!! = ! !!!!∀!

3) Calculate thread skew from profiled data

 !ℎ!"#$_!"#$! ,! = !! ,! − !! ,!!

When !"!_!"#$ℎ!! = !"!_!"#$ℎ!

 !! ,!!!
!!! = !! ,!!

!!!

 !! ,!!
!!! − !! ,!!!

!!! = 0

 !! ,! − !! ,!!!
!!! = 0

 !ℎ!"#$_!"#$! ,!!
!!! = 0

Furthermore, at barrier releases:

 !ℎ!"#$_!"#$! = 0, for all i

Figure 1. Thread skew is calculated using aggregate system and per-thread fetch counts. Simulations with functional fast-
forwarding record fetch counts for all threads at the beginning of a simulation. Full simulations use these counts to determine
when fetch counts are recorded. Since total system fetch counts are identical in the fast-forwarded and full simulations, the sum
of thread skew for every measurement must be zero. Individual threads may lead or lag their counterpart in the full simulation.

is present in many simulators since many studies include a
detailed warming period after the functional skipping of
initialization code. Warm-up can be applied either before or
after an interval’s starting point. However, if detailed warm-up
consumes instructions after an interval’s starting point, then
errors associated with accumulative metrics such as cycle
counts grow proportionally with the amount of warm-up.
Although increased warm-up prior to the starting point
generally improves accuracy, it does so at the expense of
speedup since extra work is introduced into the simulation
effort by overlapping particular instruction streams (i.e., from
two or more barrier-intervals).

Interval NInterval N-1Interval 2Interval 1

Time

...

...

BarrierThread

BI1 BI2 BIN-1

Figure 3. An illustration of simulation parallelization via the barrier-interval
simulation method. A target workload is divided into intervals delineated by
barrier releases, all of which are then simulated in parallel.

Barrier release events are also necessary to precisely

simulate the targeted barrier-interval boundaries. Profiled
interval boundaries are imprecise since they are not guaranteed
to be exact locators in the instruction stream, unless fast-
forwarding is performed for all previous instructions (thus
reproducing the profiled thread schedule). Simulating
instructions in full cycle-accurate detail can cause divergent
thread behaviors within synchronization events, such as the
number of times a thread spins in a test-and-set operation
waiting to acquire a lock. Thus, potential divergent thread
behaviors create unknown interval boundaries, which may only
be identified at runtime.

The methodology employed by barrier-interval time-
parallel simulation eliminates thread skew, since the simulated
intervals are guaranteed to be at boundaries where thread
progressions are known (e.g., convergence points in Figure 2).

By applying detailed warm-up heuristics adopted from sampled
simulation, cache state and coherence information may be
reconstructed to obtain highly accurate measurements over the
defined intervals, producing measurements that closely
resemble those of sequential simulation. Measurements
obtained from individual intervals can then be aggregated to
form estimated system metrics of the simulated program. For
accumulative metrics, such as simulated runtime, individual
measurements can simply be summed. For rate-based metrics,
system metrics can be formed through the appropriate means
(e.g., harmonic, arithmetic, geometric).

V. EXPERIMENTAL METHODOLOGY
Experiments in this study were conducted using the

Manifold shared-memory manycore simulator, which is part of
a larger, multi-agency-funded simulation framework being
developed by the authors and other collaborators. The
simulator is execution-driven, using the SESC front-end
framework to perform functional emulation of RISC
instructions, and to provide input instructions to the detailed
simulator back-end. During SESC functional emulation,
threads are assigned instructions in a two-dimensional queue
based upon the thread ID. During fast-forwarding, each thread
is emulated by a constant number of instructions in a round-
robin fashion. The detailed back-end consists of a number of
architectural nodes, each containing a processor, a private L1
cache, a distributed, shared L2 cache-slice, and a network
interface. The system implements a directory-based MESI
coherence protocol. Nodes are connected via a network-on-
chip incorporating a mesh topology that implements wormhole
routing. Table 1 shows a summary of the simulation
parameters. Experimental workloads consist of SPLASH-2
benchmarks cross-compiled to the target ISA using the GNU C
compiler (gcc) version 4.2.2.

Evaluation of the barrier-interval simulation approach was
performed on the following SPLASH-2 workloads: lu
contiguous, ocean contiguous, radix, fft, and water spatial.
Each workload was simulated by varying the number of cores
between 1 and 512, resulting in 10 distinct simulations for each
workload. For each (core count, workload) pairing, multiple
detailed warming lengths were applied: none, 10k, 100k, 1M,
and 10M pre-interval instructions. Although implementing

Figure 2. An illustration of thread skew. This is a time sequence showing the difference of thread progressions between various
program measurements with imprecise fast-forwarding and the full-simulation. Barriers cause thread skew to collapse to zero, and
may be exploited to accurately parallelize the target workload.

fast-functional warming [12], instead of detailed warming,
might produce further speedups, its use is reserved for future
work. For the workloads evaluated, 181,000 simulations were
performed to evaluate the trade-offs of the proposed technique
in terms of speed and accuracy.

TABLE 1. ARCHITECTURE PARAMETERS OF THE SIMULATED SYSTEM

Cores 1, 2, 4, 8, 16, 32,
64,128, 256, 512

Coherence /
Tracking

Directory-based
MESI Protocol
w/ Full Presence
Bits

Core Model 2-issue in-order
2 MSHRs

NOC Topology Mesh
4-node express
links

Per-node L1
Cache

32 KB set
associative
4-way (WBWA)
2-cycle hit
latency

NOC Router
Architecture

3-stage pipeline
4 VCs /
connection
2 buffers / VC

Per-node L2
Shared
Last-level
Cache

256KB set
associative
8-way (WBWA)
8-cycle hit
latency

Cache line
size

64B

Cache
replacement

LRU

Main Memory Latency
200 cycles System L2

size
Cores * 256KB

VI. RESULTS

A. Parallel Simulation Accuracy
The accuracy of interval estimates are dependent upon

overcoming cold-start effects. For multi-threaded simulation,
cold-start components consist of thread skew, unknown cache,
network, and directory state. Through the use of detailed
warming, error components associated with unknown cache
state and network state are sufficiently reduced. Error results
collected for individual (core count, workload) pairs for the
tested warm-up lengths, and their summaries, are shown in
Figure 4. Error summaries are obtained by calculating the
harmonic mean of error percentages for each warm-up length.
Cycle counts of the barrier-intervals are summed for the
parallel simulations, and then compared to the sequential
simulation using absolute relative error. On average, the error
rates of the five warm-up lengths are 0.81%, 0.79%, 0.62%,
0.09%, and 0.01% for none, 10k, 100k, 1M, and 10M,
respectively. This demonstrates that, if cold-start effects
associated with thread skew are sufficiently reduced, then
cache state, network state and cache coherence information of
multi-threaded workloads may be accurately approximated
through the application of warm-up methods.

Larger warm-ups intuitively, and often empirically, lead to
increased accuracy for interval measurements. However,
certain data points, such as lu contiguous for 512 cores, observe
higher error when a warm-up of 10k instructions is used vs. no
warm-up. Error rates occasionally increase with more warm-
up, but eventually converge to their expected values once
sufficient warm-up is performed. One reason for this effect
involves the incorrect partial warming of the caches and the on-
chip network. Even though system statistics are cleared at the
start of an interval, network packets generated from cache
misses are still in-flight when the new interval begins. In
general, this is desirable for reducing cold-start effects.
However, in some cases high network contention caused by

detailed warming can affect cache request latencies at the
beginning of the interval. For example, no warm-up results in
a cold network without any contention. Increasing warm-up to
10k-instructions can create a large burst of cache accesses,
resulting in miss-traffic and corresponding network contention
that spills into the interval execution. If warm-up is increased
to 100k- instructions, however, the accesses in the shorter 10k-
instruction warm-up reveal themselves to actually be cache hits
due to earlier accesses in the larger 100k-instruction window.
As a result, correct network contention is achieved with both
the lowest and highest warm-up lengths, whereas the mid-range
warm-up length creates additional bias from incorrect miss-
traffic on the network. The important observation is that larger
warm-ups are not always guaranteed to increase accuracy, and
can even introduce additional bias.

The effect that initial state has upon measurement error is
also impacted by individual thread performance. Performance
is measured as the speedup relative to a single core machine.
As cores are added to the simulated machine, the performance
of a multi-threaded workload increases until a saturation point.
Once the saturation point is reached, the addition of cores to the
simulated machine begins to erode performance gains due to
the increased traffic and overheads associated with thread
synchronization. For the SPLASH-2 workloads, computation
is divided among all the available cores. The overheads to
obtain work eventually dominate useful computation, and
result in system slowdown. Thus, computation performed by
threads after saturation becomes increasingly non-useful. For
ocean contiguous, the point of saturation occurs at eight cores,
and has the highest error rate of all experiments. Increasing
the number of cores past saturation causes long chains of
requests to form, where each thread must wait to access
semaphores. As more threads are queued waiting to receive
work, the relative importance of warm-up towards
measurement accuracy diminishes.

B. Error Rates vs. Interval Size
In the single-threaded domain where sampling is viable, a

common metric is the relationship between sampled
measurements and error rates [20]. If we consider a barrier
interval to be a sample of the full execution we can perform a
similar study. Past work in the single-threaded domain found
an inverse relationship between an interval’s size and the
measured error rates when no warm-up has been applied. The
intuition behind this trend is that cold-start effects are
amortized across the interval. The larger the interval, the less
impact that cold-start has upon measurement error. Therefore,
measurements obtained from small intervals may not be
reliable if warm-up is not incorporated.

The relationship between barrier interval sizes and
associated error rates for the barrier-interval simulation of
multi-threaded parallel workloads is also explored. To
determine if the single-threaded trend between interval size and
error holds for barrier intervals, we show the average
normalized interval sizes (measured in cycles) as the number of
cores increases. Measurements are normalized such that the
core count with the largest interval size is assigned a value of
one. All experiments incorporate no warm-up. As shown in
Figure 5a, the interval sizes vary dramatically. In all tested
workloads increasing the number of cores causes interval sizes
to follow a parabolic shape, where the average size decreases to

a minima before eventually increasing. The intuition behind
these results is also related to the per-thread performance.
Prior to saturation, additional threads cause more work to be
performed in parallel, resulting in higher system performance,
and a reduction in average interval sizes. After saturation,
thread overheads causes additional threads to cause
performance degradation of all threads, and result in larger
interval sizes. This is interesting since even without warm-up,
where measurements may be the most suspect, the saturation
point is correctly identified for all tested workloads.
Comparisons with baseline experiments confirm that saturation
occurs for all of the workloads at the smallest interval size.
Saturation for fft occurs at 64 cores, lu contiguous at 16 cores,

radix at 256 cores, ocean contiguous at 8 cores, and water
spatial at 8 cores. Similar speedup limitations have been
observed for SPLASH-2 in the past (see, e.g., [26]).

If multi-threaded simulations exhibit a similar relationship
to interval size and error rates as single-threaded workloads,
then it would have been expected that experiments containing
the highest interval sizes would have the lowest interval errors,
and vice versa. This was not the case, and is explained by the
central limit theorem (CLT) of statistics. Average error rates
for interval measurements for all workloads without warm-up
are shown in Figure 5b. Error rates are higher in this graph
than in Figure 4 since the errors are based upon per-interval
measurements rather than cumulative statistics. Even without

! !

! !

! !
Figure 4. Accuracy measurements of barrier-interval time-parallel simulation. Absolute relative errors are computed for the differences in
simulated cycles times between the parallel and sequential simulations

any warm-up, increasing the number of cores causes interval
errors to drop.

The distribution of interval errors with no warm-up at
varying core counts for ocean contiguous is shown in Figure 5.
Due to space constraints, only this workload is shown;
however, other workloads exhibit similar behaviors. At one,
two, and four cores, the distributions of errors closely follow
the inverse relationship of error rates and interval sizes found in
single-threaded sampling. Prior to saturation, as the number of
cores increased, interval measurements begin forming clusters
in the error space. These clusters of measurements decrease in
size until the point of saturation, and then increase in size as the
intervals become larger. At the same time, maximum interval
error rates decrease due to CLT effects. The CLT dictates that
the distribution of an average appears to be normal, even if the
underlying distribution from which samples are taken is
decidedly non-normal. The performance of individual threads
may be considered as forming a distribution from which overall
system performance is determined. Thus, overall system error
becomes a function of component errors of the individual
threads, which tends towards lower error as the number of
threads increases (shown in Figure 5b and Figure 6).

C. Parallel Simulation Speedup
For these experiments, wall-clock speedup values were

calculated from repeated measurements of the sequential and
time-parallel workloads. Simulations were performed on
identical Intel Xeon X5450 (12MB L2Cache, 3.00 GHz, 1,333

MHz FSB) machines, with 16GB of physical memory. Since
distribution outliers have large effects upon the arithmetic
mean, wall-clock speedups were calculated as the ratio of
median values for both the sequential and parallel simulations.
Wall-clock speedup results for the five workloads are shown in
Figure 7. Although increasing warm-up generally improves the
accuracy of interval measurements, it does so at the expense of
speedup.

Measured speedups for each workload at each core count
generally fluctuate as the interval size and interval
homogeneity vary. Since each workload inherently contains a
different number of barriers, expected speedups may differ
significantly from one workload to another. Table 2 shows the
number of barriers contained within the simulated workloads,
along with the maximum obtained speedup. The computed
relative efficiency is the ratio of obtained speedup to the
maximum theoretical speedup. Coefficient of Variation (CV)
values were computed for each workload, which is the ratio of
the standard deviation, σ, to the absolute value of the mean, |µ|.
As shown, there is a strong correlation between calculated CV
values and relative efficiency. Lower CV values result in
higher relative efficiencies. Minimum and maximum speedup
values are taken from runtimes across all warm-up lengths.
Even at the largest warm-up lengths, no simulation experienced
slowdown over its sequential simulation.

The barrier-interval simulation methodology improves
simulation times dramatically compared to their sequential

! !
Figure 5. (a) Average normalized interval size and (b) average interval error as the number of cores increase.

! !
Figure 6. Distribution of interval errors for ocean contiguous as a function of the core count. No warm-up is applied before interval
measurements.

simulation. On average, detailed warming using none, 10k,
100k, 1M, and 10M instruction lengths had speedups of
20.13x, 19.95x, 17.56x, 8.32x, and 3.70x, respectively. The
smallest speedup of 1.22x was obtained for lu contiguous 10M
instruction warm-up for 2 cores. The highest speedup of 596x
was obtained for ocean contiguous with no warm-up for 512
cores.

Since there are no dependencies between barrier intervals,
all intervals may be simulated in parallel. Thus, the potential
simulation speedup is determined by two factors: (1) the
number of barriers, and therefore barrier intervals, that are
contained in the workload; and, (2) the homogeneity of barrier-
interval sizes. The more barriers there are in the workload, the
greater the opportunity for parallelization. However, since
parallelization speedup is dominated by the slowest executing

interval, it is also beneficial if intervals are approximately
equivalent in size. The artificial introduction of additional
barriers into the workload is a possible technique that could
improve the parallelization effort, however it must first be
proven that additional barriers do not change fundamental
properties of the simulation (both in terms of runtime
characteristics and correctness), and this is a topic reserved for
future research. Barrier intervals could also be melded to
achieve heterogeneously sized intervals, but this too is left for
future research.

As shown in Section 6.2, barrier-interval sizes vary
dramatically with the number of threads. Interval size
homogeneity was measured using the coefficient of variation,
which is a normalized measure of dispersion for a distribution
and allows CV values to be compared across different

! !

! !

! !
Figure 7. Wall-clock simulation speedup measurements of barrier-interval time-parallel simulation. Speedup is relative to the sequential
simulation environment.

distributions. Distributions with CV values greater than one are
considered high-variance, and those below one are considered
low-variance. For each experiment, the CV is calculated using
the interval sizes measured in cycles. As expected, lower CV
values correspond to higher speedups. For example, for lu
contiguous: 512 cores has a CV of 0.10 with a speedup of
27.8x; and, 2 cores has a CV of 1.45 with a speedup of 6x. CV
values exhibit an inverse relationship with observed speedup
for all tested workloads. Interestingly, CV values for all
workloads are the smallest at the highest core counts where
interval homogeneity is improved, despite increased interval
size caused by thread saturation.

Larger warm-up generally results in increased accuracy, but
rapidly diminishes speedup opportunities for certain workloads.
Workloads with fewer barriers (i.e., fft, radix, and water-
spatial) are more robust towards speedup losses, and can
incorporate larger warm-ups without significant penalties in
performance. Since speedup losses are more prevalent in
workloads containing high numbers of barriers, an analysis of
lu contiguous and ocean contiguous was performed to show the
speedups lost due to increased warm-up, and are shown in
Figure 8. The normalized speedup loss refers to the percentage
of speedup (relative to no warm-up) that was eroded by
increased warm-up. Since error rates significantly differed for
these workloads at the various core counts, error and speedup
values are classified into two groups: 1 to 16 cores (Figure 8a)
and 32 to 512 processors (Figure 8b). Although higher core
counts generally exhibit lower error rates even in the absence
of warm-up, certain outliers exhibited non-negligible error rates
(see, FFT at 512 cores). Thus, a conservative estimation of the
necessary warm-up to obtain extremely high levels of accuracy
results in a recommendation of 1M pre-interval instructions.
At this warm-up length, the maximum error rate for all tested
workloads was 6.7%, with an average error rate of 0.09%.

Although a warm-up of 1M instructions diminishes attainable
speedup between 28% and 41%, the actual performance loses
are not as severe if a limited context environment is assumed.

VII. CONCLUSION
In this study, a novel simulation acceleration strategy was

presented to rapidly simulate certain important classes of multi-
threaded, parallel-algorithm, applications with minimal losses
in accuracy. The strategy can be readily implemented by
architects to obtain good speedups, at low cost. Using time-
parallel barrier-interval simulation, wall-clock runtimes of a
number of SPLASH-2 simulations were sped up by 13.94x on
average, with a maximum speedup of 596x. These speedups
were obtained using a technique that can be incorporated into a
number of simulation environments, including PDES based
approaches. By exploiting barriers, challenges associated with
the circular dependence dilemma (Section 3) that currently
hinder the applicability of other uniprocessor accelerative
techniques are avoided. Additionally, we investigated the
relationship between error rates associated with state-loss
obtained from interval measurements in a multi-threaded
context, which may be applied towards other time-parallel or
even sampled simulation domains. Our results showed that for
parallel workloads with barriers, dramatic simulator
performance gains are possible, thus shortening the design
process and enabling larger workloads and input sets to be
simulated efficiently.

Workload Barriers Min Speedup Max Speedup Rel. Efficiency CV
fft 5 1.94x 4.10x 82% 0.3939
lu contiguous 33 1.22x 27.78x 84% 0.1025
ocean
contiguous

654 1.29x 596.04x 91% 0.0564
radix 13 2.88x 4.16x 32% 0.6953
water spatial 18 2.69x 7.08x 39% 0.7070

TABLE 2. RELATIVE SPEEDUP EFFICIENCY VS. COEFFICIENT OF VARIATION.

! !
Figure 8. A comparison of accuracy and speedup for lu contiguous and ocean contiguous. Error rates are shown along with normalized
speedup losses as warm-up lengths increase for 1 to 16 cores (a), and 32 to 512 cores (b).

REFERENCES
[1] J. E. Miller, et al. “Graphite: A Distributed Parallel Simulator

for Multicores,” in the International Symposium on High
Performance Computer Architecture, 2010.

[2] R. M. Fujimoto. “Parallel Discrete Event Simulation,” in
Conference on Winter Simulation, 1989.

[3] T. Kiesling. “Approximate Time-parallel Cache Simulation,” in
Conference on Winter Simulation, 2004.

[4] G. Lauterbach. “Accelerating Architectural Simulation by
Parallel Execution of Trace Samples,” Hawaii International
Conference on System Sciences, 1994.

[5] T. Kiesling and S. Pohl. “Time-Parallel Simulation with
Approximative State Matching,” Workshop on Parallel and
Distributed Simulation, 2004.

[6] K. Asanovic, et al. “The Landscape of Parallel Computing
Research: A View from Berkeley,” University of California,
Berkeley, Berkeley, CA, Tech. Rep. UCB/EECS-2006-183. Dec.
18, 2006.

[7] E. Perelman, G. Hamerly, and B. Calder. “Picking Statistically
Valid and Early Simulation Points,” in the International
Symposium on Parallel Architecture and Compilation
Techniques, 2003.

[8] R. E. Wunderlich, et al. “Statistical Sampling of
Microarchitecture Simulation,” ACM Transactions on Modeling
and Computer Simulation, vol. 16, pp. 197-224, 2006.

[9] P. D. Bryan, M. C. Rosier, and T. M. Conte. “Reverse State
Reconstruction for Sampled Microarchitectural Simulation,” in
the International Symposium on Performance Analysis of
Systems and Software, 2007.

[10] P. D. Bryan and T. M. Conte. “Combining Cluster Sampling
with Single Pass Methods for Efficient Sampling Regimen
Design,” in the International Conference on Computer Design,
2007.

[11] L. V. Ertvelde, et al. “NSL-BLRL: Efficient Cache Warmup for
Sampled Processor Simulation,” in the Annual Symposium on
Simulation, 2006.

[12] R. E. Wunderlich, et al. “SMARTS: Accelerating
Microarchitecture Simulation via Rigorous Statistical
Sampling,” in the International Symposium on Computer
Architecture, 2003.

[13] A. J. KleinOsowski, et al. “Adapting the SPEC 2000 Benchmark
Suite for Simulation-based Computer Architecture Research,”
Workload Characterization of Emerging Computer
Applications: Kluwer Academic Publishers, 2001, pp. 83-100.

[14] J. Ajay, et al. “Distilling the Essence of Proprietary Workloads
into Miniature Benchmarks,” ACM
Transactions on Architecture and Code Optimization. vol. 5, pp.
1-33, 2008.

[15] A. Joshi, et al. “Measuring Benchmark Similarity Using Inherent
Program Characteristics,” IEEE Transactions on Computers.
vol. 55, pp. 769-782, 2006.

[16] T. Austin, E. Larson, and D. Ernst. “SimpleScalar: An
Infrastructure for Computer System Modeling,” IEEE Computer,
vol. 35, no. 2, pp. 59–67, 2002.

[17] M. Rosenblum, et al. “Complete Computer System Simulation:
The SimOS approach,” IEEE Parallel and Distributed
Technology: Systems and Applications, vol. 3, no. 4, pp. 34– 43,
1995.

[18] P. Magnusson, et al. “Simics: A full System Simulation
Platform,” IEEE Computer, vol. 35, no. 2, pp. 50–58, Feb 2002.

[19] F. Bellard. “QEMU, A Fast and Portable Dynamic Translator,”
USENIX Annual Technical Conference, 2005.

[20] T. M. Conte, M. A. Hirsch, and K. N. Menezes. “Reducing State
Loss for Effective Trace Sampling of Superscalar Processors,”
in the International Conference on Computer Design, 1996.

[21] L. Eeckhout, et al. “BLRL: Accurate and Efficient Warmup for
Sampled Processor Simulation,” The Computer Journal., vol.
48, pp. 451-459, 2005.

[22] R. C. Covington, et al. “The Rice Parallel Processing Testbed,”
in Proceedings of ACM SIGMETRICS Conference on
Measurement and Modeling of Computer Systems, pages 4–11,
May 1988.

[23] S. S. Mukherjee, et al. “Wisconsin Wind Tunnel II: A Fast and
Portable Parallel Architecture Simulator,” in the Workshop on
Performance Analysis and its Impact on Design, 1997.

[24] H. Lv, et al. “P-GAS: Parallelizing a Cycle-Accurate Event-
Driven Many-Core Processor Simulator Using Parallel Discrete
Event Simulation,” in the Workshop on Principle of Advanced
and Distributed Simulation, 2010.

[25] B. Black and J. P. Shen. “Calibration of Microprocessor
Performance Models,” in Computer, 31(5), 59-65. 1988.

[26] A. Chauhan, C. Ding, and B. Sheraw. “Scalability and Data
Placement on SGI Origin”. Tech Rep. TR98-305, 1998.

[27] K. C. Barr, et al. “Accelerating Multiprocessor Simulation with
a Memory Timestamp Record,” in the International Symposium
on Performance Analysis of Systems and Software, 2005.

[28] T. F. Wenisch, et al. “SimFlex: Statistical Sampling of Computer
System Simulation,” IEEE Micro, Vol 26, Issue 4, July-Aug.
2006.

[29] M. Van Biesbrouck, T. Sherwood, and B. Calder. “A Co-phase
Matrix to Guide Simultaneous Multithreading Simulation,” in
the International Symposium on Performance Analysis of
Systems and Software, 2004.

[30] T. F. Wenisch, et al. “TurboSMARTS: Accurate
Microarchitecture Simulation Sampling in Minutes,” in the
International Conference on Measurement and Modeling of
Computer Systems, 2005.

[31] C. Liu, et al. “Exploiting Barriers to Optimize Power
Consumption of CMPs,” in the International Symposium on
Parallel and Distributed Processing, 2005.

[32] C. Bienia, et al. “The PARSEC Benchmark Suite:
Characterization and Architectural Implications,” in the
International Conference on Parallel Architecture and Compiler
Techniques, 2008.

[33] Cilk-5.2 Reference Manual. Available at:
http://supertech.lcs.mit.edu/cilk.

[34] X10 release on SourceForge. Available at:
http://x10.sf.net

[35] A. R. Alameldeen, and D. A. Wood. “Addressing Workload
Variability in Architectural Simulations,” Micro, IEEE, 23(6),
94-98, 2003.

[36] NVIDIA CUDA, “Compute Unified Device Architecture,”
http://developer.nvidia.com/object/cuda.htm
l.

[37] T. E. Jeremiassen and S. J. Eggers. “Static Analysis of Barrier
Synchronization in Explicitly Parallel Programs,” in the
International Conference on Performance Analysis and
Compilation Techniques, 1994.

[38] S. Girbal, et al. “DiST: A Simple, Reliable and Scalable Method
to Significantly Reduce Processor Architecture Simulation
Time,” in ACM SIGMETRICS, 2003.

[39] Rico, A.; Duran, A.; Cabarcas, F.; Etsion, Y.; Ramirez, A.;
Valero, M.; , "Trace-driven simulation of multithreaded
applications," Performance Analysis of Systems and Software
(ISPASS), 2011 IEEE International Symposium on , vol., no.,
pp.87-96, 10-12 April 2011

