

1

High-Speed Formal Verification of Heterogeneous Coherence Hierarchies

Jesse G. Beu, Jason A. Poovey, Eric R. Hein, Thomas M. Conte
Georgia Institute of Technology, Atlanta GA

jesse.beu@gmail.com, japoovey@gmail.com, ehein6@gatech.edu, tom@conte.us

Abstract

As more heterogeneous architecture solutions con-
tinue to emerge, coherence solutions tailored for these
architectures will become mandatory. Coherence hi-
erarchies will likely continue to be prevalent in future
large-scale shared memory architectures. However,
past experience has shown that hierarchical coherence
protocol design is a non-trivial problem, especially
when considering the verification effort required to
guarantee correctness.

While some strategies do exist for verification of
homogenous coherence hierarchies, support for rea-
sonable verification of heterogeneous coherence hier-
archies is currently unavailable. Ideally, hierarchical
coherence protocols composed of ‘building block’ pro-
tocols should be able to take advantage of incremental
verification to side step the state-space explosion prob-
lem which hampers any large-scale verification effort.
In this work, we prove this can be accomplished
through the use of the Manager-Client Pairing (MCP)
framework, which provides encapsulation and permis-
sion checking support that enables a form of state-
space symmetry. When combined with an inductive
proof, this ensures the validation properties of proper
permission distribution and livelock/deadlock freedom
are enforced by any hierarchical composition of MCP
compliant protocols. Demonstration of this methodol-
ogy through the MurPhi formal verifier shows several
orders of magnitude improvement in verification cost
compared to full hierarchy verification.

1. Introduction
It is well established that power constraints have

caused a major paradigm shift in computer architecture
towards parallel processing for performance scaling.
With it have come new opportunities and design spaces
for architects to explore. Among these are heterogene-
ous architectures, where on-chip network and proces-
sor diversity can be exploited for performance benefit
or power/energy savings [1-5]. Such systems benefit

from the design of diverse interacting coherence proto-
cols, where each protocol is optimized to take ad-
vantage of properties of a homogeneous region within
the overall heterogeneous architecture. This comes at a
cost however, in that the design and verification com-
plexity of such systems is substantially higher than that
of their homogenous coherence counterparts.

Despite this cost, the benefit of heterogeneous co-
herence has resulted in real-world applications of co-
herence heterogeneity. The Wildfire architecture, for
example, was built using the existing first level proto-
col of the Sun E6500 in a larger hierarchy that enabled
Coherent Memory Replication for improved node lo-
cality [3]. The Piranha architecture [4] had an intra-
chip coherence management mechanism that was inte-
grated with an independent inter-chip coherence proto-
col engine. This allowed for efficient use of on-chip
caches and fast intra-chip data transfers while another
DRAM directory-based protocol could be leveraged to
enable scalability and performance at the inter-chip
granularity. The HP Superdome [5] also employed a
similar strategy as Wildfire, but with a different goal in
mind. An inter-chip communication layer interfaced
the native intra-chip protocol to a higher-level directo-
ry protocol. The resulting system was able to restrict
message broadcast scope to the local protocol in many
cases, enabling the use of commodity parts (i.e., those
with “glueless” multiprocessor buses) in a large-scale
system while maintaining performance. These exam-
ples suggest that heterogeneous coherence hierarchies
will become more attractive in the present era as cur-
rent technology trends continue.

Another factor motivating heterogeneous coherence
support is the emergence of Partitioned Global Ad-
dress Space (PGAS) languages, such as X10 [7], which
explicitly express physical locality of memory through
places and processor/thread affinity. Depending on the
relationship between the size of the address spaces
assigned to a place, the number of active threads oper-
ating within a place, and the available architectural
resources, localized coherence protocols can be benefi-
cial. Localized protocols can be optimized for a par-
ticular place’s partition of the address space and archi-
tectural real estate, while still maintaining global ad-

2

dress space coherence with respect to other localized
protocols.

The designers of future architectures can also benefit
from coherence heterogeneity. Consider, for example,
a production heterogeneous chip that is partitioned
across several different development teams. Each team
wants to design its own highly optimized and special-
ized coherence protocol, tailored and verified for one
architectural region. Each design group could work
independently if a well-defined heterogeneous coher-
ence composition framework were available to inte-
grate the protocols into a final, verified hierarchical
protocol, as shown in Figure 1. This concept of dis-
tributed coherence protocol design does not have to be
limited to a single chip. With a composition frame-
work, multi-chip systems comprised of diverse chips
(GPUs and CPUs), from different vendors, could be
combined and verified into a global coherence proto-
col.

Before implementing a coherence protocol in hard-
ware, it is important that the protocol be verified. Giv-
en the extreme rate of processor requests that a proto-
col handles per second, even the smallest flaw will
inevitably lead to a system failure. An incorrectly de-
signed coherence protocol could cause the chip to
deadlock or corrupt data by allowing multiple proces-
sors to modify the same block simultaneously. One
approach to formally verifying a protocol involves
modeling the protocol components and examining eve-
ry possible reachable state for invalid behavior. The
total number of global states to be explored increases
exponentially with every new node, message type, or
state that is added to the protocol.

Intractable verification complexity has the potential
to dissuade architects from using hierarchical coher-
ence approaches, despite their many benefits. While
many strategies and tools already exist to assist in the
verification effort of flat protocols [14-20], hierarchical
coherence breaks these tools by exacerbating many of
the problems associated with verification, such as the
state space explosion problem [10]. Recent publica-

tions [8,11] have demonstrated very powerful tech-
niques to accelerate verification for hierarchical coher-
ence protocols, but they are limited by a fundamental
assumption: that the hierarchy being verified is com-
posed of homogenous and self-similar protocols. Such
an assumption severely limits the utility and scope of
hierarchical coherence for heterogeneous designs or
PGAS models. Extending verification to hierarchies of
distinct coherence protocols is a hard problem. How-
ever, as discussed earlier, there will be a strong desire
for flexible, heterogeneous coherence hierarchies in the
near future. A solution to the verification problem
must be found.

We believe that a recently published framework for
coherence composition holds the key to heterogeneous
hierarchy verification. The Manager-Client Pairing
(MCP) composition framework [12] enables rapid de-
velopment of heterogeneous coherence hierarchies
through the definition of a standardized protocol inter-
face and component protocol encapsulation. In [12],
the authors demonstrate a methodology for composing
heterogeneous protocols with minimal effort, and pre-
sent results for a variety of multi-tiered coherence hier-
archies. They do not, however, make any claims re-
garding verification of these hierarchies.

In this work, we extend MCP by proving that using
MCP compliant protocols in an MCP hierarchy enables
rapid verification through a form of protocol symmetry
[10]. This avoids the need for full state space explora-
tion, reducing verification cost from an intractably
large combinatorial space down to verifying each com-
ponent protocol independently. The contributions of
this work are as follows:
• Introduce a new form of protocol structural sym-

metry called encapsulation symmetry, and show
how it can reduce verification cost.

• Prove that MCP supports encapsulation symmetry
and thus can be leveraged as a verification compo-
sition framework for heterogeneous hierarchies
when the hierarchy is composed of formally veri-
fied MCP compliant protocols.

• Present remote proxy client as a technique for
porting pre-existing, verified protocols to MCP
compliance with little design and verification
overhead. As a motivating example, this technique
is applied to the Broadcast-MOSI protocol from
GEMS [6] to enable its integration with a Directo-
ry-MESI protocol to form a MCP hierarchy.

• Show through the MurPhi formal checker [14] that
this new MCP hierarchy is verified. Further, we
use this result to compare the cost of full state-
space exploration with that of independent com-
ponent verification via encapsulation symmetry.

Figure 1 - Example of a heterogeneous multi-chip
system that would benefit from heterogeneous
coherence hierarchy support.

!"#$%&
'#())

*+,-) .#'/0
%/1&)

)*2,-)

3

The remainder of the paper is organized as follows:
Section 2 outlines the related work. Section 3 presents
an overview of the MCP framework. Section 4 ex-
plains the state enumeration verification strategy in
preparation for Section 5, which presents a proof for
verification through MCP composition. Section 6 out-
lines how to adapt existing protocols to be MCP com-
pliant via a remote proxy client. Section 7 presents
MurPhi verification results followed by a conclusion in
Section 8.

2. Related Work
Due to the importance of verification, there is a large

body of related work available. For brevity, this sec-
tion will only mention those most closely related to the
problem of hierarchical coherence verification.

Ladan-Mozes and Leiserson [11] propose a dead-
lock-free, tree-based coherence protocol in order to
ensure forward progress in a fat-tree network. By
enumerating invariant properties that ensure all chil-
dren in the tree are coherent with parents, permission
guarantees can be made with respect to exclusive write
permission, while supporting multiple readers.

An important work that eases homogeneous hierar-
chical coherence verification is Fractal Coherence [8].
In this work, Zhang et al. propose a tree-based coher-
ence protocol, with the intention of simplifying coher-
ence verification through perfect self-similarity. A
fractal based coherence protocol, where children are
coherent with their parents, can be verified through the
validation of only the kernel coherence protocol. The
authors also describe how a bus-based version of the
protocol could also be executed through fractal buses.
Fractal coherence has many similar features to MCP.

The recursive nature of the interfaces proposed by
MCP is analogous to the self-similarity of fractal co-
herence’s kernel protocol.

The most important distinction between prior work
and this work is that prior work was specifically de-
signed with homogeneity as a requirement. Neither
work discusses the benefits of heterogeneous coher-
ence composition nor why it is an important considera-
tion. In fact, both [8] and [11] are explicitly incompat-
ible with heterogeneity since they both rely heavily on
homogeneity in their proofs. It is worth mentioning,
however, that because these techniques do produce
verified coherence protocols, they would be compatible
as a component within an MCP coherence hierarchy if
made MCP Compliant.

3. Review of MCP framework
Manager-Client Pairing (MCP) eases hierarchical

coherence protocol design by distinguishing manager
agents, those that manage permissions (e.g. directory),
from client agents, those that hold permissions (e.g.
private caches) [12]. By pairing the client agent of a
higher protocol with the manager agent of the lower
protocol, the client agent behaves as a permissions
gateway for the paired manager’s protocol. This is
possible because MCP defines a permission-checking
algorithm that enables component protocols to com-
municate with each other through a generic query-and-
acquire interface, eliminating the need to expose inter-
nal operation details outside the protocol’s scope. By
linking protocols together, coherence hierarchy com-
position can distribute the coherence responsibility
throughout the hierarchy’s coherence realms. The top-
tier coherence realm encompasses all users of data

Manager

Client Client ClientClient

Manager

Client Client ClientClient

Main Memory

Lower Tier

Upper Tier
Manager-
Client Pair

Manager

Client Client ClientClient

L1$ L1$ L1$ L1$

Coherence
Realm

(Bottom Tier)

Client Client

Figure 2 - Manager-Client Pairing coherence hierarchy organization with parts labeled: Manager, Client,
Tier, and Realm for the Coherence Domain.

4

within the coherent memory system being monitored
by the hierarchical protocol. Each lower-tiered coher-
ence realm monitors successively smaller subsets of
node coherence. Figure 2 shows an example MCP
hierarchy, labeled with MCP terminology.

Due to the general interface definition and resultant
low level of integration required between realms, pre-
vious work [12] demonstrated that component coher-
ence encapsulation is well preserved, meaning the de-
sign details of the protocols used to comprise the sys-
tem are largely opaque with respect to one another.
Furthermore, because this interface’s functionality is
very similar to the processor and memory interfaces in
a conventional flat coherence protocol, the majority of
the effort required to adhere to MCP compliance is a
straightforward one-to-one mapping between MCP
actions and already present coherence actions. We
define a protocol to be MCP compliant if it is a veri-
fied invalidation-based coherence protocol (see Section
5) that only communicates with the external world
through upper (memory) and lower (processor) MCP
interfaces as shown in Figure 3.

4. Reachable State Enumeration Overview
Before constructing the complete proof for MCP-

hierarchy validation, an understanding of the underly-
ing verification principles is required. In this section
we introduce the problem of verification through
reachable state enumeration. We discuss verification
through enumeration, review the state-space explosion
problem, and explain how past research has mitigated
this problem through the use of protocol symmetry.
This leads to our key observation, that the state-space
explosion due to hierarchical protocol interactions can
also be mitigated if viewed as a form of symmetry.

4.1. State Enumeration

Reachable state enumeration is a common strategy
employed in coherence protocol verification that auto-
mates the process. First, the protocol state machines
and surrounding communication medium are described
in a protocol description language, such as MurPhi
[14]. A set of invariants is then defined to establish
what conditions must be met for the system to be valid
(e.g., only one modifiable copy of a cache block exists
at any time). Relevant parameters regarding the sys-
tem configuration (number of clients, manager organi-
zation, network properties, etc.) are provided, as well
as an initial system state from which the verification
process can begin. All possible states are then exhaust-
ively generated and invariants checked, following the
actions provided in the description. This can be done
by either applying a depth-first or breadth-first search,
where next-states are generated by applying all possi-
ble valid rules to the current state (e.g., new request
generation, request/response event delivery, etc.).
Each new state checks the invariants and, if no viola-
tion occurs, marks the current state of the system as
reached (this is often implemented through the use of a
hash table populated with a compressed state notation).
If a future-state sequence encounters a state that has
already been reached, that branch of the search can be
terminated since it has previously been verified.
Eventually, all branches will terminate, and, if no vio-
lation has been encountered, the protocol can be la-
beled as verified.

4.2. State-Space Explosion and Symmetry

 For even reasonably simple coherence protocols, the
state space that needs to be exhaustively searched can
become intractable quickly. This is due to all the pos-
sible state interactions between the clients state ma-
chines, manager state machine, and various states of
message delivery and ordering, which is aggravated
rapidly by how many nodes (i.e. cores) are being mod-
eled. While prior research has proven that modeling of
a single cache block address is sufficient to verify a
coherence protocol [10], there is no proof that a large-
scale system can be fully verified from a similar,
scaled-down system. As each additional node is added
to the system, the number of possible global states in-
creases exponentially due to all possible interactions
between the newly-added client’s state machine (and
messages) with the previous system’s state-space, as
well as the additional possible manager states from
extending the tracking mechanism to encompass the
new node’s tracking. For an example of the latter,
consider moving from 8 bits to 9 bits in a sharer bit-
vector: this results in an increase from 28 to 29 possible
vector states for each manager state that requires bit-
vector information. Because of the combinatorial na-

Figure 3 – MCP Interface for (a) lower processor
tier and (b) top memory tier

!"#$%&'

()*&*+*"'

,
-$

).
'

,
-$

).
''/

$0
".
'

1$
&'

1$
&'2

+3
'

4$
5
6%

7'
2+

3'

4$
5
6%

7'
'

()*+$88*)'!6+9$'

:*;$)'
<!('

=%&$)>6+$'

?00$)'
<!('

=%&$)>6+$'

<$5*).'

,
-$

).
'

,
-$

).
''/

$0
".
'

1$
&'

1$
&'2

+3
'

4$
5
6%

7'
2+

3'

4$
5
6%

7'
'

<6%6@$)'

()*&*+*"'

!"#$!%#$

5

ture of the state space problem, we see in Table 1 a
dramatic increase in the number of reachable states as
the client count increases. These results were collected
from a full state space exploration using MurPhi. Fig-
ure 4 presents a visual representation of what happens
during state-space explosion. This example only
shows the reachable states after the first two possible
rules are applied to an overly simplified MSI protocol
consisting of 2 nodes vs. 4 nodes.
 Due to the often-homogenous nature of client state
machines in a coherence protocol, state symmetry has
been shown to be a powerful way to combat the state-
space explosion problem, and can reduce the state-
space search scope by as much as 90% [10]. In this
approach, several distinct states can be shown to over-
lap with one another through the exploitation of struc-
tural symmetries in the protocol’s design, such as ab-
stracting sharer client ID information to a sharer client
count. For example, the 4-node composite states
{S,S,I,O}, {I,S,S,O} and {O,S,S,I} are symmetric with
one another because a simple substitution can show
that applying the same sequence of rules that lead from
the initial state to each of these states will yield identi-
cal results if node ids are rotated/mixed (e.g. {I,S,S,O}
becomes {O,S,S,I} if node 0 and node 3 are switched).
Again, because of the homogeneity of the client’s state
machines, there is no behavioral difference at the high-
er-level description of the protocol behavior; specific
node identity information is unimportant. In this way,
global state can be viewed as a combination rather than
a permutation. In short, if two system-wide states are
symmetric with one another, only one has to be verified
to automatically verify the other. The authors of [10]
demonstrate that the notion of structural symmetries
extends beyond just node ID abstraction to encompass

many other parts of coherence protocol design, includ-
ing “addresses, data values, memory module-ids and
message-ids.” In this work we extend this to encom-
pass the encapsulation symmetries present in hierar-
chies composed of independent, well-encapsulated
protocols.

4.3. Encapsulation Symmetry

 Encapsulation symmetry is different from state
symmetry in that it does not manifest as a result of
protocol homogeneity. Rather, encapsulation sym-
metry happens when portions of the global state repre-
sentation can be proven to be independent from other
parts of the global state. The simplest example of this
phenomenon would be the state-space exploration of
two completely isolated state machines, n and m, oper-
ating simultaneously. If the size of each state ma-
chine’s state-space could be expressed as sizen and
sizem, the state space of both operating simultaneously
is (sizen * sizem). This is evident because a simple scan
could explore the entire space by repeatedly applying a
single rule to n, followed by full exploration of state
machine m’s space.

To express this another way, if the overall state of a
system is represented as a string, the state space of
each independent state machine can be expressed as
strings stringm and stringn. The entire state space of
these operating simultaneously could then be expressed
as the combination of all valid stringm strings concate-
nated with all valid stringn strings. Figure 5 and Figure
6 show the symmetry in the state space visually for a
pair of simple state machines.

Leveraging this kind of symmetry for coherence hi-
erarchy verification would be extremely powerful in
combating the state space explosion problem, allowing
each component protocol to be verified independently
and then merged. However, this symmetry requires
proving that the integrated protocols are sufficiently
isolated from one another through some form of encap-
sulation. Additionally, valid merging would require all
possible concatenation combinations of these state
spaces to guarantee invariant violation freedom. Sec-
tion 5 will develop this further and demonstrate that
the interfaced and permission summarizing nature of
MCP compliance will produce encapsulation symmetry
in the state space that can safely be leveraged for rapid
verification.

I__I_I

I__I_IS I__IS_II__I_IMI__IM_I

I__IS_ISI__IM_IS IS__I_IS I__IS_IM IS__IS_II__IM_IM IM__I_IMIM__IM_I

I__I_I_I_I

I__I_I_I_ISI__I_I_IS_II__I_IS_I_II__IS_I_I_II__I_I_I_IMI__I_I_IM_II__I_IM_I_II__IM_I_I_I

I__I_I_IS_ISI__I_IS_I_ISI__IS_I_I_ISI__I_I_IM_ISI__I_IM_I_ISI__IM_I_I_IS IS__I_I_I_ISI__I_IS_IS_II__IS_I_IS_II__I_I_IS_IMI__I_IM_IS_II__IM_I_IS_I IS__I_I_IS_II__IS_IS_I_II__I_IS_I_IMI__I_IS_IM_II__IM_IS_I_I IS__I_IS_I_II__IS_I_I_IMI__IS_I_IM_II__IS_IM_I_I IS__IS_I_I_II__I_I_IM_IMI__I_IM_I_IMI__IM_I_I_IM IM__I_I_I_IMI__I_IM_IM_II__IM_I_IM_I IM__I_I_IM_II__IM_IM_I_I IM__I_IM_I_IIM__IM_I_I_I

Figure 4 - Example of state space explosion when adding 2 additional nodes to a 2-node MSI protocol.

Table 1 – Verification cost of Directory-MESI and
Broadcast-MOSI protocols using MurPhi

Protocol # of States Time to Verify [s]
2-client Directory-MESI 599 0.10
3-client Directory-MESI 7,077 0.13
4-client Directory-MESI 108,203 3.33
5-client Directory-MESI 1,345,019 91.76
6-client Directory-MESI 26,361,918 15,980.70
2-client Broadcast-MOSI 3,117 0.10
3-client Broadcast-MOSI 166,562 4.79
4-client Broadcast-MOSI 4,307,049 331.82
5-client Broadcast-MOSI 132,871,278 303,244.00
6-client Broadcast-MOSI 500,000,000+ 4,000,000+

6

5. Formal Verification Strategy for MCP
We propose the use of MCP as a framework for

high-speed formal verification of large-scale hierar-
chical, heterogeneous protocols. In this section we will
prove that when formally verified MCP-compliant pro-
tocols are assembled into a hierarchy and connected
through MCP-interfaces, the hierarchy is also verified.
We define ‘verified’ to mean a protocol can guarantee
the following properties: (1) There can be at most one
lowest-tier client with write permission to a block of
data; (2) There can be one or more lowest-tier clients
with read permission to a block of data if no other low-
est-tier client has write permissions; (3) reads are guar-
anteed to supply the requestor with the most recently
written data value at the time the read was inserted into
the global order; (4) The system is deadlock and live-
lock free. These provide a guarantee of coherence pro-
tocol design correctness.

Definition 1 –
A protocol is said to be verified if:

1) ∀ reachable global states in a protocol x, a node may
have write permissions to a block iff there are no other
nodes with read or write permissions to that block.

2) ∀ reachable global states in a protocol x, one or more
nodes may have read permissions to a block iff there are
no nodes with write permissions to that block.

3) ∀ reachable global states in a protocol x, read requests
to a block obtain the value written by the most recent pre-
vious write in the global order, w.r.t the read, to that
block.

4) ∀ reachable global states in a protocol x, there are no
states without possible exits (deadlock) and no condition
where a given data block is locked by one node such that
it is permanently prevented from being accessed by other
nodes (livelock) [20].

As mentioned previously, we define a protocol to be
MCP compliant if it is a verified invalidation-based
coherence protocol that only communicates with the
external world through MCP interfaces.

5.1. Theorem 1 – Two-tier MCP composition and
verification

Where R(u,l) := Coherence Realm from interfacing of upper-
tier MCP compliant protocol u with lower-tier MCP compli-
ant protocol l through pairing of a u-client with the l-
manager.

Lemma 1 – MCP permission distribution ensures R(u, l) will
satisfy conditions (1, 2, 3)

Lemma 2 – For R(u, l), MCP Get/GetAck and De-
mand/DemandAck pairs do not violate condition (4); all
requests are eventually satisfied since both protocols u and l
have been previously verified

Theorem 1 – ∴∀u∀l, where u and l are MCP compliant
protocols, R(u, l) is also verified and MCP compliant.

The supporting lemmas for Theorem 1 have two
main themes: Lemma 1 is concerned with proper
distribution of permission guarantees to ensure that
conditions 1, 2 and 3 of verification are enforced (one
writer, multiple readers, read consistency) while
Lemma 2 focuses on livelock/deadlock adherence. In

010

000001

100

111

101 110

011
01

00 10

11

Figure 5 - State-space of two simple state machines, where each element may transition from 0 to 1

010,00

000,00001,00

100,00

111,00

101,00 110,00

011,00

010,01

000,01001,01

100,01

111,01

101,01 110,01

011,01

010,10

000,10 001,10

100,10

111,10

101,10110,10

011,10

010,11

000,11 001,11

100,11

111,11

101,11110,11

011,11

Figure 6 - Full state space exploration of both state machines operating simultaneously, where black arcs
represent transitions using the ʻexecute a single n rule, followed by full m explorationʼ methodology, and red
dotted lines show a few of the alternative paths that would encounter redundant states in the space.

7

Lemma 1, Condition 3 is satisfied because the
manager/client pairing is located at the ordering point
for its realm, ensuring global ordering of reads and
writes is maintained throughout the hierarchy.
Conditions 1 and 2 are fundamental properties of MCP
composition, and are discussed in depth in prior work
[12] which details the permission allocation algorithm
and how the permission inclusion property described
by Ladan-Mozes and Leiserson in [11] is implemented
by MCP. The realm-miss example from [12]
demonstrating this is reproduced here for
completeness.

In Figure 7, the sequence of MCP interface events
and corresponding coherence actions to acquire data
across realm boundaries is shown, starting with (a) the
request and demand chain of events and (b) the ack
event sequence replying to these requests and
demands.

First, the processor paired with Client C0 discovers
it has insufficient permission to satisfy a write (1).
This results in a GetExclusiveD call to Client C0 (2)
which spawns a coherence message to Manager C
requesting the data and write permission. Following
the MCP algorithm, before responding to the
coherence request the paired client A1 is consulted (3).
Since A1 does not have sufficient permissions,
Manager C temporarily stalls the coherence request
from C0 and Manager C issues a GetExclusiveD to its
paired client A1 (4). This results in coherence traffic
that leads to Client A0 Demanding the lower realm
managed by Manager B to supply data and self-
invalidate (6). Coherence messages are sent to
invalidate all nodes in the realm and request data
writeback (7a and 7b).

At this point traffic begins to flow back towards the
originating request through reply acknowledgments (8a
and 8b). Coherence traffic flows back to Manager B,
enabling it to transition to the invalid state and supply
data to its paired client A0 (9). The paired client can
now proceed by taking its native protocol action,
forwarding data to A1 and self invalidating. Upon
arrival at A1, the client state transitions to Exclusive

and a GetExclusiveDAck is issued across the MCP
interface to Manager C. Finally, Manager C can
resume processing of the original coherence write
message and respond with a coherence data message.
Upon reception at Client C0, the write action is
complete. This demonstrates that despite having
multiple discrete, encapsulated protocols that treat each
other as black boxes, permissions are properly
enforced across the entire hierarchy because of MCP.

Lemma 2 leverages the fact that all incoming Get
actions observed by the lower-tier’s lower interfaces
(e.g. processor caches) will be satisfied either (a) local-
ly by the lower-tier, (b) remotely by the upper-tier
through the lower-tier’s upper interface, or (c) by
memory via issuance of a Get action from the upper-
tier’s upper interface with memory. Similarly, all up-
per-tier lower interfaces not connected to the lower-tier
realm will be satisfied either (d) locally by the upper-
tier, (e) remotely by the lower-tier through the MCP
interface or (f) by memory via the upper-tier’s upper
interface. In all these instances, eventual completion is
guaranteed since memory will always respond and the
upper-tier and lower-tier protocols are guaranteed to be
livelock and deadlock free prior to composition as a
condition of being MCP compliant. All requests are
satisfied locally, satisfied by memory, or deferred to
another protocol that can guarantee eventual response
to any request. Additionally, due to the tree-like or-
ganization of an MCP composition and permission
distribution, there is no possibility of a cycle in which
two MCP compliant protocols are waiting on each oth-
er to eventually respond.

Since MCP compliant component protocols are in-
dependently verified, we know that no Get action can
be delayed indefinitely since Get actions are function-
ally equivalent to cache actions (read, write, evict). In
an MCP composition, Get requests are either satisfied
locally, deferred upwards via another Get request
which in turn will recursively do the same until satis-
fied, or deferred downwards via a Demand request
(cache-to-cache forwarding behavior, for example).
This ensures that all requests will make forward pro-

Client B0 Client B1

Client A1

Manager C

Client C0

Manager A

I

IOS

Client A0

Manager B

E
3) WriteP

1) WriteP

Coherence
WriteBack Msg

E

O I

Coherence
Invalidate Msg

Processor - Processor - Processor -

Memory -

Coherence
Write Msg

Coherence
Write Msg

Coherence
Fwd Msg

2) GetExclusiveD

4) GetExclusiveD

6) SupplyInv

5) WriteP

7a) Invalidate 7b) SupplyInv

Client B0 Client B1

Client A1

Manager C

Client C0

Manager A

E

MII

Client A0

Manager B

I

Coherence
Data Msg

Coherence
Ack Msg

Coherence
Data Msg

E

I M

Coherence
Data Msg

Processor - Processor - Processor -

Memory -

8a) InvalidateAck 8a) SupplyInvAck

9) SupplyInvAck
10) GetExDAck

11) GetExDAck

(a) (b)

Figure 7 - Permission distribution example for an MCP composition

8

gress as they traverse up or down the tiers until satis-
fied, proving livelock is not possible. Finally, because
MCP does not introduce new states or messages to the
component protocols, no new state without exit can
arise or be reached, protecting against deadlock.

MCP components meet all the conditions from the
definition of verifiability. Rules regarding read per-
mission and write permission distribution for all lowest
level clients (i.e., caches) are enforced while guaran-
teeing livelock and deadlock freedom for all reachable
states. Therefore Theorem 1 is proven: a composition
of an upper-tier MCP compliant protocol and a lower-
tier MCP compliant protocol, connected through an
MCP interface will properly distribute permissions and
data while retaining livelock and deadlock freedom.
Since no verification violation can possibly occur when
merging these two protocols, we can safely say the
cross-product of their respective state spaces into a
unified state space will not introduce any new violating
states, enabling us to apply encapsulation symmetry
from Section 4.2 for verification.

5.2. Theorem 2 – Arbitrarily deep MCP Hierarchies

Axiom 1: R(u, l) is both verified and has MCP compliant
upper and lower interfaces, being a composition of MCP
protocols. ∴ R(u, l) is also a verified MCP compliant proto-
col.

Theorem 2 – Arbitrarily deep MCP coherence hierarchies
are verifiable through induction via the following:

H(2) = R(u, l), where H(2) is a verified MCP compliant pro-
tocol hierarchy of two tiers, and

H(n +1) = R(H(n), l), where H(n+1) is a verified MCP com-
pliant protocol hierarchy of (n +1) tiers

Axiom 1 stems from the structurally recursive nature
of MCP composition. From Theorem 1 in the previous
sub-section, we know a 2-tier coherence realm com-
posed of independently verified MCP protocols is also
verified. Additionally, because each component proto-
col only has an upper interface and lower interface(s),
and the upper interface of protocol ‘l’ is attached to

one of the lower interfaces of protocol ‘u’, the remain-
ing unconnected interfaces are a single valid upper
interface (the ‘u’ protocol’s upper interface), and mul-
tiple valid lower interfaces (includes all the lower in-
terfaces of ‘l’ and all the lower interfaces of ‘u’ except
the most recently connected). Therefore, the whole is a
verified protocol with valid upper and lower MCP in-
terfaces, with no other external communication inter-
faces, meeting all the conditions for MCP compliance.

In a k-tiered MCP hierarchy, the highest coherence
realm in the hierarchy (which begins by encompassing
only the two top-most tiers of the system) can be
proved to be a verifiable MCP compliant protocol
through Theorem 2 and Axiom 1. As a result, the two
tiers of this realm can logically be replaced by a ‘sin-
gle’ MCP compliant protocol, which is the merger of
these two tiers (shown in the equations supporting
Theorem 2). Through this process, the k-tiered MCP
hierarchy has become a (k-1) tiered hierarchy, where
the highest protocol in the hierarchy is itself a coher-
ence hierarchy. This can be applied repeatedly until all
k-tiers have been merged into the single verified MCP
compliant protocol. Figure 8 demonstrates this induc-
tion graphically.

5.3. Fractal Coherence Viewpoint

Theorem 2 can also be understood through the theo-
rems in the verification process of Fractal Coherence
[8]. The two most important properties required for
application of Fractal Coherence verification is that (a)
the minimum system is formally verified and (b) the
hierarchy is observationally equivalent.

Rather than assuming only a single minimum system
being replicated, MCP composition assumes multiple
systems being integrated that may not be identical.
However, if each component is independently formally
verified, this is similar to a single kernel protocol being
verified and used repeatedly. Additionally, a kind of
observational equivalence can be gained through the
use of a standardized interface, which MCP provides.
From Theorems 1 and 2, we know each component of

Figure 8 - Graphical representation of coherence hierarchy inductive proof, where the shaded enclosed
region represents H(n) for n = 2 → k (k = 4).

9

an MCP hierarchy is formally verified, and connection
of these through manager-client pairing of interfaces
does not violate verification. As described in Section
5.2 regarding Axiom 1 and the interfaces, when treated
as black boxes, compositions of MCP component pro-
tocols are nearly observationally equivalent because
each additional tier connects to either upper or lower
interfaces while providing new upper or lower inter-
faces that are functionally equivalent. They are not
strictly observationally equivalent because the number
of interfaces changes depending on the number of cli-
ents in the newly attached MCP component protocol.
In contrast to Fractal Coherence, which enforces ob-
servational equivalence by the ‘component protocols’
being perfectly self similar, MCP enforces a looser
observational equivalence through adherence to a
standardized interface definition.

6. Remote Proxy Client
6.1. Theorem 3 – Verification of protocols modified

with remote proxy client

Where M(x) := An MCP compliant version of protocol x

Theorem 3 – If protocol x satisfies conditions (1,2,3) for
verification, and replaces one client with a remote proxy
client, the resulting protocol M(x) does not introduce chang-
es that violate conditions (1,2,3)

∴∀x where protocol x is verified, M(x) is also verified

Recall from Section 3 and Appendix A, there are
three major parts to the MCP interface: Queries (per-

mission checking), Gets (permission acquisition) and
Demands (permission surrendering). Let us first con-
sider the Query and Get portions of the MCP interface.
For Queries, permission status requests cannot modify
the state of the protocol as they are simple Boolean
checks and therefore have no verification impact. In
order to evaluate Theorem 1 with respect to applying
the MCP interface specification to a verified non-MCP
compliant protocol, the only actions from Appendix A
that must be considered are those that can result in
state change in the underlying protocol. Each such
action much be mapped to an already existing action in
the protocol, based on the internal state of the protocol.
 As mentioned in Section 3, however, the Get func-
tionality required for supporting MCP corresponds
directly to functionality that must already be present
for handling and satisfying processor requests in a non-
MCP version of the protocol interfaced directly with a
processor.

The biggest hurdle when mapping a pre-existing
protocol’s functionality to the MCP interface is im-
plementing upper-tier initiated Demands. The memory
controller interface is typically not able to issue re-
quests for invalidations or downgrades in a conven-
tional flat coherence protocol. However, these actions
can be emulated very easily if upper-tier Demands are
modeled as requests from a local client, similar to the
pseudo-CPU mechanism in DASH [2]. In our frame-
work, this functionality is served by the remote proxy
client.

I

M

MII

'New'
Requestor

Client

S

O

OII

GetReadD GetReadDAck

Figure 9 - Local GetReadD Get sequence (Request and Response) in a MOSI protocol that currently holds
write permissions.

IM

MII

Proxy

SO

OII

Proxy

GetReadD

GetReadD
SupplyDowngrade SupplyDowngradeAckGetReadDAck

GetReadDAck

Figure 10 - Remote GetReadD Get sequence (Request and Response), using a proxy client to satisfy
SupplyDowngradeAck Demand request in a MOSI tier that currently holds write permissions

10

The remote proxy client acts on behalf of the upper-
tier, issuing local protocol requests to satisfy incoming
Demand requests. In addition to this, the remote proxy
client is also stateful; it becomes a summary of all the
permissions held by nodes external to this coherence
realm. As long as the protocol is verified, permission
will be assigned to this proxy correctly. This ensures
permission exclusion is preserved when necessary, and
permission will eventually be passed to the appropriate
originator that caused the Demand. The remote proxy
client does not communicate directly across tier
boundaries; remote traffic is routed through the MCP
interface in the manager.

Figure 9 and Figure 10 show an example of how the
Demand handling behavior of the remote proxy client
is similar to the behavior of a local requestor in a
MOESI directory protocol. The actions required by the
coherence realm to satisfy a SupplyInvalidate (See
Appendix A) are identical to those required for han-
dling a write request from a client in the invalid state.
A message is sent to the owner client (the client in ei-
ther the M, O, or E state) to initiate a cache-to-cache
transfer and a self-invalidation. Invalidation messages
are sent to all other sharers in the bit vector. When this
sequence concludes, the realm manager and other cli-
ents will have given write permissions and a copy of
the data to this client by removing all readable copies
from the realm. In the case of the remote proxy client,
the realm can respond with a SupplyInvalidateAck up-
on completion of the protocol sequence since all condi-
tions are met (i.e., the realm no longer has any copies
with read or write permission and the most recent copy
of the data is available and ready for forwarding).

Implementing remote proxy client does not actually
require adding another client to the protocol. Rather, an
existing client can be sacrificed to act as the remote
proxy client. So a protocol that is verified for four cli-
ents could be made into a 3-client MCP compliant pro-
tocol by selecting one of the clients to serve the role of
a remote proxy client. Since Demand handling does not
introduce new states or messages when a proxy is pre-
sent, there are no changes to the original state machine,
and the protocol remains verified.

In summary, encapsulating a protocol via MCP in-
terfaces can be seen as applying a translation layer that
introduces no new additional state transitions, states, or
new messages to the protocol. This preserves the veri-
fication properties of the original component protocol.
Since MCP does not modify the state machine, if the
base protocol correctly distributes permissions without
deadlocking or livelocking, so does an MCP compliant
version of the same protocol.

7. Results
In order to demonstrate the usefulness of MCP as a

verification technique, a heterogeneous hierarchy was
implemented and verified using the MurPhi toolkit.
The hierarchy was created from the composition of two
protocols: Directory-MESI and Broadcast-MOSI. We
designed the Directory-MESI protocol to be natively
MCP compliant, without the need for a remote proxy
client. The Broadcast-MOSI protocol is a MOSI pro-
tocol communicating over a shared bus and was ported
directly from the GEMS implementation to MurPhi.
To make this protocol MCP compliant, a client was
scavenged to serve as the remote proxy client; no other
changes were made to the underlying “off-the-shelf”
GEMS protocol.
 The evaluated heterogeneous hierarchical protocol is
shown in Figure 11. The number of clients in each
protocol is varied and the configurations are denoted in
Table 2. The figure illustrates the Dir3 + B3 configu-
ration, where one client in the Directory-MESI is
paired with the Broadcast-MOSI, and one client in the
Broadcast-MOSI is dedicated as a remote proxy client.
 The hierarchical protocol was evaluated via full state
exploration using MurPhi, and was also verified by
leveraging MCP structural symmetry. The results of
this verification effort are denoted in Table 2. The
number of states represents the full state space of the
combined protocols, and the time to verify without
MCP is the total time for MurPhi to complete a full
state exploration (similar to Figure 6). The verification
costs with MCP is simply the sum of the verification
costs of the component protocols, due to encapsulation
symmetry. As is evident from these results, MCP
greatly reduces the verification cost, especially at the
higher client count design points.

Figure 11 – Evaluated Heterogeneous Hierar-
chical Protocol Structure

P0 P1 P2 P3

Manager-
Client Pair

Proxy
Client

Interface

Memory

Directory
MESI

Broadcast
MOSI

11

Table 2 – Comparing verification cost of heteroge-
neous hierarchical protocols with and without lev-
eraging MCP protocol structural symmetry1

8. Conclusion
There is a strong interest in multi-core architectures
that use flexible, heterogeneous coherence hierarchies,
such as CPU+GPU pairings or multi-vendor coherent
shared memory ensembles. But without a verification
solution, these protocols—and the potentially powerful
and energy-efficient systems they enable—cannot be
built. It is clear that a solution to the verification prob-
lem must be found. Prior solutions were limited to
homogeneous hierarchies wherein every level of the
system must practice the same protocol [8, 11]. This
paper leveraged the recently published Manager-Client
Pairing encapsulation composition framework [12],
which explicitly supports heterogeneity. Using MCP,
we proved that any heterogeneous protocol could be
verified in no more time than it would take to validate
each individual protocol in isolation.

The theoretical nature of this paper is inescapa-
ble. However, we have tried to bring this work to re-
ality by implementing a coherence hierarchy in a for-
mal verification tool. The intractability of obtaining
results for our largest simulations establishes the need
for formal verification acceleration. We defined a new
form of protocol structural symmetry for coherence
hierarchies, based on protocol encapsulation and per-
mission distribution. We proved how MCP can be
used as a verification composition framework for het-
erogeneous hierarchies composed of pre-verified pro-
tocols. With the framework presented here, hierar-
chical, heterogeneous coherence can become an indus-
trial success rather than being limited by practical veri-
fication complexities.
References
[1] S. Haridi and E. Hagersten, "The Cache Coherence Pro-

tocol of the Data Diffusion Machine," presented at the
Proceedings of the Parallel Architectures and Languages
Europe, Volume I: Parallel Architectures, 1989.

1 Dir4+B4 state space was too large for full state space verifica-
tion to complete, due to the intractable nature of state-space explo-
sion. The numbers presented in the first two columns for these con-
figurations are the minimum bounds collected from the periodic
progress report after 80 days of execution.

[2] D. Lenoski, et al., "The directory-based cache coherence
protocol for the DASH multiprocessor," SIGARCH
Comput. Archit. News, vol. 18, pp. 148-159, 1990.

[3] E. Hagersten and M. Koster, "WildFire: A Scalable Path
for SMPs," presented at the Proceedings of the 5th In-
ternational Symposium on High Performance Computer
Architecture, 1999.

[4] L. A. Barroso, et al., "Piranha: a scalable architecture
based on single-chip multiprocessing," presented at the
Proceedings of the 27th annual international symposium
on Computer architecture, Vancouver, British Colum-
bia, Canada, 2000.

[5] G. Gostin, et al., "The architecture of the HP Superdome
shared-memory multiprocessor," presented at the Pro-
ceedings of the 19th annual international conference on
Supercomputing, Cambridge, Massachusetts, 2005.

[6] M. M. K. Martin, et al., "Multifacet's general execution-
driven multiprocessor simulator (GEMS) toolset,"
SIGARCH Comput. Archit. News, vol. 33, pp. 92-99,
2005.

[7] Philippe Charles, Christian Grothoff, Vijay Saraswat,
Christopher Donawa, Allan Kielstra, Kemal Ebcioglu,
Christoph von Praun, and Vivek Sarkar. 2005. X10: an
object-oriented approach to non-uniform cluster compu-
ting. SIGPLAN Not. 40, 10 (October 2005), 519-538

[8] Meng Zhang, Alvin Lebeck, Daniel Sorin, "Fractal Co-
herence: Scalably Verifiable Cache Coherence," pre-
sented at the International Symposium on Microarchi-
tecture, Atlanta, Georgia, 2010.

[9] M. M. K. Martin, et al., "Token coherence: decoupling
performance and correctness," presented at the Proceed-
ings of the 30th annual international symposium on
Computer architecture, San Diego, California, 2003.

[10] C. Norris Ip and David L. Dill. 1996. Better verification
through symmetry. Form. Methods Syst. Des. 9, 1-2
(August 1996), 41-75

[11] E. Ladan-Mozes and C. E. Leiserson, "A consistency
architecture for hierarchical shared caches," presented at
the Proceedings of the twentieth annual symposium on
Parallelism in algorithms and architectures, Munich,
Germany, 2008

[12] J. G. Beu, M. C. Rosier and T. M. Conte, “Manager-
Client Pairing: A Framework for Implementing Coher-
ence Hierarchies,” Proceedings of the 44th Annual In-
ternational Symposium on Microarchitecture (MICRO-
44), (Porto Alegre, Brazil), Dec., 2011.

[13] Frans H. van Eemeren and Rob Grootendorst, “The
Fallacies of Composition and Division”, in “JFAK. Es-
says Dedicated to Johan van Benthem on the Occasion
of his 50th Birthday”, Amsterdam University Press
1999. http://www.illc.uva.nl/j50/contribs/eemeren/
eemeren.pdf

[14] "Protocol Verification as a Hardware Design Aid,"
David L. Dill, Andreas J. Drexler, Alan J. Hu and C.
Han Yang, 1992 IEEE International Conference on
Computer Design: VLSI in Computers and Processors,
IEEE Computer Society, pp. 522-525.

[15] E. M. Clarke and J. M. Wing, "Formal methods: state of
the art and future directions," ACM Comput. Surv., vol.
28, pp. 626-643, 1996.

[16] K. L. McMillan, "Parameterized Verification of the
FLASH Cache Coherence Protocol by Compositional

Protocol # of States Time to Verify [s] # of States (w/MCP)
Time to Verify
(w/MCP) [s]

Dir2 + B2 11,861 0.34 3,716 0.20
Dir2 + B3 425,990 17.31 167,161 4.89
Dir3 + B2 182,197 8.51 10,194 0.23
Dir3 + B3 5,367,735 542.44 173,639 4.92
Dir4 + B3 71,642,216 84,734.63 274,765 8.12
Dir3 + B4 143,552,706 317,891.00 4,314,126 331.95
Dir4 + B4 500,000,000+ 7,000,000+ 4,415,252 335.15

12

Model Checking," presented at the Proceedings of the
11th IFIP WG 10.5 Advanced Research Working Con-
ference on Correct Hardware Design and Verification
Methods, 2001.

[17] S. Park and D. L. Dill, "Verification of FLASH cache
coherence protocol by aggregation of distributed trans-
actions," presented at the Proceedings of the eighth an-
nual ACM symposium on Parallel algorithms and archi-
tectures, Padua, Italy, 1996.

[18] U. Stern and D. L. Dill, "Improved probabilistic verifi-
cation by hash compaction," presented at the Proceed-
ings of the IFIP WG 10.5 Advanced Research Working
Conference on Correct Hardware Design and Verifica-
tion Methods, 1995.

[19] D. A. Wood, et al., "Verifying a Multiprocessor Cache
Controller Using Random Test Generation," IEEE Des.

Test, vol. 7, pp. 13-25, 1990.
[20] F. Pong and M. Dubois, "Verification techniques for

cache coherence protocols," ACM Comput. Surv., vol.
29, pp. 82-126, 1997.

[21] Laudon, J. and D. Lenoski (1997). "The SGI Origin: a
ccNUMA highly scalable server." SIGARCH Comput.
Archit. News 25(2): 241-251.

[22] Daniel Lenoski, James Laudon, Kourosh Gharachorloo,
Wolf-Dietrich Weber, Anoop Gupta, John Hennessy,
Mark Horowitz, and Monica S. Lam. 1992. The Stan-
ford Dash Multiprocessor. Computer 25, 3 (March
1992)

[23] Tom Lovett and Russell Clapp. 1996. STiNG: a CC-
NUMA computer system for the commercial market-
place. In Proceedings of the 23rd annual international
symposium on Computer architecture (ISCA '96)

Appendix A: MCP Actions
Lower Tier Manager to Upper Paired Client Permission Query
HaveReadP Return true if paired Client has read permission
HaveWriteP Return true if paired Client has write permission
HaveEvictP Return true if paired Client can be safely evicted

Lower Tier Manager to Upper Paired Client Permission Get
GetReadD Paired Client begins data and read permission acquisition sequence within it's native coherence realm.

L1/Lower Manager expects GetReadDAck upon completion.
GetExclusiveD Paired Client begins data and write permission acquisition sequence within it's native coherence realm.

L1/Lower Manager expects GetExclusiveDAck upon completion.
GetExclusive Paired Client begins write permission acquisition sequence within it's native coherence realm. L1/Lower

Manager expects GetExclusiveAck or GetExclusiveDAck upon completion.
Used when data is already available in L1/Lower Manager (HaveData == true) and only a permission upgrade is
required.
May be satisfied by a GetExclusiveDAck if upper tier protocol demands a downgrade while GetExclusive is in
flight, causing HaveData to become false.

GetEvict Paired Client begins eviction sequence within it's coherence realm. L1/Lower Manager expects GetEvictAck
upon completion.
Used when block ownership or most recent dirty version resides in L1/Lower Manager's realm.
Needs to include data payload when data being evicted is dirty.

Upper Tier Client to Lower Paired Manager Permission Request Reply
GetReadDAck Response by paired Client to complete previous GetReadD request. Supplies data packet and signifies paired

Client (and thus lower Manager's realm) now has read permissions.
GetExclusiveDAck Response by paired Client to complete previous GetExclusive/GetExclusiveD request. Supplies data packet and

signifies paired Client (and thus lower Manager's realm) now has write permissions.
GetExclusiveAck Response by paired Client to complete previous GetExclusive request. Signifies paired Client (and thus lower

Manager's realm) now has write permissions.
GetEvictAck Response by paired Client to complete previous GetEvict request. Signifies paired Client has become invalid.

Therefore, Manager's realm can safely eliminate all local copies of the block.

Upper Tier Client to Lower Paired Manager Demand
Supply Demand data supply from lower tier's paired Manager or L1. No additional actions required by lower tier.

Used for data forwarding to satisfy remote read when Manager-Client pair permission levels already match.
Invalidate Demand lower realm to forfeit write permissions and read permissions, invalidating all local copies of data.

Used to satisfy remote write request which requires exclusive rights when remote realm already has a copy of
the data.

SupplyDowngrade Demand Data from lower realm's paired Manager. Additionally, lower realm must forfeit write permissions but
can retain read permissions and data.
Used for data forwarding to satisfy remote read when upper-tier paired Client state is forfeiting exclusive/write
permissions.

SupplyInvalidate Demand Data from lower realm's paired manager. Additionally, lower realm must forfeit write permissions AND
read permissions, invalidating all local copies of data.
Used for data forwarding to satisfy remote exclusive/write request when remote realm expects data supplied
from this realm.

Lower Tier Manager to Upper Paired Client Demand Reply
SupplyAck Response by paired Manager to complete previous Supply demand. Supplies data packet.
InvalidateAck Response by paired Manager to complete previous Invalidate demand. Signifies realm invalidation has

completed.
SupplyDowngradeAck Response by paired Manager to complete previous SupplyDowngrade demand. Supplies data packet and

signifies realm downgrade has completed.
SupplyInvalidateAck Response by paired Manager to complete previous SupplyInvalidate demand. Supplies data packet and

signifies realm invalidation has completed.

