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Abstract 
 

As more heterogeneous architecture solutions con-
tinue to emerge, coherence solutions tailored for these 
architectures will become mandatory.  Coherence hi-
erarchies will likely continue to be prevalent in future 
large-scale shared memory architectures.  However, 
past experience has shown that hierarchical coherence 
protocol design is a non-trivial problem, especially 
when considering the verification effort required to 
guarantee correctness. 

While some strategies do exist for verification of 
homogenous coherence hierarchies, support for rea-
sonable verification of heterogeneous coherence hier-
archies is currently unavailable.  Ideally, hierarchical 
coherence protocols composed of ‘building block’ pro-
tocols should be able to take advantage of incremental 
verification to side step the state-space explosion prob-
lem which hampers any large-scale verification effort.  
In this work, we prove this can be accomplished 
through the use of the Manager-Client Pairing (MCP) 
framework, which provides encapsulation and permis-
sion checking support that enables a form of state-
space symmetry.  When combined with an inductive 
proof, this ensures the validation properties of proper 
permission distribution and livelock/deadlock freedom 
are enforced by any hierarchical composition of MCP 
compliant protocols.  Demonstration of this methodol-
ogy through the MurPhi formal verifier shows several 
orders of magnitude improvement in verification cost 
compared to full hierarchy verification. 

 
 

1.  Introduction 
It is well established that power constraints have 

caused a major paradigm shift in computer architecture 
towards parallel processing for performance scaling.  
With it have come new opportunities and design spaces 
for architects to explore.  Among these are heterogene-
ous architectures, where on-chip network and proces-
sor diversity can be exploited for performance benefit 
or power/energy savings [1-5].  Such systems benefit 

from the design of diverse interacting coherence proto-
cols, where each protocol is optimized to take ad-
vantage of properties of a homogeneous region within 
the overall heterogeneous architecture.  This comes at a 
cost however, in that the design and verification com-
plexity of such systems is substantially higher than that 
of their homogenous coherence counterparts. 

Despite this cost, the benefit of heterogeneous co-
herence has resulted in real-world applications of co-
herence heterogeneity.  The Wildfire architecture, for 
example, was built using the existing first level proto-
col of the Sun E6500 in a larger hierarchy that enabled 
Coherent Memory Replication for improved node lo-
cality [3]. The Piranha architecture [4] had an intra-
chip coherence management mechanism that was inte-
grated with an independent inter-chip coherence proto-
col engine.   This allowed for efficient use of on-chip 
caches and fast intra-chip data transfers while another 
DRAM directory-based protocol could be leveraged to 
enable scalability and performance at the inter-chip 
granularity.  The HP Superdome [5] also employed a 
similar strategy as Wildfire, but with a different goal in 
mind. An inter-chip communication layer interfaced 
the native intra-chip protocol to a higher-level directo-
ry protocol. The resulting system was able to restrict 
message broadcast scope to the local protocol in many 
cases, enabling the use of commodity parts (i.e., those 
with “glueless” multiprocessor buses) in a large-scale 
system while maintaining performance.  These exam-
ples suggest that heterogeneous coherence hierarchies 
will become more attractive in the present era as cur-
rent technology trends continue. 

Another factor motivating heterogeneous coherence 
support is the emergence of Partitioned Global Ad-
dress Space (PGAS) languages, such as X10 [7], which 
explicitly express physical locality of memory through 
places and processor/thread affinity. Depending on the 
relationship between the size of the address spaces 
assigned to a place, the number of active threads oper-
ating within a place, and the available architectural 
resources, localized coherence protocols can be benefi-
cial.  Localized protocols can be optimized for a par-
ticular place’s partition of the address space and archi-
tectural real estate, while still maintaining global ad-
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dress space coherence with respect to other localized 
protocols. 

The designers of future architectures can also benefit 
from coherence heterogeneity.  Consider, for example, 
a production heterogeneous chip that is partitioned 
across several different development teams.  Each team 
wants to design its own highly optimized and special-
ized coherence protocol, tailored and verified for one 
architectural region.  Each design group could work 
independently if a well-defined heterogeneous coher-
ence composition framework were available to inte-
grate the protocols into a final, verified hierarchical 
protocol, as shown in Figure 1.  This concept of dis-
tributed coherence protocol design does not have to be 
limited to a single chip.  With a composition frame-
work, multi-chip systems comprised of diverse chips 
(GPUs and CPUs), from different vendors, could be 
combined and verified into a global coherence proto-
col.  

Before implementing a coherence protocol in hard-
ware, it is important that the protocol be verified. Giv-
en the extreme rate of processor requests that a proto-
col handles per second, even the smallest flaw will 
inevitably lead to a system failure. An incorrectly de-
signed coherence protocol could cause the chip to 
deadlock or corrupt data by allowing multiple proces-
sors to modify the same block simultaneously. One 
approach to formally verifying a protocol involves 
modeling the protocol components and examining eve-
ry possible reachable state for invalid behavior. The 
total number of global states to be explored increases 
exponentially with every new node, message type, or 
state that is added to the protocol. 

Intractable verification complexity has the potential 
to dissuade architects from using hierarchical coher-
ence approaches, despite their many benefits.  While 
many strategies and tools already exist to assist in the 
verification effort of flat protocols [14-20], hierarchical 
coherence breaks these tools by exacerbating many of 
the problems associated with verification, such as the 
state space explosion problem [10].  Recent publica-

tions [8,11] have demonstrated very powerful tech-
niques to accelerate verification for hierarchical coher-
ence protocols, but they are limited by a fundamental 
assumption: that the hierarchy being verified is com-
posed of homogenous and self-similar protocols.  Such 
an assumption severely limits the utility and scope of 
hierarchical coherence for heterogeneous designs or 
PGAS models.  Extending verification to hierarchies of 
distinct coherence protocols is a hard problem.  How-
ever, as discussed earlier, there will be a strong desire 
for flexible, heterogeneous coherence hierarchies in the 
near future.  A solution to the verification problem 
must be found. 

We believe that a recently published framework for 
coherence composition holds the key to heterogeneous 
hierarchy verification.  The Manager-Client Pairing 
(MCP) composition framework [12] enables rapid de-
velopment of heterogeneous coherence hierarchies 
through the definition of a standardized protocol inter-
face and component protocol encapsulation.  In [12], 
the authors demonstrate a methodology for composing 
heterogeneous protocols with minimal effort, and pre-
sent results for a variety of multi-tiered coherence hier-
archies.  They do not, however, make any claims re-
garding verification of these hierarchies.   

In this work, we extend MCP by proving that using 
MCP compliant protocols in an MCP hierarchy enables 
rapid verification through a form of protocol symmetry 
[10].  This avoids the need for full state space explora-
tion, reducing verification cost from an intractably 
large combinatorial space down to verifying each com-
ponent protocol independently.  The contributions of 
this work are as follows: 
• Introduce a new form of protocol structural sym-

metry called encapsulation symmetry, and show 
how it can reduce verification cost. 

• Prove that MCP supports encapsulation symmetry 
and thus can be leveraged as a verification compo-
sition framework for heterogeneous hierarchies 
when the hierarchy is composed of formally veri-
fied MCP compliant protocols. 

• Present remote proxy client as a technique for 
porting pre-existing, verified protocols to MCP 
compliance with little design and verification 
overhead. As a motivating example, this technique 
is applied to the Broadcast-MOSI protocol from 
GEMS [6] to enable its integration with a Directo-
ry-MESI protocol to form a MCP hierarchy. 

• Show through the MurPhi formal checker [14] that 
this new MCP hierarchy is verified.  Further, we 
use this result to compare the cost of full state-
space exploration with that of independent com-
ponent verification via encapsulation symmetry. 

Figure 1 - Example of a heterogeneous multi-chip 
system that would benefit from heterogeneous 
coherence hierarchy support.   
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The remainder of the paper is organized as follows: 
Section 2 outlines the related work.  Section 3 presents 
an overview of the MCP framework.  Section 4 ex-
plains the state enumeration verification strategy in 
preparation for Section 5, which presents a proof for 
verification through MCP composition.  Section 6 out-
lines how to adapt existing protocols to be MCP com-
pliant via a remote proxy client.  Section 7 presents 
MurPhi verification results followed by a conclusion in 
Section 8. 

2. Related Work 
Due to the importance of verification, there is a large 

body of related work available.  For brevity, this sec-
tion will only mention those most closely related to the 
problem of hierarchical coherence verification. 

Ladan-Mozes and Leiserson [11] propose a dead-
lock-free, tree-based coherence protocol in order to 
ensure forward progress in a fat-tree network.  By 
enumerating invariant properties that ensure all chil-
dren in the tree are coherent with parents, permission 
guarantees can be made with respect to exclusive write 
permission, while supporting multiple readers.   

An important work that eases homogeneous hierar-
chical coherence verification is Fractal Coherence [8]. 
In this work, Zhang et al. propose a tree-based coher-
ence protocol, with the intention of simplifying coher-
ence verification through perfect self-similarity.  A 
fractal based coherence protocol, where children are 
coherent with their parents, can be verified through the 
validation of only the kernel coherence protocol.  The 
authors also describe how a bus-based version of the 
protocol could also be executed through fractal buses. 
Fractal coherence has many similar features to MCP. 

The recursive nature of the interfaces proposed by 
MCP is analogous to the self-similarity of fractal co-
herence’s kernel protocol.  

The most important distinction between prior work 
and this work is that prior work was specifically de-
signed with homogeneity as a requirement.  Neither 
work discusses the benefits of heterogeneous coher-
ence composition nor why it is an important considera-
tion.  In fact, both [8] and [11] are explicitly incompat-
ible with heterogeneity since they both rely heavily on 
homogeneity in their proofs. It is worth mentioning, 
however, that because these techniques do produce 
verified coherence protocols, they would be compatible 
as a component within an MCP coherence hierarchy if 
made MCP Compliant. 

3. Review of MCP framework 
Manager-Client Pairing (MCP) eases hierarchical 

coherence protocol design by distinguishing manager 
agents, those that manage permissions (e.g. directory), 
from client agents, those that hold permissions (e.g. 
private caches) [12].  By pairing the client agent of a 
higher protocol with the manager agent of the lower 
protocol, the client agent behaves as a permissions 
gateway for the paired manager’s protocol.  This is 
possible because MCP defines a permission-checking 
algorithm that enables component protocols to com-
municate with each other through a generic query-and-
acquire interface, eliminating the need to expose inter-
nal operation details outside the protocol’s scope.  By 
linking protocols together, coherence hierarchy com-
position can distribute the coherence responsibility 
throughout the hierarchy’s coherence realms. The top-
tier coherence realm encompasses all users of data 
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Figure 2 - Manager-Client Pairing coherence hierarchy organization with parts labeled: Manager, Client, 
Tier, and Realm for the Coherence Domain. 
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within the coherent memory system being monitored 
by the hierarchical protocol.  Each lower-tiered coher-
ence realm monitors successively smaller subsets of 
node coherence.  Figure 2 shows an example MCP 
hierarchy, labeled with MCP terminology. 

Due to the general interface definition and resultant 
low level of integration required between realms, pre-
vious work [12] demonstrated that component coher-
ence encapsulation is well preserved, meaning the de-
sign details of the protocols used to comprise the sys-
tem are largely opaque with respect to one another.  
Furthermore, because this interface’s functionality is 
very similar to the processor and memory interfaces in 
a conventional flat coherence protocol, the majority of 
the effort required to adhere to MCP compliance is a 
straightforward one-to-one mapping between MCP 
actions and already present coherence actions.  We 
define a protocol to be MCP compliant if it is a veri-
fied invalidation-based coherence protocol (see Section 
5) that only communicates with the external world 
through upper (memory) and lower (processor) MCP 
interfaces as shown in Figure 3.  

4. Reachable State Enumeration Overview 
Before constructing the complete proof for MCP-

hierarchy validation, an understanding of the underly-
ing verification principles is required.  In this section 
we introduce the problem of verification through 
reachable state enumeration.  We discuss verification 
through enumeration, review the state-space explosion 
problem, and explain how past research has mitigated 
this problem through the use of protocol symmetry.  
This leads to our key observation, that the state-space 
explosion due to hierarchical protocol interactions can 
also be mitigated if viewed as a form of symmetry. 

4.1. State Enumeration 

Reachable state enumeration is a common strategy 
employed in coherence protocol verification that auto-
mates the process.  First, the protocol state machines 
and surrounding communication medium are described 
in a protocol description language, such as MurPhi 
[14].  A set of invariants is then defined to establish 
what conditions must be met for the system to be valid 
(e.g., only one modifiable copy of a cache block exists 
at any time).  Relevant parameters regarding the sys-
tem configuration (number of clients, manager organi-
zation, network properties, etc.) are provided, as well 
as an initial system state from which the verification 
process can begin.  All possible states are then exhaust-
ively generated and invariants checked, following the 
actions provided in the description.   This can be done 
by either applying a depth-first or breadth-first search, 
where next-states are generated by applying all possi-
ble valid rules to the current state (e.g., new request 
generation, request/response event delivery, etc.).  
Each new state checks the invariants and, if no viola-
tion occurs, marks the current state of the system as 
reached (this is often implemented through the use of a 
hash table populated with a compressed state notation).  
If a future-state sequence encounters a state that has 
already been reached, that branch of the search can be 
terminated since it has previously been verified.   
Eventually, all branches will terminate, and, if no vio-
lation has been encountered, the protocol can be la-
beled as verified. 

4.2. State-Space Explosion and Symmetry 

 For even reasonably simple coherence protocols, the 
state space that needs to be exhaustively searched can 
become intractable quickly.  This is due to all the pos-
sible state interactions between the clients state ma-
chines, manager state machine, and various states of 
message delivery and ordering, which is aggravated 
rapidly by how many nodes (i.e. cores) are being mod-
eled.  While prior research has proven that modeling of 
a single cache block address is sufficient to verify a 
coherence protocol [10], there is no proof that a large-
scale system can be fully verified from a similar, 
scaled-down system.  As each additional node is added 
to the system, the number of possible global states in-
creases exponentially due to all possible interactions 
between the newly-added client’s state machine (and 
messages) with the previous system’s state-space, as 
well as the additional possible manager states from 
extending the tracking mechanism to encompass the 
new node’s tracking.  For an example of the latter, 
consider moving from 8 bits to 9 bits in a sharer bit-
vector: this results in an increase from 28 to 29 possible 
vector states for each manager state that requires bit-
vector information.  Because of the combinatorial na-

Figure 3 – MCP Interface for (a) lower processor 
tier and (b) top memory tier 
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ture of the state space problem, we see in Table 1 a 
dramatic increase in the number of reachable states as 
the client count increases.  These results were collected 
from a full state space exploration using MurPhi.  Fig-
ure 4 presents a visual representation of what happens 
during state-space explosion.  This example only 
shows the reachable states after the first two possible 
rules are applied to an overly simplified MSI protocol 
consisting of 2 nodes vs. 4 nodes.  
 Due to the often-homogenous nature of client state 
machines in a coherence protocol, state symmetry has 
been shown to be a powerful way to combat the state-
space explosion problem, and can reduce the state-
space search scope by as much as 90% [10].  In this 
approach, several distinct states can be shown to over-
lap with one another through the exploitation of struc-
tural symmetries in the protocol’s design, such as ab-
stracting sharer client ID information to a sharer client 
count.  For example, the 4-node composite states 
{S,S,I,O}, {I,S,S,O} and {O,S,S,I} are symmetric with 
one another because a simple substitution can show 
that applying the same sequence of rules that lead from 
the initial state to each of these states will yield identi-
cal results if node ids are rotated/mixed (e.g. {I,S,S,O} 
becomes {O,S,S,I} if node 0 and node 3 are switched).  
Again, because of the homogeneity of the client’s state 
machines, there is no behavioral difference at the high-
er-level description of the protocol behavior; specific 
node identity information is unimportant.  In this way, 
global state can be viewed as a combination rather than 
a permutation.  In short, if two system-wide states are 
symmetric with one another, only one has to be verified 
to automatically verify the other. The authors of [10] 
demonstrate that the notion of structural symmetries 
extends beyond just node ID abstraction to encompass 

many other parts of coherence protocol design, includ-
ing “addresses, data values, memory module-ids and 
message-ids.”  In this work we extend this to encom-
pass the encapsulation symmetries present in hierar-
chies composed of independent, well-encapsulated 
protocols. 

4.3. Encapsulation Symmetry 

 Encapsulation symmetry is different from state 
symmetry in that it does not manifest as a result of 
protocol homogeneity.  Rather, encapsulation sym-
metry happens when portions of the global state repre-
sentation can be proven to be independent from other 
parts of the global state.  The simplest example of this 
phenomenon would be the state-space exploration of 
two completely isolated state machines, n and m, oper-
ating simultaneously.  If the size of each state ma-
chine’s state-space could be expressed as sizen and 
sizem, the state space of both operating simultaneously 
is (sizen * sizem).  This is evident because a simple scan 
could explore the entire space by repeatedly applying a 
single rule to n, followed by full exploration of state 
machine m’s space. 

To express this another way, if the overall state of a 
system is represented as a string, the state space of 
each independent state machine can be expressed as 
strings stringm and stringn.  The entire state space of 
these operating simultaneously could then be expressed 
as the combination of all valid stringm strings concate-
nated with all valid stringn strings.  Figure 5 and Figure 
6 show the symmetry in the state space visually for a 
pair of simple state machines. 

Leveraging this kind of symmetry for coherence hi-
erarchy verification would be extremely powerful in 
combating the state space explosion problem, allowing 
each component protocol to be verified independently 
and then merged.  However, this symmetry requires 
proving that the integrated protocols are sufficiently 
isolated from one another through some form of encap-
sulation.  Additionally, valid merging would require all 
possible concatenation combinations of these state 
spaces to guarantee invariant violation freedom.  Sec-
tion 5 will develop this further and demonstrate that 
the interfaced and permission summarizing nature of 
MCP compliance will produce encapsulation symmetry 
in the state space that can safely be leveraged for rapid 
verification. 
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Figure 4 - Example of state space explosion when adding 2 additional nodes to a 2-node MSI protocol. 

Table 1 – Verification cost of Directory-MESI and 
Broadcast-MOSI protocols using MurPhi 

Protocol # of States Time to Verify [s]
2-client Directory-MESI 599 0.10
3-client Directory-MESI 7,077 0.13
4-client Directory-MESI 108,203 3.33
5-client Directory-MESI 1,345,019 91.76
6-client Directory-MESI 26,361,918 15,980.70
2-client Broadcast-MOSI 3,117 0.10
3-client Broadcast-MOSI 166,562 4.79
4-client Broadcast-MOSI 4,307,049 331.82
5-client Broadcast-MOSI 132,871,278 303,244.00
6-client Broadcast-MOSI 500,000,000+ 4,000,000+
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5. Formal Verification Strategy for MCP 
We propose the use of MCP as a framework for 

high-speed formal verification of large-scale hierar-
chical, heterogeneous protocols.  In this section we will 
prove that when formally verified MCP-compliant pro-
tocols are assembled into a hierarchy and connected 
through MCP-interfaces, the hierarchy is also verified.  
We define ‘verified’ to mean a protocol can guarantee 
the following properties:  (1) There can be at most one 
lowest-tier client with write permission to a block of 
data; (2) There can be one or more lowest-tier clients 
with read permission to a block of data if no other low-
est-tier client has write permissions; (3) reads are guar-
anteed to supply the requestor with the most recently 
written data value at the time the read was inserted into 
the global order; (4) The system is deadlock and live-
lock free.  These provide a guarantee of coherence pro-
tocol design correctness. 
 
Definition 1 – 
A protocol is said to be verified if: 

1) ∀ reachable global states in a protocol x, a node may 
have write permissions to a block iff there are no other 
nodes with read or write permissions to that block. 

2) ∀ reachable global states in a protocol x, one or more 
nodes may have read permissions to a block iff there are 
no nodes with write permissions to that block. 

3) ∀ reachable global states in a protocol x, read requests 
to a block obtain the value written by the most recent pre-
vious write in the global order, w.r.t the read, to that 
block. 

4) ∀ reachable global states in a protocol x, there are no 
states without possible exits (deadlock) and no condition 
where a given data block is locked by one node such that 
it is permanently prevented from being accessed by other 
nodes (livelock) [20]. 

As mentioned previously, we define a protocol to be 
MCP compliant if it is a verified invalidation-based 
coherence protocol that only communicates with the 
external world through MCP interfaces. 
 

5.1. Theorem 1 – Two-tier MCP composition and 
verification 

Where R(u,l) := Coherence Realm from interfacing of upper-
tier MCP compliant protocol u with lower-tier MCP compli-
ant protocol l through pairing of a u-client with the l-
manager. 

Lemma 1 – MCP permission distribution ensures R(u, l) will 
satisfy conditions (1, 2, 3) 

Lemma 2 – For R(u, l), MCP Get/GetAck  and De-
mand/DemandAck pairs do not violate condition (4); all 
requests are eventually satisfied since both protocols u and l 
have been previously verified 

Theorem 1 – ∴∀u∀l, where u and l are MCP compliant 
protocols, R(u, l) is also verified and MCP compliant. 

The supporting lemmas for Theorem 1 have two 
main themes: Lemma 1 is concerned with proper 
distribution of permission guarantees to ensure that 
conditions 1, 2 and 3 of verification are enforced (one 
writer, multiple readers, read consistency) while 
Lemma 2 focuses on livelock/deadlock adherence.  In 
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Figure 5 - State-space of two simple state machines, where each element may transition from 0 to 1 
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Lemma 1, Condition 3 is satisfied because the 
manager/client pairing is located at the ordering point 
for its realm, ensuring global ordering of reads and 
writes is maintained throughout the hierarchy.   
Conditions 1 and 2 are fundamental properties of MCP 
composition, and are discussed in depth in prior work 
[12] which details the permission allocation algorithm 
and how the permission inclusion property described 
by Ladan-Mozes and Leiserson in [11] is implemented 
by MCP.  The realm-miss example from [12] 
demonstrating this is reproduced here for 
completeness. 

In Figure 7, the sequence of MCP interface events 
and corresponding coherence actions to acquire data 
across realm boundaries is shown, starting with (a) the 
request and demand chain of events and (b) the ack 
event sequence replying to these requests and 
demands. 

First, the processor paired with Client C0 discovers 
it has insufficient permission to satisfy a write (1).  
This results in a GetExclusiveD call to Client C0 (2) 
which spawns a coherence message to Manager C 
requesting the data and write permission.  Following 
the MCP algorithm, before responding to the 
coherence request the paired client A1 is consulted (3).  
Since A1 does not have sufficient permissions, 
Manager C temporarily stalls the coherence request 
from C0 and Manager C issues a GetExclusiveD to its 
paired client A1 (4).  This results in coherence traffic 
that leads to Client A0 Demanding the lower realm 
managed by Manager B to supply data and self-
invalidate (6).  Coherence messages are sent to 
invalidate all nodes in the realm and request data 
writeback (7a and 7b).  

At this point traffic begins to flow back towards the 
originating request through reply acknowledgments (8a 
and 8b).  Coherence traffic flows back to Manager B, 
enabling it to transition to the invalid state and supply 
data to its paired client A0 (9). The paired client can 
now proceed by taking its native protocol action, 
forwarding data to A1 and self invalidating.  Upon 
arrival at A1, the client state transitions to Exclusive 

and a GetExclusiveDAck is issued across the MCP 
interface to Manager C.  Finally, Manager C can 
resume processing of the original coherence write 
message and respond with a coherence data message.  
Upon reception at Client C0, the write action is 
complete.  This demonstrates that despite having 
multiple discrete, encapsulated protocols that treat each 
other as black boxes, permissions are properly 
enforced across the entire hierarchy because of MCP.   

Lemma 2 leverages the fact that all incoming Get 
actions observed by the lower-tier’s lower interfaces 
(e.g. processor caches) will be satisfied either (a) local-
ly by the lower-tier, (b) remotely by the upper-tier 
through the lower-tier’s upper interface, or (c) by 
memory via issuance of a Get action from the upper-
tier’s upper interface with memory.  Similarly, all up-
per-tier lower interfaces not connected to the lower-tier 
realm will be satisfied either (d) locally by the upper-
tier, (e) remotely by the lower-tier through the MCP 
interface or (f) by memory via the upper-tier’s upper 
interface.  In all these instances, eventual completion is 
guaranteed since memory will always respond and the 
upper-tier and lower-tier protocols are guaranteed to be 
livelock and deadlock free prior to composition as a 
condition of being MCP compliant.  All requests are 
satisfied locally, satisfied by memory, or deferred to 
another protocol that can guarantee eventual response 
to any request.  Additionally, due to the tree-like or-
ganization of an MCP composition and permission 
distribution, there is no possibility of a cycle in which 
two MCP compliant protocols are waiting on each oth-
er to eventually respond. 

Since MCP compliant component protocols are in-
dependently verified, we know that no Get action can 
be delayed indefinitely since Get actions are function-
ally equivalent to cache actions (read, write, evict).  In 
an MCP composition, Get requests are either satisfied 
locally, deferred upwards via another Get request 
which in turn will recursively do the same until satis-
fied, or deferred downwards via a Demand request 
(cache-to-cache forwarding behavior, for example).  
This ensures that all requests will make forward pro-
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gress as they traverse up or down the tiers until satis-
fied, proving livelock is not possible.  Finally, because 
MCP does not introduce new states or messages to the 
component protocols, no new state without exit can 
arise or be reached, protecting against deadlock. 

MCP components meet all the conditions from the 
definition of verifiability.  Rules regarding read per-
mission and write permission distribution for all lowest 
level clients (i.e., caches) are enforced while guaran-
teeing livelock and deadlock freedom for all reachable 
states. Therefore Theorem 1 is proven: a composition 
of an upper-tier MCP compliant protocol and a lower-
tier MCP compliant protocol, connected through an 
MCP interface will properly distribute permissions and 
data while retaining livelock and deadlock freedom.  
Since no verification violation can possibly occur when 
merging these two protocols, we can safely say the 
cross-product of their respective state spaces into a 
unified state space will not introduce any new violating 
states, enabling us to apply encapsulation symmetry 
from Section 4.2 for verification. 

5.2. Theorem 2 – Arbitrarily deep MCP Hierarchies 

Axiom 1: R(u, l) is both verified and has MCP compliant 
upper and lower interfaces, being a composition of MCP 
protocols.  ∴ R(u, l) is also a verified MCP compliant proto-
col. 

Theorem 2 – Arbitrarily deep MCP coherence hierarchies 
are verifiable through induction via the following: 

H(2) = R(u, l), where H(2) is a verified MCP compliant pro-
tocol hierarchy of two tiers, and  

H(n +1) = R(H(n), l), where H(n+1) is a verified MCP com-
pliant protocol hierarchy of (n +1) tiers 

Axiom 1 stems from the structurally recursive nature 
of MCP composition.  From Theorem 1 in the previous 
sub-section, we know a 2-tier coherence realm com-
posed of independently verified MCP protocols is also 
verified.  Additionally, because each component proto-
col only has an upper interface and lower interface(s), 
and the upper interface of protocol ‘l’ is attached to 

one of the lower interfaces of protocol ‘u’, the remain-
ing unconnected interfaces are a single valid upper 
interface (the ‘u’ protocol’s upper interface), and mul-
tiple valid lower interfaces (includes all the lower in-
terfaces of ‘l’ and all the lower interfaces of ‘u’ except 
the most recently connected).  Therefore, the whole is a 
verified protocol with valid upper and lower MCP in-
terfaces, with no other external communication inter-
faces, meeting all the conditions for MCP compliance. 

In a k-tiered MCP hierarchy, the highest coherence 
realm in the hierarchy (which begins by encompassing 
only the two top-most tiers of the system) can be 
proved to be a verifiable MCP compliant protocol 
through Theorem 2 and Axiom 1.  As a result, the two 
tiers of this realm can logically be replaced by a ‘sin-
gle’ MCP compliant protocol, which is the merger of 
these two tiers (shown in the equations supporting 
Theorem 2).  Through this process, the k-tiered MCP 
hierarchy has become a (k-1) tiered hierarchy, where 
the highest protocol in the hierarchy is itself a coher-
ence hierarchy.  This can be applied repeatedly until all 
k-tiers have been merged into the single verified MCP 
compliant protocol.  Figure 8 demonstrates this induc-
tion graphically.  

5.3. Fractal Coherence Viewpoint 

Theorem 2 can also be understood through the theo-
rems in the verification process of Fractal Coherence 
[8].  The two most important properties required for 
application of Fractal Coherence verification is that (a) 
the minimum system is formally verified and (b) the 
hierarchy is observationally equivalent. 

Rather than assuming only a single minimum system 
being replicated, MCP composition assumes multiple 
systems being integrated that may not be identical.  
However, if each component is independently formally 
verified, this is similar to a single kernel protocol being 
verified and used repeatedly.  Additionally, a kind of 
observational equivalence can be gained through the 
use of a standardized interface, which MCP provides.  
From Theorems 1 and 2, we know each component of 

Figure 8 - Graphical representation of coherence hierarchy inductive proof, where the shaded enclosed 
region represents H(n) for n = 2 → k (k = 4). 
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an MCP hierarchy is formally verified, and connection 
of these through manager-client pairing of interfaces 
does not violate verification.  As described in Section 
5.2 regarding Axiom 1 and the interfaces, when treated 
as black boxes, compositions of MCP component pro-
tocols are nearly observationally equivalent because 
each additional tier connects to either upper or lower 
interfaces while providing new upper or lower inter-
faces that are functionally equivalent.  They are not 
strictly observationally equivalent because the number 
of interfaces changes depending on the number of cli-
ents in the newly attached MCP component protocol.  
In contrast to Fractal Coherence, which enforces ob-
servational equivalence by the ‘component protocols’ 
being perfectly self similar, MCP enforces a looser 
observational equivalence through adherence to a 
standardized interface definition. 

6. Remote Proxy Client 
6.1. Theorem 3 – Verification of protocols modified 

with remote proxy client 

Where M(x) := An MCP compliant version of protocol x 

Theorem 3 – If protocol x satisfies conditions (1,2,3) for 
verification, and replaces one client with a remote proxy 
client, the resulting protocol M(x) does not introduce chang-
es that violate conditions (1,2,3) 

∴∀x where protocol x is verified,  M(x) is also verified 

Recall from Section 3 and Appendix A, there are 
three major parts to the MCP interface: Queries (per-

mission checking), Gets (permission acquisition) and 
Demands (permission surrendering).  Let us first con-
sider the Query and Get portions of the MCP interface.  
For Queries, permission status requests cannot modify 
the state of the protocol as they are simple Boolean 
checks and therefore have no verification impact.  In 
order to evaluate Theorem 1 with respect to applying 
the MCP interface specification to a verified non-MCP 
compliant protocol, the only actions from Appendix A 
that must be considered are those that can result in 
state change in the underlying protocol.  Each such 
action much be mapped to an already existing action in 
the protocol, based on the internal state of the protocol.  
 As mentioned in Section 3, however, the Get func-
tionality required for supporting MCP corresponds 
directly to functionality that must already be present 
for handling and satisfying processor requests in a non-
MCP version of the protocol interfaced directly with a 
processor. 

The biggest hurdle when mapping a pre-existing 
protocol’s functionality to the MCP interface is im-
plementing upper-tier initiated Demands. The memory 
controller interface is typically not able to issue re-
quests for invalidations or downgrades in a conven-
tional flat coherence protocol.  However, these actions 
can be emulated very easily if upper-tier Demands are 
modeled as requests from a local client, similar to the 
pseudo-CPU mechanism in DASH [2].  In our frame-
work, this functionality is served by the remote proxy 
client.  

I
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Figure 9 - Local GetReadD Get sequence (Request and Response) in a MOSI protocol that currently holds 
write permissions. 
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SupplyDowngradeAck Demand request in a MOSI tier that currently holds write permissions 
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The remote proxy client acts on behalf of the upper-
tier, issuing local protocol requests to satisfy incoming 
Demand requests.  In addition to this, the remote proxy 
client is also stateful; it becomes a summary of all the 
permissions held by nodes external to this coherence 
realm.  As long as the protocol is verified, permission 
will be assigned to this proxy correctly.  This ensures 
permission exclusion is preserved when necessary, and 
permission will eventually be passed to the appropriate 
originator that caused the Demand. The remote proxy 
client does not communicate directly across tier 
boundaries; remote traffic is routed through the MCP 
interface in the manager. 

Figure 9 and Figure 10 show an example of how the 
Demand handling behavior of the remote proxy client 
is similar to the behavior of a local requestor in a 
MOESI directory protocol. The actions required by the 
coherence realm to satisfy a SupplyInvalidate (See 
Appendix A) are identical to those required for han-
dling a write request from a client in the invalid state. 
A message is sent to the owner client (the client in ei-
ther the M, O, or E state) to initiate a cache-to-cache 
transfer and a self-invalidation. Invalidation messages 
are sent to all other sharers in the bit vector.  When this 
sequence concludes, the realm manager and other cli-
ents will have given write permissions and a copy of 
the data to this client by removing all readable copies 
from the realm. In the case of the remote proxy client, 
the realm can respond with a SupplyInvalidateAck up-
on completion of the protocol sequence since all condi-
tions are met (i.e., the realm no longer has any copies 
with read or write permission and the most recent copy 
of the data is available and ready for forwarding). 

Implementing remote proxy client does not actually 
require adding another client to the protocol. Rather, an 
existing client can be sacrificed to act as the remote 
proxy client. So a protocol that is verified for four cli-
ents could be made into a 3-client MCP compliant pro-
tocol by selecting one of the clients to serve the role of 
a remote proxy client. Since Demand handling does not 
introduce new states or messages when a proxy is pre-
sent, there are no changes to the original state machine, 
and the protocol remains verified. 

In summary, encapsulating a protocol via MCP in-
terfaces can be seen as applying a translation layer that 
introduces no new additional state transitions, states, or 
new messages to the protocol.  This preserves the veri-
fication properties of the original component protocol.  
Since MCP does not modify the state machine, if the 
base protocol correctly distributes permissions without 
deadlocking or livelocking, so does an MCP compliant 
version of the same protocol. 

 

7. Results 
In order to demonstrate the usefulness of MCP as a 

verification technique, a heterogeneous hierarchy was 
implemented and verified using the MurPhi toolkit. 
The hierarchy was created from the composition of two 
protocols: Directory-MESI and Broadcast-MOSI. We 
designed the Directory-MESI protocol to be natively 
MCP compliant, without the need for a remote proxy 
client.  The Broadcast-MOSI protocol is a MOSI pro-
tocol communicating over a shared bus and was ported 
directly from the GEMS implementation to MurPhi.  
To make this protocol MCP compliant, a client was 
scavenged to serve as the remote proxy client; no other 
changes were made to the underlying “off-the-shelf” 
GEMS protocol. 
 The evaluated heterogeneous hierarchical protocol is 
shown in Figure 11.  The number of clients in each 
protocol is varied and the configurations are denoted in 
Table 2.  The figure illustrates the Dir3 + B3 configu-
ration, where one client in the Directory-MESI is 
paired with the Broadcast-MOSI, and one client in the 
Broadcast-MOSI is dedicated as a remote proxy client. 
 The hierarchical protocol was evaluated via full state 
exploration using MurPhi, and was also verified by 
leveraging MCP structural symmetry.  The results of 
this verification effort are denoted in Table 2.  The 
number of states represents the full state space of the 
combined protocols, and the time to verify without 
MCP is the total time for MurPhi to complete a full 
state exploration (similar to Figure 6).  The verification 
costs with MCP is simply the sum of the verification 
costs of the component protocols, due to encapsulation 
symmetry.  As is evident from these results, MCP 
greatly reduces the verification cost, especially at the 
higher client count design points. 
 
 
 
 

Figure 11 – Evaluated Heterogeneous Hierar-
chical Protocol Structure  
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Table 2 – Comparing verification cost of heteroge-
neous hierarchical protocols with and without lev-
eraging MCP protocol structural symmetry1 

 

8. Conclusion 
There is a strong interest in multi-core architectures 
that use flexible, heterogeneous coherence hierarchies, 
such as CPU+GPU pairings or multi-vendor coherent 
shared memory ensembles. But without a verification 
solution, these protocols—and the potentially powerful 
and energy-efficient systems they enable—cannot be 
built. It is clear that a solution to the verification prob-
lem must be found.  Prior solutions were limited to 
homogeneous hierarchies wherein every level of the 
system must practice the same protocol [8, 11].  This 
paper leveraged the recently published Manager-Client 
Pairing encapsulation composition framework [12], 
which explicitly supports heterogeneity.  Using MCP, 
we proved that any heterogeneous protocol could be 
verified in no more time than it would take to validate 
each individual protocol in isolation. 

The theoretical nature of this paper is inescapa-
ble.  However, we have tried to bring this work to re-
ality by implementing a coherence hierarchy in a for-
mal verification tool.  The intractability of obtaining 
results for our largest simulations establishes the need 
for formal verification acceleration.  We defined a new 
form of protocol structural symmetry for coherence 
hierarchies, based on protocol encapsulation and per-
mission distribution.  We proved how MCP can be 
used as a verification composition framework for het-
erogeneous hierarchies composed of pre-verified pro-
tocols.  With the framework presented here, hierar-
chical, heterogeneous coherence can become an indus-
trial success rather than being limited by practical veri-
fication complexities. 
References 
[1] S. Haridi and E. Hagersten, "The Cache Coherence Pro-

tocol of the Data Diffusion Machine," presented at the 
Proceedings of the Parallel Architectures and Languages 
Europe, Volume I: Parallel Architectures, 1989. 

 

1 Dir4+B4 state space was too large for full state space verifica-
tion to complete, due to the intractable nature of state-space explo-
sion.  The numbers presented in the first two columns for these con-
figurations are the minimum bounds collected from the periodic 
progress report after 80 days of execution. 

[2] D. Lenoski, et al., "The directory-based cache coherence 
protocol for the DASH multiprocessor," SIGARCH 
Comput. Archit. News, vol. 18, pp. 148-159, 1990. 

[3] E. Hagersten and M. Koster, "WildFire: A Scalable Path 
for SMPs," presented at the Proceedings of the 5th In-
ternational Symposium on High Performance Computer 
Architecture, 1999. 

[4] L. A. Barroso, et al., "Piranha: a scalable architecture 
based on single-chip multiprocessing," presented at the 
Proceedings of the 27th annual international symposium 
on Computer architecture, Vancouver, British Colum-
bia, Canada, 2000. 

[5] G. Gostin, et al., "The architecture of the HP Superdome 
shared-memory multiprocessor," presented at the Pro-
ceedings of the 19th annual international conference on 
Supercomputing, Cambridge, Massachusetts, 2005. 

[6] M. M. K. Martin, et al., "Multifacet's general execution-
driven multiprocessor simulator (GEMS) toolset," 
SIGARCH Comput. Archit. News, vol. 33, pp. 92-99, 
2005. 

[7] Philippe Charles, Christian Grothoff, Vijay Saraswat, 
Christopher Donawa, Allan Kielstra, Kemal Ebcioglu, 
Christoph von Praun, and Vivek Sarkar. 2005. X10: an 
object-oriented approach to non-uniform cluster compu-
ting. SIGPLAN Not. 40, 10 (October 2005), 519-538 

[8] Meng Zhang, Alvin Lebeck, Daniel Sorin, "Fractal Co-
herence: Scalably Verifiable Cache Coherence," pre-
sented at the International Symposium on Microarchi-
tecture, Atlanta, Georgia, 2010. 

[9] M. M. K. Martin, et al., "Token coherence: decoupling 
performance and correctness," presented at the Proceed-
ings of the 30th annual international symposium on 
Computer architecture, San Diego, California, 2003. 

[10] C. Norris Ip and David L. Dill. 1996. Better verification 
through symmetry. Form. Methods Syst. Des. 9, 1-2 
(August 1996), 41-75 

[11] E. Ladan-Mozes and C. E. Leiserson, "A consistency 
architecture for hierarchical shared caches," presented at 
the Proceedings of the twentieth annual symposium on 
Parallelism in algorithms and architectures, Munich, 
Germany, 2008 

[12] J. G. Beu, M. C. Rosier and T. M. Conte, “Manager-
Client Pairing: A Framework for Implementing Coher-
ence Hierarchies,” Proceedings of the 44th Annual In-
ternational Symposium on Microarchitecture (MICRO-
44), (Porto Alegre, Brazil), Dec., 2011. 

[13] Frans H. van Eemeren and Rob Grootendorst, “The 
Fallacies of Composition and Division”, in “JFAK. Es-
says Dedicated to Johan van Benthem on the Occasion 
of his 50th Birthday”, Amsterdam University Press 
1999. http://www.illc.uva.nl/j50/contribs/eemeren/ 
eemeren.pdf 

[14] "Protocol Verification as a Hardware Design Aid," 
David L. Dill, Andreas J. Drexler, Alan J. Hu and C. 
Han Yang, 1992 IEEE International Conference on 
Computer Design: VLSI in Computers and Processors, 
IEEE Computer Society, pp. 522-525. 

[15] E. M. Clarke and J. M. Wing, "Formal methods: state of 
the art and future directions," ACM Comput. Surv., vol. 
28, pp. 626-643, 1996. 

[16] K. L. McMillan, "Parameterized Verification of the 
FLASH Cache Coherence Protocol by Compositional 

Protocol # of States Time to Verify [s] # of States (w/MCP)
Time to Verify 
(w/MCP) [s]

Dir2 + B2 11,861 0.34 3,716 0.20
Dir2 + B3 425,990 17.31 167,161 4.89
Dir3 + B2 182,197 8.51 10,194 0.23
Dir3 + B3 5,367,735 542.44 173,639 4.92
Dir4 + B3 71,642,216 84,734.63 274,765 8.12
Dir3 + B4 143,552,706 317,891.00 4,314,126 331.95
Dir4 + B4 500,000,000+ 7,000,000+ 4,415,252 335.15



 
 

12 

Model Checking," presented at the Proceedings of the 
11th IFIP WG 10.5 Advanced Research Working Con-
ference on Correct Hardware Design and Verification 
Methods, 2001. 

[17] S. Park and D. L. Dill, "Verification of FLASH cache 
coherence protocol by aggregation of distributed trans-
actions," presented at the Proceedings of the eighth an-
nual ACM symposium on Parallel algorithms and archi-
tectures, Padua, Italy, 1996. 

[18] U. Stern and D. L. Dill, "Improved probabilistic verifi-
cation by hash compaction," presented at the Proceed-
ings of the IFIP WG 10.5 Advanced Research Working 
Conference on Correct Hardware Design and Verifica-
tion Methods, 1995. 

[19] D. A. Wood, et al., "Verifying a Multiprocessor Cache 
Controller Using Random Test Generation," IEEE Des. 

Test, vol. 7, pp. 13-25, 1990. 
[20] F. Pong and M. Dubois, "Verification techniques for 

cache coherence protocols," ACM Comput. Surv., vol. 
29, pp. 82-126, 1997. 

[21] Laudon, J. and D. Lenoski (1997). "The SGI Origin: a 
ccNUMA highly scalable server." SIGARCH Comput. 
Archit. News 25(2): 241-251. 

[22] Daniel Lenoski, James Laudon, Kourosh Gharachorloo, 
Wolf-Dietrich Weber, Anoop Gupta, John Hennessy, 
Mark Horowitz, and Monica S. Lam. 1992. The Stan-
ford Dash Multiprocessor. Computer 25, 3 (March 
1992) 

[23] Tom Lovett and Russell Clapp. 1996. STiNG: a CC-
NUMA computer system for the commercial market-
place. In Proceedings of the 23rd annual international 
symposium on Computer architecture (ISCA '96) 

Appendix A: MCP Actions 
Lower Tier Manager to Upper Paired Client Permission Query
HaveReadP Return true if paired Client has read permission
HaveWriteP Return true if paired Client has write permission
HaveEvictP Return true if paired Client can be safely evicted

Lower Tier Manager to Upper Paired Client Permission Get
GetReadD Paired Client begins data and read permission acquisition sequence within it's native coherence realm.  

L1/Lower Manager expects GetReadDAck upon completion.
GetExclusiveD Paired Client begins data and write permission acquisition sequence within it's native coherence realm.  

L1/Lower Manager expects GetExclusiveDAck upon completion.
GetExclusive Paired Client begins write permission acquisition sequence within it's native coherence realm.  L1/Lower 

Manager expects GetExclusiveAck or GetExclusiveDAck upon completion.
Used when data is already available in L1/Lower Manager (HaveData == true) and only a permission upgrade is 
required.
May be satisfied by a GetExclusiveDAck if upper tier protocol demands a downgrade while GetExclusive is in 
flight, causing HaveData to become false.

GetEvict Paired Client begins eviction sequence within it's coherence realm.  L1/Lower Manager expects GetEvictAck 
upon completion.
Used when block ownership or most recent dirty version resides in L1/Lower Manager's realm.
Needs to include data payload when data being evicted is dirty.

Upper Tier Client to Lower Paired Manager Permission Request Reply
GetReadDAck Response by paired Client to complete previous GetReadD request.  Supplies data packet and signifies paired 

Client (and thus lower Manager's realm) now has read permissions.
GetExclusiveDAck Response by paired Client to complete previous GetExclusive/GetExclusiveD request.  Supplies data packet and 

signifies paired Client (and thus lower Manager's realm) now has write permissions.
GetExclusiveAck Response by paired Client to complete previous GetExclusive request.  Signifies paired Client (and thus lower 

Manager's realm) now has write permissions.
GetEvictAck Response by paired Client to complete previous GetEvict request.  Signifies paired Client has become invalid.  

Therefore, Manager's realm can safely eliminate all local copies of the block.

Upper Tier Client to Lower Paired Manager Demand
Supply Demand data supply from lower tier's paired Manager or L1.  No additional actions required by lower tier.

Used for data forwarding to satisfy remote read when Manager-Client pair permission levels already match.
Invalidate Demand lower realm to forfeit write permissions and read permissions, invalidating all local copies of data.

Used to satisfy remote write request which requires exclusive rights when remote realm already has a copy of 
the data.

SupplyDowngrade Demand Data from lower realm's paired Manager.  Additionally, lower realm must forfeit write permissions but 
can retain read permissions and data.
Used for data forwarding to satisfy remote read when upper-tier paired Client state is forfeiting exclusive/write 
permissions.

SupplyInvalidate Demand Data from lower realm's paired manager.  Additionally, lower realm must forfeit write permissions AND 
read permissions, invalidating all local copies of data.
Used for data forwarding to satisfy remote exclusive/write request when remote realm expects data supplied 
from this realm.

Lower Tier Manager to Upper Paired Client Demand Reply
SupplyAck Response by paired Manager to complete previous Supply demand.  Supplies data packet.
InvalidateAck Response by paired Manager to complete previous Invalidate demand.  Signifies realm invalidation has 

completed.
SupplyDowngradeAck Response by paired Manager to complete previous SupplyDowngrade demand.  Supplies data packet and 

signifies realm downgrade has completed.
SupplyInvalidateAck Response by paired Manager to complete previous SupplyInvalidate demand.  Supplies data packet and 

signifies realm invalidation has completed.


