
Spectral Prefetcher: An Effective Mechanism
for L2 Cache Prefetching

SAURABH SHARMA, JESSE G. BEU, and THOMAS M. CONTE

North Carolina State University

Effective data prefetching requires accurate mechanisms to predict embedded patterns in the

miss reference behavior. This paper proposes a novel prefetching mechanism, called the spectral

prefetcher (SP), that accurately identifies the pattern by dynamically adjusting to its frequency.

The proposed mechanism divides the memory address space into tag concentration zones (TCzones)

and detects either the pattern of tags (higher order bits) or the pattern of strides (differences be-

tween consecutive tags) within each TCzone. The prefetcher dynamically determines whether the

pattern of tags or strides will increase the effectiveness of prefetching and switches accordingly. To

measure the performance of our scheme, we use a cycle-accurate aggressive out-of-order simulator

that models bus occupancy, bus protocol, and limited bandwidth. Our experimental results show

performance improvement of 1.59, on average, and at best 2.10 for the memory-intensive bench-

marks we studied. Further, we show that SP outperforms the previously proposed scheme, with

twice the size of SP, by 39% and a larger L2 cache, with equivalent storage area by 31%.

Categories and Subject Descriptors: B.3.2 [Memory Structure]: Design Style—Cache memories

General Terms: Design, Experimentation, Performance

Additional Key Words and Phrases: Prefetch, L2 cache, autocorrelation, frequency, adaptive, abso-

lute and differential domain, memory

1. INTRODUCTION

The past two decades has witnessed tremendous advances in semiconductor
process technology and micro-architecture, exponentially reducing processor
cycle times. Meanwhile, access times of memory have decreased at a glacial
rate of 10% per year. Consequently, memory latencies measured in processor
cycles are continually increasing and are on the order of hundreds of cycles.
To bridge the processor-memory latency gap, computer architects have primar-
ily relied on high-speed cache memories. Because of size constraints, however,
on-chip caches are unable to keep up with the growing data requirements of ap-
plications. As a result, important classes of applications suffer from high-cache
miss rates and, subsequently, performance degradation.

Authors’ addresses: Saurabh Sharma, Jesse G. Beu and Thomas M. Conte, Department of Electrical

and Computer Engineering, North Carolina State University, Raleigh, NC 27695.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is

granted without fee provided that copies are not made or distributed for profit or direct commercial

advantage and that copies show this notice on the first page or initial screen of a display along

with the full citation. Copyrights for components of this work owned by others than ACM must be

honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,

to redistribute to lists, or to use any component of this work in other works requires prior specific

permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 1515

Broadway, New York, NY 10036 USA, fax: +1 (212) 869-0481, or permissions@acm.org.
C© 2005 ACM 1544-3566/05/1200-0423 $5.00

ACM Transactions on Architecture and Code Optimization, Vol. 2, No. 4, December 2005, Pages 423–450.

424 • S. Sharma et al.

In addition to high-speed caches, many architects rely on prefetching, which
is shown to be a primary technique to mask or eliminate memory latencies.
Prefetching works by anticipating data misses and fetching the data before the
processor requires it. While several models have been proposed for prefetching
either via hardware [Charney and Reeves 1995; Chen and Baer 1992; Cooksey
et al. 2002; Hu et al. 2003; Joseph and Grunwald 1999; Jouppi, 1990; Lai et al.
2001; Nesbit and Smith 2004; Nesbit et al. 2004; Palacharla and Kessler 1994;
Roth et al. 1998] or software [Lipasti et al. 1995; Luk and Mowry, 1996; Mowry
et al. 1992], hardware implementations are more popular, because of the avail-
ability of run-time information, which can significantly improve the effective-
ness of prefetching. Many previous proposals for hardware prefetchers target
specific patterns observed in the reference stream, such as strided accesses
[Chen and Baer 1992; Jouppi 1990; Palacharla and Kessler 1994] and accesses
to linked-data structures [Cooksey et al. 2002; Roth et al. 1998]. These classes
of prefetchers are effective for specific access patterns, but have limited appli-
cability across a wider range of application programs.

A more generic hardware approach is correlation-based prefetching (CP)
[Charney and Reeves 1995; Hu et al. 2003; Joseph and Grunwald 1999; Lai
et al. 2001; Nesbit and Smith 2004; Nesbit et al. 2004], which compares future
memory references with past memory behavior to prefetch repetitive reference
patterns. The address predictor of CP rely on the hypothesis that any given
sequence (in this case, the missed address stream), with or without stride local-
ity, will repeat itself. Unfortunately, CP suffers from several key shortcomings.
First, rather than recording only the repeating patterns for prediction, these
prefetchers record all the misses, both the repeating pattern as well as ran-
dom noise, present in the missed address stream. Predictions based on these
random elements result in lower prediction accuracy. Second, these prefetchers
are usually trained with L1 cache miss streams for prefetching, which are often
clustered in out-of-order engines. As a result, prefetching hardware is required
to be fast so it can intercept the patterns present in the miss stream, while be-
ing large enough to record all miss instances. Moreover, a considerable fraction
of the L1 miss stream results in L2 access hits, which are usually tolerated by
an aggressive out-of-order processor. Finally, CP does not offer both high cover-
age (the fraction of demand cache misses resolved by the prefetcher) and high
prediction accuracy (the fraction of the data offered by the prefetcher that was
used) [Joseph and Grunwald 1999].

This paper proposes the Spectral Prefetcher, a novel mechanism for cache
prefetching that captures frequencies within a pattern in the cache miss se-
quence. The spectral prefetcher, as proposed, is aimed specifically at prefetch-
ing into the L2 cache by inspecting the L2 cache miss stream. Frequencies are
defined in terms of recurring distances (lags)—the number of miss events ob-
served between the reappearance of the data item in the miss stream. When
more than one miss is observed with the same recurring distance, the prefetch-
ing hardware assumes a pattern and begins recording for future prediction.
It dynamically partitions the physical address space in a strided fashion and
detects the tag pattern (higher order bits) within each partition. Two missed
references are within the same partition, referred to as tag concentration zones

ACM Transactions on Architecture and Code Optimization, Vol. 2, No. 4, December 2005.

Spectral Prefetcher: An Effective Mechanism for L2 Cache Prefetching • 425

(TCzones), if their addresses have the same low order bits (i.e., they map to
the same cache set). This approach is similar to the tag correlating prefetcher
[Hu et al. 2003] that predicts the pattern of tags with the same cache index
(low-order bits).

Ideally, a prefetcher should capture any pattern in the missed address stream
and offer the processor all the data it needs for processing. Prior research in
correlated prefetching has tried to capture either the patterns in absolute val-
ues [Charney and Reeves 1995; Hu et al. 2003; Joseph and Grunwald 1999] or
the stride patterns among the absolute values [Nesbit and Smith 2004; Nesbit
et al. 2004]. In contrast to prior work, SP uses an adaptive algorithm that dy-
namically tunes itself to capture patterns in either dimension—absolute (when
patterns among the values are predominant) or differential (when stride pat-
terns among the values are predominant).

The main contributions of this paper are:

� Establish the concept of the spectral prefetcher: a prefetching mechanism
that accurately identifies the patterns by dynamically adjusting to their fre-
quency. This scheme overcomes the limitations of correlation-based prefetch-
ing, which follows strict value locality [Lipasti et al. 1996] by recording every
miss instance for prediction. In contrast, the proposed scheme records only
the repeating patterns and issues timely prefetches.

� Introduce an adaptive mechanism that guides the spectral prefetcher along
two dimensions—absolute (value locality) and differential (stride value
locality)—where it switches dynamically between the two modes whenever
either is failing to acquire the pattern within the cache miss sequence. In
differential mode, the spectral prefetcher has the ability to mask compulsory
misses.

Using a cycle-accurate simulation of an aggressive out-of-order superscalar
processor, we show that the spectral prefetcher with 1 MB of on-chip imple-
mentation speeds up memory intensive benchmarks by 1.59, on average, and, at
best, by 2.10. This outperforms the previous proposal of tag correlating prefetch-
ers [Hu et al. 2003], when given 2 MB of storage area (twice the size of SP),
by 39%. When the spectral prefetcher is compared with a larger L2 cache with
approximately equal storage area (i.e., 3 MB) it outperforms the larger L2 cache
by 31%.

The rest of the paper is organized as follows. Section 2 describes the frame-
work used to examine the feasibility of the spectral prefetcher, as well as dis-
cusses the attributes of an ideal prefetcher, specifically prefetching from main
memory. Section 3 shows, with the help of autocorrelation, that tags for a given
TCzone exhibit locality. We also discuss the frequency of patterns in terms of
recurring distance, which forms the basis of the spectral prefetcher. Section 4
details the structure and the operations of the spectral prefetcher. Section 5
presents the sensitivity analysis and identifies individual solutions to key is-
sues. Section 6 combines the results into a single prefetching architecture and
evaluates the new spectral prefetcher. Related work is discussed in Section 7
followed by the conclusion in Section 8.

ACM Transactions on Architecture and Code Optimization, Vol. 2, No. 4, December 2005.

426 • S. Sharma et al.

Table I. Configuration of Simulated Processor

Front end A 4-way 64KB instruction cache with 64-byte line size,

64K-entry Gshare branch predictor, and a 1024-entry

return address stack. A perfect BTB is assumed for

providing target addresses.

Execution core The superscalar core is an 8-wide (fetch/dispatch/issue of 8)

machine with 128-entry instruction window and 64-entry

issue queue. There are 8 fully symmetric functional units.

The pipeline depth is seven stages. The minimum branch

miss-prediction penalty is five cycles. The processor

frequency is assumed to be 4 GHz.

Caches and buses The first-level data cache is a 4-way 32KB cache with 64-byte

line size. The second-level unified cache is an 8-way 2 MB

cache with 64-byte line size and 10-cycle access latency.

There are two buses. A first-level bus is shared by

first-level data cache and the instruction cache and runs

between first-level caches and a unified second-level cache.

A second-level bus is between second-level cache and

memory. L1/L2 bus is 32-byte wide that operates on 2 GHz

frequency with 1 bus-cycle arbitration. L2/MEM bus is

16-byte wide that operates on 1 GHz frequency. The caches

are nonblocking and can resolve 32 outstanding misses (32

MSHRs).

Execution latencies Load to use from first-level cache takes one cycle. INT ALU

takes one cycle.

Memory disambiguation Processor uses Oracle disambiguation. A 128-entry

Load-Store queue is incorporated.

2. SIMULATION METHODOLOGY

Results provided in this paper were collected using a modified version of Sim-
pleScalar [Burger and Austin 1999] simulator. The timing simulator models the
MIPS R10000 processor and executes only user-level instructions. The simula-
tor is execution-driven and moves down any speculative path until the detection
of a fault or branch misprediction. The baseline architecture is an aggressive
out-of-order superscalar processor; it has a large window of execution, a large
branch predictor, as well as large associative caches. The simulator has an ora-
cle load-store disambiguation policy that causes loads to be dependent only on
stores that write to the same memory location. Because contention can have
significant influence on performance, we have rewritten the memory interface
in SimpleScalar to model cache-hierarchy, bus occupancy, bus protocol, limited
bandwidth, and main memory characteristics. The random access latency and
row cycle time of memory is assumed to be 200 cycles. The simulator does not
model internal DRAM operations like page opening, precharges, and refreshes.
We assume that the access latency on a realistic memory channel is dominated
by bus accesses and data transfers, as shown by Cuppu et al. [2001]. The main
processor and memory hierarchy parameters are shown in Table 1.

We evaluate our results using benchmarks from the SPEC2K suite [Henning
2000]. The programs were compiled using full compiler optimizations and for
programs we skip 2 billion instructions to avoid cold start effects. We then
simulate 1 billion instructions using the reference input set. Figure 1 shows

ACM Transactions on Architecture and Code Optimization, Vol. 2, No. 4, December 2005.

Spectral Prefetcher: An Effective Mechanism for L2 Cache Prefetching • 427

Fig. 1. Potential IPC improvement with Oracle L2 cache for SPEC2K.

the speedup results with an oracle L2 for all benchmarks. The speedup results,
normalized against the baseline IPC, show the maximum performance that
can be achieved by a prefetcher that is prefetching from memory for the L2
cache. We further divide the benchmarks into two groups: amiable and memory-
intensive. Amiable benchmarks are those that have a small working set size
which completely fits in the L2 cache, while the memory-intensive benchmarks
are those with extremely large working set sizes, which do not fit in the L2
cache. The two groups are shown in Figure 1. As expected, the performance
improvement of the amiable benchmarks with an oracle L2 is negligible, while
memory-intensive benchmarks show a promising speedup. In Section 5, we
present a sensitivity analysis using memory-intensive benchmarks (applu, mcf,
mgrid, ammp and swim) to identify the key performance issues (like hardware
size) for the spectral prefetcher. In Section 6, we evaluate the prefetcher using
both the amiable and memory-intensive benchmarks. The prefetcher is required
to boost the performance of memory-intensive benchmarks without degrading
the performance of the amiable benchmarks.

2.1 Discussion

Recent prefetch research [Hu et al. 2003; Joseph and Grunwald 1999; Nesbit
and Smith 2004; Nesbit et al. 2004; Palacharla and Kessler 1994] has advocated
prefetching for the L2 cache because modern out-of-order processors usually tol-
erate L1 cache misses with relatively little performance degradation. However,
most of these proposals [Hu et al. 2003; Joseph and Grunwald 1999; Palacharla
and Kessler 1994] examine the L1 cache miss stream as the prediction source
for prefetching, which are often clustered inside the out-of-order engines. These
prefetchers are required to be highly efficient since they may need to analyze
multiple references in a short span of time. Moreover, in the absence of regular
strided access, the prefetcher would need to be large enough to record every

ACM Transactions on Architecture and Code Optimization, Vol. 2, No. 4, December 2005.

428 • S. Sharma et al.

Fig. 2. Average L1 and L2 misses per 1000 cycles.

miss instance between reoccurrences to capture the repeating behavior. The
prefetcher proposed in this paper uses the L2 cache miss stream as the predic-
tion source. These L2 misses are presented to the external memory system and
occur much less frequently than L1 cache misses. Figure 2 shows the average
number of L1 cache and L2 cache misses measured per 1000 processor cycles
for the memory-intensive benchmarks. As expected, the number of L1 cache
misses is much larger than that of the L2 cache misses.

The apparent disadvantage of training with the L2 miss stream is that the
cache hierarchy removes part of the reference pattern leaving underlying ran-
domness in the miss address stream. Consequently, the patterns present in the
L2 miss stream are much harder to predict than those of the L1 miss stream.
This brings about the following requirements for prefetchers that inspect the
L2 miss stream for predictions:

� The prefetcher must be highly accurate and offer timely data to the processor.
An inaccurate prefetcher may alter the demand-fetch locality of the cache
and can lead to performance loss for workloads that are sensitive to memory
contention.

� The prefetcher should have high coverage while using the smallest possible
size.

In Section 6, we will show that the spectral prefetcher, which dynamically
captures the frequency of the repeating pattern, is highly accurate and offers
better performance than other prefetching mechanisms. In order to satisfy the
above requirements, SP partitions memory by the lower order bits; these par-
titions are referred as the TCzones. Since memory is partitioned by the lower
order bits, TCzones are strided across the memory, which, in turn, forces a fixed
number of TCzones. Caches also partition physical memory in a similar fashion
when viewed from the perspective of sets. In our simulation environment, the
L2 cache has 4096 sets with 64-byte line size that naturally divides memory into
4096 TCzones, populated by 14-bit tags (assuming 32-bit machine). To divide
memory into 512 TCzones from the previous setup, the three most significant
bits of the index are concatenated with the tag resulting in 17 bit tags (leaving
9 TCzone index-access bits). An example of how 512 TCzone map into a 4096
entry (set) cache is shown in Figure 3.

ACM Transactions on Architecture and Code Optimization, Vol. 2, No. 4, December 2005.

Spectral Prefetcher: An Effective Mechanism for L2 Cache Prefetching • 429

Fig. 3. An example of 512 TCzone.

Fig. 4. Number of unique tags and unique lines (a); number of times each tag and line reappears

in the miss stream (b). Results are presented in a log scale.

We studied the behavior of the tags in the L2 miss stream and the results of
this experiment are shown in Figure 4. The first graph of Figure 4 shows the
number of unique tags and the number of unique cache line addresses observed
in the L2 miss streams of the memory intensive benchmarks. The second graph
shows the number of times a tag and an address recur in the miss streams.
As previously mentioned, this is assuming 17 tag bits in order to produce 512
TCzones with 9 index-access bits. The unique number of cache line addresses
is much larger than that of unique tags for all the benchmarks. The fewer
tags recur more frequently than the addresses, making them a solid basis for
prediction. The potential benefits of predicting tags for a specific TCzone are: (1)
The lower order bits do not require any tracking as they are implicitly hidden in
the TCzone index-access bits and (2) predicting tags produces timely prefetches
because tag predictions span pages while applications usually access the same
page several times before accessing another. This means data from a prediction
into another page of memory will not be required immediately. In the coming
sections, we will show that tags for a given TCzone exhibit locality and then
present a prefetching mechanism that exploit the locality of the tags.

ACM Transactions on Architecture and Code Optimization, Vol. 2, No. 4, December 2005.

430 • S. Sharma et al.

Fig. 5. (a) Average number of unique tag sequences and stride sequences (log scale); (b) average

number of times every tag sequence and stride sequence reappear (log scale).

3. LOCALITY OF TAGS IN THE MISS STREAM

In the previous section, we explained how physical memory can be partitioned
into TCzones and examined the recurrence behavior of their tags in the L2 miss
stream. In this section, we will establish that tags recur repeatedly and follow
a pattern within a TCzone, either in absolute or differential form. To illustrate
this fact, we measured the repetitiveness of tag sequences in the L2 miss stream
by counting the average number of times tag sequences recur within a TCzone.
In these experiments, a sequence length of three were searched in the absolute
domain, while a sequence length of two was searched in the differential (se-
quence of strides between the tags) domain for 512 TCzones. This was done for
unbiased profiling, as the three consecutive tags in the absolute domain maps
into two consecutive strides in the differential domain. The sequences of tags (or
strides) were generated by combining the consecutive tags (or strides) together.
For example, if A, B, C, D, E. . . were the miss tags arriving in the specific TC-
zone, tag sequences ABC, BCD, CDE. . . were generated for profiling. Figure 5
shows the results of this experiment for the memory-intensive benchmarks.

Figure 5a shows the average number of unique tag sequences and unique
stride sequences observed by every TCzone. Figure 5b shows the average num-
ber of times a tag sequence and a stride sequence reappear within a TCzone. For
example, the results for the mcf benchmark indicate that the unique number
of tag sequences is slightly more than the unique number of stride sequences
and tag sequences recur a little bit less than the stride sequences. This implies
the tag and the stride sequences of the mcf benchmark constitute a pattern in
the absolute and differential domain, respectively. The results for ammp also
indicate a similar kind of behavior; recurrence is present in both the absolute
and the differential domain. Unlike the above-mentioned benchmarks, applu
and mgrid show recurrence only in the differential domain. Consequently, a
predictor that has the ability to inspect patterns in the differential domain will
be more effective for these benchmarks. Finally, the results for swim indicate a
stronger repetitive behavior in the differential domain rather than the absolute
domain.

ACM Transactions on Architecture and Code Optimization, Vol. 2, No. 4, December 2005.

Spectral Prefetcher: An Effective Mechanism for L2 Cache Prefetching • 431

Fig. 6. An autocorrelation plot of the miss tag-sequences of the mcf benchmark arriving into a

given TCzone.

Although the results shown in Figure 5 demonstrate that the tag sequences
(either in absolute or differential form) exhibit recurring behavior, it does not
convey the characteristics of the pattern by which these tag (or stride) sequences
reappear in their respective domains. The characteristics of the patterns, such
as the recurring distance of the elements present in the pattern and how fre-
quently these distances change, are important for designing a prefetcher. As a
result, in the second phase we measured the pattern characteristics with the
help of a spectral method called autocorrelation, which measures the correlation
between values of a data set and is often employed for detecting nonrandom-
ness within the data set. If there is a repeating pattern present in the dataset,
autocorrelation can provide information, such as the recurring distance of the
elements within the pattern and inferences can be made, such as the likelihood
of reappearance. The autocorrelation plot is generated by calculating the cor-
relation coefficients between the values of the same data set at times i and i +
k, where k is called the lag. The formula for calculating correlation coefficient
rk for a given data set Y is:

rk =

N−k∑

i=1

(Yi − Ȳ)(Yi+k − Ȳ)

N∑

i=1

(Yi − Ȳ)2

Here N is the size and Ȳ is the mean (average) of the data set. If the data set
is random, the autocorrelation coefficients will be near zero for all nonzero time-
lag separations. The values of coefficients lie between −1 and +1, exclusively.
If the coefficient is close to 1 (or −1) at lag k, the data set is said to be correlated
for lag k.

An autocorrelation plot for the miss tag sequences of mcf was generated and
is shown in Figure 6. As can be seen, there is a spike in the autocorrelation
plot, suggesting strong correlation in the tag sequences at a lag of 134, followed
by several smaller spikes that are the harmonics of this initial spike. There

ACM Transactions on Architecture and Code Optimization, Vol. 2, No. 4, December 2005.

432 • S. Sharma et al.

Fig. 7. (a) Snapshot of the missed tags for a TCzone (mcf). (b) Snapshot of the strides between the

missed tags for a TCzone (mcf).

are two important implications of this plot. First, the spike is not isolated;
there is a ramp up to and from the lag of 134 on the autocorrelation plot,
because of the random noise present in the missed address stream. Second,
most of the data points, or tag sequences, are correlated at a lag of ∼134. This
implies that the tags separated by ∼134 miss events are related to each other
by some correlating function. If the relationship is perfect, i.e., the tags are
reappearing at a distance of ∼134 (miss events), then it can be said that the
pattern embedded in the missed tag sequences is repeating at a frequency of
∼1/134. The above-stated implications can be confirmed in Figure 7, where a
snapshot of the miss tags of mcf is shown.

The plot in Figure 7a depicts miss tags as dots and crosses, where the dots
represent the tags that repeat in the miss stream; crosses are the random tags
present in the miss stream. As can be seen, most of the tags are perfectly related

ACM Transactions on Architecture and Code Optimization, Vol. 2, No. 4, December 2005.

Spectral Prefetcher: An Effective Mechanism for L2 Cache Prefetching • 433

Fig. 8. Sample miss tag and stride series arriving into a specific TCzone.

and are reappearing by three different frequencies: 1/131, 1/132, and 1/133,
thus confirming the results of the autocorrelation plot. The frequency variation
among the reappearing tags are due to the presence of random elements being
inserted into the pattern midstream, changing the recurring distance of the
elements following the random tags present in the pattern. The prefetcher can
detect these frequencies by recording and observing the reappearance of the
tags in a fixed storage location and use this information to filter out the random
elements, only recording the repeating pattern for predictions. There are two
potential benefits for predicting only the repeating patterns: the predictions of
the prefetcher will be highly accurate and random elements will not evict useful
data from the history tables (which are often directly accessed).

Similarly, the behavior of the missed tags in the differential domain can be
observed in Figure 7b, where a snapshot of the strides between the missed tags
of mcf is shown. The plot is chronologically aligned with the plot of Figure 7a
with the strides between the tags shown. We have used the same convention
(representing repeating strides with dots and random elements with crosses). As
can be seen, the strides also follow a pattern and are reappearing by the same
frequencies: 1/131, 1/132, and 1/133. There are two important differences
between the plots shown in the Figure 7a and Figure 7b. First, the number of
random elements increases in the differential domain. In order to understand
this phenomenon, an example is shown in Figure 8, where A, B, C . . . are the
missed tags arriving into a given TCzone and a

′
, b

′
, c

′
. . . are the corresponding

strides between the tags. Figure 8 shows that the example pattern is following
a frequency of 1/5 in both the absolute and the differential domain and the
random element R1 in the absolute domain gets mapped into r

′
1 and r

′′
1 in the

differential domain. Thus, the increase in the number of random elements for
the differential domain can be formulated as:

k∗(n1 + n2 + n3 . . .) + k,

where k is the number of bursts of random elements present in the (absolute)
miss stream and n1, n2, n3 . . . are the sizes of the bursts, respectively. The im-
plication of this phenomenon is that in the presence of random elements, a
prefetcher following strict value locality in the differential domain will have
lower prediction accuracy and lower coverage than the prefetcher following
strict value locality in the absolute domain.

Second, linearly increasing relationships in the absolute domain are con-
verted into repeating patterns in the differential domain. For example,
Figure 7a and 7b show that the linearly increasing line in the absolute domain
pattern is converted into a sequence of same stride values in the differential
domain. When a linearly increasing part of the original pattern in the absolute
domain is converted into a pattern in the differential domain, we say a high-
frequency component has been introduced. For example, the actual frequency

ACM Transactions on Architecture and Code Optimization, Vol. 2, No. 4, December 2005.

434 • S. Sharma et al.

Fig. 9. Autocorrelation plot for the miss tag-sequences of the mgrid benchmark.

Fig. 10. (a) A snapshot of missed tags observed for a given TCzone (mgrid). (b) A snapshot of the

strides between the missed tags observed for a given TCzone (mgrid).

of the patterns in Figures 7a and 7b is ∼1/134, but in the differential domain a
high-frequency component is introduced that reappears by a distance of ∼1. An
apparent disadvantage of the high-frequency components is that it will make
the job of the prefetcher more difficult in judging the actual frequency of the
pattern; only a part of the pattern will be detected if the prefetcher misjudges
the high-frequency component to be the actual frequency of the pattern.

Although, the frequency of the pattern gets disturbed in the differential do-
main for mcf, there are applications such as applu and mgrid, which exhibit
recurrence only in the differential domain, as shown in Figure 5. In order to
evaluate the behavior of the miss tag sequences for these applications, an auto-
correlation plot for the miss tag sequences of mgrid was generated and is shown
in Figure 9. As can be seen, there is a strong correlation in the tag sequences at
lag of 3. This further implies that the tags separated by a distance of 3 in the
miss stream are related to each other. For example, a snapshot of the miss tags
of mgrid exhibit the linearly increasing relationship: A, B, C, A + 1, B + 1, C +
1, A + 2, B + 2, C + 2. . . , as shown in Figure 10a. Here A, B, C. . . are the miss
tags that arrive into a specific TCzone. There is no perfect relationship between

ACM Transactions on Architecture and Code Optimization, Vol. 2, No. 4, December 2005.

Spectral Prefetcher: An Effective Mechanism for L2 Cache Prefetching • 435

Table II. Characteristics of the Repeating Patterns for Memory-Intensive Benchmarks

Presence of

Patterns Observed Either Randomness Frequency of the Frequency of the

in Absolute, Differential in the Access Repeating Pattern in Repeating Pattern in

Benchmarks or Both the Domains Behavior Absolute Domain Differntial Domain

applu differential None None 1/3 to 1/7

mcf absolute and differential Yes 1/47 to 1/313 1 to 1/16, 1/47 to 1/313

mgrid differential None None 1 to 1/21

ammp absolute and differential Yes 1/9 to 1/202 1 to 1/202

swim absolute and differential Minimal 1/762 to 1/1935 1 to 1/12, 1/762 to 1/1935

the miss tags in the absolute domain, while they constitute a pattern in the dif-
ferential domain. As shown in Figure 10b, a snapshot of the strides between the
miss tags of mgrid, the pattern reappears by the distance of 3 (1/3 frequency)
in the differential domain. These observations lead to an important point—the
prefetcher should monitor both the absolute and differential domain and select
the domain that can increase the effectiveness of prefetching.

In addition to the characteristics of the patterns, autocorrelation also pro-
vides a rough estimate of the space requirements for detecting the pattern. The
frequency of a pattern is itself an answer to the size; if the frequency is 1/x than
we need at least an x entry history table to detect the pattern. We measured
the frequency of the repeating patterns, within a TCzone, for all the memory-
intensive benchmarks by searching among the miss tag series, with the help of
autocorrelation, in both the absolute and differential domain for 512 TCzones.
The results of this experiment are shown in Table II. The second column of the
table indicates that patterns were observed either in absolute, differential, or
both domains, while the third column shows the presence of randomness in the
missed access behavior. The fourth and fifth columns show the frequency range
of the patterns observed in the absolute and differential domains, respectively.
It is to be noted that the profiling results, with the help of autocorrelation, do
not provide any information about the effectiveness of the prefetcher working in
the absolute only, differential only, or adaptive (absolute and differential) mode.
Autocorrelation only provides feedback about the characteristics of the missed
address behavior of the applications. For example, in mcf, patterns were seen
in both domains and the frequency of the pattern ranged from 1/47 to 1/313.
It was further observed that in the differential domain high-frequency pattern
emerged with a reappearing distance between 1 and 16. This means that a
prefetcher with a history table size of 313 entries can capture a pattern present
in the miss access behavior of mcf. These results have a great impact on the
space requirement of the history table. To illustrate this issue, let us consider
two extremes. At one extreme, consider if the prefetcher detects only the high-
frequency components introduced in the differential domain. This will greatly
reduce the space requirements as these components reappear by the distances
of 1 to 21, for all benchmarks. Unfortunately, these components are often em-
bedded within the original pattern for benchmarks, like mcf, and will result
in detection of only a part of the actual pattern, as previously mentioned. At
the other extreme, consider if the prefetcher detects the pattern only in the

ACM Transactions on Architecture and Code Optimization, Vol. 2, No. 4, December 2005.

436 • S. Sharma et al.

absolute domain. This will lead to a larger capacity requirement as the pat-
terns reappear by the distances of 9 to 1935 and will favor only the applications
that show recurrence in the absolute domain.

We have demonstrated that the tag sequences, within a TCzone, follow pat-
terns either in absolute, differential, or both the domains. In this section, we
also discussed the frequency of the repeating pattern in terms of the recurring
distance of the tag (or stride) in the miss stream, which forms the basis of the
prefetcher, explained in the next section.

4. PREFETCHER IMPLEMENTATION

In the last section we showed that the tags or the strides, within a TCzone,
follow a pattern in the missed address stream of the L2 cache. It was also
shown that the individual elements (tags or strides) of the pattern arrive with
a finite frequency. In this section, we present a prefetcher that filters out the
random noise from the miss stream and records only the repeating pattern by
adjusting to its frequency—thus the name “spectral prefetcher” (SP). We start
by comparing SP with tag-correlating prefetcher [Hu et al. 2003] (TCP) and
then, with the help of an example, we describe the operations of the spectral
prefetcher.

TCP was selected for comparison as it also divides memory in a strided fash-
ion (TCzones) and predicts the pattern of tags for a given cache set. Figures
11a and b depicts the structure of TCP and SP, respectively. TCP is a two-level
correlating prefetcher where the first-level table, called the tag history table
(THT), contains the last k missed tags of the same cache set. These tags are
combined together with the current miss tag and the cache set to access the
second-level table called the pattern history table (PHT). The PHT provides
the next predicted tag, which is combined with the cache set to generate the
predicted address. Similarly, SP partitions the physical memory into TCzones
and detects tag patterns within each zone. It allocates an analyzer and correla-
tor for each zone, which are indexed by the index-access bits of the TCzone. The
function of the analyzer is to detect the pattern either in the absolute or differ-
ential domain and to update the correlator, which provides future predictions
for prefetching. TCP and SP have much in common, but differ in the following
ways:

� TCP follows strict value locality by recording every miss as a potential can-
didate for future prediction, while SP attempts to predict only the repeating
patterns present in the miss stream by tracking the arrival records of the
missed tags.

� Unlike TCP, which attempts to catch pattern only in the absolute domain,
SP can switch dynamically between the absolute or the differential domain
whenever either is failing to acquire the pattern within the cache miss
sequence.

SP is not an extension of TCP; it can be used for full cache-line address pre-
diction when memory is not partitioned into TCzones. In this case a single, large
analyzer–correlator pair will be sufficient for pattern detection and prediction.

ACM Transactions on Architecture and Code Optimization, Vol. 2, No. 4, December 2005.

Spectral Prefetcher: An Effective Mechanism for L2 Cache Prefetching • 437

Fig. 11. (a) Structure of tag correlating prefetcher (TCP); (b) structure of spectral prefetcher (SP).

4.1 Operations of the Spectral Prefetcher

The operations of SP consist of three basic functions: analysis, update, and
lookup. In the analysis phase, the analyzer tries to detect patterns by tracking
the arrival records of the missed tags (or strides) within the TCzone, while in
update phase it passes the pattern to the correlator. The lookup operation is
performed by the correlator in order to predict a prefetch address based upon the
knowledge of past tag sequences that arrived into a specific TCzone. Figures 12a
and b depicts the structure of the analyzer and the correlator, respectively.

The components of the analyzer and the correlator are defined as:

� Max counter (MC): controls the sample size the analyzer can observe for
pattern detection. This value is updated dynamically to allow transition from
the analysis to the update state to take place sooner than a static, high value
for MC would. This, in turn, allows the pattern to be passed to the correlator
sooner.

� Global counter (GC): maintains the number of tags the analyzer has ob-
served while detecting the pattern. When GC becomes equal to MC, thr an-
alyzer switches from the analysis to the update phase.

ACM Transactions on Architecture and Code Optimization, Vol. 2, No. 4, December 2005.

438 • S. Sharma et al.

Fig. 12. (a) Structure of the analyzer; (b) structure of the correlator.

� Mode: A flag that tells the analyzer or the correlator whether they are in
absolute or differential mode. When the analyzer does not find any pattern
and reaches the update state, control logic flips this bit.

� History: This entry is present in both the analyzer and correlator. It main-
tains the history of the last k tags or strides observed in the miss stream.
It is used for indexing the analyzer table (analyzer) and the pattern history
table (correlator).

� Last tag (LT): This entry is also present in both the analyzer and correlator.
It maintains the last observed tag and is used in the differential mode to
calculate the stride.

� Lag counter table (LCT): This is a k-entry fully-associative cache-like struc-
ture in the analyzer. The function of LCT is to maintain a record of the fre-
quencies with which the elements of the patterns are repeating in the miss
stream. Each entry of LCT has two fields: lag and saturation counter. The
first field maintains a record of the recurring distance (or lag) by which the
tags (or strides) are arriving in the miss stream. The second field maintains
the number of tags (or strides) observed in the miss stream associated with

ACM Transactions on Architecture and Code Optimization, Vol. 2, No. 4, December 2005.

Spectral Prefetcher: An Effective Mechanism for L2 Cache Prefetching • 439

Fig. 13. Sample miss tag series arriving into a specific TCzone.

that lag. If the saturation counter becomes equal to the threshold value, the
controlling logic assumes a pattern is detected and updates MC to analyze
only x more entries, where x is the current lag, in order to pass the pattern to
the correlator sooner. For example, if the saturation counter becomes equal
to threshold for lag x, the controlling logic will update the MC to analyze only
GC + x entries. Once the MC has been dynamically updated, it is held static
until the next analysis.

� Analyzer table: This table is present in the analyzer to maintain arrival
records of the tag (or stride) observed in the miss stream. The index of the
table is generated by the tag (absolute) or the stride sequence (differential)
present in the history. The first field stores the hashed history, while the sec-
ond field stores the tag (or stride). The record of the recurring distances is kept
in the lag field, while the time field maintains the last time the correspond-
ing tag (or stride) was present in the miss stream. The conf bit maintains
whether the corresponding entry is a part of the pattern or not.

� Pattern history table (PHT): This table is present in the correlator for
storing the tag (or stride) correlation pairs that are passed by the analyzer
in the update phase. The index of the PHT is formed by the tag (absolute) or
the stride sequence (differential) present in the history. The first field stores
the hash history as updated by the analyzer, while the second field maintains
the next tag (or stride) for prediction.

Now that the components of analyzer and correlator have been described,
we discuss how these components detect and predict the pattern embedded in
the miss tag series. Assume that the miss tag series that arrives into a specific
TCzone is shown in Figure 13. In this example, different tags are identified by
different letters. As can be seen, the pattern consists of elements: A, B, C, D, E,
and F that reappear by two different frequencies: 1/7 and 1/8. The random
elements in the miss tag series are represented as: R1, R2, and R3. Using this
miss tag series the operation of SP are described as follows:

� Analysis: Assume, in the beginning, that all the components of analyzer are
in the reset condition, except the max counter (MC), which is set to 255. The
analyzer is further assumed to be in absolute mode and the threshold value
for the saturation counter of the LCT is 1. The condition of the analyzer,
after observing the first 3 miss tags, is shown in Figure 14a. Since there
was no entry for the hash history of AB in the analyzer table, a new entry
was allocated and the value field was updated by the miss tag R1. The value
of GC was passed to the time field, while the lag and conf bits were set to
zero. The last tag (LT) and global counter (GC) were then updated to show
that the immediate past tag is R1 and the number of tags observed is 3,
respectively. The state of the analyzer after miss tag C arrives for a second

ACM Transactions on Architecture and Code Optimization, Vol. 2, No. 4, December 2005.

440 • S. Sharma et al.

Fig. 14. An example of analysis operation of the spectral prefetcher.

ACM Transactions on Architecture and Code Optimization, Vol. 2, No. 4, December 2005.

Spectral Prefetcher: An Effective Mechanism for L2 Cache Prefetching • 441

Fig. 15. An example of update operation of the spectral prefetcher.

time is shown in Figure 14b. The values of history and GC are AB and 11,
respectively. As there was an entry present for AB in the analyzer table, the
control logic will detect reappearance and update the value field by the miss
tag C. The lag field of the entry will be updated by the recurring distance,
which is “GC – time” or 8 (not 9 since GC the state of prior to increment is
used). In addition, an entry is also allocated in the LCT to track the recurring
distance observed in the miss stream. As the saturation counter in the LCT
entry becomes equal to the threshold value, the controlling logic assumes
that the pattern is detected by updating the MC from 255 to 18. This reduces
the sample space for analysis. The final stage of analysis is shown in Figure
14c, where GC reaches the value of 18 and becomes equal to the MC. In the
mean time, the analyzer detected the reappearance of histories: CD, DE, and
EF, which reappear at a distance of 7 in the miss stream.

� Update: In the update stage, the analyzer passes the pattern to the correla-
tor. The control logic, when in the update state, searches the LCT for entries
whose saturation counter is equal to the threshold value. For each entry that
satisfies this condition, the logic searches the analyzer table for tags, whose
lag matches that of the corresponding LCT lag (or the recurring distance),
and sets the conf bit of these analyzer table entries. Finally, the entries whose
conf bit has been set are passed to the PHT of the correlator. In addition, the
mode of the analyzer is also passed to the correlator. This is done in order
to inform the correlator that it is updated either by the pattern of tags or
by the pattern of strides. At the other extreme, if no LCT entry matches the
threshold value, the control logic assumes that no pattern was found and
changes the mode from absolute to differential (or vice versa). At the end of
the update stage, the components of the analyzer, such as – LT, GC, LCT, and
analyzer table, are initialized (reset) and MC is set to its maximum value.
This is done so the analyzer can once again start the operation of analysis.
For our running example, the update stage is shown in Figure 15. Here the

ACM Transactions on Architecture and Code Optimization, Vol. 2, No. 4, December 2005.

442 • S. Sharma et al.

analyzer has detected a pattern whose elements arrive with frequencies of
1/7 and 1/8.

� Lookup: In this operation, the correlator calculates a prefetch address based
upon the knowledge of the immediate past tag (or stride) sequence present
in the history entry. The value field in absolute mode holds the next tag and
in differential mode holds the next stride. Here, from the PHT, the entry
tagged with the current history is selected and its value field used to predict
the next tag. If, in differential mode, the value field is added to the missed
tag to generate the next tag, as shown in Figure 12b. Finally, the next tag
is combined with the index-access bits of the TCzone to form the complete
cache line address and, subsequently, a prefetch to this address is issued.

An apparent disadvantage of the update phase is the latency associated with
searching the analyzer table for patterns. This latency, however, is mitigated
by the fact that an L2 cache miss takes hundreds of cycles to resolve, which
can stall the processor, creating a window to work within. Having studied the
structure and the operations of the spectral prefetcher, in the next section we
present the individual solutions to the key issues that affect the performance
of the spectral prefetcher.

5. SENSITIVITY ANALYSIS

In this section, we analyze in detail three aspects that affect the performance of
the SP: the selection of the adaptive approach that enables SP to monitor both
the absolute and the differential domain for detecting patterns, the size of the
analyzer table present in the analyzer, and the size of the PHT present in the
correlator. Sensitivity analysis of the SP is important, since not all the memory-
intensive applications exhibit recurrence in both domains. Moreover, the sizes
of the patterns, either in absolute or differential domain, are not similar for all
applications.

To understand the sensitivity to performance of the individual key aspects,
we conducted the following experiments:

� First, simulation results are presented for an infinite-sized SP that moni-
tors only the absolute or the differential domain for detecting patterns. This
experiment was conducted to establish the importance of the adaptive ap-
proach over an SP that only captures either the pattern of absolute values or
the pattern of strides among the absolute values.

� Second, simulation results are presented where the size of the analyzer table
is varied while the size of PHT is idealized. This is varied to determine the
optimal analyzer table size to handle the variety of applications.

� Finally, simulation results are presented where the size of the PHT is varied
for a specific-sized analyzer, selected from the second experiment.

For the experiments presented in the current and the following sections,
we assume SP inspects the L2 miss stream and prefetch directly into the L2
cache. If a prefetch is issued to memory, the L2 cache is probed to ensure that
the prefetch address is not present in the cache. The prefetch requests share

ACM Transactions on Architecture and Code Optimization, Vol. 2, No. 4, December 2005.

Spectral Prefetcher: An Effective Mechanism for L2 Cache Prefetching • 443

Table III. Characteristics of the Repeating Patterns for Memory-Intensive Benchmarks

Components Configurations of the Components

Lag counter table (LCT) A 4-way fully associative LCT is used for intercepting the

frequencies with which the tags arrive in the miss stream

Max counter (MC) In the beginning of the analysis stage, MC is made equal to the

number of entries the analysis table can hold for analysis. For

example, if the configuration of analysis table is j entry with k
associativity, MC at the beginning of the analysis phase will be

j ∗ k.

History This entry stores two prior observed tags in the miss stream

(tagn, tagn+1).The hash function for indexing is: (3∗ tagn) +

(7∗ tagn+1)

Fig. 16. Performance results of absolute and differential spectral prefetcher.

the L2 miss status handling register (MSHR) and are allowed to access the
memory bus only when a free MSHR is available. To prevent the modification
of the natural L2 demand miss stream by the prefetched lines, a one-bit prefetch
flag is added to the cache lines. This flag is set when the prefetch line is written
to the L2 cache. Whenever a cache access hits the prefetched line, the flag is
cleared and the address is treated like a miss and is sent to the prefetching
hardware. This approach of maintaining the L2 miss stream was first proposed
by Nesbit et al. [2004]. The configurations of all the other components of the SP
– LCT, MC, and the history are shown in the Table III. The threshold value of
the saturation counter is chosen as 3 with memory divided into 512 TCzones.
Unless stated otherwise, we assume this environment when presenting the
results of SP.

5.1 Impact of Absolute or Differential-Only Mode of the Spectral Prefetcher

Figure 16 shows our first, and perhaps the most important experiment, where
the results of SP in only absolute and differential mode are presented for all the
memory-intensive benchmarks. As mentioned earlier, an ideal SP with infinite-
sized analyzer table (2048 set, 4-way) and PHTs (2048 set, 4-way) were used
when conducting these experiments. The results of this experiment confirm
that applications exhibit better locality in one domain over the other, as neither
approach shows speedup across all benchmarks.

There is a wide variety in the access behavior of the applications. For ex-
ample, the miss tag values of applu and mgrid follow a continually increasing

ACM Transactions on Architecture and Code Optimization, Vol. 2, No. 4, December 2005.

444 • S. Sharma et al.

Fig. 17. Performance results of spectral prefetcher when the analyzer table is varied for memory-

intensive benchmarks.

order and have minimal repeatability in the absolute domain. However, when
observed in the differential domain, these applications exhibit repeating pat-
terns, which are easily detected by the differential SP. On the other hand, mcf
and ammp show promising speedup in absolute mode over differential mode.
This is due to the introduction of high-frequency components in differential
mode, discussed earlier in Section 3. In absolute mode, false high-frequency
components do not exist, so the frequencies of the pattern are not misjudged.
Since ammp does not introduce as many false high-frequency components as
mcf, the speedup difference between the modes for ammp is not as dramatic.

Conversely, the high-frequency components introduced in the differential
domain play an important role in boosting the performance of the swim bench-
mark. As mentioned in Section 3, swim shows repeatability in both the domains,
but the size of the pattern in the absolute domain is so large that even an unre-
alistically large SP can not capture the entire sequence. The higher-frequency
differential pattern, however, requires-less space, as discussed in Section 3.

These results motivated us to design an adaptive SP, so that it can monitor
both the absolute and differential domain to select the patterns from either of
the domains, rather than relying on any one mode alone.

5.2 Impact of Varying the Size of Analysis and Pattern History Table

In this subsection, we varied the sizes of the analyzer and the pattern history
table to find the optimal size for the general case. These tables, as proposed, are
directly accessed using an index value. As a result, if they are not large enough,
the prefetcher will have difficulty in detecting and predicting the patterns.
Figure 17 shows the impact of the analyzer table size (32 set, 4-way to 256
set, 4-way) for an adaptive SP. For this experiment, we chose an infinite-sized
pattern history table (2048 set, 4-way).

As can be seen, applu, mgrid, and swim show counterintuitive behavior and
their performance decreases with the increasing size of the analyzer table. This
occurs because SP favors the absolute mode initially and all these applications
show performance gain only in the differential mode. Moreover, the decision to
transition from the absolute to differential mode particularly depends upon the
size of the analyzer table, since the value of MC is initialized to the number of

ACM Transactions on Architecture and Code Optimization, Vol. 2, No. 4, December 2005.

Spectral Prefetcher: An Effective Mechanism for L2 Cache Prefetching • 445

Fig. 18. Performance results of spectral prefetcher when the pattern history table is varied for

memory-intensive benchmarks.

entries that the analyzer table can hold for analysis. As a result, there exists a
switching delay, which increases with the size of the analyzer table, and is, thus,
responsible for this unusual behavior. On the other hand, the results for mcf
and ammp are straightforward; the performance increases with the size of the
analyzer table. For a 32 set, 4-way associative analyzer table, mcf and ammp
show negligible performance gains when compared to larger tables for the same
benchmarks. The reason for this is smaller tables are not sufficiently big to
contain the entire, large absolute mode pattern (which both these benchmarks
favor). Subsequently, the analyzer switches from absolute to differential mode
(and vice-versa) more frequently, which further deteriorates the performance
gain for these applications.

It can be further observed that a 64 set, 4-way associative analyzer table
captures almost all of the patterns for all the benchmarks. We believe that this
configuration of the analyzer table is sufficient for detecting pattern among all
the memory-intensive benchmarks.

Similarly, Figure 18 shows the impact of varying PHT size (32 set, 4-way
to 256 set, 4-way) for a 64 set, 4-way analyzer table. It is worth noting that
while there was no increase in performance for the benchmarks that favor dif-
ferential mode (applu, mgrid, and swim) because of the potentially smaller
pattern sizes, the performance of those that favor absolute mode (mcf and
ammp) increased to some extent. To satisfy a general solution that works
well across all benchmarks, a 64 set, 4-way PHT was chosen as the optimal
size.

6. EVALUATION OF THE SPECTRAL PREFETCHER

In the prior section, we presented the individual solutions to the key issues that
affect the performance of the spectral prefetcher. In this section, we combine
these results into a single prefetching architecture and evaluate the new SP
effectiveness in improving performance. We compare a 1 MB SP against a TCP
with a 2-MB correlation history table. To gauge the best performance of TCP, we
present results in absolute (as originally proposed) and differential mode. We
also compare the results of SP with a 2-MB L2 against a 3-MB 12-way L2, which

ACM Transactions on Architecture and Code Optimization, Vol. 2, No. 4, December 2005.

446 • S. Sharma et al.

has approximately equal storage cost. This is followed by a brief discussion of
the coverage and accuracy of SP.

In accordance with the results presented in Section 5, we use an adaptive
SP. The configuration of the analyzer table and the PHT are selected as 64 set
4-way associative. For performance evaluation, we consider a practical imple-
mentation of SP, where address prediction by the correlator takes seven cycles.
In addition, the latency associated for the analysis of miss tag by the analyzer
was also set to seven cycles. The latency of traversing the analyzer table to
search for a pattern in the update stage was set to 20 cycles; the analyzer can-
not serve any miss tag that arrives in the mean time. The latency associated
for passing a correlation pair (hash history and the corresponding next tag or
stride) was chosen to be four cycles. Thus, passing 10 correlation pairs from
analyzer to the correlator will require 40 cycles and no analysis or prediction
will take place during this period. The size of the analyzer and correlator can
be calculated using the following formulas:

Size of analyzer = number of entries in analyzer table∗ size of (hash + value
+ lag + time-stamp) + number of entries in LCT∗ size of
(lag + saturation counter) + size of GC + size of MC

Size of correlator = number of entries in PHT∗ size of (hash + value)

In our simulation environment, we selected the following sizes for the fields
of analyzer table and PHT entries: 6-bit hash, 14-bit value, 8-bit lag, and 10-bit
time-stamp, respectively. As mentioned in Table III, we selected a 4-way LCT
and each entry maintains a 1-byte lag and a saturation counter. In addition, the
sizes of both GC and MC were selected as 10 bits, making the size of the analyzer
and correlator ∼1.19 and ∼0.625 KB, respectively. The number of TCzones was
varied to find the optimal size of 512; the total size of SP used in the simulation
became ∼929 KB or 1 MB.

We simulated TCP that inspects the L2 miss stream for L2 cache prefetching.
The size of the correlating table was chosen as 2 MB with 65536 set and 8-
way associativity. Every entry of the correlating table has two fields: a 14-bit
missed tag and a 14-bit successor (tag) to that missed tag. The indexing scheme
for correlating tables is similar to that used in SP, discussed in Table III. In
addition, the hash generated for indexing is combined with the miss index of the
cache so that each cache set has its own private space in the correlating table.
As previously discussed, our simulation environment uses a 2-MB L2 with 4096
sets, thus making TCP divide memory into 4096 TCzones. Although TCP was
originally proposed to capture pattern of tags (absolute), we also present results
of TCP capturing pattern of strides among tags (differential). For unbiased
evaluation of SP, we further present the results of TCP that divides memory
into 512 TCzones.

Figure 19 shows the performance results of SP as compared to the different
configurations of TCP. The prefetching schemes in Figure 19 are represented
as an acronym followed by a numeral, where the acronym represents the name
of the corresponding scheme, while the numeral identifies the number of parti-
tions with which the memory is divided by that scheme. For example, TCP 4096
represents a tag-correlating prefetcher that divides memory into 4096 TCzones.

ACM Transactions on Architecture and Code Optimization, Vol. 2, No. 4, December 2005.

Spectral Prefetcher: An Effective Mechanism for L2 Cache Prefetching • 447

Fig. 19. Performance results of spectral prefetcher vs. different configurations of TCP.

Fig. 20. Performance results of spectral prefetcher vs. 3-MB L2 with 10 and 18 cycles access

latency.

In general, SP outperforms all the configurations of TCP. On average, SP
achieves a 1.59 performance improvement for all the memory-intensive bench-
marks, while TCP 4096 (absolute), TCP 4096 (differential), TCP 512 (absolute),
and TCP 512 (differential) shows performance improvement of 1.14, 1.38, 1.18,
and 1.49, respectively. SP gives the best performance for the benchmarks that
have presence of random elements in their respective miss streams (mcf and
ammp). This is due to the fact that SP has a unique ability to distinguish
between the repeating patterns and the random elements, which makes the
predictions of SP highly accurate. On the other hand, TCPs follow strict value
locality by recording every instance of misses, i.e., both the patterns and the
random elements for predictions, and are thus associated with low prediction
accuracy. It is also worth noting that for the above indicated benchmarks (mcf
and ammp), TCPs show better performance in the absolute as compared to the
differential mode. The reason is that the differential domain introduces addi-
tional randomness for applications that already contain random elements (as
explained in Section 3), which further decreases the accuracy of the differen-
tial TCPs. For benchmarks that favor the differential mode (applu, mgrid, and
swim), TCP 512 (differential) marginally outperforms SP. This happens because
SP favors the absolute mode initially and there exist a switching delay in tran-
sition from absolute to differential mode, as explained in the previous section.

Figure 20 compares 1-MB SP with a base 2-MB L2 (with access latency
of 10 cycles) against a 3-MB L2 (4096 set 12-way). We evaluated both an

ACM Transactions on Architecture and Code Optimization, Vol. 2, No. 4, December 2005.

448 • S. Sharma et al.

Fig. 21. Utilization of prefetched lines served by SP in terms of coverage and accuracy.

unrealistic (10-cycle access latency) and realistic (18-cycle access latency) im-
plementations of large L2. The results indicate that for most of the benchmarks
(applu, mgrid, ammp, and swim), SP is more cost effective than increasing the
size of L2. For the mcf benchmark, an unrealistic L2 slightly outperforms SP, be-
cause the larger L2 captures a significant fraction of its working set. Conversely,
in a realistic environment, SP outperforms a larger L2 for mcf, mainly because
the out-of-order engine fails to overlap the realistic L2 latency. Moreover, larger
L2 implementations show no increase in performance for benchmarks that have
minimal repeatability (applu, mgrid, and swim) in their respective miss stream
(as shown in Figure 4).

To fully evaluate SP, accuracy and coverage were also analyzed. The utiliza-
tion of the prefetched lines that were served by SP is shown in Figure 21. The
figure shows the utilization in terms of coverage and prediction accuracy. An
ideal prefetcher would have a large coverage with high prediction accuracy. As
can be seen, SP provides decent coverage and a 85–95% prediction accuracy
across all the memory-intensive benchmarks, further showing the effectiveness
of the spectral prefetcher.

Finally, we observed that SP neither hurts nor improves the performance of
amiable benchmarks, since their working sets completely fit into the L2 cache.

7. RELATED WORK

Numerous hardware prefetching architectures have been proposed in litera-
ture, many of which have relied on capturing specific memory reference pat-
terns. Chen and Baer [1992] investigated data references to detect regular
strides in the access pattern for prefetching and proposed stride prefetchers that
correlate strides with the PC of memory instruction. Jouppi [1990] proposed
stream buffers to improve cache performance for sequential reference stream.
Palacharla and Kessler [1994] extended the effectiveness of stream buffers
by allocation filtering and nonunit stride-detection mechanisms. Charney and
Reeves [1995] were the first to propose a correlation prefetching scheme for
L1 miss reference stream. In this scheme, a hardware cache maintains parent–
child pair information, where parent corresponds to the first cache line and child
corresponds to the cache line accessed right after the first cache line. Joseph
and Grunwald [1999] proposed a Markov model for prefetching that maintains

ACM Transactions on Architecture and Code Optimization, Vol. 2, No. 4, December 2005.

Spectral Prefetcher: An Effective Mechanism for L2 Cache Prefetching • 449

a set of states that are connected with transition arcs denoting transition from
one state to another. In the case of data-prefetching, states denote the cache
lines and transition arcs denote the probability of transition from one cache
line to another. Roth et al. [1998] proposed a prefetching mechanism, for linked
data structures that can run-ahead a pointer intensive application to mask the
prefetch latency. Lai et al. [2001] were the first to propose hardware-based dead-
block predictor based on PC traces of the memory instruction. In this scheme,
the prefetcher predicts when the cache line becomes “dead” and what missed
cache line will be referenced next by the processor. Cooksey et al. [2002] pro-
posed content-directed data prefetching, which prefetches the connected linked
data structure elements by examining the data contents of the missed cache
line. Hu et al. [2003] proposed, a TCP that exploits the repeating behavior of
the cache line tags for a given cache set to generate a prefetch. In their scheme,
the prefetcher is placed between direct-mapped L1 and large associative L2 and
prefetches are generated for L2 by looking into the L1 miss stream.

Compiler-based prefetching inserts explicit prefetching directives into the
code to fetch data into the cache before the actual access is executed. Mowry
et al. [1992] proposed a software solution for scientific applications by accu-
rately predicting the likely missed references and were successful in hiding the
memory access latency. Luk and Mowry [1996] and Lipasti et al. [1995] tar-
geted pointer-intensive applications with recursive data structures. While Luk
and Mowry proposed a greedy approach for pointer prefetching, Lipasti pro-
posed heuristics that considers pointer passed as argument to the procedures
for prefetching.

Ding and Zongh [2003] studied reuse (recurrence) for predicting the cache
miss rates of programs. By using recurrence distance, they were able to pre-
dict the miss rates for all data inputs on all sizes of the fully associative or
limited associative caches. Their work did not investigate the concept of using
recurrence for prefetching as the SP does.

8. CONCLUSION

In this paper we proposed and evaluated SP, an adaptive method for prefetching
data from main memory. SP divides the memory address space into TCzones
and detects the pattern of tags (or strides), within each TCzone by dynami-
cally adjusting to their frequency. The adaptive mechanism of SP dynamically
determines whether the pattern of tags or pattern of strides will increase the ef-
fectiveness of prefetching and switches accordingly. This scheme overcomes the
limitations of correlation-based prefetching, which follows strict value locality,
and records only the repeating patterns for predictions.

We used a cycle-accurate aggressive out-of-order simulator that models bus
occupancy, bus protocol, and limited bandwidth. Our experimental results show
performance improvement of 1.59, on average, and, at best, 2.10 in the memory-
intensive benchmarks we studied. Further, we show that SP outperforms the
previously proposed scheme, with twice the size of SP, by 39% and a larger L2
cache, and with equivalent storage area by 31%.

ACM Transactions on Architecture and Code Optimization, Vol. 2, No. 4, December 2005.

450 • S. Sharma et al.

REFERENCES

BURGER, D. AND AUSTIN, T. 1999. The Simplescalar Toolset, Version 3.0 Tech. rep., University of

Wisconsin, Madison.

CHARNEY, M. J. AND REEVES, A. P. 1995. Generalized Correlation Based Hardware Prefetching,

Tech. rep., School of Electrical Engineering, Cornell University.

CHEN, T. F. AND BAER, J. L. 1992. Reducing memory latency via non-blocking and prefetching

caches. In Proceedings of International Conference on Architectural Support for Programming
Languages and Operating Systems, Boston, MA. ACM Press, New York.

COOKSEY, T., JOURDAN, S., AND GRUNWALD, D. 2002. A stateless, content-directed data prefetching

mechanism. In Proceedings of International Conference on Architectural Support for Program-
ming Languages and Operating Systems, San Jose, CA. ACM Press, New York.

CUPPU, V., JACOB, B., DAVIS, B., AND MUDGE, T. 2001. High performance DRAMS in workstation

environments. IEEE Transaction on Computers 50, 11, 1133–1153.

DING, C. AND ZHONG, Y. 2003. Predicting whole program locality through reuse distance stateless

analysis. In Proceedings of International Conference on Programming Language Design and
Implementation. San Diego, CA. ACM Press, New York.

HENNING, J. L. 2000. SPEC CPU2000: Measuring CPU performance in the new millennium.

IEEE Computers 33, 7 (July), 28–35.

HU, Z., MARTONOSI, M., AND KAXIRAS, S. 2003. TCP: Tag correlating prefetchers. In Proceedings of
9th International Symposium on High Performance Computer Architecture, Anaheim, CA. IEEE

Press.

JOSEPH, D. AND GRUNWALD, D. 1999. Prefetching using Markov Predictors. IEEE Transactions on
Computers 48, 2, 121–133.

JOUPPI, N. P. 1990. Improving direct-mapped cache performance by the addition of the small

fully associative cache and prefetch buffers. In Proceedings of the 17th Annual International
Symposium on Computer Architecture, Seattle, WA. ACM Press/IEEE, New York.

LAI, A. C., FIDE, C., AND FALSAFI, B. 2001. Dead-Block prediction and Dead-Block Correlating

Prefetchers. In Proceedings of the 28th Annual International Symposium on Computer Architec-
ture, Goteborg. ACM Press/ IEEE New York.

LIPASTI, M. H., SCHIMIDT, W. J., KUENEL, R., AND ROEDIGER, R. R. 1995. Software prefetching in

pointer and call intensive environment. In Proceedings of the 28th International Symposium on
Microarchitecture, Ann Arbor, MI. ACM Press/IEEE, New York.

LIPASTI, M. H., WILKERSON, C. B., AND CHEN, J. P. 1996. Value locality and load value prediction.

In Proceedings of 7th International Conference on Architectural Support for Programming Lan-
guages and Operating Systems, Cambridge, MA. ACM Press, New York.

LUK, C. K. AND MOWRY, T. C. 1996. Compiler based prefetching for recursive data structures.

In Proceedings of 7th International Conference on Architectural Support for Programming Lan-
guages and Operating Systems, Cambridge, MA. ACM Press, New York.

MOWRY, T. C., LAM, M. S., AND GUPTA, A. 1992. Design and evaluation of a compiler algorithm

for prefetching. In Proceedings of 5th International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, Boston, MA. ACM Press, New York.

NESBIT, K. AND SMITH, J. E. 2004. Prefetching with a global history buffer. In Proceedings of 10th
International Symposium on High Performance Computer Architecture, Madrid, Spain. IEEE.

NESBIT, K., DHODAPKAR, A. S., AND SMITH, J. E. 2004. AC/DC: An adaptive data cache prefetcher.

IEEE PACT 2004, Antibes Juan-les-Pins, France.

PALACHARLA, S. AND KESSLER, R. E. 1994. Evaluating stream buffers as secondary cache replace-

ment. In Proceedings of the 21st Annual International Symposium on Computer Architecture,

Chicago, IL. ACM Press/IEEE, New York.

ROTH, A., MOSHOVOS, A., AND GURINDER, S. S. 1998. Dependence based prefetching for linked data

structures. In Proceedings of 8th International Conference on Architectural Support for Program-
ming Languages and Operating Systems, San Jose, CA. ACM Press, New York.

Received August 2005; revised November 2005; accepted December 2005

ACM Transactions on Architecture and Code Optimization, Vol. 2, No. 4, December 2005.

