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Abstract—This paper presents a cost-effective and high-performance dual-thread VLIW processor model. The dual-thread VLIW

processor model is a low-cost subset of the Weld architecture paradigm. It supports one main thread and one speculative thread

running simultaneously in a VLIW processor with a register file and a fetch unit per thread along with memory disambiguation hardware

for speculative load and store operations. This paper analyzes the performance impact of the dual-thread VLIW processor, which

includes analysis of migrating disambiguation hardware for speculative load operations to the compiler and of the sensitivity of the

model to the variation of branch misprediction, second-level cache miss penalties, and register file copy time. Up to 34 percent

improvement in performance can be attained using the dual-thread VLIW processor when compared to a single-threaded VLIW

processor model.

Index Terms—Multithreaded processors, VLIW architectures, modeling of computer architecture.
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1 INTRODUCTION

VLIW architectures emerged in both general-purpose and
embedded/DSP processor markets such as the Intel/HP

Itanium [23], Lx VLIW architecture [28] from HP/STMicroe-
lectronics, Sun Microsystems MAJC [21], Transmeta Crusoe
[22], the Texas Instruments 320C6x family [26], and TriMedia
TM-1 [27], Fujitsu FR500 [24], and Star*Core SC140 [25].
However, as in most instruction-level parallel (ILP) archi-
tectures, but perhaps to a greater degree, the performance
of VLIW architectures suffers from penalties resulting from
unpredictable runtime events.

The general Weld architectural model is proposed as a

statically scheduled, horizontal architecture that supports

the execution of multiple, simultaneously active threads

from a single program [18]. It runs a single application

with a single OS context and compiler-inserted thread

creation with three primary goals in mind: 1) to provide

tolerance for unpredictable runtime events such as cache

misses and branch mispredictions, 2) to dynamically fill

issue slots left empty by the compiler in order to increase

ILP, and 3) to maintain the hardware simplicity inherent

to VLIW architectures while meeting the previous

objectives. It differs from previous multithreading techni-

ques [6], [8] developed for VLIW architectures in three

ways. First, it uses scheduling regions as the thread entity

to enable the full overlap of two regions at runtime. The

compiler uses control-flow and liveness analysis to

determine when to spawn speculative threads, which
results in more efficient use of issue slots across region
boundaries. Second, threads are control-speculative, but
we explore whether or not they also need to be memory
data-speculative. Third, once a speculative thread is
created, it does not communicate register values with
the primary thread. The compiler guarantees that no
interthread register transfer occurs after the thread split
point. Leveraging the compiler in this way reduces
hardware support requirements.

The design of the general Weld architecture involves
changes to the ISA, compiler support for effective genera-
tion of multiple threads, and additional hardware resources
such as multiple register files, buffers for speculative load
and store instructions, a thread synchronization hardware
and an operation welder—a hardware structure that
dynamically fills issue slots from multiple threads—to
enable multithreading. The primary change in the ISA is
the introduction of a new instruction, called a branch-and-
fork, or bork, instruction for spawning speculative threads.
The compiler inserts bork instructions along individual
control-flow paths within scheduling regions. The borks
spawn speculative scheduling regions as speculative
threads at the safest point and without the need to
hardware dependence checking. In addition to the intro-
duction of the bork instruction, two new bits (synchronization
and separability bits) must be added to the VLIW ISA.

The VLIW processors using the Weld paradigm support-
ing an arbitrary number of threads are excessively hard-
ware intensive [18]. The cost analysis of the Weld
architecture with varying thread support showed that
supporting as few as two threads was sufficient, but at a
better cost/performance. In this paper, we focus on the
dual-thread Weld model because it has the potential of
simplifying the design of speculative load and store buffers,
thread synchronization hardware, register files, and the
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operation welder without sacrificing significant perfor-
mance. Further, we propose a lower cost model of the
dual-thread Weld model that does not use memory
disambiguation hardware for speculative loads.

The remainder of the paper is organized as follows:
Section 2 analyzes the microarchitectural and compilation
issues of the dual-thread VLIW processor model using the
Weld architecture. Section 3 presents the experimental
framework and initial performance results, and then
investigates the viability of a dual-thread VLIW processor
without memory disambiguation hardware for speculative
loads and its impact on performance. Section 4 discusses the
related work. Finally, Section 5 concludes the paper.

2 DUAL-THREAD VLIW PROCESSOR MODEL

The dual-thread Weld model is a two-thread VLIW
processor model that employs speculative multithreading
from the same application in a single processor core.
Speculative threads are selected and marked at compile
time and spawned at runtime. One thread is always the
main or nonspeculative thread and the other is the
speculative thread. The main thread spawns the speculative
thread by executing a bork instruction, continues its
execution, and merges with the speculative thread by
reaching to the start address of the speculative thread.

Fig. 1 shows a high-level picture of the dual-thread Weld
speculative multithreading model. The main thread spawns
a speculative thread somewhere in the middle of its code by
executing a bork instruction at cycle N. Executing the bork
initiates en masse copy of the register file of the main thread
into the register file assigned to the speculative thread. At
the same time, the borked address is written into the
program counter PCB of the speculative thread. In cycle
N þM, the main thread reaches the point where it either
squashes the speculative thread or makes it the main
thread. The main thread merges with the speculative one
when its next fetch address is the same as the beginning
address of the speculative thread as shown in Fig. 1a (i.e.,
correct speculation). At this point, the main thread dies and
the speculative thread becomes the new main thread. In the
next cycle, the execution continues from the address
pointed by PCB. On the other hand, a thread mispeculation

occurs if the next fetch address does not match the starting
address of the speculative thread as shown in Fig. 1b. In this
case, the speculative thread is squashed, and the main
thread continues its execution at the address pointed by its
PCA in the next cycle.

2.1 Microarchitecture

The microarchitecture of the dual-thread Weld is shown in
Fig. 2. Each thread has its own program counter, fetch unit,
and register file, while both threads share the branch
predictor, instruction, and data caches. The instruction
cache needs two read ports to service two different
simultaneous cache requests, i.e., one for each thread. The
fetch stage fetches MultiOps1 [11] from the Icache, and the
weld/decode stage merges two MultiOps and decodes
them. The dual-thread operation welder is designed in such
a way that the main thread’s MultiOp has priority over the
speculative thread’s MultiOp, thus speculation never delays
forward progress.

The dual-thread operation welder is shown in Fig. 3. The
operations from the main thread MultiOp are always
forwarded to the functional units. Then, the dual-thread
operation welder inserts speculative operations into the
holes left by the main thread MultiOp. The synchronization
bit helps the main thread detect whether thread speculation
is correct or not, and the separability bit tells that it is safe to
separate the individual operations within a MultiOp and
issue them in different cycles. The crossbar control takes
operation slot m empty2 bits and 1 separability bit from each
thread and interleaves speculative operations into the issue
register through the Welding Crossbar. The operand read
stage reads operands into the buffer for each thread and
sends them to the functional units. The execute stage
executes operations and, finally, the write-back stage writes
the results into the register file and Dcache.

There are two register files, one for each thread, in the
dual-thread Weld model. The dual register files can be
designed to provide a fast copy of all registers from one to
another, preferably in a single cycle. A potential register file
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Fig. 1. High-level picture of the dual-thread Weld speculative multi-

threading model.

1. A MultiOp is a group of instructions that can be potentially executed
in parallel.

Fig. 2. Dual-thread Weld microarchitecture.

2. Empty bit for each operation slot in a MultiOp is reset if there is an
operation in the slot.



design is shown in Fig. 4, which is similar to the Checkpoint-

repair scheme [19]. The design has duplicated and cross-
connected memory bit cells. Each memory bit cell corre-
sponds to a bit from each register file. In the figure, A and B
are the register files A and B, and the subscript denotes the
bit number. Two extra lines, Copy A-B and Copy B-A, are
added to control the direction of data bit copy. The data bit
transfer is done between the read data bit line of one
register file to the write data bit line of the other one
through a pass transistor used as a switch. This kind of
register file layout allows a faster copying of one register file
to another. The copy is performed at the time when a bork

operation executes. There is no register transfer needed
from the main thread to the speculative one after the thread
creation point. The compiler guarantees that a speculative
thread be created only after all live-out operations in the
main thread complete and write their results into its own
register file.

When a bork instruction is executed at runtime, the target
address of the bork instruction is saved in the borked address
field of the Main Thread Register (MTR). The register file of
the main thread dumps its contents to the other register file
and sets the PC of the speculative thread to the borked
address. The MTR has a 1-bit Register File (RF) bit and the
borked PC address (if it spawned a speculative thread). Since
there are only two register files in the model, a 1-bit is
sufficient to represent register file (0 denotes the register file
A and 1 denotes the register file B). By toggling the RF bit in
the MTR, the register file for the speculative thread can be
determined. Each operation is attached with a RF bit to

route results to the correct register file. This is done by
reading the RF bit in the MTR for each thread before
executing the MultiOps.

Thread merge is detected with the help of a synchroniza-
tion bit that is added to each MultiOp in the ISA by the
compiler. This bit is set in the first MultiOp of each thread at
compile time. When a MultiOp (either from Fetch A or
Fetch B) in the speculative thread with the synchronization
bit set is fetched from the cache, the synchronization bit
detector detects a potential thread merge point. Then, the
borked PC field in the MTR is compared with the PC value of
the MultiOp. If the addresses match, the speculative thread
is correctly speculated. The main thread dies and the
speculative thread becomes the main thread. This is
achieved by flipping the RF bit and clearing the contents
of the borked PC field in the MTR. If the addresses do not
match, the speculative thread is mispeculated and must be
squashed. Also, the borked PC field is cleared in the MTR.

Fig. 5 shows an example of thread creation and
synchronization in the dual-thread Weld architecture.
Thread A is the main thread and it has a bork operation in
the second MultiOp. As soon as this bork in the MultiOp is
executed, the processor creates the Thread B (i.e., a
speculative thread) at address 100 by copying the register
file A into the register file B. At the same time, it writes 100
into the PC register of the Thread B and into the Borked PC
field of the MTR. If the actual execution path is through the
Thread B, the PC address (i.e., 100) of the first MultiOp,
which is detected by its synchronization bit, is compared
with the Borked PC in the MTR. The addresses are the same
and, therefore, the Thread B is correctly speculated. In this
case, the Thread A dies and the Thread B becomes the main
thread by flipping the RF bit in the MTR. Now, the register
file B becomes the new main thread’s register file. The
Borked PC field in the MTR (shown as X in the figure) is
cleared and the register file A is available for a new
speculative thread.

On the other hand, if the actual execution path is not
through the Thread B as shown in Fig. 6, the address 1,000 in
the PC register does not match with the address 100 in the
MTR. Therefore, the Thread B is mispeculated and must be
squashed. After squashing Thread B’s operations from the
pipelines, the Thread A remains as themain thread.However,
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Fig. 3. Dual-thread operation welder.

Fig. 4. Dual register file design with fast register copy.

Fig. 5. Example showing thread creation and synchronization in the

dual-thread Weld. Case 1: The actual path through Thread B.



theBorked PC field in theMTR is cleared for a new speculative
thread. The RF bit remains the same because the main thread
does not change.

Load operations’ addresses from the speculative thread
are saved in a buffer called the Speculative Memory
Operation Buffer (SMOB) until the merge time. A spec-
ulative load is always executed and the address of the load
is kept in the SMOB. The SMOB is a fully associative buffer
and contains two fields for each entry: a valid bit and the
load address. Its mechanics is similar to ARB [20] in
MultiScalar Processors. The store addresses from the main
thread always check the SMOB for a possible match by
comparing the store address with the load addresses in the
SMOB. If there is a match, a hazardous situation occurred
because a speculative load completed before a store at the
same address. In this case, the speculative thread must be
squashed from the processor. If there is no match until
thread merge time, no hazardous situation occurred and the
SMOB entries are cleared.

In a similar way, speculative stores from the speculative
thread are executed, but are not allowed to modify the data
cache. Instead, they are written into a special buffer called
the Speculative Store Buffer (SSB). Each entry in the SSB
contains a valid bit, store address, and store value of a
speculative store operation. The structure of the SSB is in
FIFO style and not complex because there can be at most
one active speculative thread. Also, a speculative load
operation can access the SSB to retrieve data written by
earlier speculative stores. In case of a thread merge (i.e., a
correct speculation), the speculative stores are written into
the data cache in FIFO order. In case of a thread
squash—this can be triggered from either the MTR or the
SMOB—all SSB entries are invalidated by flipping over the
valid bits in each entry. The SMOB and SSB for the dual-
thread Weld are shown in Fig. 7.

The microarchitectural implementation details of excep-
tion handling and recovery for the dual-thread Weld model
is beyond the scope of this paper. Nevertheless, if an
exception occurs in the main thread, the exception should
be taken immediately and the speculative thread should be
squashed to guarantee the correctness. This is because, if
the exception handler modifies a live-out register, the
modified register value is not visible to the speculative
thread, so the speculative thread may read the wrong

register value from its register file. On the other hand, if the
exception occurs in the speculative thread, then the
exception must be deferred until the speculative thread is
known to be correctly speculated. The exception should be
immediately taken if the speculation turns out to be correct.

2.2 Compiler Support

In this study, we used the LEGO compiler [9] as our backend.
The LEGO compiler is an experimental VLIW compiler
developed at North Carolina State University. The backend
compiler has region formation, instruction scheduling, and
register allocation phases. After forming regions, the code is
scheduled for a specific machine model. Later, the physical
registers are allocated using a global register allocator. An
additional compiler phase, named bork insertion, is run
through the register allocated code to insert bork operations in
the code. A separate phase is needed because the bork
insertion has to know the schedule times of the operations in
each procedure before inserting borks.

The scheduling regions are called treegions [9], [10] in the
LEGO compiler, which are single entry, multiple exit
regions and can be formed with or without profile
information. Each node of a treegion is a basic block and
a treegion can have multiple paths in it. The compiler treats
a treegion as a potential thread, and the bork insertion
compiler stage inserts a bork operation in each path to
spawn the next treegion in each exit. A bork operation is
inserted in a path after operations whose live-outs reach
from the path to the next treegion have all completed. This
guarantees that all registers are ready before the register file
copy. After inserting a bork operation in every path, some
paths may have more than one bork operation since they
may share some basic blocks. For each path, the earliest bork
is kept and the rest is removed from the path. The bork
algorithm is shown in Fig. 8. The algorithm creates both
control and memory data speculative threads. A treegion or
a thread is control speculative in the sense that the control
can flow through some other paths and might spawn
another treegion. It is memory data speculative that
speculative loads in the speculative thread are allowed to
complete before the stores in the main thread.

3 PERFORMANCE RESULTS OF

DUAL-THREAD WELD

This section discusses the performance analysis of the dual-
thread Weld architecture model. We first examine the
performance of the proposed architecture assuming hard-
ware handling of memory speculative operations using the
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Fig. 6. Example showing thread creation and synchronization in the

dual-thread Weld. Case 2: The actual path is not through Thread B.

Fig. 7. SMOB and SSB structures.



SMOB and, in that context, we study the performance
impact of varying the size of the SMOB and the SSB. This
study is followed by an analysis of a modified dual-thread
model in which the SMOB is removed and the compiler
guarantees proper load-store ordering. We conclude the
performance analysis of the dual-thread Weld architecture
model with a study of the effects of branch misprediction,
second-level cache miss penalties, and dual-register file
copy times on performance.

3.1 Experimental Framework

The experimental framework used for the performance
analysis of the dual-thread Weld is shown in Fig. 9. The
frontend consists of theHPELCOR [32] and the University of
Illinois at Urbana-Champaign IMPACT [31] compilers. The
output of the front end is the Rebel [32] intermediate
representation that is consumed by the LEGO compiler to
perform the bork insertion algorithm.TheLEGO compiler also
performs various traditional optimizations, instruction sche-
duling, bork insertion, and generates optimized Rebel code,
which is translated back to C as an optimized code. The
optimized code is then compiled using gcc, and the resulting
executable is run to generate dynamic VLIW traces that are
consumed on the fly by the dual-Weld architecture simulator.
The details of the dual-Weld simulator and the latencies of the
operations used in the simulations are given in Table 1. The

simulator does not model virtual memory structures such as
the TLB, page tables, etc. The machine model used for our
experiments is a six-issueVLIWprocessorwith twouniversal
functional units that can execute any type of instructions and
four ALU/BR units that can execute only ALU and branch
instructions. Each register file contains 128 integer and
128 floating-point registers. The SPECint95 benchmark suite
is used for all runs, and 100 million instructions from each
benchmark were executed using training input sets. Dual-
thread runs are compared to a basemodel consisting of single
thread run of the same program. Single-thread and dual-
thread versions of each program are generated using exactly
the same compiler optimizations. Detailed statistics about
treegions or threads such as the average and maximum
number of basic blocks and instructions per benchmark, etc.,
can be found in Havanki’s Master’s Thesis [9].

3.2 Observations and Initial Results

Fig. 10 shows the distribution of the types of MultiOps (i.e.,
welded and nonwelded) that are issued to the functional
units. A welded MultiOp is the one that contains operations
from both threads, where a nonwelded MultiOp contains
operations from either thread. The percentage of the welded
MultiOps is much less than that of the nonwelded ones with
an average of 17 percent versus 83 percent. These results
suggest that much of the improvement in performance of
the dual-thread Weld model comes from vertical multi-
threading.

Fig. 11 shows the percentage improvement in perfor-
mance of the dual-thread Weld model with a 128-entry
SMOB and a 64-entry SSB over the single-threaded base
model. From the figure, we see a mean of 22 percent
improvement in performance across all benchmarks. The
improvement by the dual-thread Weld model is primarily
due to treegion overlapping, which increases issue slot
utilization and conflicts in the SMOB. The largest improve-
ments are seen in 134.perl and 099.go because both have
high potential for treegion overlap, but more importantly,
incur the least number of SMOB conflicts among all of the
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Fig. 8. Bork insertion algorithm.

Fig. 9. Experimental framework.



benchmarks. Conversely, 147.vortex shows the lowest
performance improvement because it has a significantly
larger number of SMOB conflicts than the remaining
benchmarks, despite its similarly high treegion overlap
potential. In general, those benchmarks with high SMOB
conflict rates incur significant thread-squash penalties,
which diminish the gains provided by the increased
parallelism due to treegion overlapping.

3.3 Effects of SMOB and SSB Sizing

The number of SMOB and SSB entries was set at 128 and 64,
respectively, in our initial experiments. However, consider-
ing the impact of SMOB conflicts on performance seen in
the previous section, it is important that we examine the
effects of the SMOB and SSB sizes on overall performance.
In order to isolate the effect of SMOB size on performance,
we vary the number of SMOB entries from 64 to 1,024 using
a fixed 64-entry SSB. The results are shown in Fig. 12a.

As seen from the graph, the arithmetic mean stabilizes at
256 entries, and only 099.go shows a minimal change in
performance improvement beyond 256 entries. The number
of stalls due to the unavailability of SMOB entries stays
constant after 256 entries, therefore increasing the number
of SMOB entries beyond 256 performs equally well with

256 entries. A similar study is performed to isolate the effect
of SSB size on performance. In this study, we vary the
number of SSB entries from 32 to 512 entries using a 256-
entry SMOB. The results are shown in Fig. 12b. This graph
shows that the mean does not increase beyond 128 entries.
For similar reasons explained in the results with varying
SMOB entries, the number of stalls due to unavailability of
the SSB does not change after 128 entries.

3.4 Dual-Thread Weld without Memory Speculation

Fig. 13 shows the performance results of the dual-thread
Weld processor model with a perfect SMOB, which perfectly
speculates all load operations. This figure shows how much
performance is actually lost due to thread squashes caused
by the SMOB. An average of 36 percent improvement in
performance across all benchmarks can be attained in the
dual-thread Weld model with a perfect SMOB. This is only
about 24 percent for the same model with 256-entry SMOB.
In this section, we investigate the possibility of closing this
performance gap by using the dual-thread Weld model
without the SMOB. We introduce a modified dual-thread
Weld model in which there is no memory disambiguation
hardware support for speculative loads (i.e., the SMOB) and
the compiler is responsible for guaranteeing that proper
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TABLE 1
Properties of the Execution-Driven Simulation Environment

Fig. 10. Distribution of issued MultiOps. Fig. 11. Performance results of the dual-thread Weld.



load-store ordering is enforced across thread boundaries. In
the base dual-thread Weld model, the SMOB resolves
conflicts caused by executing speculative loads before their
corresponding stores. However, in cases where conflicts
occur, the speculative thread is completely squashed
because there is no selective recovery hardware. Squashing
results in throwing away useful work due to the flushing of
the pipelines, SMOB, and SSB. This process steals a great
number of useful cycles from the processor. The goal of the
revised model is to reduce the squash penalty incurred by
the hardware approach by disallowing speculative loads.

By enforcing load-store ordering, the compiler becomes
more restricted in making its bork insertion and scheduling
decisions. In this model, bork operations must be scheduled
after all stores in the main thread to ensure that loads from
the speculative thread cannot execute speculatively. Despite
its restrictive nature in terms of bork scheduling, this
approach may potentially outperform the dual-thread Weld
model with memory speculation for the following reasons:
1) All squash penalty cycles resulting from SMOB conflicts
are eliminated. 2) All useful work performed by the

speculative thread prior to the violating load operation is
not thrown away.

In the absence of a SMOB, the only source of thread
mispeculation is branch mispredictions in the main thread.
If the speculative thread is correctly speculated even though
the main thread has some branch mispredictions, this
means that some level of control-dependence can be
maintained in the dual-thread Weld model. Table 2 shows
the percentage of correctly speculated threads even though
the main thread encounters branch mispredictions. If the
rate of such threads is high, then significant control
independence is exploited. An average of 66 percent of
speculative threads can be correctly speculated, even
though the main thread has some branch mispredictions
in it across all benchmarks.

The bork insertion algorithm is modified to guarantee
that, when scheduling a bork operation on a given path, all
store operations on that path complete before any and all
loads in the speculative thread. The previous live-out
restrictions still apply. The modified algorithm is shown
in Fig. 14. The algorithm computes the schedule time of
each store in the path under consideration. After computing
schedule times, the maximum store completion time is
calculated by adding the operation latencies. The earliest
time a bork can schedule is the maximum of the greatest
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Fig. 12. Performance results of (a) the variable number of SMOB entries with fixed 64-entry SSB and (b) the variable number of SSB entries with

fixed 256-entry SMOB.

Fig. 13. Performance results with a perfect SMOB.

TABLE 2
Percentage of Correctly Speculated Threads, Even if the Main

Thread has Branch Mispredictions



live-out completion time and the greatest store completion
time, assuming there is at least one load operation in the
speculative treegion. If there are no loads in the speculative
treegion, then the earliest allowable bork schedule time is
determined by the maximum live-out completion time.

We study the performance of the nonmemory-specula-
tive model using a 128-entry SSB, and the results are shown
in Fig. 15 along with the results of the dual-thread Weld

with a 256-entry SMOB and 128-entry SSB. Both sets of
numbers are presented with respect to the base model. As
seen from the graph, all benchmarks experience a sig-
nificant boost in performance with the nonmemory-spec-
ulative dual-thread model. The largest improvement
occurred in 147.vortex because, as mentioned previously, it
encounters the largest number of SMOB conflicts among all
benchmarks. Similarly, the smallest improvement is ob-
served in 134.perl because it incurs the smallest number of
SMOB conflicts among all benchmarks. The mean for the
dual-thread Weld architecture with no SMOB and memory
speculation is about 34 percent. Recall that the mean
percentage improvement in performance for the dual-
thread Weld architecture with perfect SMOB was 36 percent.

Two percent point difference accounts for the loss in
performance due to late schedule and therefore late
execution of bork operations to spawn speculative threads.

3.5 Effects of Branch Misprediction

The microarchitecture of our simulated Weld processor is
composed of a simple five-stage pipeline, which determines
the branch-misprediction penalty as well as the thread-
squash penalty. However, modern microprocessors have
much deeper pipelines and, therefore, higher branch
misprediction penalties. Therefore, in this section, we
examine the performance effects of varying the branch
misprediction penalty on the dual-thread Weld architecture.
Fig. 16 shows the percentage improvement in performance
of the nonmemory-speculative, dual-thread Weld model
with a 128-entry SSB when the branch misprediction
penalty (BP) is set to 5, 10, 15, and 25 cycles. As seen in
the graph, the percentage improvement is not significantly
sensitive to the variance of the branch penalty. In spite of
longer pipeline stalls in the main thread due to longer
branch penalties, the speculative thread can still progress
using the idle cycles left by the main thread. In several
programs, 129.compress, 132.ijpeg, 147.vortex, 099.go, and
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Fig. 14. Modified bork insertion algorithm for the dual-thread Weld without the SMOB.

Fig. 15. Performance results of the dual-thread Weld with no memory

speculation (i.e., no SMOB).

Fig. 16. Performance results when the branch penalty (BP) is varied

from 5 to 25.



126.gcc, the performance improvement actually increases as
the branch latency increases. On the other hand, the
percentage improvement in 134.perl drops as the branch
penalty increases because the speculative thread may not
progress.

3.6 Effects of L2 Cache Miss Penalties

Similarly, we examine the effects of varying the latency of
the second-level (L2) cache to main memory. We use a base
latency of 30 cycles and increase it to 90 cycles to watch the
effects of longer L2 miss latencies on performance in the
dual-thread Weld architecture. For both runs, we assume a
BP of five cycles. The results are given in Fig. 17. The
average improvement in performance increases by 0.4 per-
cent across all benchmarks in spite of the increased L2 miss
latency. This is attributable to the fact that the speculative
thread takes advantage of the increase in empty issue slots
resulting from the longer stalls in the main thread,
compensating for the loss in performance. This effect can
be observed in 130.li, 132.ijpeg, 134.perl, 147.vortex, 099.go,
and 124.m88ksim. In 129.compress and 126.gcc, the opposite
effect is observed because the speculative thread may not
progress.

3.7 Effects of Register File Copy Cycle Time

So far, we assume a 1-cycle for register file copy with a mass
transfer of registers in a register file to another. However,
we also consider long latency register file transfer if the

register file is organized as clusters. Register transfer from
disjoint register files may take more than one cycle. The
transfer time is changed from 1 cycle to 10, 20, 30, 40, 50,
and 60 cycles to see the effects on performance. Fig. 18
shows the performance results with 1, 10, 20, 30, 40, 50, and
60 cycle register file copy time. The percentage improve-
ment in performance with 1-cycle register transfer time is
known to be 34 percent. From 1 cycle to 10 and 20 cycles, the
percentage improvement drops to 28 percent and 22 percent,
respectively. There is a linear relationship between the
percentage drop in performance and the increase in the
register file copy cycle time. At every 10-cycle increase in
the copy time, the percentage improvement drops by
6 percent. Until the copy time is 60 cycles, improvement
in performance is possible. However, at 60 cycles and after,
performance degradation is observed. To support this
argument, the average distance between a bork and thread
merge is computed in terms of average cycle time and
tabulated in Table 3. This distance is calculated for each
benchmark by adding each interval between a taken bork
and thread merge and then taking the arithmetic mean. For
instance, the average distance between a bork and thread
merge time for 129.compress is 29 cycles. 129.compress
experiences performance degradation when the register file
copy time becomes 30 or more cycles. A similar effect can be
observed for 124.m88ksim, in which the average distance is
39 cycles and performance degradation begins after 40 or
more register file copy cycles.

In summary, the register file copy time has a deep impact
on performance when designing a VLIW processor using
the general Weld architecture, which has multiple threads
and multiple register files. On the other hand, a careful
design of the dual-register files, as pointed out in Section 2.1,
makes the register file transfer fast and, therefore, not
critical on performance for the dual-thread VLIW processor.

4 RELATED WORK

There are two primary relevant pieces of work on the topic
of multithreading for VLIW architectures. In processor
coupling, multiple threads are scheduled statically and
interleaved into execution clusters, consisting of a set of
function units and a common register file, at runtime [6],
[7]. Threads, which are generated by the compiler through
explicit fork and forall operations, communicate through
registers and memory and are nonspeculative, unlike the
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Fig. 17. Performance results for L2 miss latency variance.

Fig. 18. Performance results with variance of register file copy cycles.



dual-thread Weld model. XIMD [8] has multiple functional
units and a large global register file similar to VLIW/EPIC
architecture, and each functional unit has a dedicated
instruction sequencer to fetch instructions. A program is
partitioned into several threads by the compiler or by a
specialized partitioning tool. The XIMD compiler takes each
thread and schedules it separately. Threads are then
merged statically to increase static code density or to
optimize for execution time. No speculative threads are
allowed in XIMD. Recently, VLIW processors using
simultaneous multithreading have been proposed in [29],
[30] to improve throughput by running different applica-
tions simultaneously.

There have also been several multithreading techniques
proposed for dynamically-scheduled architectures. In the
MultiScalar paradigm, there are multiple superscalar cores,
called processing units, consisting of their own private
register file, I-cache, and functional units [2], [3]. Each
processing unit is assigned a task, which is a contiguous
region of the dynamic instruction sequence. Tasks are
created statically by partitioning the control flow graph of
the program. During the execution of a program, register
values can flow from one task to another. SPSM (Single-
Program Speculative Multithreading) speculatively spawns
multiple threads within a single program and simulta-
neously executes those threads on a superscalar core [1].
Thread spawning is performed by inserting fork and suspend
instructions into the static code. There is a main thread that
can spawn multiple speculative threads. When the main
thread merges with a speculative thread, the speculative
thread dies and the main thread continues. This requires
merging the register state of the dying thread with the main
thread. This is somewhat different from the dual-thread
Weld model in which the speculative thread simply
becomes the main thread, eliminating the need for register
file copy and other burdens. TME (Threaded Multiple Path
Execution) executes multiple alternate paths on an SMT
superscalar processor [4], [5]. It uses free hardware contexts
to assign paths of conditional branches. Slipstream proces-
sors execute two instances of a program on a chip-
multiprocessor or a simultaneous multithreaded processor
(SMT) to improve performance and provide fault tolerance
[13]. Similarly, Balasubramonian et al. describe a double-
thread superscalar architecture model [14]. When the
primary thread stalls, the future thread starts executing
speculatively. The future thread does not modify the
processor state, but prefetches load data and helps resolve
branches in the primary thread. Steffan et al. present a
thread-level speculation technique for a CMP system [15].
Essentially, the compiler creates threads speculatively and

the hardware detects memory and register use violations.
The invalidation-based cache coherence protocol is ex-
tended to detect violations caused by speculative memory
operations. Data forwarding between threads is performed
using memory, instead of special forwarding hardware.
Data-driven Multithreading preexecutes some long latency
instructions that might cause branch mispredictions or data
cache load misses as separate threads [16]. Those threads
run simultaneously with the main thread. When the main
thread merges with those instructions, it does not reexecute
them if they were correctly speculated. Luk proposed a
software-based preexecution technique that tolerates long-
latency memory operations in SMT processors [17]. The
software spawns a preexecution thread that executes and
brings the data into the cache. This reduces data cache
misses within the main thread. However, the preexecution
thread does not merge with the main thread. Its results are
discarded when the thread stops. The preexecution thread
is created and killed by special instructions in the compiler.

5 CONCLUSION

This paper presents a novel microarchitectural and compi-
ler technique for latency tolerance in VLIW architectures.
The proposed dual-thread VLIW processor model based on
the Weld architecture paradigm tolerates latencies by
creating a speculative thread from a single application
and running it with the nonspeculative main thread
simultaneously. The compiler decides where and when to
create the speculative thread that can be both control and
memory speculative at the time of thread creation.

The dual-thread Weld model with memory disambigua-
tion hardware for speculative loads causes a large number
of thread squashes. Thus, we have also investigated the
viability of eliminating the memory disambiguation hard-
ware for speculative loads in order to reduce the hardware
cost further and potentially to improve performance by
eliminating thread squashes caused by speculative loads.
Our compiler schedules threads in such a way that no load
mispeculation occurs at runtime. Hence, the speculative
load hardware and thread squashes can be completely
eliminated. Consequently, this allows a cost-effective design
of a dual-thread Weld processor. The performance results
have shown that the low-cost dual-thread Weld processor
architecture model without the speculative load hardware
could have performance improvement of up to 34 percent
with respect to a single-threaded VLIW processor.
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