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Abstract—The ever-increasing computational power of contemporary microprocessors reduces the execution time spent on

arithmetic computations (i.e., the computations not involving slow memory operations such as cache misses) significantly. Therefore,

for memory-intensive workloads, it becomes more important to overlap multiple cache misses than to overlap slow memory operations

with other computations. In this paper, we propose a novel technique to parallelize sequential cache misses, thereby increasing

memory-level parallelism (MLP). Our idea is based on value prediction, which was proposed originally as an instruction-level

parallelism (ILP) optimization to break true data dependencies. In this paper, we advocate value prediction in its capability to enhance

MLP instead of ILP. We propose using value prediction and value-speculative execution only for prefetching so that not only the

complex prediction validation and misprediction recovery mechanisms are avoided, but better performance can also be achieved for

memory-intensive workloads. The minor hardware modifications that are required also enable aggressive memory disambiguation for

prefetching. The experimental results show that our technique enhances MLP effectively and achieves significant speedups, even with

a simple stride value predictor.

Index Terms—Single data stream architectures.

�

1 INTRODUCTION

THE trend in contemporary microprocessor design,
including fast clock speed, deep pipelines [25], large

instruction window sizes [15], [16], aggressive out-of-order
execution, and wide fetch/issue bandwidth [22], results in
tremendous capability in performing arithmetic computa-
tions (i.e., the computation not involving slow memory
operations such as cache misses). Therefore, for memory-
intensive workloads, it becomes more important to paralle-
lize multiple cache misses than to overlap cache misses with
arithmetic computations.

In this paper, we propose a novel technique to parallelize
sequential cache misses speculatively. The target workload is
memory-intensive workloads with heavy pointer chasing.
The idea is developed upon value prediction [9], [18], [19],
which was originally proposed as an instruction-level
parallelism (ILP) optimization to break true data depen-
dencies in computations. Since the data dependence
between pointer-chasing loads enforces sequential execu-
tion, value prediction has the capability of parallelizing
these loads, thereby increasing memory-level parallelism
(MLP). We advocate that for memory-intensive applications,
the largest performance potential of value prediction lies in its
capability to enhance MLP instead of ILP.

Since we focus on using value prediction to increase
MLP, the hardware overhead to support value prediction
and value-speculative execution can be significantly re-
duced. In this paper, we propose using value prediction

only for prefetching so that not only the complex value

prediction validation and misprediction recovery mechan-

isms are avoided, but higher performance improvement can

also be achieved. Unlike previously proposed value pre-

diction schemes, where the speculative results are com-

mitted when a correct prediction is made, the speculative

results in our scheme are only used for prefetching and will

not be committed. In a different point of view, one can think

of the speculative execution in our approach as a spec-

ulative preexecution scheme, which requires neither explicit

preexecution thread generation nor multithreading support.

Another important aspect is that the same hardware

changes to support such value-speculative execution also

enable aggressive memory disambiguation to break alias

(i.e., load-after-store) dependencies. Such disambiguation is

used for prefetching and is also recovery-free.
The experimental results, based on a set of SPEC2000

benchmarks [13] and Olden benchmarks [5] including both

computation-intensive and memory-intensive benchmarks,

show significant speedups resulting from breaking both

true dependencies and alias dependencies between mem-

ory operations. Such speedups also scale well with the

current trends in microprocessor design.
The remainder of the paper is organized as follows:

Section 2 addresses the related work. Section 3 illustrates

the performance potential of using value prediction to

enhance MLP. Section 4 presents the details of our proposed

approach. The experimental methodology is contained in

Section 5 and the results are in Section 6. Two simple

techniques are proposed in Section 7 to reduce the

hardware overhead as well as useless speculation at

runtime. The limitations of our proposed scheme are

highlighted in Section 8. Finally, Section 9 concludes the

paper and discusses future work.
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2 RELATED WORK

Due to the speed gap between the processor core and the
memory, hiding memory latency has been an active research
topic. One well-established solution is memory prefetching
and the majority of work is based on address prediction [2],
[14]. One recently proposed scheme [7], named stateless,
content-directed prefetch, improves upon prior techniques by
examining the prefetched data to check whether the data
could potentially contain a pointer-dereference address. If so,
the content will be used as the address for the next prefetch.
Compared to it, our proposed techniqueuses the fetcheddata
to compute pointer-chasing loads’ addresses based on
program semantics, thereby having fewer chances to fetch
wrong data to pollute the caches.

Another promising way to hide memory latency is based
on the concept of preexecution/precomputation. Both
hardware-based and software-based schemes [6], [20],
[23], [27], [33] have been proposed for this purpose. As
will be discussed in Section 4, our recovery-free value
prediction scheme is similar to the preexecution paradigm,
although our approach requires neither explicit thread
generation nor multithreaded support. Also, as pointed out
in [27], a precomputation thread is more effective when
used to prefetch the critical pointer-chasing loads in loop
control than to prefetch loads in a loop body. A similar
observation can be made for our proposed scheme since
predicting pointer-chasing loads in loop control can overlap
the execution of multiple iterations and result in better
latency hiding. Runahead execution [8], [21] is another form
of preexecution without multithreaded support. During the
execution, if the processor is stalled due to a cache miss, the
current execution state will be checkpointed and the
processor enters the runahead mode to preexecute the
independent instructions following the blocking instruc-
tion. The purpose of the preexecution is to prefetch future
data into cache. When the cache miss is repaired, the
processor returns to the normal mode and reexecutes these
preexecuted instructions. In an out-of-order processor,
runahead execution can achieve similar performance of a
much larger instruction window. Our proposed scheme and
runahead execution can be mutually beneficial as our
scheme tries to preexecute the dependent operations of a
blocking instruction. Also, as discussed in Section 3, large
instruction windows achieved by runahead execution
provide better chances for our scheme to improve MLP.

Value prediction was proposed originally as an ILP
optimization technique [9], [18], [19], [24]. Using value
prediction to hide load forward latencies is studied in [4].
By correctly predicting the value of a load instruction,
dependent instructions can avoid stalling during the time
that the load executes. Address prediction for prefetching is
proposed in [10]. Based on address prediction, the data is
prefetched and saved in a special buffer (called Memory-
Prefetch Table) and used as the value prediction of the load.
Our proposed approach is different from these previous
works in that we use value prediction only for prefetching,
thereby avoiding complex validation and recovery hard-
ware while achieving higher performance for memory-
intensive workloads (see Section 4.4 for a detailed discus-
sion). Furthermore, our approach also leverages aggressive
memory disambiguation for prefetching. As pointed out in
Section 3, it is very important to break both true and alias
dependencies in order to increase MLP.

3 USING VALUE PREDICTION TO ENHANCE

MEMORY-LEVEL PARALLELISM

Values produced by individual instructions exhibit local-
ities [24] and different value prediction schemes are
proposed to exploit such localities to break true data
dependencies [9], [18], [19]. In a typical value prediction/
speculation scheme proposed for a superscalar processor,
the prediction of an instruction enables its dependent
instructions to be executed speculatively. If the prediction
turns out to be correct, these instructions will commit their
speculative results so that the processor makes faster
forward progress by hiding the latency of speculative
computations. If the prediction is wrong, however, a
recovery scheme is necessary to squash the speculative
results and to reexecute those affected instructions with
correct data.

For memory-intensive workloads with heavy pointer
chasing, sequential cache misses resulting from pointer-
chasing code dominate the overall execution time. These
cache misses form a memory dependence chain since one
missing load’s address depends on the previous missing
load’s value. Taking a frequently executed code segment
from the benchmark mcf as an example,1 shown in Fig. 1,
the profile information shows that the pointer-chasing
codes “node->child,” “node->sibling,” “node->basic_arc->cost,”
and “node->pred->potential” result in many cache misses.
From the code segment, it can be seen that the “node”
traversing can happen in more than one direction (through
its “child” or “sibling” field). After examining the dynamic
execution behavior, it is found that the most frequently
followed traversing path is through the “sibling” field and
the traversing load through the field “child” always fetches
a value of zero, although it causes many L2 cache misses.
Therefore, the dynamic memory dependence relationship
among those missing loads can be modeled as a depen-
dence chain, as shown in Fig. 2, in which each node
represents a cache-missing load. In Fig. 2a, the dependence
chain is based on a single iteration of the outer while loop in
Fig. 1, where nodes 1 and 2 correspond to two dependent
missing loads from “node->basic_arc->cost.” Nodes 3 and 4
correspond to “node->pred->potential.” Nodes 5 and 6
correspond to “node->child” and “node->sibling,” respec-
tively, and node 0 is the same load “node->sibling” from the
previous iteration. Fig. 2b shows the dependence chain
when the loop is executed multiple times. The solid arrow
in Fig. 2 represents true data dependencies and the dashed
arrow represents alias dependencies between missing
loads. Alias dependence exists between a store and
subsequent load instructions. Here, we use the same term
to model the dependence between two cache-missing loads
when one or more stores exist between them and one of
these stores is dependent on the first missing load. It needs
to be pointed out that alias dependencies span multiple
iterations, though not shown in Fig. 2b for conciseness.
Also, note that, in the memory dependence chain, only
cache-missing loads are included as other instructions, such
as stores, adds, branches, and loads, that hit in caches are
not long latency operations.

From this example, we can see that both true data
dependencies and alias dependencies enforce sequential
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1. A simplified version of the code example is used in [30] to illustrate
the concept more concisely.



execution of the missing loads, resulting in long execution
time. In order to process these cache misses in parallel (i.e.,
to increase MLP), both dependencies need to be broken.
While aggressive memory disambiguation can minimize
alias dependencies, value prediction can be used to break
true data dependencies. In this example, memory disambi-
guation removes the dependence of node 6 on nodes 2 and
4 in Fig. 2a, thus exposing the critical path of executing the
loop as chasing the pointer “node->sibling” (i.e., node 6). If a
correct prediction can be made for this load, the execution
of multiple iterations of the loop can be overlapped, as
shown in Fig. 3, where predicting the value of the pointer-
chasing load (node 6’ in Fig. 3) in the second iteration
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Fig. 1. A code segment in the benchmark mcf (in the function refresh_potential) resulting in many cache-misses.

Fig. 2. The memory dependence chain based on the code in Fig. 1 (each node represents a cache-missing load as labeled in Fig. 1). (a) The

dependence chain for a single iteration. (b) The dependence chain for multiple iterations (alias dependences among different iterations are not

shown for conciseness).

Fig. 3. Predicting the value of Node 6’ enables overlapping of cache

misses in different iterations.



enables the third and the fourth iterations to be executed
speculatively so that their miss latencies are overlapped
with the first and the second iterations. As a result, the long
miss latencies in the third and the fourth iterations can be
completely hidden if the correct value prediction is made.

The example in Fig. 3 illustrates the effectiveness of value
prediction in breaking a memory dependence chain:
Sequential cache misses can then be processed in parallel
and MLP can be enhanced. Such effectiveness is affected by
several characteristics of this memory dependence chain.
The first is the length of a memory dependence chain. In the
example in Fig. 3, the instruction window size determines
how many iterations of the loop can be unrolled dynami-
cally. If an instruction window can only hold two iterations
of the loop, the speculative execution of the third and the
fourth iterations is impossible when they are not fetched
into the pipeline. The second is which cache-missing load
along this dependence chain is predicted. In the example in
Fig. 3, it can be seen that predicting the value of Node 6’ can
overlap more cache misses than predicting Node 6 or
Node 6’’. The third is the predictability of these missing
loads’ values since more accurate prediction will result in
more useful speculative executions. In [32], these character-
istics are examined using an analytical model of value
prediction in enhancing MLP. It is found that value
prediction can be more effective than traditional address-
prediction-based prefetching techniques for the same
predictability model. The main reason is that, while
prefetching techniques only bring the data close to the
processor (e.g., the L1 D-cache), value prediction takes one
step further by using the fetched data to drive the
dependent load instructions to be executed early. In the
example in Fig. 3, it can be seen that predicting the value of
Node 6’ is equivalent to predicting the address of the
dependent loads (e.g., Node 6’’) since the only difference is
a constant offset. So, using an address-prediction-based
prefetching, the miss latency of Node 6’’ can be hidden if
the prefetch is triggered early enough. Value prediction, on
the other hand, not only fetches the data of Node 6’’, but
also uses the fetched data to execute other dependent
instructions (i.e., the cache-missing loads in the fourth
iteration) even if their addresses/values are not predictable.
As a result, value prediction is capable of hiding much more
miss latencies. The analytical model also shows that the
effectiveness of value prediction is proportional to the
length of a memory dependence chain, value prediction
accuracies, and cache miss latencies. Since the chain length
scales with the effective instruction window size and miss
penalties scale with fast processor clock speed, we argue
that value prediction is a very powerful technique to
improve MLP for future high performance microprocessors.

4 RECOVERY-FREE VALUE PREDICTION

In this section, we discuss our proposed recovery-free
value prediction in detail. The core idea is developed in
Section 4.1 and a complexity-effective implementation is
proposed in Section 4.2. Section 4.3 highlights an interest-
ing observation that recovery-free value prediction is an
implicit form of preexecution without multithreaded
support. A detailed performance comparison between
traditional value prediction and recovery-free value pre-
diction is presented in Section 4.4 to explain why the latter

is capable of achieving better performance for our target
memory-intensive workloads.

4.1 Core Idea

As discussed in Section 3, value prediction has great
potential to enhance MLP by overlapping otherwise
sequential cache misses. To implement such a technique,
however, complex hardware support is necessary to
validate value predictions and to perform recovery from
mispredictions. As discussed in Section 1, current micro-
processors can perform computations very fast as long as
slow memory operations (e.g., cache misses) are not
involved. So, unlike previously proposed value prediction
schemes [9], [18], [19], we propose using value prediction
only for prefetching so that there is no need to validate a
prediction or to perform recovery from mispredictions.
Using the example in Fig. 3, based on the prediction of
Node 6’, the third and the fourth iterations of the loop are
executed speculatively. Unlike traditional value prediction
schemes, these speculative results won’t be committed in
our approach and the only purpose of such speculative
execution is to bring the data to the caches. As a result, even
if the prediction is correct, the third and the fourth iterations
of the loop will be executed again (unspeculatively) in our
proposed scheme. We expect that such an execution will be
very fast since the cache accesses in these iterations will hit
in the L1 data cache (as the data have already been fetched
during speculative execution if the prediction is correct). So,
compared to traditional value prediction schemes, our
technique apparently trades a small reexecution penalty in
the case of correct value predictions for much simpler
hardware overhead. In the case of a value misprediction,
both traditional schemes and our proposed scheme will
result in polluting the data caches, while our scheme
associates no recovery penalties. A detailed discussion in
Section 4.4 reveals that, in most cases, the (unspeculative)
reexecution in recovery-free value prediction does not incur
additional latencies and misprediction recovery in tradi-
tional value prediction schemes will have severer penalties
for deeper pipelines. Another interesting point is that the
same hardware changes required in our scheme also enable
aggressive, recovery-free memory disambiguation for pre-
fetching as a byproduct, therefore being capable of
delivering even higher performance improvement.

4.2 A Proposed Implementation

To support recovery-free value prediction, only minor
hardware changes are necessary. We present our proposed
design based on a MIPS R10000 style microarchitecture [29],
which has a 7-stage pipeline, as shown in Fig. 4. For
memory operations, the execution (EXE) stage is replaced
with an address generation (AGEN) stage and two memory
access stages (MEM1 and MEM2). There are four key
changes to the hardware, presented as follows.

First, a value predictor is included in the front-end of the
processor and is indexed with pc, as shown in Fig. 4. The
design of a high accuracy value predictor is out of the scope
of this paper and we use a simple stride value predictor [9],
[18], [24] to show the effectiveness of our technique, though
a more powerful predictor [26], [31] can potentially lead to a
higher performance improvement (see Section 6.4). To filter
out incorrect predictions, a confidence mechanism based on
prediction validation is necessary. This validation logic can
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be built either in the predictor update unit or in the
execution core, but off the critical path since such validation
is not needed for program execution.

Second, two flag bits are added to control value-
speculative execution. One flag bit, called value prediction
speculative (vp), is added to every entry of issue queue (IQ)
(or RUU) and load/store queue (LSQ). The other flag bit,
called value prediction ready (vp_ready), is added for each
register in the physical register file. When a confident value
prediction is made at the dispatch stage, the vp_ready bit is
set for the destination register and the predicted value is
written to the physical register file. At the issue stage, if the
source registers of an instruction are ready, it will be issued
unspeculatively and the execution result will be used to
update the value predictor. If source registers are not ready,
but the vp_ready bits for these source registers are set (i.e.,
the values of these physical registers are either predicted or
computed using previous predictions), the instruction is
issued speculatively provided there are unused issue
bandwidth and function units. When an instruction is
issued speculatively, the corresponding vp flag in the
IQ/LSQ is set to prevent the same instruction from being
issued speculatively more than once since we do not need
the same data to be prefetched multiple times. Speculatively
issued instructions will remain in the IQ until they are
issued unspeculatively later with (unspeculatively) ready
source registers. When a speculatively issued instruction
finishes, it writes back the speculative results to the physical
register file and sets the corresponding vp_ready bit to
enable dependent instructions to be executed speculatively.
Writing the speculative results to the physical register file
won’t affect the correctness of the program execution since
the physical register will be overwritten by the unspecula-
tive execution of the same instruction. In the case when a
misprediction leads to a wrong load address, which results
in a cache miss, the speculative result may arrive later than
the unspeculative result. Such a speculative result is simply
dropped as the corresponding LSQ entry has been updated
with the correct address, indicating that the load has been
executed unspeculatively.

Third, the instruction selection logic is modified so that it
prioritizes the issue of unspeculative instructions and
prohibits the speculative execution of store and branch
instructions. In such a way, the speculative execution will
not compete with normal execution for resources and it
only affects the normal execution through the data caches.

Fourth, to break alias (i.e., load-after-store) dependen-
cies, the vp flag is set for the load instructions that are
stalled due to prior unresolved store addresses. Then, those
load instructions can be issued speculatively as if they were
based on predicted values. Therefore, no alias dependencies
are enforced. This aggressive memory disambiguation
requires no recovery since the same load instructions and

their dependent instructions will be executed again un-
speculatively after the prior store addresses are resolved
and the speculative execution is used only for prefetching.
We call this recovery-free speculative memory disambiguation.

The proposed changes are relatively minor and are
unlikely to affect the critical path of the processor. Using the
physical register file to keep the value predictions and
speculative execution results enables our approach to utilize
the otherwise unused machine resources and does not
require additional ports to the register file.

4.3 Recovery-Free Value Prediction versus
Preexecution

One interesting observation is that our proposed recovery-
free speculative execution could be viewed as a simple, yet
efficient form of preexecution. As each predicted value (or a
presumably disambiguated load instruction) enables a set
of dependent instructions to be executed speculatively,
these speculatively executed instructions can be viewed as a
preexecution thread triggered by the prediction, though
there is no explicit multithread support. Such preexecution
threads are constructed dynamically for each predicted
value based on the data dependence relationship from the
fetched instruction stream, thus taking advantage of
dynamic branch prediction. The preexecution is terminated
when the normal execution catches up with the preexecu-
tion thread at the same instruction. The reason is that, when
the source registers of an instruction are ready, normal
execution is performed and the vp_ready flag is not
propagated anymore. The purpose of such preexecution is
to prefetch the data and the preexecution thread executes
only if there are unused resources, thus avoiding resource
competition with the main thread. These implicit preexecu-
tion threads are part of the main thread. Therefore, unlike
other preexecution schemes using explicit multithreaded
support, such preexecution does not incur any additional
requirement on critical resources such as the register file or
instruction window.

4.4 Performance Comparison between
Recovery-Free Value Prediction and
Traditional Value Speculation

In Section 4.1, the following initial observation is made:
Compared to traditional value prediction schemes, recov-
ery-free value prediction incurs some reexecution latencies
in the case of correct value predictions and avoids recovery
penalties in the case of value mispredictions. A detailed
examination on these latencies using our proposed im-
plementation reveals very interesting and somewhat un-
expected insights.

Correct value predictions can hide memory access
latencies as well as computation latencies in traditional
prediction schemes. One such example is shown in Fig. 5, in
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which the value (r2) of a missing load (I1) is predicted. With
the predicted value, many dependent instructions (I2 to In)
can be issued and executed speculatively. Once r2 is
available (at the MEM2 stage of I1), the prediction is
validated. As the prediction is correct, the speculative
results are committed as unspeculative and the miss latency
of instruction I1 is successfully hidden when In is a long
latency operation, such as another cache miss.

Considering the same case for recovery-free value
prediction, as shown in Fig. 6, we can see that, if the
prediction leads (directly or indirectly) to a long latency
operation (In), the early service of the cache miss (In)
during the speculative execution effectively reduces its
latency in the unspeculative execution so that the un-
speculative execution catches up with the speculative
execution (i.e., the main thread catches up with the
preexecution thread). Therefore, there is no performance
penalty for reexecution in recovery-free value prediction
compared to traditional value prediction. As cache misses
are common for our target memory-intensive workloads,
recovery-free value prediction has almost no performance
loss due to reexecution compared with traditional value-
prediction schemes. Our experiments show that, for both

computation-intensive and memory-intensive benchmarks,
up to 92 percent and 76 percent, on average, of all
preexecution threads that lead to a cache miss will be
caught up by the main thread. The difference between
computation-intensive and memory-intensive workloads is
that there are many fewer preexecution threads leading to
a cache miss in computation-intensive workloads. Conse-
quently, in the case of correct value predictions, recovery-
free value prediction is less effective than traditional value
prediction for these workloads.

In the case of value mispredictions, traditional value
speculation schemes have to perform recovery and incur
considerable performance penalties even with zero-cycle
validation and recovery (reissuing) delay, as shown in Fig. 7.
Due to the misprediction of the value of r2, the dependent
instructions (I2) have to squash the speculative results and
then to be reissued and reexecuted. Since the misprediction
is detected at the end of the MEM2 stage of I1, the reissuing
can only happen as early as the next cycle, even with zero
cycle validation and recovery latency. In recovery-free
value prediction, in contrast, the unspeculative execution
is never delayed and the back-to-back execution is never
disrupted, as shown in Fig. 8. Comparing to recovery-free
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Fig. 5. Pipeline flowchart for correct value prediction (r2 in I1) in traditional value speculation schemes.

Fig. 6. Pipeline flowchart for correct value prediction (r2 in I1) in recovery-free value prediction.

Fig. 7. Pipeline flowchart for a value misprediction (r2 in I1) in traditional value speculation schemes.

Fig. 8. Pipeline flowchart for a value misprediction (r2 in I1) in recovery-free value prediction.



value prediction, there is at least a 2-cycle performance
penalty for each value misprediction in traditional value
speculation schemes if such a penalty cannot be overlapped
with other useful execution. For deeper pipelines, e.g., a
two-cycle register read stage, such a penalty will increase,
which makes recovery-free prediction more preferable.

In summary, although it apparently seems that recovery-
free value prediction wastes a chance to better utilize the
speculative results (i.e., to commit them), the detailed
discussion above shows that, for memory-intensive work-
loads, committing speculative results cannot further im-
prove the performance for most cases, while incurring
significant penalties for misprediction recovery.

5 METHODOLOGY

We implemented theproposed technique in adetailed timing
simulator using the Simplescalar [3] toolset. The underlying
processor organization is based on the MIPS R10000
processor, configured as indicated in Table 1. In our
experiments, we vary the D-cache configurations, the ROB
size (or the instruction window size), and the memory
disambiguation model of the base configuration to evaluate
our proposed technique in a range of processor models.
Both computation-intensive and memory-intensive bench-
marks are selected from the SPEC2000 integer benchmark
suite and the Olden benchmark suite. The benchmarks
bzip2, gap, gcc, gzip, and perl are computation intensive and
the benchmarks mcf, parser, twolf, health, and mst are
memory intensive as they exhibit much higher data cache
miss rates. The reference input data are used for the
SPEC2000 benchmarks. We fastforward 800M instructions
and simulate the next 200M instructions. For the benchmark
health, the input is “max_level = 5 and max_time = 500” and it

runs into completion. For the benchmark mst, 3,407 nodes
are used as input and the first 1,950M instructions are
skipped and the next 200M instructions are simulated. The
baseline performance results of these benchmarks using the
base processor model are shown in Table 2 and it can be
seen that the execution bandwidth of the pipeline is much
underutilized for memory-intensive benchmarks, even with
the aggressive memory hierarchy (i.e., four D-cache ports
and sufficiently large number of MHSRs), indicating the
memory subsystem is still the performance bottleneck.

As described in Section 4, a simple stride value predictor
(tag-less 4K-entry) is used in our experiments to generate
value predictions. The prediction table is indexed with pc
and each entry in the table has three fields, as shown in
Fig. 9. The field “last value” holds the most recent execution
result and the field “stride” keeps the difference between the
last two execution results. The 3-bit confidence counter is
used to filter out the likely incorrect predictions. For each
successful prediction, the confidence counter is increased
by 2 and is decreased by 1 for each misprediction [26]. A
prediction with the confidence counter larger than 4 is
viewed as a confident prediction. A speculative update
scheme similar to that proposed in [17] is also used to
improve the prediction accuracy.
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TABLE 1
Base Processor Configuration

TABLE 2
Baseline Results of the Benchmarks

Fig. 9. A stride value prediction table.



6 EXPERIMENTAL RESULTS

In this section, we first evaluate the effectiveness of our
proposed technique in reducing data cache miss rates,
increasing MLP, and achieving performance gains. We then
analyze where the performance gains come from in
Section 6.2. In Section 6.3, we perform a sensitivity analysis
by applying the proposed technique to a range of processor
models. A limit study in Section 6.4 examines the perfor-
mance potential of the proposed technique using an ideal
valuepredictor. Section 6.5 addresses the interaction between
prefetching schemes and recovery-free value prediction.
Using recovery-free value prediction for early detection of
branch mispredictions is discussed in Section 6.6.

6.1 Performance Evaluation

As discussed in Section 4, our proposed technique breaks
both true data dependencies and alias dependencies
between missing loads so that many otherwise stalled
loads can be executed speculatively in parallel with prior
unspeculative missing loads. These speculatively executed
loads warm up the caches so that the unspeculative
execution will experience fewer cache misses. We first
examine the effect of this technique in reducing data cache
miss rates, as shown in Fig. 10 and Fig. 11. In Fig. 10 and
Fig. 11, the cache misses during speculative execution are
not counted since they are used as prefetch. For each
benchmark in Fig. 10, the L1 D-cache miss-rate results are

reported for both the baseline processor (labeled “base”) and
the processor with recovery-free value prediction (labeled
“vp_exe”). Also, the cache misses are further divided into
partially covered misses (i.e., a miss request for a cache line
that is already being repaired from the L2 cache or memory)
and noncovered misses. Partially covered cache misses have
less impact on overall performance compared to noncov-
ered cache misses. Fig. 10 shows that, for memory-intensive
benchmarks, the proposed technique reduces the L1
D-cache miss rate significantly, ranging from 14 percent
(from 47 percent to 33 percent in the benchmark mcf) to
0.5 percent (from 16.5 percent to 16 percent for the
benchmark health) and increases the ratio of partially
covered misses for most benchmarks. For computation-
intensive benchmarks, a slight reduction in the L1 D-cache
miss rate is shown for the benchmarks bzip2, gap, and gzip,
although the baseline miss rates are relatively small for
these benchmarks.

Fig. 11 shows the cache miss rate effect on the L2 caches.
It can be seen that the large reduction in the L1 D-cache
miss rates resulting from our proposed approach does not
increase the L2 cache miss rate for most benchmarks, which
shows that the speculative execution not only brings the
data that are already in the L2 cache into the L1 D-cache,
but also reduces many L2 cache misses. For those bench-
marks that exhibit increased miss rate in the L2 cache, for
example, the benchmark parser, when considering the
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Fig. 10. The L1 D-cache miss rates.

Fig. 11. The L2 cache miss-rates.



L1 miss rate reduction, we can see that the overall L2 misses
are also reduced, 14.5 L2 misses per 1k instruction
compared to 15.8 L2 misses originally.

Next, we use the benchmark mcf as an example to show
the MLP improvement (i.e., the overlapping of multiple
cache misses) achieved by the proposed technique for a
typical heavy pointer-chasing workload. Fig. 12 shows the
distribution of how many L1 D-cache misses are overlapped
in the baseline processor. The x-axis of Fig. 12 is the number
of the overlapping misses and the y-axis is the time during
execution that the overlapping happens. From Fig. 12, we
can see that the processor spends 12 percent of overall
execution time on computations that do not involve a cache
miss. In 33 percent of the time during the execution, a single
missing load is accessing the L1 D-cache (i.e., low MLP
since no overlapping happens) and, in 35 percent of the
time, two missing loads are accessing the L1 D-cache. The
maximum number of overlapping cache misses is deter-
mined by the MSHRs used in the cache (32 used in our
experiment). It can be inferred from this distribution that
the benchmark mcf has many sequential cache misses,
resulting in low MLP and MSHR utilization, thereby
resulting in long execution time.

With recovery-free value prediction, the overall execution
time is significantly reduced and MLP is much improved, as
shown in Fig. 13. Compared to Fig. 12, a significant amount
of sequential cache misses are now processed in parallel.
One important consequence of MLP exploration is the
increased pressure on memory hierarchy bandwidth. This
experiment shows that such pressure on MSHRs is not
overwhelming as sequential cache misses are rarely con-
verted into more than six concurrent cache-misses by

recovery-free value prediction and the number of concur-
rently employed MSHRs is less than eight most of the time.

Fig. 14 shows the speedups of the proposed recovery-
free value prediction and it can be seen that our proposed
technique achieves significant speedups for memory-in-
tensive benchmarks, up to 24 percent for mst and 11 percent
on average (average speedup is computed based on the
harmonic means of the IPCs, labeled “H_mean”). For the
well-known pointer-chasing benchmark, mcf, the speedup is
19.6 percent. Considering the low hardware overhead
required by this technique, the performance gains are
impressive. Moreover, much higher speedups can be
achieved with better prediction accuracy and larger
instruction windows, as discussed in Sections 6.3 and 6.4.
For computation-intensive benchmarks, smaller speedups
(average of 0.5 percent) are observed, which is expected
since the reduction in the D-cache miss rate for these
benchmarks is small. The only benchmark that shows a
negative speedup (-0.7 percent) is gcc, which will be
discussed further in Section 6.3 and Section 7.

6.2 Performance Analysis

To analyze why the proposed technique achieves significant
speedups, we first examine the stride value predictor to see
how well it predicts a value and how often a missing load is
correctly predicted. It is observed inprevious studies [9], [18],
[24] that many instructions exhibit stride locality and a more
recent work [28] also showed that stride locality exists in the
address stream for many load instructions in irregular
programs. As pointed out in Section 3, the predictability of
load addresses is equivalent to the load value predictability
for pointer-chasing codes. Our results, shown in Fig. 15,
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Fig. 12. The baseline MLP for the benchmark mcf (overall execution time = 390M cycles).

Fig. 13. Improved MLP for mcf using recovery-free value prediction (overall execution time = 327M cycles).



confirm these observations. For each benchmark, both the
value prediction coverage (i.e., the ratio of confident predic-
tions over all predictions) and the value prediction accuracy
(i.e., the ratio of the correct predictions over confident
predictions) are shown in Fig. 15 for all value-producing
instructions using a 4k-entry stride value predictor. It can be
seen that most benchmarks, especially the benchmarks mcf,
parser, andmst, exhibit significant stride type of value locality
and this small value predictor achieves decent prediction
coverage and accuracy.

Since value predictions are used to break memory
dependence chains, the predictability of the missing loads
is of special interests and is examined in Fig. 16. From
Fig. 16, it can be seen that the value of missing loads
exhibits different degrees of stride locality for different
benchmarks. For the heavy pointer-chasing benchmarks mcf

and mst, the value predictor achieves good prediction
coverage and high accuracy. Given their high cache miss
rate and pointer-chasing characteristics, this explains why
these benchmarks enjoy significant speedups. For another
pointer-chasing benchmark, health, the missing loads show
very limited stride type of locality. As we will see next, the
speedup for this benchmark is mainly from speculative
memory disambiguation instead of breaking true memory
dependencies. Again, if a more powerful predictor (e.g.,
context-based) is used to explore the locality in its address
stream, higher speedup can be expected for this particular
benchmark (see Section 6.4).

As discussed in Section 3, both true data dependence and
alias dependence between missing loads prevent these
loads from being executed in parallel. Recovery-free value
prediction breaks both dependencies during the speculative
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Fig. 14. The speedups of using recovery-free value prediction (H_mean stands for harmonic mean).

Fig. 15. Value predictability for all value producing instructions using a 4k-entry stride predictor.

Fig. 16. Value predictability for missing loads using a 4k-entry stride predictor.



execution. Next, we examine the impact of breaking either
of these two dependencies in enhancing MLP. In the next
experiment, we isolate the performance impact by breaking
only one type of dependency at a time. Fig. 17 shows the
speedup results for breaking true data dependency only
(labeled “prediction_only”), breaking alias dependence only
(labeled “disambiguation_only”), and breaking both depen-
dencies (i.e., the same results as in Fig. 14, labeled “both”).
We also include the speedup results using traditional value
prediction (labeled “trad_value_pred”) in Fig. 17. In the
traditional value prediction scheme, the same stride value
predictor is used and an idealistic validation and selective
reissuing (1-cycle latency) mechanism is incorporated into
the execution pipeline. From Fig. 17, it can be seen that, for
computation-intensive benchmarks, aggressive memory
disambiguation has slightly better speedups than perform-
ing value prediction only. For memory-intensive bench-
marks, breaking true dependencies results in much higher
speedups for mcf and mst, but fewer speedups for other
benchmarks compared to breaking alias dependencies. The
reason is that, for these benchmarks, many critical memory
dependencies are due to alias dependencies. For these
benchmarks, increasing the instruction window size and
performing speculative memory disambiguation can im-
prove MLP effectively. Also, our value predictor only
exploits the stride locality, limiting the opportunity to break
true memory dependence more aggressively. The bench-
marks mcf and mst, on the other hand, feature heavy pointer
chasing and exhibit strong stride locality in their value
streams. So, breaking true dependencies becomes more
profitable. Fortunately, when both true dependencies and

alias dependencies are broken at the same time using our
proposed approach, higher speedups are achieved. This
mutually beneficial effect confirms our observation in
Section 3 that both memory dependencies need to be
broken to improve MLP and similar results are also
reported in a study [4] of the interaction between value
prediction and memory dependence speculation.

Comparing our proposed recovery-free scheme with
traditional value prediction, we can see that traditional
value prediction achieves higher speedups for computa-
tion-intensive benchmarks. For memory-intensive work-
loads, recovery-free prediction has much higher speedups
as it avoids misprediction penalties and benefits from
speculative disambiguation, as discussed in Section 4.4.

6.3 Sensitivity Analysis

In this experiment, we evaluate the proposed technique in
different memory hierarchies, 16kB direct-mapped L1
D-cache and 256kB 4-way L2 cache (labeled “configuration
1”), 32kB 2-way L1 D-cache and 512kB 8-way L2 cache (the
same as in our baseline processor, labeled “configuration 2”),
and 64kB 4-way L1 D-cache and 2,048kB 8-way L2 cache
(labeled “configuration 3”). The speedups of the proposed
technique in these configurations are show in Fig. 18.

Interestingobservations canbemade fromFig. 18. First, for
the small D-cache of 16kB, the memory problem becomes
more evident. As a result, more speedups are achieved by
hidingmiss latencies using recovery-free value prediction, as
we can see from the benchmarks,mst and parser. On the other
hand, however, a small cache can tolerate less cache pollution
resulting from value mispredictions. So, the miss rate can
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Fig. 17. The speedups resulting from breaking different dependencies and traditional value speculation.

Fig. 18. The speedups of recovery-free value prediction for different memory hierarchies.



actually increase if the value misprediction rate is high
and the speedups are reduced, as in the benchmarks gcc
and twolf. Large caches, such as 64kB, are more tolerant on
the cache pollution problem, while the criticality of memory
operations is reduced if they hit in the caches more often.

In the next experiment, we increase the instruction
window size to 128 to allow it to be more tolerant to L1
D-cache misses. The same 32kB 2-way L1 D-cache and
512kB 8-way L2 cache are used as in the baseline 4/64 issue
model. The results are shown in Fig. 19. From this
experiment, we can see that much higher speedups are
reported for the 128-entry instruction window in all
memory-intensive benchmarks using our proposed recov-
ery-free value prediction. There are two major reasons
accounting for this trend. First, a large instruction window
size of 128 holds a longer memory dependence chain. As
discussed in Section 3, breaking a longer chain can overlap
more cache misses, resulting in higher performance im-
provement. Second, a larger instruction window enables
more instructions to be fetched into the window under a
long-latency cache miss, thereby enabling those instructions
to be predicted sooner than in a small instruction window.
As a result, speculative loads (or prefetches) can be issued
earlier to hide more memory access latencies.

Oracle memory disambiguation removes aliasing depen-
dencies completely. Consequently, only a few loads stall
due to earlier stores accessing the same address. Issuing
these loads speculatively (i.e., recovery-free memory dis-
ambiguation) only helps when the memory content is not
changed by those stores (i.e., stores writing the same values)
and such a benefit is quite limited due to the store-load
forwarding mechanism. On the other hand, the side effect

of such speculative execution with stale data is also minimal
since the number of such stalled loads is too small to make
an impact on performance. This observation is confirmed by
Fig. 20, which shows the speedups of recovery-free
disambiguation and recovery-free value prediction over
the baseline model with oracle memory disambiguation. All
benchmarks have no performance changes except the
benchmark perl (a 2 percent speedup) using recovery-free
disambiguation. Comparing to the results in Fig. 17, one
interesting point is that the proposed recovery-free disambi-
guation has the capability of adapting to the employed
memory disambiguation scheme: less speculation for more
aggressive memory disambiguation and more speculation
for less aggressive disambiguation. As a result, less perfor-
mance improvement is achieved for more aggressive mem-
ory disambiguation and vice versa. Another observation
made from Fig. 20 is that, although aliasing dependencies
have been eliminated by oracle memory disambiguation,
there are still significant speedups (up to 22 percent speedup
and 6.5 percent on average) achieved from breaking true
dependencies among load instructions formemory-intensive
workloads.

6.4 A Limit Study: The Performance Potential of
Recovery-Free Value Prediction

In our experiments in Section 6, the performance improve-
ments are achieved using a stride value predictor (4k entry,
tagless) and Fig. 15 and Fig. 16 indicate that such a simple
value predictor has limited capability to predict values
correctly, especially the values of missing loads, for certain
benchmarks. In the next experiment, a limit study is
performed to illustrate the performance potential of
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Fig. 19. The speedups of recovery-free value prediction for different instruction window sizes.

Fig. 20. The speedups resulting from breaking different dependencies with oracle memory disambiguation.



recovery-free value prediction assuming an ideal value
predictor. Such idealized speedups are shown in Fig. 21 for
both recovery-free value prediction and traditional value
prediction with the baseline and oracle memory disambi-
guation models.

From Fig. 21, it can be seen that, for computation-
intensive benchmarks, the performance improvement of the
recovery-free scheme is quite limited, even with ideal value
prediction, as the memory access is not their performance
bottleneck. For our target workloads, memory-intensive
benchmarks, the performance potential of recovery-free
value prediction is highly impressive (up to 205 percent and
62 percent on average for baseline disambiguation; up to
205 percent and 50 percent on average for oracle disambi-
guation) and it is evident that a more powerful value
predictor than a simple stride value predictor would
achieve higher performance improvement. Also, it should
be noted that the idealized speedups in this experiment are
based on a 64-entry instruction window and a larger
window would have even higher idealized speedups, as
discussed in Section 6.3. Traditional value prediction, on the
other hand, benefits more from ideal predictions as
misprediction recovery penalties are eliminated completely.

6.5 The Interaction between Recovery-Free Value
Prediction and Next-Line Prefetching

In the baseline processor model configured as Table 1, no
prefetching mechanism has been included. In this experi-
ment, the following next-line prefetching scheme is

implemented on all data caches (L1-D and L2 caches): For
every cache miss, a prefetch for the next cache line is
invoked. Then, considering whether such a prefetch is
allowed to be initiated for a miss during speculative
execution, there are two design choices to combine
recovery-free value prediction and next-line prefetch.
Fig. 22 shows the speedups of the next-line prefetch
(labeled “next line pref”), original recovery-free value
prediction (same results as in Fig. 14, labeled “RFVP”),
next-line prefetch for unspeculative cache misses but not for
speculative misses (labeled “RFVP with next line pref_1”),
and next-line prefetch for both speculative and unspecula-
tive cache misses (labeled “RFVP with next line pref_2”).
From Fig. 22, it can be seen that, although next-line
prefetching improves performance for all benchmarks,
mixed interactions with recovery-free value prediction can
be observed. For the benchmark mcf, both recovery-free
value prediction and next-line prefetch enhance the
memory performance. Combining both schemes further
enhances the performance, especially when the prefetches
can be initiated for speculative misses. For the benchmark
twolf, on the other hand, such combination leads to inferior
performance improvement. The reason is that the misses
that are encountered in speculative execution either pollute
the caches (due to value misprediction) or have low spatial
locality. On average, the best performance improvement
(14.1 percent) is achieved by initiating prefetches for both
speculative and unspeculative cache misses (i.e., the
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Fig. 21. Idealized speedups of recovery-free value prediction with baseline and oracle memory disambiguation.

Fig. 22. The speedups of next-line prefetch and different combinations with recovery-free value prediction.



positive interaction between recovery-free value prediction
and next-line prefetch).

6.6 Early Branch Misprediction Detection Using
Recovery-Free Value Prediction

Using value prediction to help branch prediction has been
proposed in [11], [12]. A slight hardware modification is
needed to enable recovery-free value prediction for early
detection of branch mispredictions. In the proposed
implementation scheme described in Section 4.2, both store
and branch instructions are not allowed to be issued
speculatively based on value predictions. We can simply
remove such a restriction on branches so that the
speculative execution of branches can validate branch
predictions early and speculatively. The unspeculative
reexecution of the branch afterward using unspeculative
values will then guarantee the correctness of the program.

In this naive application of recovery-free value predic-
tion, we found that 12 to 38 percent of branch mispredic-
tions can be detected early during speculative execution.
However, due to value mispredictions, the speculative
execution also introduces incorrect branch resolutions (20 to
150 percent) for some correctly predicted branches. As a
result, performance degradation is observed from specula-
tively executing branches, mostly due to the limited value
prediction capability of the simple stride value predictor
and the associated confidence mechanism. From this
experiment, we conclude that, although there is significant
performance potential to use recovery-free value prediction
for control speculation, a simple naive application is not
enough and a more careful study in this direction can be
highly rewarding and is part of our future work.

7 REDUCING OVERHEADS OF RECOVERY-FREE

VALUE PREDICTION

The performance improvement from recovery-free value
prediction is achieved from speculation based on predicted
values. To support such speculation, additional hardware is
required, as described in Section 4.2. Moreover, the
speculatively executed instructions will incur additional
power consumption. In this section, we propose two simple
techniques to reduce the number of speculatively executed
instruction while not affecting or even improving the
performance enhancement achieved from recovery-free
value prediction.

As discussed in Section 3, memory-level parallelism is
enhanced by breaking dependencies among missing loads.
In the proposed implementation, all value producing
instructions are predicted using a 4k-entry, tagless stride
value predictor. As our focus is on breaking pointer
chasing, i.e., breaking load-to-load flow dependencies, one
evident optimization is to predict loads only instead of
predicting all value producing instructions. In this way, the
value prediction table needs to be tagged (or partially
tagged), but the number of entries can be greatly reduced.
In one experiment, a 1k-entry stride predictor is used and
there is no observable performance variation from those
reported in Fig. 14.

Another feature of pointer-chasing code is that the value
of one load is used as an address for another load. We can
thereby filter out those value predictions that are not likely

to be an address for another load. Moreover, since the
objective of recovery-free value prediction is to overlap
multiple cache misses, we can further filter those predic-
tions that fall into the stack range as most stack accesses
usually hit in the cache. As a result, a prediction is only
made when it is either a heap address or a global data
segment address. Fig. 23 shows the simple modification in a
stride value predictor to make such a check and it is
unlikely that such simple value filtering will affect the
access time of the value predictor. In addition to fewer
value predictions, such a filtered value predictor also has
beneficial performance impact on the benchmarks such as
gcc since many value mispredictions are filtered out and the
cache pollution effect is highly reduced. As a result, the
original performance degradation for gcc using recovery-
free value prediction is eliminated and the performance
improvement for other benchmarks is not changed.

The two techniques discussed above reduce the number of
speculatively executed instructions significantly, as shown in
Fig. 24, which measures the ratio of the number of the
speculatively issued instructions over the unspeculatively
executed instructions. From Fig. 24, it can be seen that, in the
initial implementation of recovery-free value prediction, an
average of 38 percent and 11 percent of dynamic instructions
are issued speculatively and then reexecutedunspeculatively
for memory-intensive and computation-intensive bench-
marks, respectively. If only the load instructions are pre-
dicted, the overheads drop to 18 percent and 4 percent.When
focusing only the heap and global data segment addresses,
the average resulting overheads are 10.6 percent and
2.6 percent. All of these overhead reductions are achieved
with none or positive (gcc) performance improvement over
the initial implementation.

As a final note, the 10.6 percent overhead of speculative
issued instructions for memory-intensive workloads (or
2.6 percent overhead for computation-intensive) does not
translate to an additional 10.6 percent power consumption.
As the speculatively issued instructions remain in issue
queue, the reexecution only involves issue, execution and
write back activities, but not fetch, decode, renaming, or
retirement. Moreover, considering the reduction in execu-
tion time shown in Fig. 14, recovery-free value prediction
could be a more energy efficient design than the baseline
processor.

8 LIMITATIONS

Two limitations exist with our proposed scheme. First,
as we pointed out in Section 3, value prediction can
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Fig. 23. A stride value predictor with value filtering.



hide memory access latencies by breaking memory
dependencies, especially for long memory dependence
chains. As a result, it is effective for memory-intensive
workloads with heavy pointer chasing. If a workload does
not exhibit such memory dependencies, for example, the
cache misses due to randomly accessing large data arrays as
featured in some floating-point benchmarks, our proposed
scheme will have very limited capabilities to hide those
cache-miss penalties.

Second, in our proposed recovery-free value prediction
scheme, a prediction is made only after one instruction is
fetched and the prediction is consumed only when the
dependent instructions are in the instruction window. This
implies that the earliest time for a speculative load to be
executed is after the load instruction is dispatched into the
issue queue. It limits the capability of exploring the far-
flung MLP even if the correct prediction can be made.
Experiments in Section 6.3 show the performance impacts
of using a large instruction window to bring in instructions
early into the instruction window. Another interesting way
to explore the distant MLP is to combine with the run-ahead
execution [8], [21] to preexecute/prefetch both independent
and dependent memory accesses.

9 CONCLUSIONS

In this paper, we advocate using value prediction to
enhance MLP for memory-intensive benchmarks with
heavy pointer chasing. As current microprocessors can
execute instructions very fast as long as long memory
latency operations, such as cache misses, are not involved,
we propose to use value prediction only for data prefetch-
ing so that complex prediction validation and misprediction
recovery mechanisms are avoided and only minor hard-
ware changes are necessary. Also, the same hardware
changes enable aggressive recovery-free memory disambi-
guation for prefetching.

We present our design of recovery-free value prediction
based on a MIPS R10000 processor model and the
simulation results show that our technique enhances MLP
effectively for a range of benchmarks and achieves sig-
nificant speedups. Two simple techniques, predicting loads

only and prediction filtering, are then proposed to reduce

the associated runtime overhead.
As pointed out in [1], only a few static load instructions

are responsible for the majority of dynamic cache misses.

So, it would be very interesting to tune the value predictor

to predict only the values leading to the address computa-

tion of these load instructions. This would further reduce

the hardware overhead and the power consumption over-

head due to useless speculation.
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