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Abstract| This paper presents systematic techniques to

�nd low-power, high-performance superscalar processors
tailored to speci�c user applications. The model of power

is novel because it separates power into architectural and

technology components. The architectural component is

found via trace-driven simulation, which also produces per-

formance estimates. An example technology model is pre-

sented that estimates the technology component, along with

critical delay time and real estate usage. This model is based
on case studies of actual designs. It is used to solve an im-

portant problem: decreasing power consumption in a su-

perscalar processor without greatly impacting performance.

Results are presented from runs using simulated annealing

to reduce power consumption subject to performance reduc-

tion bounds.

The major contributions of this paper are the separa-

tion of architectural and technology components of dynamic

power, the use of trace-driven simulation for architectural

power measurement, and the use of a near-optimal search

to tailor a processor design to a benchmark.

Keywords| Superscalar, power dissipation, instruction-

level parallelism, near-optimal search, high-level synthesis.

I. Introduction

All recent high-performance, desktop processor o�erings are
superscalar designs. These processors use duplicated, indepen-
dent functional units to execute instructions in parallel. The
ability to execute in parallel is limited by the ow of informa-
tion between instructions, since some instructions depend on
results calculated earlier in the program. Superscalar processor
organizations use hardware techniques such as the Tomasulo
algorithm [1] to detect parallelism and execute code correctly.
Empirical results suggest as much as a �ve times speed improve-
ment when instruction-level parallelism is exploited [2]. Current
designs seek parallelism by examining and issuing four to six
instructions per cycle, with higher rates expected [4],[5],[6],[7].
Successful use of these high issue rates requires careful tun-
ing of the microarchitecture. There is a wealth of technolog-
ical alternatives for this task. These include branch handling
strategies [8], functional unit duplication [2], and instruction
fetch, issue, completion and retirement policies [9]. The decid-

ing factor between the various techniques is a function of the
performance each adds, versus the cost each incurs. Unfortu-
nately, this tradeo� analysis rarely takes power consumption
into account. Consequently, current superscalar processors con-
sume anywhere from 30 to 70 watts of power and will soon
be approaching 100 watts which can lead to problems with re-
spect to die packaging and package cooling techniques as well
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as decreased battery life for portable devices such as notebook
computers and cellular telephones.

The organization of a high-performance microprocessor is
determined using results from behavioral simulations. Perfor-
mance is measured as the number of cycles per instruction or the
overall run time for a set of test programs. Power consumption
is not considered until much later in the design process, and,
as such, it is the responsibility of the circuit designers rather
than the architects. However, parallelism and pipelining have
a direct impact on processor designs. Highly-parallel proces-
sors consume more power per cycle than non-parallel hardware.
Deeply-pipelined functional units consume more power, since
energy is consumed over a shorter period of time. This suggests
tradeo�s between power consumption and processor organiza-
tion that defy simple, rule-of-thumb approaches.

This research develops a system-level, behavioral model of
power consumption for designing low-power, high-performance
superscalars. This model is a separable cost function that can
be used to optimize such architectures. The cost function is sep-
arated into organizational and technological components. The
organizational component is measurable from a behavioral-level
simulation of the type used for high-level design. The techno-
logical component depends on the implementation technology.
The components can be combined after simulation to estimate
power dissipation. A near-optimal search algorithm is employed
to reduce the power consumption of superscalar processor de-
signs without high sacri�ces in performance. The combined
cost function and near-optimal search method is suitable for
tradeo� analysis of processor organizations. The method in-
troduces power considerations into the organizational design
process, reducing overall power consumption through organi-
zational changes.

II. Methods and Models

The processor model for this study is a superscalar engine
with full-Tomasulo scheduling and pipelined functional units.
To achieve high parallelism, integer and oating-point func-
tional units are duplicated and the functional unit latencies are
varied. This paper focuses on power-centric design of the pro-
cessor's execution unit and its pool of functional units. For
the Alpha 21264, this unit comprises roughly half of the chip
area [5]. The execution unit has 9 functional units, the types
of functional units are shown in Table I. A 64-bit word size is
assumed. The integer class is composed of 64-bit integer ALU
units (IALU ), 64-bit shifter hardware (Shift) and branch hard-
ware (Branch). The oating-point units are grouped into ad-
dition (FPAdd), multiplication (FPMul) and division (FPDiv).

FPDiv is a pseudo-unit: division actually takes place in the
multiplier using the quadratic convergence division method in

an iterative, unpipelined fashion1 . All units are designed using
static CMOS with input bu�ering.

The data cache is accessed through three functional units:
the Load , Store and PMiss units. PMiss is an abbreviation for
Pending Miss. Any Load operation that causes a cache miss
is automatically coupled with a dynamically created PMiss op-
eration. These operations fetch the missing cache block inde-
pendently from other cache accesses. Once a PMiss operation
completes, its associated Load operation is allowed to execute.
This unit incorporates the lockup-free cache design presented
by Kroft [14].

Consider a processor design space composed of one or more

1This algorithm can achieve the precision required by the IEEE stan-
dard at reasonable cost and speed [12] and was implemented in the
RS/6000 [13]
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TABLE I

Functional unit types.

Class Model index Functional Unit Description

Integer 0 IALU Int arithmetic,
logicals

1 Shift Bit �eld
manipulation,

2 Branch Branch prediction,
fault recovery

Floating- 3 FPAdd Floating-point add
Point 4 FPMul Int and oating-point

multiplication
5 FPDiv Int and oating-point

division

Data- 6 Load D-cache read
Cache 7 Store Store-bu�er based

D-cache write
8 PMiss Miss repair unit

(lockup-free cache)

IALU Shift Branch Store PMiss
LoadFPAdd FPMul

Instruction Dispatch

Instruction Dispatch

IALU Shift Branch

IALU Shift

LoadFPAdd FPMul

Load

Store PMiss

Instruction Dispatch

IALU Shift Branch
LoadFPAdd FPMul

Load

Store PMiss

FPAdd Load

a
(a) m  = <(1,1), (1,1), (1,1), (1,2), (1,3), (1,2), (1,1), (1,1)>

b
(b) m  = <(2,1), (2,1), (1,1), (1,2), (1,3), (2,2), (1,1), (1,1)>

c
(c) m  = <(1,1), (1,1), (1,1), (2,2), (1,3), (3,2), (1,1), (1,1)>

Fig. 1. Example processor designs.

of the functional units of Table I, each having a latency ranging
from 1 to Lmax. Let M be the set of processors under consid-
eration. A processor m 2 M , has nj functional units of type j
and each of these functional units has a latency of `j, such that,

m = h(n0; `0); (n1; `1); : : : ; (ns�1; `s�1)i; (1)

for s di�erent types of functional units. The block diagrams of
the execution units for three example processor designs are de-
picted in Figure 1. In part (a) of the �gure, ma has an execution
unit with no duplication. This design is limited to parallelism
between heterogeneous instruction types. Optimization for in-
teger performance may result in mb (Figure 1(b)). Here the
integer and the Load units have been duplicated. This allows
parallel execution of independent integer instructions. A simi-
lar optimization for oating-point hardware may result in design
mc (Figure 1(c)).

A. A System-Level Power Model

Excessive power dissipation is known to cause serious pack-
aging and thermal problems. Some instances are the 72 watts

dissipated by the 600MHz DEC Alpha 21264 [10] and the esti-
mated 100+ watts dissipated by the upcoming Compaq Alpha
21364 which will run at speeds exceeding 1GHz [11]. As clock
rates increase, this aspect of design gains equal importance as
the performance and die space.
Power dissipation in static CMOS can be divided into static,

dynamic, and short-circuit2components. Static power dissipa-
tion is due to the reverse bias leakage current between di�usion
regions and the substrate during steady state. This component
is highly technology dependent. The static power dissipation,
Pstatic, for a particular functional unit is estimated by,

Pstatic
:
= ST � Ileakage� VDD; (2)

where ST is the size of the functional unit in transistors,
Ileakage is the leakage current per transistor, and VDD is the

supply voltage.
Dynamic power dissipation can be separated into system-level

and technology components. To show this, assume a unit is
pipelined into N stages, labeled S1; S2,: : : , SN . Let �ESi be the
average energy consumed when stage Si performs work. The
average dynamic power dissipated to execute a single instruction
is,

Pdyn =
1

T

�
�ES1 +

�ES2 + � � �+ �ESN

�
; (3)

where T is the time it takes to execute the instruction (here
T = N).
Now consider a program fragment containing multiple in-

structions. Let USi be the total usage of pipeline stage Si during
execution. The power dissipation now takes the form:

Pdyn =
1

TTOT

�
US1

�ES1 + US2
�ES2 + � � �+ USN

�ESN

�
; (4)

where TTOT is the total execution time for the program frag-
ment. The stage energies, �ESi , are technology parameters,
whereas TTOT and the stage utilizations, USi , are system-level

parameters. A behavioral simulation of the pipeline can be used
to obtain the system-level utilizations without knowledge of the
underlying technology. This power model is similar to the in-
struction level power model introduced in [15].
An example helps illustrate the model. System designers of-

ten assume that pipelining does not a�ect power dissipation.
The theory is that if any instruction uses a functional unit, it
must travel through all stages of the unit in turn, which implies
it consumes the same power as it would on an unpipelined unit
(neglecting latching costs). Figure 2 shows why this assumption
is false. Here three instructions are executed on a pipelined unit
(Figure 2(a)) and on an unpipelined unit (Figure 2(b)). The
corresponding power cost for each is shown below the �gure.
The unpipelined version uses 55% of the power of the pipelined
version. The reason for this di�erence is the pipeline speedup
e�ect, which is an architectural phenomenon. The assumption
that pipelining does not matter has also been persuasively dis-
proved in [16].
The total dynamic power consumption can be calculated from

the power consumptions of each unit. Let Sijk be the ith
pipeline stage in jth copy of functional unit type k. The to-
tal dynamic power consumption, PTOT , is then,

Pdyn =
1

TTOT

s�1X
k=0

nk�1X
j=0

`i�1X
i=0

USijk
�ESijk : (5)

2Short-circuit power dissipation is ignored in the studies presented
herein.
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Fig. 2. Example demonstrating the reason that pipelining is sig-

ni�cant to power dissipation. Part (a) depicts a pipelined unit
executing three instructions (neglecting latches), (b) depicts an
unpipelined unit executing the same three instructions. Because
of the e�ects of pipeline speedup on parallel stage usage, the
power dissipated in (b) is 5=9 = 55% of (a).

The values of the stage energy parameters, �ESijk , are dependent
on the logical inputs to the stages. This study uses an approxi-
mate model of �ESijk that assumes each device in stage Si tran-
sitions when the stage is active. This assumption tends to lead
to over-estimation of power consumption. The goal of the tech-
nique presented here is to achieve low-power, high-performance
designs. Over-estimation of �ESi is consistent with this goal.
Further details concerning this model are presented below.

B. Simulation techniques

System-level design employs trace-driven behavioral simula-
tion, where the traces are taken from a set of industry-standard
benchmark programs. Members of the SPEC92 workstation
benchmarks [17] are used here, summarized in Table II. The
benchmarks are compiled using the public-domain GNU C com-
piler, which implements an aggressive set of code-improving op-
timizations, including a priority-based list scheduling algorithm
[18]. This shortens the critical dependence path of instruction
sequences as much as possible, enhancing parallelism between
instructions and resulting in higher superscalar processor per-
formance. The traces of the benchmarks are generated from
benchmarks using the Spike tracing tool [19].

The simulator implements a dynamic instruction scheduling

model, with the window for instruction scheduling moving be-
tween correctly predicted branches. Yeh's adaptive training

branch algorithm is used to predict branch behavior, since it
is a very highly accurate prediction scheme [20]. Since the
benchmarks can generate extremely long traces, trace-sampling
techniques are employed to reduce trace size and simulation
time (see [21], [22] for details). Only the pipeline state is sam-

pled. The entire memory system including branch hardware and
caches are simulated using the full trace. This results in a rela-
tive error of no more than �3% for the processor performance
metrics. During simulation, the values of pipeline stage usage
are calculated (USi is updated if Si is busy). The simulator also
estimates the total run time of the benchmark (TTOT ). After
simulation, this information is combined with the technology
parameters ( �ESi 's) to �nd the dynamic power component using
Equation 5. The total power is then estimated by summing the
dynamic component with the static component (Equation 2).

C. Tradeo� analysis using near-optimal search

One goal of this study is to determine designs that achieve low
power without sacri�cing superscalar performance. To achieve
this, a high-performance processor with duplicated functional
units is used as the starting point. Each functional unit can
be duplicated as many times as power constraints allow. This
freedom of design results in an extremely large design space. Ex-
haustive search via behavioral simulation of this space is compu-
tationally impractical. This problem lends itself to application
of a near-optimal search algorithm. A variant of simulated an-
nealing is employed here for this task [23].

The following is the method used to guide the simulated an-
nealing algorithm: At each step of the algorithm, the next pro-
cessor design, mi+1, is derived from the current design, mi,
using a restricted random selection procedure. The random se-
lection procedure is: (1) select l functional units at random
from mi, where l is a random integer in the range [1; 3], (2)
the number of each of these functional units in mi is changed
by a random integer in the range [�3; 3]. Any number greater
than the issue rate (four instructions per cycle) or less than 1
is rejected. For units with several possible pipeline latencies, a
slightly more restrictive procedure is used to randomly alter the
latencies.

The initial design used as the starting point for the search is:

m0 =

(
(IR; `i); for i = 0, 1, 3, 4, 6, 7, 8,
(3; `i); for i = 2, and
(1; `i); for i = 5:

(6)

where `i is the minimal allowed latency for functional unit of
type i, and IR is the issue rate. All units are replicated to a
degree of IR, with the exception of three branch units (unit
type 2) and one FPDiv pseudo unit (unit type 5). The goal
of the search algorithm is to adjust the design parameters of
mi to minimize power and yet achieve superscalar performance
comparable to m0. A further description of the cost function is
presented below.

D. Performance metrics

A performance metric is used that takes into account both
performance due to processor organization and due to tech-
nological considerations. Parallelism or instructions per cycle

(IPC) is often used for architectural performance. IPC is ulti-
mately limited by the issue rate (a design feature) and inter-

instruction dependencies (a benchmark characteristic). IPC
alone lacks technology considerations. For example, short la-
tency functional units produce high IPC, since dependencies
are resolved quicker using shorter latencies (shallow pipeline
depths). However, lower degrees of pipelining may lengthen the
execution unit's critical path. This has an impact on the total
time to execute a program, but is not reected by the IPC met-
ric. Hence, tradeo� analysis employing only IPC would result
in a sub-optimal design.
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TABLE II

The benchmark set.

Class Benchmark Description

compress reduces the size of �les
eqntott conversion from equation to truth table

Integer espresso minimization of boolean functions
gcc GNU C compiler

li lisp interpreter
sc spreadsheet program

doduc Monte Carlo simulation
hydro2d solves Navier Stokes equations

Floating- mdljdp2 solves equations of motion
point ora ray tracer through optical system

tomcatv vectorized mesh generation
wave5 solves Maxwell's equations

The critical path that determines cycle time is typically
through the �rst level of the memory hierarchy (e.g., the data
cache). Shallow pipelines can shift this critical path into the ex-
ecution unit. Since this study concentrates on the superscalar
execution unit, the aim is to optimize the critical path within
the pipelines of the functional units. This reduces the impact
of the execution unit's critical path on the external cycle time
of the processor. A metric that combines IPC and critical path
delay is the critical time per instruction (CTPI). CTPI is the
ratio of the critical path delay to the number of instructions per
cycle. Optimizing the execution unit for low CTPI reduces the
chance of a�ecting the processor's cycle time. For this reason,
CTPI is used in the search algorithm's cost model.

E. Example technology cost model

The example technology cost model considers a processor im-
plementation technology with a budget of 1.7 million transistors
and a supply voltage of 3.3 volts. This is based on the reported
�gures in [3] for a 0.75�m three metal-layer CMOS process tech-
nology. Although the �rst-level data cache is not included in the
execution unit, its miss rate impacts the overall performance of
the superscalar core. A 16KB, 2-way associative data cache is
assumed. This design assumes a page size of 8K bytes so that
cache data store indexing can occur in parallel with TLB access.
Cache misses are handled by the hardware using a lockup-free
mechanism [14]. The latency to repair a missing block from the
L2 cache is assumed to be 10 cycles.
The speci�c cost model depends on CTPI and power con-

sumption estimates. CTPI is calculated from the number of
instructions, the number of cycles for the execution of the pro-

gram, and an estimate of the critical path. The deepest pipeline
stage in the execution unit is used to �nd the critical path em-
ploying a technique presented in [22]. It is rarely true that the
functional units can be pipelined such that the cycle time is ex-
actly inversely proportional to the degree of pipelining. Instead
the deepest pipeline stage for each degree of pipelining is deter-
mined. The sum of the device propagation delays within this

stage constitutes the cycle time.
The CTPI increase of processormi, CTPI(mi), is constrained

to a fractional increase over CTPI(m0):

CTPI(mi) � K � CTPI(m0); (7)

where K is the CTPI budget.
Transistor level analysis of published work provided the ap-

proximations for each functional unit type. This model is pre-

sented in Table III. (Since the FPMul unit is used iteratively
for division, the FPDiv unit does not consume any die space
and is not mentioned in the table.)

Only relative power dissipation increases are required for the
cost model. Therefore, the power estimate is normalized to
remove any multiplicative error in the model. The coe�cients
are adjusted such that dynamic power is 10,000 times larger
than static power for a single device (a typical ratio). Static
power is estimated using Equation 2. Equation 5 is used to
estimate dynamic power. Stage energies are calculated using
the functional unit designs of Table III.

The overall goal is to minimize power subject to constrained
performance degradation. An expression for the combined cost
function is,

f(mi) =

�
power of mi; if CTPI(mi) � K �CTPI(m0),
1; otherwise:

(8)

III. Experimental Results

This section presents example results of the system-level
power dissipation model and tradeo� analysis method. The

initial design, m0, is selected using Equation 6 with the issue
rate equal to four instructions per cycle (IR = 4). Figure 3 illus-
trates the evolution of the cost function during a near-optimal
search for the espresso benchmark. As may be seen, an im-
mediate attempt is made to reduce the power from that of the
initial design, m0. Although the new power is better than the
original, the search continues for a more global minimum. The
search is initially liberal in its design selections but eventually
settles into a low power region of the design space.

A. Performance of initial designs

Table IV shows the performance of the m0 designs for the 12
benchmarks. Power consumption has been normalized to the
tomcatv result. The integer benchmarks achieve lower perfor-
mance, in general, than the oating-point benchmarks. Execu-
tion of integer code also consumes less power by approximately

40% on average. Floating-point units consume higher amounts
of power than that of integer units, due to a higher number of
transistors per unit. Note also the strong correlation between
high IPC/low CTPI and high power usage: more instructions
executing in parallel implies more functional units active.
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TABLE III

Summary of technology model by functional unit type.

Functional Allowed Number of transistors (by pipeline latency)
unit latencies 1 2 3 4 5 6

IALU 1{1 5068 { { { { {
Shift 1{1 6272 { { { { {
Branch 1{1 8660 { { { { {
FPAdd� 1{5 18880 19192 19504 19504�� 19816 {
FPMul� 1{6 40292 41540 46196 42788 43796 46436

Load 1{4y 4928 4928 4928 4928 { {
Store 1{1 4928 { { { { {

Pmiss 10 46848z 46848 46848 46848 46848 46848

�Sources: [24],[25],[12] along with our own implementations.
��No change is seen in the number of transistors from latency 3 to 4 since the placement of the latches results in fewer bits that need to be

latched.
yLoad is through the data cache, which is excluded from the execution unit. However, slight overhead is required for each load operation to

latch the values. Multiple load units are implemented by interleaving the cache.
zValue shown is extrapolated from [14].
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Fig. 3. The cost function for espresso (in�nite cost excluded from
plot).

B. Optimized designs

The optimized designs for each benchmark are presented in
this section. Four CTPI budgets are considered: 105%, 110%,
120% and 150% of the initial CTPI(m0). The CTPI, IPC and
relative decrease in power consumption values are also pre-
sented. The CTPI and power dissipation of the designs are
presented graphically in Figures 4 and 5, respectively. Figure 4
shows several interesting trends. The integer benchmark designs
do not sacri�ce considerable performance except for the 150%
budget (recall that lower CTPI is a �gure of merit). The 110%
designs achieve performance comparable to the initial designs
for espresso, gcc, and sc, while achieving reductions in power.
A similar result occurs for hydro2d, mdljdp2, and tomcatv. A
slightly less impressive result can be seen for the remainder of
the optimized designs. This demonstrates that the tradeo� tech-
nique is successful in �nding lower-power yet high-performance
designs.

The 150% designs are clearly di�erent from the other de-

TABLE IV

Performance of initial designs.

Power
consumption

Class Benchmark IPC CTPI (normalized)

compress 2.18 6.88 0.39
eqntott 2.23 6.73 0.39

Integer espresso 2.09 7.17 0.38
gcc 1.84 8.17 0.36
li 2.16 6.95 0.37
sc 2.10 7.15 0.49

Average: 2.10 7.18 0.40

doduc 2.65 5.66 0.68
hydro2d 3.21 4.68 0.63

Floating mdljdp2 2.36 6.35 0.55
point ora 1.80 8.34 0.51

tomcatv 3.41 4.40 1.00
wave5 2.81 5.33 0.61

Average: 2.70 5.79 0.66

signs. These achieve considerable power consumption savings
(Figure 5) but at the cost of considerably less performance (Fig-
ure 4). The results for sc are typical of this phenomenon. The
power consumption is reduced by nearly 38%, but for an in-

crease of 66% in CTPI from 7.15 to 10.73.

Tables V and VI present the speci�c optimized designs for
CTPI budgets of 105% (Table V(a)), 110% (Table V(b)), 120%

(Table VI(a)), and 150% (Table VI(b)). The tables also present
the IPC, CTPI and the percentage reduction in power consump-

tion over m0 (Table IV) for the optimized designs. The designs
are presented in terms of their per-functional unit n and ` pa-
rameters.

105% and 110% CTPI budget designs

Designs optimized for 105% and 110% budgets represent ap-
plications where power must be reduced, but overall super-

scalar performance is of prime importance. Such applications
would include general-purpose computing and mission-critical
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TABLE V

The low-power superscalar processor designs.

(a) CTPI budget 105%

IPC CTPI % Power IALU Shift Branch FPAdd FPMul Load Store PMiss

Benchmark Reduction n ` n ` n ` n ` n ` n ` n ` n `

compress 2.08 7.21 5.43 2 1 1 1 1 1 1 5 1 6 2 3 2 1 1 10
eqntott 2.16 6.94 4.67 2 1 1 1 1 1 1 5 1 6 1 3 1 1 1 10
espresso 2.03 7.40 4.43 2 1 1 1 1 1 1 5 1 6 1 3 1 1 1 10
gcc 1.75 8.59 5.67 2 1 1 1 2 1 1 5 1 6 3 4 2 1 2 10
li 2.09 7.18 3.76 2 1 1 1 1 1 1 5 1 6 1 3 1 1 1 10
sc 1.97 7.63 6.80 2 1 2 1 2 1 1 5 1 6 2 4 1 1 1 10

doduc 2.53 5.94 5.79 2 1 1 1 1 1 1 5 1 6 1 2 1 1 1 10
hydro2d 3.06 4.91 4.73 2 1 2 1 1 1 1 5 2 6 4 4 1 1 2 10
mdljdp2 2.25 6.66 4.69 2 1 1 1 1 1 1 5 2 6 1 4 1 1 1 10
ora 1.72 8.74 36.40 1 1 1 1 1 1 3 5 3 6 2 2 3 1 1 10
tomcatv 3.33 4.51 2.26 2 1 1 1 1 1 1 5 1 6 1 4 2 1 1 10
wave5 2.76 5.44 7.64 2 1 1 1 2 1 2 5 1 6 1 2 1 1 1 10

(b) CTPI budget 110%

IPC CTPI % Power IALU Shift Branch FPAdd FPMul Load Store PMiss

Benchmark Reduction n ` n ` n ` n ` n ` n ` n ` n `

compress 2.01 7.45 7.43 2 1 1 1 1 1 1 5 1 6 1 4 1 1 1 10
eqntott 2.09 7.18 7.67 2 1 1 1 1 1 1 5 1 6 1 4 1 1 1 10
espresso 1.95 7.70 6.99 2 1 1 1 1 1 1 5 1 6 1 4 2 1 1 10
gcc 1.71 8.77 7.23 2 1 1 1 1 1 1 5 1 6 1 4 2 1 1 10
li 1.99 7.53 7.82 2 1 1 1 1 1 1 5 1 6 1 4 2 1 1 10
sc 1.96 7.65 7.07 2 1 2 1 1 1 1 5 1 6 1 4 1 1 1 10

doduc 2.46 6.10 7.78 2 1 1 1 1 1 1 5 1 6 1 4 1 1 1 10
hydro2d 3.03 4.95 5.31 2 1 2 1 1 1 2 5 1 6 1 4 1 1 1 10
mdljdp2 2.25 6.66 4.68 2 1 1 1 1 1 1 5 3 6 1 4 1 1 1 10
ora 1.63 9.18 38.18 1 1 1 1 1 1 2 5 1 6 3 4 2 1 1 10
tomcatv 3.33 4.51 2.26 2 1 1 1 1 1 1 5 1 6 1 4 2 1 1 10
wave5 2.62 5.73 9.63 2 1 1 1 1 1 3 5 1 6 1 3 1 1 1 10
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Fig. 4. CTPI for the benchmarks.
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TABLE VI

The low-power superscalar processor designs (cont.).

(a) CTPI budget 120%

IPC CTPI % Power IALU Shift Branch FPAdd FPMul Load Store PMiss

Benchmark Reduction n ` n ` n ` n ` n ` n ` n ` n `

compress 2.01 7.45 7.43 2 1 1 1 1 1 1 5 1 6 1 4 1 1 1 10
eqntott 2.09 7.18 7.67 2 1 1 1 1 1 1 5 1 6 1 4 1 1 1 10
espresso 1.95 7.70 6.99 2 1 1 1 1 1 1 5 1 6 1 4 2 1 1 10
gcc 1.71 8.77 7.23 2 1 1 1 1 1 1 5 1 6 1 4 1 1 1 10
li 1.99 7.53 7.82 2 1 1 1 1 1 1 5 1 6 1 4 2 1 1 10
sc 1.96 7.65 7.07 2 1 2 1 1 1 1 5 1 6 1 4 1 1 1 10

doduc 2.51 6.79 11.26 2 1 2 1 1 1 2 5 1 4 1 4 2 1 1 10
hydro2d 3.05 5.58 7.54 2 1 2 1 1 1 2 5 1 4 1 4 1 1 1 10
mdljdp2 1.97 7.60 21.37 1 1 1 1 1 1 2 5 1 6 3 3 2 1 1 10
ora 1.71 9.97 39.95 1 1 1 1 2 1 1 5 1 4 1 4 1 1 1 10
tomcatv 3.35 5.07 6.69 2 1 2 1 2 1 1 5 1 4 1 4 1 1 1 10
wave5 2.49 6.03 11.45 2 1 2 1 1 1 1 5 2 6 1 4 1 1 1 10

(b) CTPI budget 150%

IPC CTPI % Power IALU Shift Branch FPAdd FPMul Load Store PMiss

Benchmark Reduction n ` n ` n ` n ` n ` n ` n ` n `

compress 2.01 9.43 7.45 2 1 1 1 1 1 1 4 1 4 1 4 1 1 1 10
eqntott 2.09 9.10 7.70 2 1 1 1 1 1 1 4 1 4 1 4 1 1 1 10
espresso 1.41 10.61 34.95 1 1 1 1 1 1 1 5 1 6 1 4 1 1 1 10
gcc 1.27 11.85 34.62 1 1 2 1 1 1 1 5 1 6 1 4 1 1 1 10
li 1.44 10.41 32.82 1 1 1 1 1 1 1 5 1 6 1 3 1 1 1 10
sc 1.40 10.73 37.80 1 1 1 1 3 1 1 5 1 6 2 3 1 1 1 10

doduc 2.50 6.79 11.31 2 1 2 1 1 1 1 5 1 4 1 4 2 1 1 10
hydro2d 3.06 6.21 7.67 2 1 2 1 2 1 2 4 2 4 1 4 1 1 1 10
mdljdp2 1.92 8.86 26.24 1 1 1 1 1 1 1 5 1 4 1 4 1 1 1 10
ora 1.70 9.97 39.96 1 1 1 1 1 1 1 5 1 4 1 4 1 1 1 10
tomcatv 3.37 5.63 7.10 2 1 1 1 2 1 1 4 1 4 1 4 1 1 1 10
wave5 1.88 7.99 40.22 1 1 1 1 2 1 3 5 1 6 1 2 1 1 1 10

embedded systems. The reduction in power consumption of
the 105% budget is modest for all benchmark-based designs
(2.26%{7.64%), with the exception of ora (36.4%). The 110%
budget presents similar behavior. The most-common unit to
duplicate for both budgets is the integer ALU, followed by the
Load units. Power is reduced primarily through optimized Load

pipeline depths. Several designs for the oating-point bench-
marks choose to include multiple copies of the oating-point
units, in spite of their heavy power burden. This is a result of
the high-performance goals of this tradeo� analysis.

120% and 150% CTPI budget designs

The 120% and 150% budget designs represent di�erent de-
sign goals from the 105%/110% budget designs. Here the goal

is to trade superscalar performance for reduced power consump-
tion. An example application would be a low-power embedded
system. The 120% budget designs for the integer benchmarks
(Table VI(a)) do not di�er considerably from the 105%/110%
designs. This is not the case for the 150% budget designs (Ta-
ble VI(b)), where duplicated IALU units have been eliminated
and CTPI has increased for four of the six integer benchmarks.
The e�ect of this change on power consumption is dramatic,
with power reductions of 32.8%{37.8%. Two exceptions are for
compress and eqntott. The IALU units are retained and the
power reduction is much less impressive. This clearly shows
that optimization of the IALU unit is critical for low-power
embedded systems that execute primarily integer code.
The oating-point benchmarks force several interesting trade-

o� decisions for the 120% and 150% budgets. The most-
interesting of these is the method chosen for power reduction
of the oating-point hardware. The number of oating-point
units is reduced over that of the 105% and 110% budget designs,
but several benchmarks continue to use duplicated units (e.g.,
doduc, hydro2d, tomcatv, and wave5). The power is reduced
by decreasing the degree of pipelining from six to four stages
for the FPMul units and from �ve to four stages for the FPAdd
units. Such reductions are reected in higher CTPI, but the im-
provements in power consumption are signi�cant. For example,
the 4.68% power reduction of the 110% budget mdljdp2 design
(Table V(b)) improves to 26.24% for the 150% design. Other
oating-point speci�c designs achieve lower power by eliminat-
ing duplicated IALU units.
When combined, these results show that low power designs

can be achieved by judiciously adjusting processor organization
for power reduction.

IV. Conclusion

This study has presented new techniques for high-level trade-
o� analysis and system-level modeling of power consumption
before circuit implementation. The major contributions of this
paper are the separation of architectural and technology compo-
nents of dynamic power, the use of trace-driven simulation for

architectural power measurement, and the use of near-optimal
search for organizational tradeo� analysis.

An example cost model was developed to demonstrate
the technique and applied to two application areas: high-
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performance, power optimized designs (105% and 110% CTPI
budgets) and embedded, low-power designs (120% and 150%
budgets). Several insights can be drawn from the results.
Overall power consumption can be reduced via organizational
changes alone. For high-performance designs, the techniques in
this paper �nd signi�cant reduction in power for little perfor-
mance penalty. This result argues for the use of these techniques
before the circuit design is commenced. For embedded, low-
power designs, two speci�c trends emerged. For the oating-
point applications, the degree of pipelining is a critical param-
eter. For several integer-intensive applications, the IALU unit
is the most critical for power consumption. Although this is
an intuitive result, it is not universally true. Two applications
(compress and eqntott) did not eliminate IALU unit duplica-
tion, even when performance was allowed to reduce by as much
as 50%. This suggests that some applications require higher
power designs.

Two extensions to this work are possible. One is the study of
additional benchmarks. In particular, power consumption via
organizational adjustment is an application-speci�c task. The
methods presented in this paper can be used to study any ap-
plication. An additional extension is to consider di�erent ex-
ample technology power consumption models. Naturally, the
optimized design space will vary according to the technology
dependent aspect of the cost function (namely the functional
unit energy models). Also, more accurate functional unit energy
models - with respect to input transition properties - may lead
to a shift in the optimized design space. Both extensions are
readily achieved with only minor changes to the overall frame-
work.
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