

Introduction

Contech’s Task Graph Representation
Parallel Program Instrumentation

(Break)

Analysis and Usage of a Contech Task Graph
Hands-on Exercises

Contech is

An LLVM compiler pass to instrument programs
A runtime library to emit a trace from instrumented programs

Frontend Backend

Backend
Task

Events [niddle | Graph -
Layer

Backend

Pass the source file to the appropriate compiler
C->clang
C++ -> clang++
Cilk -> clang-cilk
MPI -> Link in Contech MPI support
Fortram -> gfortran + DragonEgg

Default clang compiler is assumed to have OpenMP support
http://clang-omp.github.io/

Clang emits an intermediate representation (IR)
LLVM executes passes on the IR

Contech LLVM pass instruments IR of interest
Link parallel program with Contech runtime

Consequently, compile time is increased

Set of support routines for instrumentation

Linked into every instrumented program

Many correspond to specific parallel routines or events

In lieu of modifying the parallel runtimes

Parallel Programs emit events

Tens of millions per second per hardware context
Nearly all events are basic block events

Median of 20k per task across 40 parallel benchmarks

Other events (15 in total):
Context create / created

Synchronization action

Entered Basic Block 403
Memory read Oxdeadbeef
Memory write Oxdecafbad
Entered Basic Block 404

10

Does the following in parallel:

Consumes the events
Produces a Contech Task Graph

Calculates a breadth-first traversal of the graph

Tested Support for:
C, C++, Fortran
x86, ARM
PThreads, OpenMP, MPI, Cilk

12

Parallel Program Instrumentation

Instrumentation Design
Generating a Task Graph
Performance Lessons Learned

Extending the Instrumentation

13

Contech LLVM pass instruments IR of interest

Every basic block
Loads / Stores
Calls to functions of interest

Memory management (malloc, free, new, delete, memcpy, etc)

Pthreads (pthread create, pthread mutex_lock, etc)
OpenMBpb, ...

14

LLVM defines a basic block based on having ONE
Terminatorinst

Function calls are not Terminatorlinst

Contech normalizes the basic blocks to consider function calls
as terminating

Temporary transformation

Clang will restore / reoptimize the instrumented IR

Each function is primarily identified by name

Names map to classifications
Each classification corresponds to a transformation approach

SYNC_ACQUIRE:

pthread mutex lock, pthread mutex trylock,
pthread spin lock, pthread spin trylock

BARRIER_ WAIT:

pthread barrier wait, MPI Barrier

Call Contech instrumentation routines (~40 in number)

For example __ctStoreBasicBlock(i32 474, i32 %bufPos3, i8*
$bufPos2)

Instrumentation written in C
Architecture independent (32- / 64-bit x86, 32-bit ARM)

Instrumentation routines are co-designed
Use Clang’s link time optimizer (LTO)

Inline these calls into short assembly sequences

17

Pseudo Code Instrumentation

Find position in buffer—

Store MEM 0 N-1 —<:::

Update position
p p ~_

Instrumented x86 Assembly

Store BBID into buffer —__,__(—-———-‘:

mov $fs:0xffffffffffffffe8,%rax
mov (%rax),

thread >
local buffer

0S
p—»

movl $0x14e00,0x18 (%rax, 1)

BBID

movg $0x51cfal,0xlb (%rax, 1)

lea (%rdx,%rl15,8),%rsi
mov %rsi,O0x21 (%$rax,

H— |

addl $0xOf, (

MEMO

MEM1

—
»
»
»

Prologue:

Buffer = ctGetBuffer()

Buffer Position = __ ctGetBufferPos ()
fence singlethread acquire

*Buffer Position = _ ctStoreBasicBlock (BBID, Buffer Position, Buffer)
Body:
___ctStoreMemOp (Addr, Number, *Buffer Position)

Epilogue:

New Pos

__ctStoreBasicBlockComplete (Number of MemOps,

Buffer Position, Buffer)
fence singlethread release

__ctCheckBufferSize (New Pos)

Buffer = ctGetBuffer()
mov Sfs:0xffffffffffffffe8, Srax

Buffer Position = ctGetBufferPos ()
mov (%srax), secx

fence singlethread acquire

// Compiler directive
*Buffer Position = ctStoreBasicBlock (BBID,
Buffer Position, Buffer)

movl $0x14e00,0x18 (%rax, %$rcx, 1)
___ctStoreMemOp (Addr, Number, *Buffer
Position)

movqg $0x51cfal,0x1lb(%rax, %$rcx, 1)

The compiler’s optimizations do not always align with the
instrumentation architecture

The fence instructions prevent rare reorderings

Buffer and buffer position are passed between calls as the compiler

would not apply common subexpression elimination to the
calculations

Contech instrumentation numbers basic blocks
Each basic block contains a static set of memory operations

Each memory operation has static properties:

Load / Store, Size
This information is stored in the statefile and included in the event

trace

Used to reconstruct the events

Given the static properties, memory operations only store
addresses

Some address calculations are static offsets of other calculations
Contech stores the offsets in the statefile
Elides the duplicate memory operation addresses

Reduces trace size and lowers instrumentation overhead

Results discussed later today

OpenMP — parallel regions

Each region is transformed into a function
OpenMP assigns threads to call the function

Contech adds instrumentation into the caller and callee
Store create / join events into thread-local buffers
Assign and preserve the Context IDs

Cilk inlines much of its continuation management

Contech must detect not just a function, but a CFG signature
indicating a cilk-spawn or cilk-sync

(Almost) every cilk support routine can steal work

Parallel Program Instrumentation

Instrumentation Design
Generating a Task Graph
Performance Lessons Learned

Extending the Instrumentation

26

Contech is part of program startup
Instrumented program generates millions to billions of events

Contech delays the program’s shutdown to finish writing out
events

Middle layer reads event list and generates a task graph

When the instrumented program launches, Contech will:

Initialize its internal structures
Create the first thread-local buffer

Determine its memory limit
Spawn the background writing thread
Transfer control to the original program

Contech must trap calls to exit

Ensure that all threads have terminated

All thread local buffers have been written to disk

Program will now exit

Each thread has its own buffer, using thread-local storage

Technically, buffers are Context local
Threads that switch Context IDs (Cilk and OpenMP) refresh their buffers

Events are written into the buffer and the buffer position updated

Buffers are queued into a global queue for writing to disk

Placed by the compiler pass

Follows a heuristic

Large basic blocks are always checked
Each check verifies that at least 1KB of space is available

Events do not check for space

LN
<

O n o n O n O n O
< oo on &N N

(s1012e4) UMOpPMO|S dWUNY

ueaw
79X

|enneds Jalem
PU3J|OA
suolldems
J21snjpweauls
aJeJlAel
Xipeu
Alisolpeu

dou ueado
do ueado
3w

gou n|

Q2 N

S|

Y

aulwbaly
wwy
21ewiuepini}
H

19443}

da

dnpap
Ajsajoyd

37

|eauued
yoeslApoq
s9|oyosyoe|q

sauJeq

32

MW Pin Task Graph Tool

LN
<

O n o n O n O n O
< oo on &N N

(s1012e4) UMOpPMO|S dWUNY

ueaw
79X

|enneds Jalem
PU3J|OA
suolldems
191snpwealis
aJeJlAel

Xipeu
Alisolpeu

dou ueado
do> ueado

3w

gou n|

Q3 nj

S|

Y

aulwbaly
wwy
21ewiuepini}
H

19443}

ds

dnpap
Ajsajoyd

82

|eauued
yoedlApoq
sajoyasyae|q

sauJeq

33

. M =
m < ————
3 & Bl
5 % -
m _m —
plu ﬂ —
|

—

—

=

-

——

——

—_—

e ——
——

—

—

—

T

—

————

——

—
—

=

—
—

——
23BWRR]INg o

(s1012e4) UMOpPMO|S dWUNY

ueaw
79X

|enneds Jalem
PU3J|OA
suolldems
191snpwealis
aJeJlAel

Xipeu
Alisolpeu

dou ueado
do> ueado

3w

gou n|

Q2 N

S|

Y

aulwbaly
wwy
21ewiuepini}
H

19443}

da

dnpap
Ajsajoyd

82

|eauued
yoeslApoq
s9|oyosyoe|q

sauJeq

34

—

QA xR K 9 v I — <
S S o o o o S

AN
-
9pO)) PAIUSWNISU] UI SWI], JO UOTIORI]

Parallel Program Instrumentation

Instrumentation Design
Generating a Task Graph
Performance Lessons Learned
Extending the Instrumentation

36

Benchmark Overhead:

PARSEC + SPLASH: 2.80x
NAS: 3.79x
Rodinia: 2.70x

Exceptions not included:

Water_nsquared: 8.9x
Lulesh: 10x

0DV 1-23e4any
93eJaNy

79X

|eineds Jajem
paJenbsu Jajem
PUBJ|OA
suolldems
J91snjpweauls
aoesyAed
XipeJ
Alisolpel

dou ueaso
d> ueado
gou n|

Q3 nj
Qulwbauy
ww

ajewiuepinyy

W
19443}
dnpap
Aysajoyo
|eauued
yoes1Apoq
s9|oyasy|oe|q
sauJeq

XXX

O O OO OO OO o o o

n O n O n O n O uwn

I I 0o o0 AN AN

38

450%
400%
350%
300%
250%
200%
150%
100%

B Instrumentation

50%

0%

0DV 1-23e4any
93eJaNy

79¢X

|eineds Jajem
paJenbsu Jajem
PUJ|OA
suolldems
191snpwealys
aoesyAed
Xipeu
Alisolpel

dou ueado
do ueado
gou n|

Q3 nj
aulwbauy
wwy
9jewiuepinyy
e

19443}

dnpap
Aysajoyo
|eauued
yoes1Apoq
sajoyasyoe|q

sauleq

39

C
ke,
&
(%p]
o £
S ¢ I
= 5
£ 3 I
o £
" I
.
. ==
[
I |
1
I
[
=
I
I
]
I
I
I
N
|
I
[
I
[
I
|
I
XXX
O O O O O O O O O
n O n O n O N O uwn
T T on.on &N AN

0DV 1-23e4any
93eJaNY

79¢X

|eineds Jajem
paJenbsu Jajem
PUJ|OA
suolldems
Ja1snjpweauls
aoesyAed
Xipeu
Alisolpel

dou ueado
do ueado
gou n|

Q3 nj
Qulwbauy
wwy
a1ewiuepini}
e

19443}

dnpap
Aysajoyo
|eauued
yoes1Apoq
sajoyasyoe|q

sauJeq

40

c
" kS
N -+
o w O
2 £ =
S I (Y
= |
Q >
S (I
> @©
o O £
O m | [
[
I
.
&
I
I
.
[
I
I
(I
[
[
[
(I
|
(|
L
[
I
(I
m
I
XXX
O O O O O O O o O
n O n O n O n O uwn
T T N N AN AN

0DV 1-23e4any
93eJaNY

79¢X

|eineds Jajem
paJenbsu Jajem
PUJ|OA
suolldems
Ja1snjpweauls
aoesyAed
Xipeu
Alisolpel

dou ueado
do ueado
gou n|

Q3 nj
Qulwbauy
wwy
a1ewiuepini}
e

19443}

dnpap
Aysajoyo
|eauued
yoes1Apoq
sajoyasyoe|q

sauJeq

41

[
5 ., ©
& x =
S o v 8
m 9 9 ¢
T = o
00 L N
cE . = €
> o o
S E £ 7 [
S 5 © W
O o o £
HEONE O 1]
m I
I
[
B
I
[
I
‘"
]
0
hn |
I
I
m
[
|
[
I
I
M
|
|
i
N XXX XXXXXXR
O O O O O O O O O
n O N O in O n O W
ST Tt on. on &N AN

0DV 1-23e4any
93eJaNY

79¢X

|eineds Jajem
paJenbsu Jajem
PUJ|OA
suolldems
191snpwealys
aoesyAed
Xipeu
Alisolpel

dou ueado
do ueado
gou n|

Q3 nj
aulwbauy
wwy
a1ewiuepini}
e

19443}

dnpap
Aysajoyo
|eauued
yoes1Apoq
sajoyasyoe|q

sauleq

42

Instrumentation

(see compiler section)
Quantity of Data Generated

Compact Basic Block IDs
6 Byte Memory Addresses

Redundant Memory Addresses
Queuing and Allocating Buffers

Synchronization and Barrier Tickets
Small Buffer Copy

Basic Block IDs are 23-bit values

First byte identifies the event type
If high bit is 0, then a basic block event and remaining bits are part of ID
Else, one of the 14 other event types
Virtual Memory Addresses are 6-byte values

Given the endianness, overlap writing the addresses

00 01 02 03 04 05 00 01 02 03 04 05 00 01 02 03 04 05 06 07

Syncs, and Barrier events have certain ordering requirements

Originally queued to ensure the ordering

Don’t queue, instead place an ordering identifier (aka, a ticket) into
the events

Ordering information used by middle layer to associate events
from different Contexts with each other

o3eIoAY

r9CX
[eneds 19jem

patenbsu 1djem
pudijoA
suonydems
I91Sn[oweaIs

doenAel

m256KB

XIpel

Ayisorpel

dou ueao0

128KB

do ueao0
qou nj
Qo 1
surwbaiy

m 64KB

wwy
oJewIIuEpIN(J

W
19119J

m 32KB

dnpap
AYsa[oyd

[eauued
yoenApoq

SO[OYOSYORIq
soureq

m90076543210
QATIBN

SNSIOA UOPMO[S SWuUNy

Rather than allocate a new 1MB buffer, copy the data into a smaller-

Some actions still require buffers to be queued early
sized buffer

Generating GB/s is expensive

|dentifying static redundancies is vital
Communication and Allocation costs are low
Inlined instrumentation for minimal perturbation

Co-designed with the compiler for improved code generation

Parallel Program Instrumentation

Instrumentation Design
Generating a Task Graph
Performance Lessons Learned
Extending the Instrumentation

48

Requires knowledge of LLVM

Various levels of extension
Alternate Support Routine (e.g., custom allocator or lock)
Custom event

New Parallelism APIs (beyond today’s scope)

o

(SCONTECH_HOME/Ilvm/lib/Transforms/Contech/Contech.cpp)

Table of functions to instrument
Add new routine name into table

Increment size of table
Potentially add new type (SYNC_ACQUIRE, etc)

#define FUNCTIONS INSTRUMENT SIZE 57
l1lvm function map functionsInstrument [FUNCTIONS INSTRUMENT SIZE] = {
B ~ {STORE AND LEN ("main\O0"), MAIN}, a

{STORE AND LEN ("MAIN \O"), MAIN},
{STORE AND LEN ("pthread create"), THREAD CREATE},
{STORE AND LEN ("pthread join"), THREAD JOIN},
{STORE AND LEN ("pthread barrier wait"), BARRIER WAIT},
{STORE AND LEN ("pthread mutex lock"), SYNC ACQUIRE},

Add function to table in Contech.cpp
Add type and handler in Contech.h
Event Serializer in ct_runtime.c

Add hook to serialization routine in _ConstantsCT in Contech.h
Initialize routine constant in Contech.cpp

Event Type in ct_event st.h

Deserialization in ct_event.cpp

Handle event in middle layer

