
IA-64 CODE GENERATION

by

Vikram S. Rao

a thesis submitted to the Graduate Faculty of

North Carolina State University

in partial ful�llment of the

requirements for the Degree of

Master of Science

Electrical and Computer Engineering

raleigh

June 2000

approved by:

chair of advisory committee

Abstract

Vikram Rao. IA-64 code generation. (Under the direction of Dr. Tom

Conte).

This work presents an approach to code generation for a new 64-bit Explicitly

Parallel Instruction Computing (EPIC) architecture from Intel, called IA-64. The

major contribution of this work is the design of a machine independent optimizer,

munger, that transforms code generated originally for a Very Long Instruction Word

(VLIW) processor, called Tinker, to one that can run on the IA-64 architecture.

The munger does this transformation by reading in a set of rules that specify a

mapping from Tinker speci�c code to IA-64 speci�c code. The aim is to do this

transformation outside the compiler back-end, thereby being able to take advantage

of any optimizations that the back-end might perform on the code. This would also

preclude rewriting the existing back-end signi�cantly, to support the new architecture.

The primary motivation for this approach was the fairly large similarity between

the Tinker, and the IA-64 architectures. Besides, Tinker is an experimental VLIW

architecture that supports a number of features to exploit instruction level parallelism

(ILP) and can be easily extended to support new features. This makes the back-end

for Tinker an ideal compiler to retarget for the IA-64 architecture, since it already

performs most ILP optimizations that are supported on the IA-64.

Biographical sketch

Vikram Rao was born on February 15, 1976 in Tamil Nadu, India. He gradu-

ated with a 5-year integrated Master of Technology degree in Electrical Engineering,

from the Indian Institute of Technology, Bombay, India, in August 1998. During

his years as an undergraduate, he participated in the cooperative education pro-

gram working with the Electronics and Radar Development Estabilishment (LRDE),

Bharat Electroncs Ltd., and Silicon Automation Systems, all in Bangalore, India.

He then went on to the master's program at North Carolina State University

working under the direction of Professor Thomas M. Conte. While working toward

his master's degree, Vikram spent a summer interning with the compiler development

group at BOPS Inc., in Raleigh, North Carolina. He plans to take up a job in the

area of compilers and microarchitecture.

ii

Table of Contents

List of Tables v

List of Figures vi

1 Introduction 1

1.1 Motivation . 3

1.2 Compiler phases . 4

2 Prior work 8

3 The IA-64 processor architecture 17

3.1 Explicit parallelism . 17

3.1.1 Conveying compile time information to the processor 17

3.1.2 Multiple resources . 18

3.2 Enhancing parallelism . 19

3.2.1 Speculation . 19

3.2.2 Predication . 21

3.2.3 Software pipelining . 21

3.3 Comparison with the Tinker architecture 22

4 Munger 23

4.1 Introduction . 23

4.2 Structure of the munger . 24

4.2.1 One-to-many mapping . 25

4.2.2 Many-to-one mapping . 29

5 Results and conclusions 35

5.1 Results . 35

5.2 Conclusions . 46

iii

iv

List of References 48

List of Tables

4.1 Set of mnemonics used for creating operands. 27

5.1 Rule syntax corresponding to the rule numbers shown in Figs.5.4-5.9. 41

5.2 The top seven rules used as a fraction of the total number of rules . . 46

v

List of Figures

1.1 The phases in the process of IA-64 code generation 5

4.1 Pseudo-code to perform one-to-many mapping at a procedural level . 28

4.2 Pseudo-code to perform one-to-many mapping at a basic-block level . 30

4.3 Pseudo-code to perform many-to-one mapping at the procedure level 32

4.4 Pseudo-code to perform a many-to-one mapping at the basic-block level 34

5.1 Percent increase in code size in the SPEC95 benchmarks. 36

5.2 Distribution of added instructions in the SPEC95 benchmarks due to

mapping rules and other reasons . 38

5.3 Distribution of added instructions in the SPEC95 benchmarks 40

5.4 Top seven rules used by the compress benchmark 42

5.5 Top seven rules used by the go benchmark 42

5.6 Top seven rules used by the ijpeg benchmark 43

5.7 Top seven rules used by the li benchmark 43

5.8 Top seven rules used by the m88ksim benchmark 44

5.9 Top seven rules used by the vortex benchmark 44

5.10 Top seven rules used over all the benchmarks 45

vi

Chapter 1

Introduction

Most compilers perform lexical, syntactic, and semantic analysis, code opti-

mization, and code generation, in this order [1]. Code optimization includes classi-

cal optimizations such as common subexpression elimination, constant folding, code

motion, and strength reduction [1]. The code generator of a compiler transforms

programs from a compiler's intermediate representation into assembly language or

binary machine code. Code generation can be divided into three phases: Code selec-

tion translates the operations in the intermediate representation to target machine

instructions; instruction scheduling orders the instructions to make the best use of

processor resources; register allocation replaces pseudo-registers used in the interme-

diate representation with real registers and spills excess pseudo-registers to memory.

Another important aspect of a back-end compiler is the ability to retarget it

easily, i.e., to generate code for a di�erent processor. If the target processor has an

1

2

architecture similar to the original processor, it is possible to retarget the compiler

to generate code for the new processor, without making signi�cant changes to the

existing back-end. This could be achieved by making all machine dependent trans-

formations outside the back-end and only making changes in the back-end needed to

integrate it with the machine dependent part.

Machine dependent changes might include translating instructions, generated

for the original architecture, to operations that will run on the new architecture or

that have an equivalent operation in the new instruction set. The changes may also

include merging one or more instructions in the original code stream into a single

instruction. Another possible transformation is a change of the operand formats.

Clearly these changes can be made outside the back-end compiler and information

about these changes can be passed to the scheduler module within the back-end,

through the use of a machine description �le.

In the particular case of one-to-many mapping of instructions, VLIW/EPIC

architectures are especially suitable, since some of the IR expansion may be hidden by

e�ective global scheduling, i.e, the additional instructions generated by the mapping

may be scheduled in empty slots in the VLIW multi-ops, thereby hiding their laten-

cies. Even though instructions are added to the instruction stream the performance

impact may be minor. The following section identi�es some of the key ideas and the

motivation for the work presented in this report.

3

1.1 Motivation

Retargetability is of importance in a back-end compiler since the number of

machines is large and it is not feasible to design a new compiler for each one. This work

attempts to retarget a back-end compiler designed for a VLIW processor called Tinker,

to the IA-64 architecture. The VLIW computing paradigm has recently made a come

back with the IA-64 architecture, which is a VLIW style architecture that is being

designed currently by Intel. My work is largely motivated by the fact that the IA-64

architecture depends heavily on compiler support for most of its optimizations, and

also due to the fact that there is a large similarity between the Tinker and the IA-64

architecture. Since the existing compiler back-end for Tinker implements a number of

ILP optimizations such as speculation, predication, and modulo scheduling, which are

also supported by the IA-64 architecture, it is an ideal candidate for retargetability.

The similarity in the architectures allows the retargeting to be done with-

out making signi�cant changes to the back-end. The existing back-end uses a fairly

machine independent intermediate representation (IR) called Rebel. All ILP opti-

mizations in the back-end, which are common to the two architectures, are performed

on Rebel code. Since the munger uses Rebel as its input and output formats, it is

independent of the back-end. The di�erences between the two architectures are com-

municated to the back-end through a machine description �le.

The contribution of my thesis is an IA-64 code generator composed of (1) a

4

machine description of the Itanium processor (an implementation of the IA-64 archi-

tecture) and (2) a rule-based peephole optimizer, called themunger, which translates

Tinker speci�c operations to IA-64 compatible operations. These two modules have

been integrated within the Tinker compiler to generate code for the IA-64 archi-

tecture. This work focused primarily on the ease of retargetability of the back-end

compiler rather than performance of the resulting IA-64 compatible code.

1.2 Compiler phases

The work in this report leveraged the existing back-end compiler (called LEGO

[14, 15]). The LEGO back-end compiler accepts intermediate code generated for a

VLIW architecture, called Tinker [2].

The phases for converting C source code to IA-64 assembly code are shown in

Fig. 1.1. Their correspondence to conventional compiler passes is described below,

1. The C source code is �rst fed through the IMPACT front-end. IMPACT is

an optimizing ILP compiler that was developed at the University of Illinois.

It generates an intermediate code called Lcode. This pass basically involves

parsing the high-level language and performing classical optimizations on the

code to generate an intermediate three-address code.

2. A non-optimizing pass, called Elcor, translates the Lcode into Rebel. This pass

5

?

IA-64 assembly
generator

-

Converts LEGO IR
to IA-64 assembly

?

LEGO
back-end

-

Back-end: schedules the IR code
and allocates registers

?

munger

-

Transforms the IR
to be IA-64 speci�c code

and sends its output to the LEGO back-end

?

Elcor

-

Transforms Lcode
to Rebel (LEGO IR)

?

IMPACT

-

Front-end that converts the C code
to an intermediate representation called Lcode
and does parsing and classical optimizations

?

Figure 1.1: The phases in the process of IA-64 code generation

6

has no analog in a conventional compiler and is present here simply because

LEGO only accepts the IR that Elcor produces.

3. The Rebel code is transformed to an IA-64 speci�c Rebel code by passing it

through the munger. Thus the IA-64 code generation portion is actually inde-

pendent from the rest of the back-end compiler as previously mentioned. This

pass is also non-existent in conventional compilers.

4. The munged code is then passed through the LEGO back-end compiler for

scheduling and register allocation. The LEGO back-end may apply many dif-

ferent ILP optimizations such as global scheduling, speculation, predication and

if-conversion, operation combining, and multi-way branching. The scheduled

code may then be passed through an assembly code generator and eventually

linked to form machine code. This pass is similar to the back-end of most

conventional compilers and involves code scheduling and register allocation.

5. The scheduled Rebel code is passed through an IA-64 assembly code generator.

This pass is usually a part of the back-end in conventional compilers and isn't

a separate pass as shown here.

The remainder of the report is organized as follows. Firstly, a brief overview

7

of existing code generation methods is described. This chapter describes three ap-

proaches to code generation and also talks about peephole optimization as an alterna-

tive to conventional code generation. Secondly, I brie
y introduce the salient features

of the IA-64 architecture. This chapter describes features of IA-64 which support

various ILP optimizations and also shows in what ways the Tinker architecture is dif-

ferent. The munger is then described in detail. This chapter describes the algorithm

used by the munger and also the syntax of the mapping rules. Finally some results

and conclusions are presented. This chapter presents statistics about the performance

of the munger, speci�cally the amount of expansion in the IR, that is caused by the

mapping of single instructions into sequences of instructions. It also discusses the

most commonly used mapping rules and their causes. The munged code has not been

validated by running it on a real Itanium workstation or simulator as yet. That is

part of the future work.

Chapter 2

Prior work

There has been a lot of work done in the area of compiler back-ends, especially

on code generation and retargetable code generation. Since the sixties there have been

primarily three directions that the research has taken: interpretive code generation,

pattern-matched code generation and table-driven code generation [4].

1. Interpretive code generation: This approach generates code for a virtual

machine and then attempts to expand the code to one for a \real" architecture.

Code generation is \macro"-like. The machine description is hard coded into

the code generation algorithm. Such code generators are usually hand coded

and informal [4].

There are two sub-classes of interpretive code generators:

8

9

(a) Hand-written interpreters that implement a one-to-one or one-to-many

mapping between the virtual machine and the real-machine instructions.

This class requires many code generator decisions to be made by the front

end. Since all the mapping rules have to be written by hand, the author

of the rules has to decide the optimal mapping.

(b) In the other class of code generators, translation of the abstract instruc-

tion stream to instructions for a real machine is done by interpreting the

changes made to the abstract machine state and generating actual machine

instructions which cause equivalent actions on the actual machine.

Interpretive code generators su�er from a number of limitations [4]. Firstly,

the diversity in addressing modes, target machine data types, and instructions,

makes it very hard to anticipate a variety of machine organizations in one vir-

tual machine. Secondly, code generation languages are closely tied to a speci�c

language or machine, so they cannot be considered fully portable. The descrip-

tion of the target machine is hard coded into the code generation algorithm.

This forces the code generation algorithm to be changed when the machine

description changes. Finally, the implementer has to write the mapping rules,

which may result in sub-optimal mappings.

10

2. Pattern-matched code generation: This approach tries to avoid the retar-

getability problems of the interpretive code generation approach. It separates

the machine description from the code generation algorithm. Depending on the

choice of instruction patterns, pattern matching may be performed either by

heuristic search or parsing.

The idea is to encode the machine characteristics into a pattern tree. The code

generator algorithm then traverses a parse tree from the source language and

tries to �nd a suitable match for it in the pattern tree [4].

Such an approach was taken by Aho et al [5], where they use a dynamic pro-

gramming algorithm to derive optimal code sequences for register machines.

This approach only considers arithmetic expressions though. A related work by

Aho et al [6] describes a tree-manipulation language called twig which is used

in conjunction with the dynamic algorithm described above [5], to build fast

and e�cient code generators. A twig program is a set of pattern-action rules

with a syntax as shown below [6]:

label:pattern[fcostg][=factiong]

Label is an identi�er analogous to the left-hand nonterminal symbol of a pro-

duction, pattern is a parenthesized pre�x expression representing a tree, cost is

C code executed by the pattern matcher when it �nds a subtree matching the

11

tree pattern, and action is also C code that is executed by the matcher when it

is determined that this rule is part of the minimal cost cover.

Although pattern-matched code generation deals with the problem of separating

the code generation process from the machine description, it su�ers from a

limitation. It is very hard to create a single tree structure to encode all potential

instruction patterns [4].

3. Table-driven code generation: Table-driven approaches try to automate the

process of generating code generators. They use a formal machine description

and a code-generator generator. These approaches break down the problem of

code generation into two parts: register allocation and instruction selection.

In previous approaches described above, the code generator usually tries to do

register allocation too.

The work by Graham and Glanville [7], made a signi�cant breakthrough in au-

tomating the code generation phase in compilers. Their work assumes a very

low-level IR in the form of pre�x expressions. Their code generator then gen-

erates assembly/machine code from this low-level IR. Their algorithm uses a

method similar to that used during parsing source code and the machine in-

structions are also described in the pre�x notation. The idea is to perform a

pattern match similar to source code parsing, translating the IR sequence of

12

pre�x expressions into assembly instructions. The complication of this algo-

rithm over standard syntax analysis is that machine descriptions are usually

ambiguous since operations can access their operands in many ways. Besides,

the code generator has to select from a variety of instructions. One limitation

of this approach is that a one-to-one mapping is assumed between the machine

instruction templates and the target machine instructions. This assumes a lot

about the IR and e�ectively requires the IR to be changed when targeting a

new machine.

Other work by Gordon [8], involved writing a code generator for an established

Coral 66 compiler for the Intel 8080/8085, the new code generator being tar-

geted for Intel 8086. The optimizer used here was also table driven but the

di�erence from the work by Graham et al [7] was that the table was hand-

coded with macro-de�ned symbols for all the intermediate codes. Each item

in the table had an original sequence of codes to be identi�ed and a sequence

to replace the original. This is similar in idea to the munger presented in this

work but the munger only does either a one-to-many mapping or a many-to-one

mapping of instructions. All other mappings (one-to-one) are speci�ed through

the machine description �le. The basic idea behind this optimizer is that it

would be recursive and work in parallel on upto four di�erent layers or levels of

tables. Each layer is chained to the next. Processing persists within each layer

13

until no further action can be taken. The functions of the di�erent layers is as

follows:

� The �rst table expands intermediate code to more closely resemble

the way that the target machine works. It also combines successive

simple codes that can be handled by a single target instruction.

� The second table optimizes successive logical and arithmetic instruc-

tions and absorbs some manipulation of operand addresses into the

addresses themselves.

� The third table inserts push or pop instructions needed if the top of

the stack resides in a register in the target machine.

� The fourth table speci�es optimizations to generate operations which

can be performed directly on variables without using the stack or

registers.

Yet another table-driven approach tries to separate the pattern-matching pro-

cess and the pattern-selection process [9]. Here a code generator was devel-

oped called UNH-CODEGEN which takes two inputs, a machine description

in YACC-like format and a set of C structure de�nitions for valid tree nodes.

The output of the system is C source for a code generator. The basic idea is

to avoid expensive cost analysis of the machine description at code generation

time. This cost analysis is done while generating the code-generator. In essence,

14

cost analysis examines all competing sequences of patterns (those that might

match the same pattern tree) and removes those that are suboptimal from later

consideration (at code generation). Some contextual information can also be

passed to the code generator allowing some \goal-oriented" code generation.

This is unique as compared to the system developed by Graham et al [7].

Besides these broad classes of code generators, there has been some research

of very simple (naive) code generators and optimizing the resulting generated code

using peephole optimizers.

One of the earliest works done in this area was by Fraser et al [10]. It describes

an optimizer that operates on object code in order to replace certain sequences of in-

structions with better sequences. This peephole optimizer used a symbolic machine

description to simulate pairs of adjacent instructions, replacing them with an equiv-

alent single instruction. The symbolic machine description describes the syntax of

an instruction and its e�ect (both explicit and implicit, such as the setting/clearing

of condition codes). Once the optimizer knows the e�ect of individual instructions,

it passes forward over the program and considers the e�ects of physically adjacent

instructions; where possible, these pairs are replaced by a single instruction that has

the same e�ect. The authors didn't �nd the need to combine more than a sequence

of triples of instructions. More complex replacement strategies such as replacing a

15

triplet with a sequence of two instructions, were also unnecessary. An implementa-

tion of the peephole optimizer in a real cross-compiler called \YC" has been done by

Fraser et al [11].

A similar e�ort [12] uses a classical rule-directed peephole optimizer which

runs after a naive code generation pass. The advantage of using classical peephole

optimization over more portable methods [10, 11] above is speed. Classical optimizers

are usually very simple and very quick. Yet, because the rules are hand-written, not

all possible optimizations may be covered.

A hybrid of the two approaches [13] may exploit the speed advantage of clas-

sical peephole optimizers while retaining the more thorough approach of machine

description driven optimizers [10]. The basic idea is to build a rule generator on

top of a fast classical peephole optimizer. The retargetable peephole optimizer [10]

simulates adjacent instructions and where possible replaces them with an equivalent

single instruction. This optimizer is used to compile a large \training set" of rules by

initially processing a large sample program with the rule-generator. More rules can

then be inferred and added to the complete set of rules as the compilation progresses.

Rules may also be pre-loaded from an earlier compilation thereby minimizing the

amount of work that needs to be done by the retargetable optimizer.

Clearly, there are two primary directions which code generation research has

taken, hand-written, and automated. The literature also shows, that, as a rule, while

16

automated code generators are usually slower than hand-written ones, they are more

thorough and produce more optimal code. The advantages of the two approaches

can be combined if a naive code generator is used and the resulting code optimized

using a peephole optimizer. This is the approach that my work has taken. The

munger behaves like a peephole optimizer which optimizes code generated for the

Tinker architecture, to run on the IA-64.

Chapter 3

The IA-64 processor architecture

The IA-64 architecture is Intel's 64-bit EPIC style architecture. It is designed

with a number of new features to extract greater instruction level parallelism (ILP),

such as speculation, predication, large register �les, a register stack, advanced branch

architecture, etc. These features may be categorized as those that support explicit

parallelism and those that enhance parallelism [3].

3.1 Explicit parallelism

3.1.1 Conveying compile time information to the processor

The IA-64 architecture provides mechanisms, such as instruction templates

which explicitly specify groups of independent instructions that can be executed si-

multaneously. An instruction template is a bundle of three instructions of a particular

17

18

type (integer,
oat, memory, or multimedia). The number of templates are limited

to thirty one, in IA-64. They don't cover all possible combinations of instruction

types. In any implementation of IA-64 more than one bundle may be executed simul-

taneously. These bundles can be speci�ed in the source code, by the compiler, using

templates.

In addition, some features such as branch hints and cache hints, allow the

compiled code to manage the hardware resources of the processor using run-time

information. Every memory load/store operation has a 2-bit cache hint �eld which

speci�es the spatial and/or temporal locality of the memory area being accessed.

The processor could use this information to determine placement of cache lines in

the cache hierarchy. This leads to better utilization of the cache hierarchy thereby

minimizing the penalties incurred by cache misses. Branch hints provide information

to the hardware to improve branch prediction performance by suggesting how the

hardware should predict a certain branch.

3.1.2 Multiple resources

ILP is the ability to execute multiple instructions simultaneously which implies

the presence of parallel resources - multiple functional units and a large number

registers. Both these are present in the IA-64 architecture. This architecture is

inherently scalable since the instructions are issued in bundles of three instructions,

19

and, depending on the implementation more than one bundle may be issued in a

single cycle.

The number of registers also needs to be large due to the parallel nature of

the programs running on the processor. The IA-64 architecture has 128 64-bit integer

and
oating-point registers, 64 1-bit predicate registers, and 8 64-bit branch target

registers.

IA-64 also avoids the unnecessary spilling and �lling of registers at procedure

call and return interfaces. At a call site, a new frame of registers is available for the

new procedure without need for register spill or �ll (either by the caller or callee).

Register access occurs by renaming the virtual register identi�ers in the instructions

through a base register into the physical registers. The callee can freely use available

registers without having to spill and eventually restore the caller's registers. If there

is an under
ow or an over
ow at a call or a return site respectively, the register stack

engine (RSE) stalls the processor and manages all spills and �lls to/from the memory.

3.2 Enhancing parallelism

3.2.1 Speculation

Both control and data speculation are supported by the IA-64 architecture.

In both cases the compiler exposes ILP by issuing an operation early and removing

20

the latency of this operation from the critical path. Thus the compiler can overlap

instructions and tolerate their latencies.

Control speculation

Control speculation is the execution of an operation before the branch that

guards it. When the compiler speculates an operation it leaves a check operation

at the original location of the operation. This check veri�es whether an exception

has occurred and branches to recovery code if it has. An exception is represented in

di�erent ways for integer and
oating-point operations. For general purpose registers,

an extra bit called the NaT, or Not a Thing, is de�ned for each register. When this

bit is set it means it was set by an operation that was speculated and caused an

exception. These bits are propagated down a dependence chain. Thus, any operation

that uses a register whose NaT bit is set also sets the NaT bit of its destination. If

a
oating-point instruction excepts, the destination register stores a speci�c pseudo-

zero encoding called the NaTVal which represents a deferred exception.

Data speculation

Data speculation is the execution of a load prior to a store that precedes it

and potentially aliases with it. Analogous to control speculation when a compiler

speculates a load it leaves behind a load check instruction at the original location.

21

The check veri�es if an overlap occurred between the load and the aliasing store

instruction and branches to recovery code if it did.

When an advanced load is executed it allocates an entry in a structure called

the Advanced Load Address Table (ALAT). Later when a corresponding check is

executed, the presence of an entry in the table indicates that the data speculation

was successful. An entry in this table is invalidated by a store or a load to the same

location.

3.2.2 Predication

Predication is the conditional execution of instructions based upon the set/unset

state of a predicate bit. Predication replaces branches used for conditional execution

resulting in larger basic blocks and the elimination of associated mispredicts. The

larger basic blocks in turn provide a greater scope to extract parallelism. A basic

analysis of the predicates can easily detect disjoint sets of predicates thereby allowing

instructions guarded by disjoint predicates to be issued simultaneously.

3.2.3 Software pipelining

Support for modulo-scheduling of loops is provided through rotating registers

and special branches. Register support is provided through a �xed size area of of

the predicate and
oating-point register �les and a programmable sized area of the

22

general purpose register �le.

3.3 Comparison with the Tinker architecture

The Tinker architecture is a VLIW processor. It is very similar to the IA-64 ar-

chitecture. Tinker has support for all ILP optimization techniques that are supported

in the IA-64 architecture, such as, speculation, predication, modulo scheduling, and

parallel execution.

The primary di�erence between the two architectures is that Tinker allows

any combination of instructions to issue simultaneously, as long as resource and de-

pendency constraints are satis�ed. This is unlike IA-64 where instructions are issued

in bundles of three instructions. The allowed combination of instruction types in a

bundle is �xed and has to be one of thirty one prede�ned templates.

The instruction sets of the two architectures are also fairly similar and most

Tinker instructions have an equivalent in the IA-64 instruction set. Only about twelve

instructions in the Tinker instruction set do not have a direct map onto equivalent

IA-64 instructions. One di�erence between the two architectures that a�ects the

performance of the munger, as is shown in Chapter 5, is that Tinker supports more

operand formats than IA-64 in arithmetic and non-arithmetic instructions.

Chapter 4

Munger

4.1 Introduction

In order to leverage the LEGO optimizing back-end compiler, the Tinker spe-

ci�c Rebel code generated from the Elcor pass (Fig. 1.1) needs to be transformed

into IA-64 speci�c Rebel code. As it turns out, the IA-64 instruction set is fairly

similar to the Tinker instruction set [2, 3]. Most instructions in the Tinker instruc-

tion set can be directly (one-to-one) mapped to equivalent instructions in IA-64. The

equivalence between these instructions and the Tinker instructions is described in

the machine description of the IA-64 architecture. Some instructions may need to

be expanded or mapped into sequences of Tinker instructions that have one-to-one

mappings with equivalent IA-64 instructions. Conversely, by adding new (IA-64)

instructions to LEGO itself, it is possible to detect sequences of instructions in the

23

24

Tinker speci�c Rebel that could be replaced by a single IA-64 instruction. This would

optimize the Rebel code for IA-64 without making any changes to the optimizations

that the back-end performs. The primary focus of this work was to generate code for

the IA-64 architecture in the simplest way. Performance of the resulting code was

not considered.

4.2 Structure of the munger

The munger is a peephole optimizer which reads in the code generated for an

abstract machine (Tinker) and \munges" (transforms) it to generate code suitable to

be scheduled on the IA-64 architecture. The munger was designed to be as machine

independent as possible. It reads in two forms of inputs: one is the Rebel �le that

needs to be transformed; the other is a �le that contains rules which specify how

certain instructions from the Tinker instruction set have to be either expanded into

equivalent sequences of instructions or how certain sequences of instructions have to

be merged into a single instruction. These rules are stored in the form of an associative

map, for quick lookup, with the key to the map being either the Tinker instruction

that has to be expanded or the single IA-64 instruction that is formed by merging a

sequence of Tinker instructions.

25

4.2.1 One-to-many mapping

The format for writing the rules for expanding a single instruction into a

sequence of instructions is described below.

/

<Tinker op> destn1 destn2 source1 source2 source3 predicate

<Tinker op> destn1 destn2 source1 source2 source3 predicate

...

/

The complete rule for expanding a single instruction �ts within two \/" sym-

bols. Here, the �rst Tinker instruction that follows the \/" symbol is the instruction

that needs to be expanded into a sequence of Tinker instructions. This sequence is

de�ned by the remainder of the Tinker instructions in the rule above. An example of

such a rule is shown below,

/

CMPP.W.FALSE.UN.UC D1 D2 S1 S2 S3 PR

MOVE G1 NULL 1 NULL NULL PR

CMPP.W.EQ.UN.UC D1 D2 GPR0 G1 NULL PR

/

All the operands are de�ned for each instruction in the rule. If some operands

don't exist they are de�ned to be NULL. In the example above D1 is the �rst des-

tination, D2 is the second destination. S1, S2, and S3 are the source operands and

PR is the predicate operand. The example above transforms a single CMPP oper-

ation into two operations. The CMPP operation stands for \compare to predicate"

and sets the value of two predicate destinations based on a comparison between the

source operands. In this case the comparison operator is FALSE, which means the

26

result of the comparison is always \0", irrespective of the source operands. The values

stored into the predicate destinations further depend on the quali�ers, in this case

UN (unconditional) and UC (unconditional complemented). A quali�er UN implies

that the result of the comparison is stored as it is in the predicate destination, while

UC implies that the result of the comparison is �rst complemented and then stored

in the predicate destination. Thus in this example D1 gets a value \0" while D2 gets

a \1".

This instruction gets mapped into a sequence of two instructions which moves

the literal \1" into a register and compares it with zero, thereby always clearing the

predicates. In many cases new operands need to be created while forming the rule.

This is accommodated by specifying what kind of operand to create, using mnemonics.

Thus, in the example above a new general purpose register (gpr) is created by the

MOVE instruction, denoted by G1, which is further used by the CMPP.W.EQ.UN.UC

instruction. This sequence of de�nes and uses is also kept track of in the munger by

using an associative map. A list of mnemonics that have been currently de�ned is

shown in table 4.1.

The algorithm to perform this one-to-many mapping is described below. The

rules to perform the mapping are initially read and stored in the form of an associative

map, with the �rst instruction in the rule being a key. Then, for each procedure in

the Rebel code module, the mapping function is called on each region. A region can

be one of three types

� Treegion: A treegion is a tree-like region with multiple basic blocks or

hyper blocks in it. A treegion contains no merge points by de�nition.

� Hyper block: A hyper block is a large region formed by combining basic

blocks through predication. It has a single entry point and multiple exit

27

Mnemonic Operand type

NIL NULL operand

D1 Original destn1

D2 Original destn2

S1 Original source1

S2 Original source2

S3 Original source3

PR Original predicate

Gn New general purpose register

Fn New
oating point register

Pn New predicate register

Bn New branch register

Cn New control register

CBn New control block

U New unde�ned operand

n New int/
oat literal

GPRn general purpose register with the speci�ed number \n"

FPRn
oating point register with the speci�ed number \n"

Table 4.1: Set of mnemonics used for creating operands.

28

/* Map the instructions in a procedure */

int

mapper(proc, n)

{

for(int i=0;i < num_regions_in_proc;i++)

{

// If the region is a treegion....

if(region_type == ``treegion'')

for(int j = 0;j < num_subregions;j++)

n = mapper(sub_region, n);

// If the region is a basic-block or hyper-block....

if(region_type == ``basic-block'' || region_type == ``hyper-block'')

n = mapper(region, n);

}

return n;

}

Figure 4.1: Pseudo-code to perform one-to-many mapping at a procedural level

points.

� Basic block: A basic block is a contiguous section of code with a single

entry point and a single exit point.

If the region is a treegion, the mapper function is called again for each basic block or

hyper block in the treegion. \n", below, is an integer that is used to provide a unique

index to each new operation created. The pseudo-code for this is shown in Fig.4.1,

The mapping function for each basic block looks at each instruction starting

from the top of the basic block, and searches the set of rules to see if that instruc-

tion needs to be expanded. If it does, then that instruction is expanded as per the

rules otherwise the next instruction is processed. Once the instructions have been

29

translated, the order of operands in each instruction is checked to see that it is in ac-

cordance with the allowed addressing formats in the IA-64 instruction set architecture

(ISA). The pseudo-code for this is shown in Fig.4.2,

4.2.2 Many-to-one mapping

The rule format for merging a sequence of instructions into a single instruction

is very similar to the one-to-many case and is described below.

%

<Tinker op> destn1 destn2 source1 source2 source3 predicate

<Tinker op> destn1 destn2 source1 source2 source3 predicate

...

%

The complete rule for merging a sequence of instructions �ts within two \%"

symbols. Here, the �rst Tinker instruction that follows the \%" symbol is the single

instruction obtained by merging a sequence of Tinker instructions. This sequence is

de�ned by the remainder of the Tinker instructions in the rule above. An example of

such a rule is shown below:

%

BR NULL NULL S1 NULL NULL PR

PBRR D1 D2 S1 S2 S3 PR

BRU NULL NULL D1 NULL NULL PR

%

In the example above, a new instruction BR has been added to the Tinker

instruction set. It is a combination of two Tinker operations, a PBRR instruction

and a BRU instruction. A PBRR is a \prepare to branch" instruction that loads

the branch address into a branch target register. A BRU is an unconditional branch,

30

/* Map the instructions in a region */

int

mapper(region, n)

{

// If the region is a basic-block or hyper-block....

if(region_type == ``basic-block'' || region_type == ``hyper-block'')

{

// Initial mapping

op = first_op_in_region;

while(op)

{

// Expand "op" if necessary.

n = translate_op(op, n);

op = next_op;

}

// Check for erroneous op-formats, and correct them

op = first_op_in_region;

while(op)

{

n = operand_chk(op, n);

op = next_op;

}

}

return n;

}

Figure 4.2: Pseudo-code to perform one-to-many mapping at a basic-block level

31

which branches to the location speci�ed by the branch register in its source operands.

This is easily expressed through the rule shown above. In the many-to-one case there

is no need to create new operands. This is because the single instruction which

is formed will take its sources from the instruction sequence being merged and its

destination from the last instruction in the sequence.

The algorithm to perform a many-to-one mapping is described below. The

rules have already been read in before the merging is attempted and those rules that

are speci�c to merging are stored in an associative map separate from the one for

performing the expanding of an instruction into instruction sequences. Then, for

each procedure, the merge function is called on each basic-block region. The pseudo-

code for this is shown in Fig.4.3,

The merging function for each basic-block �rst generates the DAG (directed

acyclic graph) for the region. This DAG contains all data dependence information of

the region being considered. Then for each pattern speci�ed in the rules it searches

through the DAG for the �rst instruction in the pattern. If the �rst instruction is

found, it goes on to search for the rest of the pattern in the DAG, in a recursive

depth-�rst manner. The use of the DAG to search for sequences of instructions, au-

tomatically ensures that only valid sequences of instructions are found i.e only those

sequences which contain the de�nitions as well as uses of variables. This is guaranteed

because, by de�nition, a DAG stores dependence chains, which means every instruc-

tion which de�nes a value is connected to all other instructions which use this value

in the future. This pattern of instructions is then replaced by a single instruction in

the Rebel code. While replacing this pattern of instructions it is important to ensure

that if any destination registers generated in the instruction sequence are live outside

this sequence, they have to be re-generated before they are used. There may be other

32

/* Merge insn's in a procedure */

int

merge (proc, n)

{

/* call merge() for each region */

for(int i=0;i < num_regions_in_proc;i++)

{

// If the region is a treegion....

if(region_type == ``treegion'')

for(int j = 0;j < num_subregions;j++)

n = merge(sub_region, n);

// If the region is a basic-block or hyper-block....

if(region_type == ``basic-block'' || region_type == ``hyper-block'')

n = merge(region, n);

}

return n;

}

Figure 4.3: Pseudo-code to perform many-to-one mapping at the procedure level

33

potential advantages of using a DAG to search for patterns, but these haven't been

investigated in this report.

Every block may have more than one merges possible. The merges are per-

formed on the basic-block in the order in which the rules are read in. This ordering

of the rules may impact code size since, some rules may overlap with other rules.

Thus, the larger the number of instructions that a rule merges, the sooner it should

be used. This would result in the smallest code size. Code performance hasn't been

considered here and may even worsen depending on resource constraints. If the re-

sulting merged instruction requires a particular functional unit, which isn't available

in large numbers, the code performance may actually go down. The pseudo-code for

this is shown in Fig.4.4

34

/* Merge instructions in a basic-block */

int

merge(region, n)

{

// If the region is a basic-block or hyper-block....

if(region_type == ``basic-block'' || region_type == ``hyper-block'')

{

/* form the DAG for the region */

BuildDagForRegion(region, machine, Knobs);

// for each pattern in the ``merge_rules'' associative map...

for (all_patterns)

{

Front = find_first_op_in_pattern();

match = getMatch (Front, vec+1);

replace_sequence_with_single_op();

}

}

return n;

}

Figure 4.4: Pseudo-code to perform a many-to-one mapping at the basic-block level

Chapter 5

Results and conclusions

The munger was run on six benchmarks in the SPEC95 benchmark suite.

These are go, m88ksim, compress, li, ijpeg, and vortex. Each of these benchmarks

was \munged" to produce code suitable for scheduling on the IA-64 architecture. This

code was then scheduled using the LEGO back-end compiler with most ILP optimiza-

tions turned on , such as global treegion scheduling, speculation, operation combining,

and multi-way branching. The scheduler obtained machine speci�c information from

a machine description of the Itanium processor, procured from Intel.

5.1 Results

The primary aim of the munger is to generate code for IA-64 without rewriting

the back-end portion of the compiler. A number of statistics were collected to verify

that the IR expansion due to the one-to-many mappings is not excessive. A IR

expansion weakens the e�ects of any optimizations that may be performed by the

back-end compiler. The percentage increase in code size for each benchmark is shown

in Fig.5.1. From this �gure, it may be seen that the average IR expansion is about

35

36

Figure 5.1: Percent increase in code size in the SPEC95 benchmarks.

11% and the maximum IR expansion occurs in the go benchmark, where the code

grows by about 17%.

New operations are introduced into the code for a number of reasons besides

the speci�ed one-to-many mapping rules. Some of the possible reasons for the addition

of operations are mentioned below:

1. The register allocator currently doesn't recognize special purpose registers like

GPR0, FPR0, FPR1 and PR0, which store �xed values in them and cannot

be written to. This necessitates the addition of a MOVE instruction to store

37

this �xed value into the designated register before actually using these special

registers.

2. The scheduler currently doesn't support predication in its most general form,

i.e, where a single conditional branch with short paths can be eliminated by

predicating the instructions on both the true and false paths. As a result,

some mapping rules which could have been written much more e�ectively by

exploiting predication now need to be written using conditional branches and

adding new basic-blocks.

3. The IA-64 architecture doesn't allow the use of (application) control registers

as source registers in all but a few instructions, whereas Tinker does. This

situation also has to be remedied by �rst adding a MOVE instruction with the

control register as the source and a general purpose register as the destination,

followed by an analogous MOVE after the actual operation is done, to store the

result back into the control register.

4. The same situation as above applies to address labels in the code too.

5. The operand formats in IA-64 integer ALU instructions don't allow the use of a

literal as the �rst operand in the set of source operands. This situation is easily

remedied by interchanging the two operands for commutative operations. For

non-commutative operations, on the other hand, the source operands cannot

simply be interchanged since that might alter the result. Instead a MOVE

instruction needs to be added before the original operation to store the literal

into a register.

As can be seen from the list above, a lot of additional instructions are added

38

Figure 5.2: Distribution of added instructions in the SPEC95 benchmarks due to

mapping rules and other reasons

39

to the original code largely due to the inadequacies of the current version of the back-

end compiler. Future enhancements to the back-end compiler could easily remove

a lot of these redundant additions. It was also observed that a majority of the

operations are added because of one of the reasons mentioned above, rather than the

mapping rules themselves. This is shown in Fig.5.2, where, on average, the number

of additional (valid) operations added due to the mapping rules is around 10% of the

total number of added operations. The breakdown of additional operations (causes

mentioned above) is shown in Fig.5.3. It may be seen from the �gure that, in all the

benchmarks, the two primary causes for addition of instructions are:

1. a literal operand occurring in the wrong position in the list of source operands

for an operation, requiring a MOVE instruction to be added, and

2. the use of an address label as a source operand in an instruction other than a

MOVE, once again requiring a MOVE to be added to �rst store this address

label in a general purpose register.

The only other signi�cant cause for instruction addition is the predication

problem requiring the formation of conditional branches and new basic blocks. This

can be completely eliminated if the scheduler is enhanced to support predication.

That would further reduce the number of instructions added by about 6% on average

over all the benchmarks.

An analysis of the rules used by the munger shows that only a few of the rules

are used most of the time. The top �ve rules used by the munger, for each benchmark,

are shown in Figs.5.4-5.9. The top seven rules over all the benchmarks are also shown

in Fig.5.10. Table, 5.1, below, gives the description of the actual rule corresponding

to a particular rule number.

40

Figure 5.3: Distribution of added instructions in the SPEC95 benchmarks

41

Rule number Syntax

1 ADDL.W :

ADD.W

57 CMPP.W.EQ.UN.UN:

CMPP.W.EQ.UN.UC

CMPP.W.EQ.UN.UC

245 CMPP.W.GEQ.UN.UN:

CMPP.W.GEQ.UN.UC

CMPP.W.GEQ.UN.UC

306 CMPP.W.GT.UN.UN:

CMPP.W.GT.UN.UC

CMPP.W.GT.UN.UC

429 CMPP.W.LGEQ.UN.UN:

CMPP.W.LGEQ.UN.UC

CMPP.W.LGEQ.UN.UC

674 CMPP.W.LT.UN.UN:

CMPP.W.LT.UN.UC

CMPP.W.LT.UN.UC

729 CMPP.W.NEQ.UN.UN:

CMPP.W.NEQ.UN.UC

CMPP.W.NEQ.UN.UC

Table 5.1: Rule syntax corresponding to the rule numbers shown in Figs.5.4-5.9.

42

Figure 5.4: Top seven rules used by the compress benchmark

Figure 5.5: Top seven rules used by the go benchmark

43

Figure 5.6: Top seven rules used by the ijpeg benchmark

Figure 5.7: Top seven rules used by the li benchmark

44

Figure 5.8: Top seven rules used by the m88ksim benchmark

Figure 5.9: Top seven rules used by the vortex benchmark

45

Figure 5.10: Top seven rules used over all the benchmarks

As can be seen from table 5.1, six of the top seven rules used in each of

the benchmarks is a translation of a CMPP (compare to predicate) operation. The

CMPP operation in Tinker sets the value of two predicate destinations based on

the comparison of the source operands. The comparison operator is speci�ed in

the operation itself (e.g., the .EQ., .GEQ., .NEQ. etc.) above. The way in which

each predicate is set is also speci�ed in the operation (e.g., .UN. speci�es that the

predicate is to be set unconditionally). Since IA-64 doesn't allow the setting of both its

predicate destinations unconditionally, every instance of the above mentioned CMPP

rules needs to be converted into two instances of the same rule, except for the fact

that the replacement CMPP operations set one predicate unconditionally while the

second is inverted (.UC. signi�es an unconditional complement). Table 5.2 shows the

top seven rules used in each benchmark as a fraction of the total number of rules

used.

46

benchmark fraction of all rules

used by the top seven rules

compress 84

go 93

ijpeg 77

li 90

m88ksim 93

vortex 94

Table 5.2: The top seven rules used as a fraction of the total number of rules

5.2 Conclusions

Owing to the large similarities between the Tinker and the IA-64 architectures,

code generation for the IA-64 architecture was attempted within the framework of

the LEGO back-end compiler, which currently supports only the Tinker architec-

ture. A rule-based munger was developed to transform the code generated for the

Tinker architecture to IA-64 code. The munger is currently designed to be machine

independent, in that, by rewriting the rules one could transform Tinker IR to resem-

ble more closely any other architecture speci�c IR, as long as that architecture is a

VLIW/EPIC style machine.

As shown in my results section 5.1, the munger does not cause excessive IR

explosion in the SPEC95 benchmarks. On average the amount of IR explosion was

about 11%. This value is further reducible by enhancing the back-end compiler and

making it fully capable of supporting predication. This would avoid the need for

generating conditional branches and new basic-blocks. The register allocator also

needs to be updated so that it understands which registers are bound to certain

47

values. This measure would reduce the number of added MOVE instructions which

contribute signi�cantly to the IR expansion.

Further work needs to be done in specifying rules that merge one or more

operations to emit a single operation. There is a lot of scope for improving the

speci�cation of the rules for the munger. Currently a separate pass in the munger

corrects for any wrong operand formats. This pass could actually be avoided by

specifying the correct operand formats through the syntax of the rules. The munger

could then substitute any instructions with wrong operand formats with the correct

ones, as speci�ed in the rules.

This approach to IA-64 code generation is very e�ective, as, development of

the back-end ILP compiler can occur independent of any retargeting of the compiler

to new architectures. ILP optimizations implemented in the back-end can be tested

out on any new architecture by simply munging the Rebel code into code compatible

with the target architecture.

List of References

[1] Aho, A.V., and Ullman, J.D. Principles of Compiler Design. Addison

Wesley 1977.

[2] Tinker: A PlayDoh VLIW architecture. Computer Architecture Research

Laboratory, Department of Electrical and Computer Engineering March

1986.

[3] IA-64 Application Developer's Architecture Guide. Intel May 1999.

[4] Ganapathi Mahadevan, Fischer C. N. and Hennessy J. L. \Retargetable

Compiler Code Generation." Computing Surveys, 14(4):573-592, Dec

1982.

[5] Aho A. V. and Johnson S. C. \Optimal Code Generation for Expression

Trees." Journal of the Association for Computing Machinery, 23(3):488-

501, July 1976.

[6] Aho A. V., Ganapathi Mahadevan and Tjiang S. W. K. \Code Generation

Using Tree Matching and Dynamic Programming." ACM Transactions

on Programming Languages and Systems, 11(4):491-516, Oct 1989.

48

49

[7] Glanville R. S. and Graham S. L. \A New Method for Compiler Code

Generation." Proc. 5th ACM Symp. Principles of Programming Lan-

guages (Tuscon, Ariz., Jan 23-25), ACM, New York, 231-240, Jan 1978.

[8] Stevenson Gordon \Code Generation with a Recursive Optimizer." Soft-

ware Practice & Experience, 10:393-403, 1980.

[9] Hatcher P. J. and Tuller J. W. \E�cient Retargetable Compiler Code

Generation." Proc. Intl. Conf. on Computing Languages, IEEE, New

York, 25-30, 1988.

[10] Davidson J. W. and Fraser C. W. \The Design and Application of a

Retargetable Peephole Optimizer." ACM Transactions on Programming

Languages and Systems, 2(2):191-202, April 1980.

[11] Davidson J. W. and Fraser C. W. \Code Selection through Object Code

Optimization." ACM Transactions on Programming Languages and Sys-

tems, 6(4):505-526, Oct 1984.

[12] Davidson J. W. and Whalley D. B. \Quick Compilers Using Peephole

Optimization." Software Practice & Experience, 19(1):79-97, Jan 1989.

[13] Davidson J. W. and Fraser C. W. \Automatic Inference and Fast Inter-

pretation of Peephole Optimization Rules." Software Practice & Experi-

ence, 17(1):801-812, Nov 1987.

[14] LEGO IR User's Manual. Computer Architecture Research Laboratory,

Department of Electrical and Computer Engineering April 1998.

50

[15] Mahlke, Scott A. \Exploiting Instruction-Level Parallelism in the Pres-

ence of Conditional Branches." Ph.D. dissertation, Department of Elec-

trical and Computer Engineering, University of Illinois, Urbana IL, Sept

1996

