

Abstract

Larin, Sergei Yurievich

Exploiting Program Redundancy to Improve Performance, Cost

and Power Consumption in Embedded Systems

Under direction of Prof. Thomas Conte

During the last 15 years embedded systems have grown rapidly in complexity and performance
to a point where they now rival the design challenges of desktop systems. Embedded systems
are now targets for contradictory requirements: they are expected to occupy a small amount of
physical space (e.g., low package count), be inexpensive, consume low power and be highly
reliable. Regardless of the decades of intensive research and development, there are still areas
that can promise significant benefits if further researched. One such area is the quality of the
data which embedded system operates upon. This includes both code and data segments of an
embedded system application. This work presents a unified, compiler-driven approach to
solving the redundancy problem. It attempts to increase the quality of the data stream that
embedded systems are operating upon while preserving the original functionality. The code size
reduction is achieved by Huffman compressing or tailor encoding the ISA of the original
program. The data segment size reduction is accomplished by modified Discrete Dynamic
Huffman encoding. This work is the first such study that also details the design of instruction
fetch mechanisms for the proposed compression schemes.

Exploiting Program Redundancy to Improve Performance, Cost and
Power Consumption in Embedded Systems

by

Sergei Y. Larin

A dissertation submitted to the Graduate Faculty of
North Carolina State University

In partial fulfillment of the
Requirements for the Degree of

Doctor of Philosophy

Department of Electrical and Computer Engineering
North Carolina State University

Raleigh, North Carolina

August 2000

Approved by:

__________________________ ___________________________
Prof. Thomas Conte Prof. Eric Rotenberg

Chair of Advisory Committee

__________________________ ___________________________

Prof. Edward W. Davis Prof. Paul D. Franzon

 ii

Biography

I was born in a small town in the southern portion of Russia – Taganrog. In 1993, I

enrolled in the Master of Science program at the Electrical and Computer Engineering

department at the University of South Carolina under the supervision of Dr. Thomas M. Conte.

After completion of my MS program, in 1995, I enrolled in the PhD program at North Carolina

State University under the supervision of Dr. Thomas M. Conte and I have completed this

program at August 2000.

 iii

Acknowledgments

 Following the age-old tradition I would like to thank everybody who made this work

possible.

The first and the most important are my parents Yuriy Alexeevich and Ludmila

Vladimirovna Larin who made everything possible and supported me on each step of the way.

Thank You.

As my parents granted me physical existence, my advisor Thomas Conte granted me the

‘academic life’. Without his careful guiding and encouraging this thesis would never materialize.

Thank You.

Next my thanks are going to my wife, Elena Vasiluevna Larina who helped and supported

me in every possible way.

And final, but nonetheless important, I would like to thanks those who did not get in my

way. Well, thank you.

 iv

Table of Contents

1 Introduction ... 1

1.1 Introduction and Motivation.. 1

1.2 Previous work.. 5

1.2.1 Previous Work in Code Compression for Embedded Systems 5

1.2.2 Previous Work in Bus Optimization ... 7

1.3 Target Architecture Description.. 9

2 Code Segment Redundancy Reduction ... 11

2.1 Motivation ... 11

2.2 Measuring the Available Redundancy... 16

2.3 Code Compression Techniques... 18

2.4 Tailored Encoding ... 22

2.5 Instruction Fetch Mechanism Issues ... 27

2.5.1 Instruction Fetch Organization and Modification of the Instruction Cache........ 27

2.5.2 Program Layout ... 29

2.5.3 Compiler Optimizations to Enhance Code Layout.. 31

2.6 Address Space Conversion.. 35

2.6.1 Branch Target Address Randomization .. 35

2.6.2 Base Line Instruction Cache Design ... 40

2.7 Compressed Instruction Cache Hardware Implementation ... 44

2.7.1 The Instruction Cache Design for Compressed Encoding 44

2.7.2 The Instruction Cache Design for the Tailored ISA.. 48

2.7.3 Decoding Complexity Evaluation ... 51

3 Data Segment Redundancy Reduction .. 57

3.1 Available Redundancy and Compression Strategy ... 57

3.2 Effects of the Data Cache on Data Compressibility.. 69

 v

4 System Data Bus Redundancy Utilization .. 74

4.1 Motivation and Experimental Setup.. 74

4.2 Data Bus Coding Algorithms .. 80

5 Compressed Data Cache Hardware Implementation... 85

5.1 Motivation ... 85

5.2 Compressed Data Cache Architecture... 86

5.3 Dynamic Decoding Structure .. 96

5.4 Variations on the Compressed Data Cache Design... 102

5.5 Final Configuration for the Compressed Data Cache ... 111

6 Conclusions and Future Work... 114

References ... 118

7 Appendix ... 124

 vi

Table of Figures

Figure 2.1 Traditional ASIC Design ... 11

Figure 2.2 Proposed Approach to Embedded System Design... 14

Figure 2.3 Zero-NOP Encoding Example ... 17

Figure 2.4 Stream-based Huffman Encoding .. 20

Figure 2.5 Tailored Encoding Example .. 22

Figure 2.6 Comparison of Different Compression Techniques (code segment only). 23

Figure 2.7 Traditional Distribution of Miss Rate.. 27

Figure 2.8 Entropy Based Distribution.. 28

Figure 2.9 Atomic Fetch Block Structure ... 29

Figure 2.10 Treegion forming Example .. 31

Figure 2.11 Jump Optimization Example ... 32

Figure 2.12 Multi-way Branching Example.. 33

Figure 2.13 Branch Target Randomization ... 35

Figure 2.14 ATB Miss Ratio ... 36

Figure 2.15 Compression Including ATT Size ... 39

Figure 2.16 Banked Cache Architecture ... 41

Figure 2.17 Instruction Cache Structure for Compressed Encoding... 45

Figure 2.18 Instruction Cache Structure for the Tailored Encoding ... 46

Figure 2.19 Cache Study Summary. Instruction Delivered per Cycle... 48

Figure 2.20 Instruction Memory Bus Traffic Summary.. 49

Figure 2.21 Verilog Code for Decoder Example (Custom – left, Byte Based Huffman – right) 50

Figure 2.22 The Huffman Tree Decoder Structure ... 51

Figure 2.23 Estimated Huffman Decoder Complexity.. 53

Figure 2.24 Estimated to Real Size Comparison for the Byte Based Compression Decoder (for

the Compress Benchmark) .. 54

 vii

Figure 2.25 Estimated to Real Size Comparison for the Byte Based, Full Compression and

Custom Coding Schemes (for the Compress Benchmark).. 55

Figure 3.1 Dynamic Compression for M88ksim... 62

Figure 3.2 Dynamic Compression for Go ... 62

Figure 3.3 Dynamic Compression for Vortex ... 63

Figure 3.4 Dynamic Compression for Gcc.. 63

Figure 3.5 Dynamic Compression for Perl.. 64

Figure 3.6 Dynamic Compression for Ijpeg .. 64

Figure 3.7 Dynamic Compression for Li... 65

Figure 3.8 Dynamic Compression for Compress .. 65

Figure 3.9 Summary of Data Segment Compressibility.. 66

Figure 3.10 Entropy Change Due to Compression.. 67

Figure 3.11 Dynamic Compression for M88ksim in presence of a Data cache 68

Figure 3.12 Dynamic Compression for Li in presence of a Data cache 70

Figure 3.13 Dynamic Compression for Perl in presence of a Data cache 71

Figure 3.14 Effect of Data Cache on Data Stream compressibility... 72

Figure 4.1 Traditional. Bus Encoding Experimental Setup... 74

Figure 4.2 Bus Blocks and Tuples Structure... 75

Figure 4.3 Busy Bus Cycles .. 76

Figure 4.4 Entropy Changes due to Caching... 77

Figure 4.5 Oracle Block Distribution .. 78

Figure 4.6 Density of the Switching Activity on Compressed Data Bus 80

Figure 4.7 Transaction Intensity.. 81

Figure 4.8 Transaction Density ... 82

Figure 5.1 Compressed Data Cache Architecture ... 85

Figure 5.2 Block Placement Example - Expanded Block Placement.. 87

Figure 5.3 Block Placement Example - Reduced Block Placement.. 88

Figure 5.4 Read Pipeline. Multiple Set storage... 89

Figure 5.5 Read Pipeline. Two cycle access ... 90

Figure 5.6 2x Restricted Compression Block Placement and Access ... 91

Figure 5.7 WUB Organization .. 92

 viii

Figure 5.8 Logical Structure of the Reprogrammable Huffman Decoder 93

Figure 5.9 Dual Bank RAM Implementation of the Huffman Decoder...................................... 94

Figure 5.10 Multiple Symbol Decoding Example... 95

Figure 5.11 Biased Huffman Tree Example.. 96

Figure 5.12 Restricted Huffman Decoder Structure.. 97

Figure 5.13 Profile Point Selection ... 98

Figure 5.14 Compression Dependence on Profile Point Selection. Memory side vs. Processor

Side.. 99

Figure 5.15 Miss Ratio Dependence on Profile Point Selection. Memory side vs. Processor Side

... 102

Figure 5.16 Compression Dependence on Profile Point Selection. Memory side vs. Storage

Contents... 103

Figure 5.17 Miss Ratio Dependence on Profile Point Selection. Memory side vs. Storage

Contents... 104

Figure 5.18 Two Level Compressed Data Cache.. 105

Figure 5.19 Miss Ratio for Two-Level Cache compared with the Original Implementation.... 106

Figure 5.20 Reference Hit Breakdown for the Original Compressed Data Cache.................... 107

Figure 5.21 Reference Hit Breakdown for the Two-Level Data Cache 108

Figure 5.22 Two Level Cache Size Variation (Logarithmic Scale) .. 109

Figure 5.23 Miss Ratio Comparison between Compressed and Uncompressed Caches 110

Figure 5.24 Absolute Dynamic Compression for Storage Profile Scheme 111

Figure 5.25 Entropy Miss Ratio Summary.. 112

 1

1 Introduction

1.1 Introduction and Motivation

The importance of embedded systems today is easy to underestimate. During the last 15

years embedded systems have grown rapidly in complexity and performance to a point where

they now rival the design challenges of desktop systems. This evolutionary trend is known as

the fifth era of computing: from main frames to minicomputers to microcomputers followed by

PC or desktop era and finally into the embedded system age. In the last year the number of

embedded processors sold actually exceeded the amount of general-purpose units sold. And the

trend is growing. With the popularity comes the challenge. Embedded systems are now targets

for contradictory requirements: they are expected to occupy a small amount of physical space

(e.g., low package count), be inexpensive, consume low power and be highly reliable. However,

they are asked to take on more complex functions [3],[17],[47]. The digital image processing,

DVD and third generation cell phone base station require server-like performance from

embedded processors and most of the time they stand up to the challenge.

Regardless of the decades of intensive research and development, there are still areas that

can promise significant benefits if further researched. One such area is the quality of the data

which embedded system operates upon. This includes both code and data segments of an

application. Designers spend a long time on logical optimization and minimization of

applications, but they can only achieve as much as the original instruction set architecture (ISA)

will permit. Moreover, excessively cautious and there forth often redundant approach have to be

 2

taken for data accommodation and processing. As a result, most of the time the code and data

used on embedded systems contains a significant amount of redundancy.

The presence of this redundancy would degrade the potential performance of any

processor. The Flynn’s bottleneck [32] is one of the toughest frontiers in high performance

system design. It receives increasing amount of attention as the core vs. memory speed gap

multiplies. An elaborate design approaches and compiler techniques are taken to reduce this

gap. Nevertheless few designers actually pay attention to the fact that information contents of

data transferred through those elaborate units is relatively low.

As the complexity and size of applications increase, the traditional method of hand

coding applications for embedded systems is quickly becoming obsolete. Although hand coding

is still practiced for critical regions of a program, and is very popular for simple DSP

applications, optimizing compilers starting to play a major role in the overall process[3],[28].

But, those compilers are normally built to compile a relatively wide spectrum of applications.

So, compilers have to tolerate some redundancy in the code they produce in order to support the

numerous applications encountered. For some real world applications (like the SpecInt95

benchmarks [45] compiled with the optimizing GCC compiler –O2 option for HP PA

architecture) entropy ranges between 0.75 and 0.80, which means that the spilt between two

possible symbols is 70 to 30%. On the other hand compilers have extensive information about

the application being compiled which could be effectively utilized.

This work presents a unified, compiler-drive approach to solving the redundancy problem.

It attempts to increase quality of the data stream that embedded systems are operating upon

while preserving the original functionality. Moreover, some of the proposed methods offer

increase in performance combined with smaller code and data sizes, which proves the negative

 3

effect of high redundancy data and ultimate benefits that could be achieved by removing it.

There are three major components of embedded system front end considered in this thesis.

- Instruction fetch mechanism and instruction cache design;

- System bus;

- Data fetch mechanism and data cache design;

The first part considers reduction in static size of code segment and alternative design for

instruction cache. It is primarily targeted at reduction of the instruction memory size

requirements for System On Chip (SOC) architectures. It is achieved by compression or

customization of the original instruction set to meet the needs of each particular application.

Several prior approaches to this problem have either defined new instruction-set architectures

(e.g., the ARM Thumb Instruction Set [26] or SGI MIPS16 [27]) or defined elaborate

compression schemes without taking the impact on instruction fetch into account (e.g., IBM

CodePack [9], Cooper and McIntosh [12]). The main contribution of this study is a unified,

compiler-driven approach to the problem. It presents both code compression strategies and their

corresponding instruction fetch mechanisms along with compiler techniques to facilitate them.

The instruction cache is also reconsidered, and it is allowed to hold the high entropy

representation of the original code segment. This fact significantly increases instruction cache

effective capacity and ultimately results in a higher performance.

The second part of this work pays attention to communication issues within the memory

hierarchy and front end of embedded processors. Following many previous researches in the

area [33],[34],[49] this thesis research utilization, throughoutput and power consumption on

memory and system buses in SOC. The improvement is achieved through dual coding of the

original stream: a variation of Gray coding is applied on top of dynamic Huffman compression.

 4

For some configurations the ultimate goal of shorter transaction time with lower switching

activity is attained.

The last, but not least, considered component is the data cache. Even with a perfect

instruction cache, a processor can only operate as fast as data could be delivered to it.

Unfortunately dynamically accessed data contains a significant amount of redundancy, which

reduces the effectiveness of the data fetch mechanism. The quality of this data could be

significantly improved by dynamic compression, if a practical scheme can be invented to exploit

this data quality. It is no surprise that dynamically accessed data is compressible. Research into

value prediction hints at high rates of redundant data accesses [51]. However, exploiting this

property to yield a performance benefit has been difficult so far. With the help from compiler

and the run time profiling we can double performance (miss ratio) of the data fetch path. But it

can only be truly effectively explored if the data cache is permitted to hold compressed blocks.

This fact in turn introduces serious design challenges.

To summarize the proposed solutions to the above-mentioned problems it is necessary to

state the following. In any embedded system, especially in those based upon the VLIW

architecture, static (or compile time) part of design cycle gains greater importance very rapidly.

This offers unique opportunity to improve performance of the available hardware base with

minimal dedication of some logic complexity and maximum utilization of the compile

technology. The target of optimization is the available redundancy in application. The

beneficiary is the front end of an embedded system. The gain is lower physical space, higher

performance and lower power dissipation.

 5

1.2 Previous work

1.2.1 Previous Work in Code Compression for Embedded Systems

This study would not be complete without first mentioning previous research in this area.

As was briefly mentioned in the introduction, in the past there were several studies regarding the

reduction of the ROM size in an embedded system [1],[9],[10],[12],[17],[18],[47].

In several works by Wolfe, et al. [1],[17],[18], a technique to execute compressed

programs on an embedded RISC architecture (MIPS was used as an example) was studied. The

initial motivation involved reducing the code size difference between the RISC and CISC

embedded processors. Besides the diversity in target architecture, one of the major differences

from the current study was in the unified approach to the compression. Wolfe’s studies used the

Huffman algorithm for compression, but only one common histogram was built for a set of all

experimental benchmarks and only byte-based alphabet was considered. In addition to that a

fixed-size 32-byte blocks were considered an atomic unit of compression. The goal was to

create a single encoding for a fixed architecture and satisfy some range of applications. This

single encoding scheme is important when building a general-purpose system, but seems less

effective for embedded applications with their unique code base. In the Wolfe’s work [1] code

is uncompressed at the instruction cache miss path, and the study does not discuss further details

of instruction cache design. A special hardware structure (called Cache Line Address Lookaside

Buffer) was provided to guarantee dynamic conversion between compressed and original

address space. Regardless all the differences, the original work by Wolfe [1] was one of the

major inspirations for the code compression part of this thesis.

 6

Several industrial solutions to the code segment size problem include the IBM CodePack

[10],[42], the ARM Thumb [26], and the SGI MIPS16 [27]. The first one uses the dictionary

Huffman compression scheme, while the latter two of these provide special compact subsets of

the original instruction set architecture (ISA). Truncating the original ISA reduces its flexibility,

which ultimately results in increased instruction count and, in general, slower running

applications. The CodePack also has the disadvantage of keeping the instruction cache

uncompressed. The consequences of this decision are discussed in this study in great details.

Recently some design issues regarding instruction fetch mechanism for IBM’s PowerPC 405

(which uses Code Pack) were revisited by Lefurgy in [48]. The important achievement was the

fact that after certain improvement to existing hardware structures (instruction fetch pipeline

architecture) the compressed code exhibit better performance then the native program.

A work by Yoshida et al. [47] specifically concentrates on low power embedded system

processor design. They are using a compression method to reduce power consumption of an

embedded chip. It is specifically targeted at I/O interface by means of substituting original 32-

bit instructions to a set of references in transform table (which resided on chip). This way by

execising tradeoff between silicon area and encoding complexity they significantly decrease I/O

load and executable size. For ARM610 used in experiments, for some benchmarks 12-bit

pseudo instructions we reported to be sufficient to substitute original 32-bit operations.

 Cooper and McIntosh [12] spend most of their effort reorganizing code at the assembly

level via suffix-tree code compression. They reported a very moderate level of compression (5

to 15% reduction). In either way this study is orthogonal to the approach taken in this work.

A series of works by Fraser, et al. [9],[13] considers elaborate compression algorithms at

the assembly level with the same lack of attention to the instruction fetch issues. The

 7

experimental results in this thesis show that neglecting instruction fetch performance in the

presence of compression may lead to incorrect conclusions about the appropriate scheme to

implement.

A recent series of publications by Lefurgy [25],[43],[44] describes a way to manage the

compressed code segment with software. In the [44], authors proposed software managed

decompression tightly coupled with the instruction cache. The compression granularity in [44]

is a single cache line, as opposed to a single basic block used in this thesis.

 An interesting study by Liao, et al. [15] employs an effective compression algorithm

(External Pointer Model by Storer and Szymanski [24]) at the assembly level. In essence this

method introduces a micro procedure calls to a common regions of code. Liao reported an

average of 30% code size reduction. Two implementations, software-only and ‘call-dictionary’

are considered. Both increase the number of branches in the code and (reportedly

insignificantly) the operation count. Also due to high granularity, some opportunities for

compression are missed, and as with the CodePack and many others instruction fetch schemes

use decompression at miss time and uncompressed cache.

1.2.2 Previous Work in Bus Optimization

The next set of relevant research deals with bus power consumption. A number of

researchers addressed power consumption on address buses. It is understandable since address

stream exhibits a great deal of repetitiveness and very low entropy. The fundamental work by

Hammerstrom and Davidson [40] in 1977 showed that there is less than or equal to one percent

of information content in a typical address trace. This is rather understandable since majority of

 8

the time address (Next PC) is merely an increment of the previous value. Combined with

normally high spatial locality of references, this accounts for very low information contents.

There were several researches in the area, and the most relevant are as follows. The

work by Su et al. [38] used the Gray Coding for address generation in RISC-like VLSI-BAM.

The idea was to make program counter produce Gray codes as oppose to normal increment.

Certain care had to be taken of branch target addresses and reported savings were up to 58%

switching activity reduction. The next work by Musol et al [41] concentrated on improving the

Address bus Gray coding by proposing a Working-Zone Encoding. This approach is based on

observation that different address space areas exhibit different behavior. For some cases authors

reported up to 65% switching activity reduction.

In the domain of data buses coding the following work deserves attention. The work by

Stan and Burleson [33] concentrated on special encoding for terminated off-chip broad –level

busses and tri-state on-chip buses for low-power communication. Authors considered not one

but several different techniques for minimizing transaction activity. Those methods included

not only logical minimization (via compression and special coding) but also by phase

modulation of bus signals. Several techniques combining various encoding models were

proposed. For their experimental setup savings of up to 68% were achieved. The same authors

in [34] also proposed a Bus-Invert method which tradeoff performance and area for low power

dissipation.

Finally in the area of data cache compression no previous research was found.

 9

1.3 Target Architecture Description

 All experiments in this work are based on the TEPIC (TINKER EPIC) VLIW embedded

architecture [11]. It is a 40-bit version of the HP PlayDoh VLIW machine specification [21],

adapted for embedded system use. It is important to note that the TEPIC ISA encoding is very

similar to the Intel/HP IA-64 ISA, since the PlayDoh was one of the major influences for the IA-

64. For a core processor configuration, we assume a six-wide issue machine, with four

execution units that can execute any instruction except for memory access, and two universal

units (that can perform any instruction including memory accesses). The register files are fixed

to 32 general-purpose, 32 floating point and 32 predicate registers. The detailed encoding

formats for operations are shown in the Appendix Table 1.

A special compact encoding is used to encode a single VLIW Operation (MultiOP or

MOP for short – it combines all the instructions that must be issued in the same cycle). This

compact encoding is known as Zero-NOP encoding and was originally designed to decrease the

size of the VLIW code segment as compared to an equivalent RISC code [7]. Each operation in

the original ISA is equipped with a dedicated bit, which is set only for the last operation in a

MOP (See example in Figure 2.3). This encoding allows exclusion of the empty instructions

(NOPs) in the final scheduling, which are normally the major contributors to the traditional

VLIW code size explosion.

Generally speaking, TEPIC is a very powerful architecture, and a rather aggressive

approach to an embedded system implementation. But with the current rate of progress,

(Moores’s law) it seems to be a very likely scenario for near future designs [52],[53]. However

 10

the target architecture does not obscure the importance of the code and data compression in the

current work, which might prove even more relevant for smaller systems.

As was mentioned before, the LEGO optimizing compiler [7] is used to schedule and

optimize the code. The LEGO compiler employs standard optimizations and global instruction

scheduling using Treegion [4],[5],[6] block forming. A modified version of the original

TINKER assembler is used to generate custom encoding, compressed object file as well as the

synthesizeable Verilog for the decoder. The compiler is able to output an intermediate code

(Rebel) that is executed via the TINKER YULA emulation tool. Annotations are added by the

compiler to emit an instruction address or load/store trace for simulations (these annotations are

not included when determining the instruction addresses or performing compression). All the

studied hardware structures are modeled via simulators using an execution-driven trace.

The SPECint95 [45] benchmark suite is used for all experiments.

 11

2 Code Segment Redundancy Reduction

2.1 Motivation

The instruction fetch process is a well-known bottleneck for any architecture, and is a

crucial process for embedded systems. Initial analysis shows that most of the time the

information contents in typical applications is as low as 20 -30% [50]. This means that the

expensive instruction fetch mechanism 80-70% of the time performing redundant operations.

The code segment’s size can be reduced as much as 50% [50], by modifying the original ISA

design and adjusting the design of the instruction cache. As a result the new program can be

executed at the same, or even faster rate, when compared to the original (native) code. By

Figure 2.1 Traditional ASIC Design

Core (VLIW)
microprocessor
Core (VLIW)

microprocessor

On - chip
memory

On - chip
memory

Code
ROM

Code
ROM

processor local bus

AP
U
bus

ASIC

Special -
purpose
function

units

Special -
purpose
function

units
I/O

 12

tuning the instruction fetch pipeline, not only the performance but also the embedded system’s

overall size, cost and, indirectly, the power consumption are improved, without reducing

original functionality. The key feature is that the original ISA is uniquely adjusted for the

specific conditions of each particular application. The ISA could be either custom tailored or

compressed. Once the code is compressed, it is kept this way throughout the whole instruction

fetch pipeline, from the code ROM to the decoding stage of the processor. An important and

unique contribution to the previous research in this area is the fact that the instruction cache

itself is kept compressed, which significantly increases its effective capacity.

One commonly employed approach in building an embedded system is by using an

Application-Specific Integrated Circuit (ASIC) [3],[27],[28],[42] design. It is commonly known

as a System On Chip (SOC). Such a system is normally composed of several building blocks

taken from a component library. All application code is stored in a ROM and an off-shelf on-

chip core processor is used for execution [3],[52],[53] (see Figure 2.1). This method is a

flexible and powerful way to quick implementation of an embedded system with minimal

resources. At the same time, due to the inherited flexibility, a number of high level architectural

enhancement are possible, which makes it easy to put into operation techniques and solutions

described in this thesis.

First and probably the most important problem with modular ASIC approach and off-

shelf core processor is that the instruction memory ROM size multiplies with the growth of the

device’s functionality. The ROM size will soon become the major cost defining factor and

bottleneck for the instruction fetch (IFetch) mechanism [1],[3],[14],[27],[28],[50] as well as

overall system implementability. As a result, the code ROM often has to be implemented on a

separate chip, which involves the familiar difficulties associated with remote instruction

 13

fetching and off-die power consumption. One of the many challenges of an embedded system

design is to reduce the size of the ROM without sacrificing the functionality and performance of

the system. As have been mentioned before, the approach taken in this work for the code

segment is trying to reduce redundancy of the code stored in the ROM by customizing the

original ISA or by utilizing compression to modify the existing code. This increases the

utilization of the entire instruction fetch pipeline and in turn reduces the ROM size. This effect

can only be achieved if a substantial amount of redundancy indeed exists in the code.

With the growth of embedded systems application complexity far beyond familiar

embedded DSP applications, as have been mentioned before, the traditional methods of hand

coding and optimizing are becoming less and less effective and increasingly time consuming. In

addition market’s requirements of a short design cycle and increased reliability have become a

limiting factor. A practical way to use a high level programming language, while maintaining

optimal target code quality is needed [3]. This calls for developing a sophisticated compile

technology and majority of vendors invested tremendous amount of time and effort in doing

that. For example, the TI 320Cxxx series of DSP processors has been successful in large part

due to the vendor-supplied optimizing compiler [28]. This work follows this trend by focusing

on compiler-driven code design and data optimization for embedded systems applications. The

compiler used for this study is the optimizing LEGO compiler developed in the Tinker group at

North Carolina State University (NCSU) [4],[5],[6],[11]. This is a highly optimizing

speculating compiler targeted to a wide range of very long instruction word (VLIW)

architectures including the Intel IA-64 prototype. It uses Treegion-based scheduling [4],[5],[6]

and provides a comprehensive set of traditional optimizations. While being a research compiler

it is available for easy modification to fit the current study.

 14

In general an important feature of embedded systems is their specific code base. Since

an embedded system is likely to execute the same code base throughout its life span, the

compiler can customize the original instruction set architecture. After scheduling and

optimization, once the final image is available, the compiler generates an efficient custom-

tailored instruction set architecture and decoder structure, which can interpret it. In other words

this study is not bounded by the rigid traditional instruction set architecture. As have been

mentioned before, traditional ISA’s are normally designed to fit a wide spectrum of applications.

In this study, the instruction set architecture is a parameter and is optimized for space and cache

performance. In general the ISA could also be improved for power consumption, branch/data

prediction accuracy, and various other design goals. Nevertheless only code size is considered

at this point. Another closely coupled possibility is compression of the original ISA. The result

is a compressed set of original instructions that need to be uncompressed prior to execution.

The code could remain compressed all the way down to the instruction cache, with obvious

advantages in the amount of required space. (See Section 2.3 for a more detailed discussion).

Figure 2.2 Proposed Approach to Embedded System Design.

Core (VLIW)
microprocessor

On-chip
memory

Code
ROM

processor local bus

A
PU

 b
us

ASIC

Special-
purpose
function

units

I/O
Decoder

Application

(LEGO) Compiler
generates Tailored
decoder and encoding

 15

Another element of this work involves the justification of use of VLIW architectures for

embedded systems in general. Obviously the VLIW architecture seems to be a natural fit for the

embedded system environment since many traditional VLIW problems do not affect embedded

systems. There is almost no code compatibility problem between generations. The use of

relatively simpler hardware leads to a higher performance and low power consumption, when

compared to an equivalent issue-width superscalar architecture. And one of the foremost

advantages for this work is the primary role of compiler in producing the code. Since normally

extensive information is available about the dynamic behavior of the program, high quality

schedules can be produced by the optimizing compiler. All these statements were proven to be

accurate at the design of the commercial TI DSP processors [28]. The familiar challenges

present are the static code size and effective high bandwidth instruction fetch. The object code

size difference between the VLIW and the superscalar architectures is first reduced by using the

Zero-NOP encoding [7] and restricted code duplication in the LEGO compiler to the lower

RISC-like levels. Then the code is further optimized for required space by reduction on an

individual operation size through tailor customization or compression. The instruction fetch

related issues for the Zero-NOP encoding have been discussed in [7],[8] and are further

extended in this work. The decoder’s structure for the optimized encoding is produced by the

compiler, which has all of the information needed – logical functionality, in- and output

connectors along with the required control signals. The overall structure of such a system is

presented in Figure 2.2. Thus the compiler now plays a major role in dictating not only the

ROM’s contents (the executable code), but also the core processor decoder’s logic and other

components design.

 16

2.2 Measuring the Available Redundancy

In order to estimate the amount of useful information in a data set we should choose a way

to measure the present redundancy. The available redundancy could be measured by calculating

the entropy of the code as it was defined by Shannon in [29]. In the Equation 1,)(xPx is the

probability of alphabet character x in the set. The base of the logarithm only matters for

convenience of presentation and is normally set to ten.

)(log)()(
0)(,

xPxxPxxH
xPxx

b∑
≠

−= (Equation 1)

For a binary system (see Equation 2), 0P is the probability of zero and 1P is the probability of one

in the set (or embedded system application executable code in our case). It is also more

convenient to use logarithm base two to represent results.

)loglog(121020 PPPPH +−= (Equation 2)

So for the logarithm base two, when the entropy is equal to zero this means that all probabilities

but one are equal to zero (just one symbol in the set) and information contents is none. On the

other hand, when the entropy is equal to one, all symbols in the set are equally probable and the

amount of information contents is at the maximum. Once it was proven that there is sufficient

slack in the data set, we should define a strategy on its removal, and first the redundancy of code

segment is discussed.

 Traditionally, there are two general approaches for the reduction of a program

 17

redundancy (or increasing its entropy in different terms). One is the reduction of the number of

redundant assembly operations in the code [9],[12],[13],[15],[27], and the other is the reduction

of the operation size [1],[10],[28]. Generally, these two approaches are both trying to achieve

the same goal – to increase the entropy of the code, but it is achieved in different ways. This

means that applying both of them to the same portion of code obviously will not result in better

compression. (Nevertheless different areas of code could be optimized with different methods.)

It is important to notice that this statement is assuming that all traditional optimizations (like

constant propagation, redundant computation and dead code removal) have been done and code

does not contain any logically redundant operations or computations. This work chiefly

concentrates on the latter approach - reducing the operation size.

 There are two methodologies for reducing operation size: tailoring the ISA or

compressing the code. The tailored ISA is a new and unique encoding, which is generated for

one particular program/application and best fits its characteristics. After decoding a tailored

operation, the internal processor signals are obtained. Because of the tailoring process, different

Figure 2.3 Zero-NOP Encoding Example

nop nop Op_A_2 nop Op_A_4 nop nop nop

Op_B_0 nop Op_B_2 nop nop nop

nop nop nop nop

Traditional encoding

TINKER Zero-NOP encoding

0

8

16

Op_B_5 Op_B_6

Op_C_0 Op_C_2 Op_C_4 Op_C_7

0 Op_A_2 1 Op_A_4

0 Op_B_0 0 Op_B_2 0 Op_B_5 Op_B_6

0 Op_C_0 0 Op_C_2 0 Op_C_4 Op_C_7

0

2

6

Total 960 bit, 560 bit are in NOPs

1

1

OpType
Total 400 bit, 0 bit are in NOPs

 18

operations are getting different sizes, which affects the branching mechanism (this topic will be

discussed in greater details in Section 2.4).

On the other hand, compression of the code segment takes an existing encoding (ISA),

and, according to the static frequencies of elements in the source code, determines the best way

to pack it. Once a compressed operation is uncompressed at execution time, it still needs to be

decoded to obtain internal processor signals. Theoretically tailoring the ISA should yield better

performance (e.g., no intermediate decompression needed), while compression should yield a

smaller code size. This work finds that this intuition holds, even when the improved instruction

cache performance from caching compressed code is taken into account (see Section 2.7).

2.3 Code Compression Techniques

 Let us first discuss compression of the original instruction set. In general, the

compression circumstances for embedded systems code segment are very favorable, since the

entire code image is available statically for the compression algorithm and compression

objectives are to reduce the static size of the code. A fast hardware decoder could be used for

decompression and interpretation. The main issue is the complexity, and therefore size and

speed, of the decoder. There are virtually thousands of potential compression algorithms to

choose from. First, we can safely eliminate dynamic compression algorithms since we need to

store compressed code and also fully utilize its static availability. Here it is important to

reemphasize that since we are concerned only with the static size of code (ROM size), we only

need to know the static distribution of elements. This might not be the case for compressing

 19

dynamic data sets, as we will soon see. Also if code segment would be optimizing for dynamic

interpretability, it might involve dynamic profiling and analysis. Nevertheless for the static

environment, the Huffman lossless compression algorithm [2],[30] produces near optimal results

for an integer number of code bits. It is an entropy-bounded code and will use ii PN 2log−=

bits to encode character i in the range ersrOfCharactTotalNumbeNi ≤≤1 . It also allows reasonably fast

decompression (FSM or table lookup) at a realistic real estate price [17],[18]. For similar

reasons, the Huffman compression algorithm was used in several previous studies [1],[9]. The

closest rival to the Huffman compression scheme is the Arithmetic Coding compression

[55],[30],[46] algorithm (or simply arithmetic coding), which could use a fractional number of

code bits to encode the original symbol. Nevertheless, the arithmetic coding compression

algorithm is much harder to decode in hardware and also might need some additional overhead

for stop symbols on a low granularity compression [46].

In addition to the described methods, a new and unique compression algorithm could be

created if a precise cost function would be defined, and this is reserved as a future work.

Meanwhile for the rest of this work we will be using variations of the Huffman compression

algorithm.

 There were three major variations considered. They all differ in ways of composing the

input alphabet for the Huffman compression algorithm. The first variation is the traditional

byte-based method [1],[2]. The code segment is treated as a stream of bytes and compressed

accordingly. As we will see shortly, this method produces the smallest decoding table and the

simplest decoder.

 Second variation is the stream-based approach. The idea behind it is that certain fields

in an instruction encoding exhibit more repetitive patterns when taken as independent

 20

compression streams, than when combined with other fields (see Figure 2.4 and Table 2 in

Appendix). For example OpType and OpCode fields of the TEPIC operation encoding are set to

‘INT_OpType’ and ‘ADD_OpCode’ very often (up to 30% in some applications). The same is

true for the predicate field, which is most of the time (except for the if-converted code) is set to

predicate register number one which in the TEPIC architecture is hard-wired to ‘true’ and means

unconditional execution of the operation. According to that observation, alphabet streams are

fixed at certain operation field boundaries, as shown in Figure 2.4. The initial boundary

selection was made manually after careful examination of the generated assembly code.

Nevertheless, there were several experiments conducted in order to prove this selection and they

will be discussed shortly. However, stream based encoding is not entirely new. A similar

observation was made in the IBM CodePac [10],[42] instruction set architecture and used there

as a base assumption for further Huffman table-compression scheme.

 The last approach to alphabet selection for the Huffman input alphabet composition is to

Figure 2.4 Stream-based Huffman Encoding

Integer ALU Operation

Integer Compare-to-Predicate Operation

T S OPT OPCODE PREDICATE

1 1 2 5 5 5 2 8 5 1 5

T S OPT OPCODE PREDICATE

1 1 2 5 5 5 2 3 5 5 1 5

 Src1 Src 2 BHWX Reserved Dest L1

 Src1 Src2 BHWX D1 Reserved Dest L1

Stream 0 Stream 1 Stream 2 Stream 3

0

39

39

0

Load Operation

T S OPT OPCODE PREDICATE

1 1 2 5 5 2 2 1 2 3 5 5 1 5

 Src1 BH SCS Res TCS Reserved Lat Dest Rsv
WX

 21

consider the whole operation as a compression unit. Theoretically this alphabet might have up

to 402 entries (since operation size is 40 bit long), but in practice this number is significantly

smaller. This method produces the largest decoding table, but surprisingly enough, has the

greatest potential for compression. This result becomes more understandable when one

examines the generated Huffman codes. Even with a large number of dictionary entries, the size

of the popular ADD instruction often went down from 40 to six bits. Furthermore, none of the

Huffman codes for the full compression model has exceed the original operation size. In

contrast, the maximum degree of compression of either stream approach is the sum of the

maximum compression of all (four in our case) streams, which easily exceeds six bits in most

cases. From another perspective the whole operation compression method (Full Huffman from

now on) should take us as close to the entropy of the code as possible. If all possible bit

combinations for all the possible instructions in the code would be determined (extract all

unique instructions), and then encoded with the least number of bits according to their absolute

frequency, we will get virtually perfect (or bottom line) compression while still having separate

instructions in the code.

 One additional detail of Huffman compression involves the maximum symbol length.

For some inputs, the Huffman algorithm produces very long output codes that might exceed the

original operation size and become incompatible with the instruction fetch hardware (like

instruction bus weight for example). The compiler keeps track of such events, and either

alternates the compression process (similar to the Bounded Huffman code described by Wolfe

[1], where some additional encoding is required to guarantee the size) or substitutes the rare

instruction with an equivalent group of more common ones. It is important to notice that

virtually no such events were detected for the current experimental setup.

 22

2.4 Tailored Encoding

 The main idea behind the Tailored encoding is to provide to an operation as much space

as it really needs in the contents of the current application, but not to compress it otherwise. At

the same time we need to guarantee that within the same operation type/code instruction field

boundaries remain at fixed locations. This requirement does not impose critical limitations on

size reduction but significantly simplifies the decoder. As we will soon see, the tailored

encoding method still gets significant space savings compared to the original instruction set

architecture, but avoids the intermediate decompression stage entirely. As a tailor-encoded

instruction is decoded, the core processor’s internal control signals are obtained directly. In this

study, the Verilog code for the decoder is produced by the compiler and can be used to create

Figure 2.5 Tailored Encoding Example

a) Original ADD Operation

T S OPT OPCODE PREDICATE

1 1 2 5 5 5 2 8 5 1 5

 Src1 Src 2 BHWX Reserved Dest L1
390

b) Tailored ADD Operation

T S OPCODE

1 1 6 5 5 2 5 1

 Src1 Src 2 BHWX Dest L1
250

c) Original Store Operation

T S OPT OPCODE PREDICATE

1 1 2 5 5 5 2 2 11 1 5

 Src1 Src 2 BHWX TCS Reserved L1
390

d) Tailored Store Operation

T OPT OPCODE

1 2 5 4 1 1 5

 Src1 Src 2 L1 Dest
180

 23

real hardware structure.

 The algorithm for generating the Tailored encoding is rather straightforward. First, the

entire code segment is ‘logically’ profiled/analyzed. The profiling information includes the

number of operations used within each operation type, the maximum number of registers

simultaneously live, the size of absolute field values (like addresses and immediate values

included into operation body), and some others. If for example the application uses less than

eight floating-point operations the floating point OpCode field only needs three bits. If a literal

in an immediate field of some operation exceeds some threshold value (16 bits in the current

study), this operation is separated into a Load Immediate instruction followed by the original

operation with register use instead of an immediate value. Similarly, after the register

allocation, if no more than four different registers of some type are live at the same time in some

source position, the source position needs only two bits to encode. The result is an

Figure 2.6 Comparison of Different Compression Techniques (code segment only).

Compression

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

compress go li ijpeg perl m88ksim vortex gcc Mean

Benchmarks

%
 o

f
o

ri
g

in
al

 s
iz

e

Huffman_Stream Huffman_Stream_1 Huffman_Byte Tailored Huffman_Full

 24

uncompressed, but compact version of the original program nearly optimal for this particular

application (see Figure 2.5).

As have been mentioned at the beginning of this section, while forming the Tailored

instruction set architecture, some enhancements are possible for the decoding stage. Indeed it is

a big issue, because if we overly aggressive follow the minimum requirements for operation

field we might end up with as many unique encodings (or masks) as there are different

instructions in the application. That is why some size reduction needs to be sacrificed to

guarantee interpretability of the customized code. For instance, if every instruction has its Tail

bit, OpType and OpCode fields (see Figure 2.5) in a fixed position (and possibly of a fixed size)

within the custom operation, decoding is significantly simplified. In addition to this, those fields

could be grouped together for a MOP and placed at a certain location. Since the compiler is the

one who generates the encoding and decoder, it looks for opportunities like this when it creates

the Tailored ISA.

 A comparison between all of these methods is presented in Figure 2.6 for the code

segment only (see Section 3.3 below for more discussion). It should also be noted that for the

stream based encoding, in addition to just choosing different fields for a stream, we could

permute and combine them. This could potentially result in N! different combinations, where N

is number of bits in uncompressed instruction (40 bit for the TEPIC). In order to select the

optimal stream for all the benchmarks a variation of genetic algorithm have been used. From all

the considered possibilities, only six different stream configurations were selected, and the two

best performers are shown in Figure 2.6. The streams presented here were selected for the

smallest average code size (stream_1) and for the smallest average decoder size (stream) among

considered variations.

 25

While analyzing the compression study results, several interesting points could be noted.

The firs, and the most important one is that a significant amount of redundancy does exist in the

code segment. It is quite understandable since an ISA is designed for a broad range of

applications, and the application under consideration might use only a small fraction of the

presented possibilities, it is intuitive that redundancy would be present. The second obvious

conclusion is that not all compression algorithms are equally successful in removing this

redundancy. The traditional byte-wise compression method could be used as a base line to

evaluate others. This algorithm views the image as a byte stream with no other considerations,

which yielding an approximate 25% size reduction. The antipode of the byte-based compression

method is the Full Huffman encoding scheme, which compresses the image on an operation per

operation level (40bit at a time). Note the remarkable code size reduction with the Full Huffman

compression scheme (less than 30% of original size or 70% reduction on average). As have

been mentioned before, this method approaches the entropy limit of the program’s information

contents. But, as we will see in Section 2.7.3, it produces a very large decoder, which in turn

might prevent the use of this algorithm as the primary compression algorithm. This fact leads us

to the final conclusion that there exists a tradeoff between the degree of compression and the

complexity of the decoder. The tailored ISA approach produces code on the order of 64% of the

original size, which can have favorable results for very little additional hardware overhead, so it

is represents a middle point between high complexity of decoding and low compression

effectiveness.

The results presented in the Figure 2.6 neglect the branch target table overhead, which is

an integral part of the compression scheme. The goal thus far has been to address the

compressibility of the code segment and reachability of the entropy threshold. All

 26

implementation details are discussed in Section 2.5 below.

 27

2.5 Instruction Fetch Mechanism Issues

2.5.1 Instruction Fetch Organization and Modification of the Instruction Cache

 A significant component of this work is the joint consideration of the instruction

encoding and instruction fetch organization. Once original ISA has been modified the whole

instruction fetch pipeline must be adjusted. In order to interpret new instructions, the core

decoder must be changed, cache design adjusted and system bus design reconsidered. All of it is

done with the help from the compiler. But most importantly of all those components, the

organization of instruction cache must be reconsidered. In order to utilize the new low-entropy

encoding throughout the whole instruction fetch pipeline (and not only as ROM size-reducing

Figure 2.7 Traditional Distribution of Miss Rate

Capacity

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

1K 2K 4K 8K 16K 32K 64K 128K

1-way 2-way

4-way 8-way

Capacity Compulsory

 28

technique) the instruction cache must be allowed to hold newly encoded blocks of instructions.

For simplicity of discussion let us disregard the method of encoding and just call those

instructions compressed.

The fact that the instruction cache holds compressed instructions increases its capacity

and, as a result, the overall throughput. It is important to stress that we are breaking a

fundamental limitation of current cache technology: the capacity miss ratio which is normally

only attempted to be approached by a multi-way associativity and similar improvements. Figure

2.7 is adapted from Gee et al. [31]. The figure presents a breakdown of a miss component for

caches of different associativity. The fundamental limit of a cache is compulsory (or first-seen)

misses. Compulsory misses cannot be eliminated, unless some sophisticated prefetch scheme is

used. Traditionally, the next limit was always considered the capacity misses, which only

depends on the physical size of the cache storage. Finally, conflict misses are normally defeated

by a higher associativity and intelligent replacement policies.

Now with the compressed cache storage we are approaching the next fundamental limit:

Figure 2.8 Entropy Based Distribution

Capacity

EntropyCapacity

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

1K 2K 4K 8K 16K 32K 64K 128K

1-way 2-way

4-way 8-way

Capacity EntropyCapacity

Compulsory

 29

the entropy capacity (see Figure 2.8). In this notation, no storage is wasted due to the low

entropy of data being stored. This fact leads us to a paradoxical conclusion that we can improve

the overall performance of a system by applying the compression technique, even though more

work must be done to interpret the code. A disadvantage is that the cache controller needs to be

designed differently to handle the compressed contents. However, on the positive side, the

cache’s data path design is not dependent on any particular encoding and could be generalized.

This independence in turn makes modular core processor design possible.

2.5.2 Program Layout

 Let us now define an atomic fetch block as a sequence of instructions guaranteed (or

likely to be) executed sequentially once we start execution of the first instruction in the block.

The simplest example of an atomic block is the Basic Block (a region of code with a single entry

Figure 2.9 Atomic Fetch Block Structure

{ A
 B }

BB_1:

{ C
 D }
{ E
 F
 G }

BB_2: { X
 Y }
{ Z }

BB_9:

a b

c d
f g

x y z

Alignment Boundarys
(Byte Align)

Random Placement

a) Original DAG b) Compressed Memory layout

e f

m

At most 7 bits for Byte
Aligned

Atomic Fetch Unit

x

n

{...} - VLIW
MultiOp Boundaries

 30

and a single exit point). More sophisticated examples include a sequence of basic blocks with

no side entrances, but multiple side exits (like Superblocks [22] or Fisher-style Traces [16]). Let

us consider the simplest type for now, the basic block (BB).

As have been said before, the basic block can be treated as an atomic unit of instruction

fetch (see Figure 2.9). This implies that cache can be accessed initially for only the first

operation in the basic block. After this, the cache can supply operations in a streaming

(pipelined if needed) fashion, until the end of the basic block is reached. This approach is

completely transparent for the processor – it might keep on supplying each MOP address to the

cache, but the cache controller does not need it to serve a miss. It starts to issue the MOP that is

only going to be requested by the processor in the next cycle. This short term ‘looking ahead’ is

a valid approach for the following reasons. First, control transfer can only occur to the first

operation of a basic block (branch target). Second, a basic block should always be executed

from the beginning to the end unless an interrupt has occurred, and even then its execution will

be completed after the interrupt has been handled (here subroutine calls are considered to be

branches that end a basic block). All the necessary NextPC computations local to the basic

block are done within the cache, and are insignificant for the processor core, as long as correct

VLIW group (MOP) is forwarded to the core decoder every cycle. Nevertheless this mechanism

might be implementation specific and could depend on each particular embedded system

architecture.

 31

 The use of more complicated blocks as atomic units is a matter of performance, not

correctness. If the block is permitted to have side exits, we should guarantee that they are not

taken frequently (or the instruction cache will get over-polluted). This requirement is true for

superblocks [22] and Fisher-style traces [16], which are formed at compilation time with the use

of profile information. But it is also true that for complex blocks some additional invalidation

mechanism is needed. Nevertheless, in this study, only basic block atomic units are considered.

(Note however that the code was scheduled by first building trees of basic blocks [i.e.,

treegions,] and then decomposed into basic blocks after the global scheduling pass.)

2.5.3 Compiler Optimizations to Enhance Code Layout

 There are a number of possible code enhancements that could be performed in order to

enhance the code’s compressibility and the instruction cache’s performance [36],[37]. They

Figure 2.10 Treegion forming Example

r0=r0+r2
if(p5)

Branch BB5
else

Branch BB6

r0=r0+r2
if(p5)

Branch BB5
else

Branch BB6

BB2

BB4

r4=r0+r2
Branch BB7

r4=r0+r2
Branch BB7

BB5

r0=r1+r2
Branch BB4

r0=r1+r2
Branch BB4

r0=r1+r3
Branch BB4

r0=r1+r3
Branch BB4

BB3

if(p4)
Branch BB2

else
Branch BB3

if(p4)
Branch BB2

else
Branch BB3

r4=r3+r2
Branch BB8

r4=r3+r2
Branch BB8

Original
Code
Fragment

BB6

r0=r0+r2
if(p5)

Branch BB5
else

Branch BB5’

r0=r0+r2
if(p5)

Branch BB5
else

Branch BB5’

BB2

BB4

r4=r0+r2
Branch BB7

r4=r0+r2
Branch BB7

BB5

r0=r1+r2
Branch BB4

r0=r1+r2
Branch BB4

r0=r1+r3
Branch BB4

r0=r1+r3
Branch BB4

BB3

if(p4)
Branch BB2

else
Branch BB3

if(p4)
Branch BB2

else
Branch BB3

r4=r3+r2
Branch BB8

r4=r3+r2
Branch BB8

After Tail Duplication
and
Treegion forming…

BB6’

r0=r0+r2
if(p5)

Branch BB6
else

Branch BB6’

r0=r0+r2
if(p5)

Branch BB6
else

Branch BB6’

r4=r0+r2
Branch BB7

r4=r0+r2
Branch BB7

r4=r3+r2
Branch BB8

r4=r3+r2
Branch BB8

BB4’

 32

include traditional optimizations as well as some specific actions. Since VLIW architecture

chiefly depends on the compiler to achieve a high level of performance, it is essential to be

aware of this matter during the scheduling.

 The first enhancement is the Intelligent Code Layout to increase spatial reference

locality. This optimization places the most commonly used sequences of basic blocks in close

proximity of each other in the memory. In order to determine which basic blocks are more

commonly used and in which order they should be laid out, the optimization requires some

profiling information. This profile information is collected through execution of the application

with some representative input data set and recording some run time statistics. The most

important of those are number of times a basic block has been executed, and order in which

most executed basic blocks were visited. In addition to that, if memory paging is used, the

layout optimization also attempts to reduce the number of pages needed to execute commonly

used parts of the program. This optimization increases spatial locality and is normally used to

Figure 2.11 Jump Optimization Example

if(p5)
Branch BB5

else
Branch BB5’

if(p5)
Branch BB5

else
Branch BB5’

BB2

BB4

Branch BB7Branch BB7

BB5

Branch BB4Branch BB4 Branch BB4Branch BB4

BB3

r0=r1+r2 if (p4)
r0=r1+r3 if (~p4)

r0=r0+r2
r4=r0+r2 if(p4)
r4=r3+r2 if(~p4)

if(p4)
Branch BB2

else
Branch BB3

r0=r1+r2 if (p4)
r0=r1+r3 if (~p4)

r0=r0+r2
r4=r0+r2 if(p4)
r4=r3+r2 if(~p4)

if(p4)
Branch BB2

else
Branch BB3

Branch BB8Branch BB8

After Speculation
and partial
If-Conversion

if(p5)
Branch BB6

else
Branch BB6’

if(p5)
Branch BB6

else
Branch BB6’

Branch BB7Branch BB7 Branch BB8Branch BB8

BB4’

BB6’

r0=r1+r2 if (p4)
r0=r1+r3 if (~p4)

r0=r0+r2
if(p4)

Branch BB7
else

Branch BB8

r0=r1+r2 if (p4)
r0=r1+r3 if (~p4)

r0=r0+r2
if(p4)

Branch BB7
else

Branch BB8

After Jump
Optimisation

 33

increase instruction cache performance and has been proven to be effective.

 The next set of compile time optimization is the Jump optimization and Multi-way

branching. These optimizations are related to the code layout enhancement, but are more

specific for the Treegion scheduling.

As have been mentioned before, the LEGO optimizing compiler conducts aggressive

static scheduling of VLIW code. An integral part of the scheduling process is instruction

speculation [37],[36]. Sometimes after instruction speculation by the scheduler, some basic

blocks ‘loose’ all of their instructions except for the branch (see Figure 2.10 and Figure 2.11).

This loss leads to multiple ‘back to back’ branches, which are hard to handle in the instruction

fetch pipeline and often are logically redundant. Jump optimization tries to replace long chains

of jumps (with no computations in between) to shorter ones by removing redundant branch

instructions (see Figure 2.11).

Figure 2.12 Multi-way Branching Example

r0=r0+r2
if(p5)

Branch BB5
else

Branch BB5’

r0=r0+r2
if(p5)

Branch BB5
else

Branch BB5’

BB2

BB4

r7=r0+r2
Branch BB7

r7=r0+r2
Branch BB7

BB5

Branch BB4Branch BB4 Branch BB4Branch BB4

BB3

if(p4)
Branch BB2

else
Branch BB3

if(p4)
Branch BB2

else
Branch BB3

r5=r3+r2
Branch BB8

r5=r3+r2
Branch BB8

After Tail Duplication
and
Treegion forming…

r2=r0+r2
if(p5)

Branch BB6
else

Branch BB6’

r2=r0+r2
if(p5)

Branch BB6
else

Branch BB6’

r8=r0+r2
Branch BB7

r8=r0+r2
Branch BB7

r6=r3+r2
Branch BB8

r6=r3+r2
Branch BB8

BB4’
r7=r0+r2

Branch BB7

r7=r0+r2
Branch BB7

BB5

r5=r3+r2
Branch BB8

r5=r3+r2
Branch BB8

After Multi-way
Branching
Optimization

r8=r0+r2
Branch BB7

r8=r0+r2
Branch BB7

r6=r3+r2
Branch BB8

r6=r3+r2
Branch BB8

BB6’

BB6’

r0=r1+r2 if (p4)
r0=r1+r3 if (~p4)

r0=r0+r2
if(p4&p5) Branch BB5

if(p4&~p5) Branch BB5’
If(~p4&p5) Branch BB6

Else Branch BB6’

r0=r1+r2 if (p4)
r0=r1+r3 if (~p4)

r0=r0+r2
if(p4&p5) Branch BB5

if(p4&~p5) Branch BB5’
If(~p4&p5) Branch BB6

Else Branch BB6’

 34

The multi-way branching on the other hand allows more then one branch to be executed

in a single cycle. For a VLIW architecture this branching scheme allows multiple branches a in

a single VLIW instruction with priority given in left-to-right order. For control flow graph

(CFG) multiple branches translate into multiple control edges from a single basic block. Since

each branch instruction has an explicit conditional register (a predicate) associated with it, the

sequence of branches is guaranteed to execute correctly. Besides obvious performance

enhancement from these optimizations, they allow a reduction in the total number of basic

blocks in the program which directly correlates to the size of the static address translation tables

as will be described shortly.

 Standard optimizations like common subexpression elimination (CSE), strength

reduction and constant propagation [36],[37] generally contribute to logically compact code and

undoubtedly are important for the current work. For example strength reduction might

substitute a complicate uncommon instruction by a sequence of simpler, more common

operations. Normally, all of these optimizations are performed prior to scheduling the code.

 On the other hand, in the context of code size reduction, many of the traditional

optimizations like loop peeling and unrolling [36] become less favorable. It is an important

tradeoff between extracting or increasing the available instruction level parallelism (ILP) in a

program and keeping the program size moderate. Since our primary goal in this study is the

static code size reduction, no loop unrolling was performed.

 35

2.6 Address Space Conversion

2.6.1 Branch Target Address Randomization

 A critical issue for the execution of any compressed program is the change in branch

target addresses [1],[27],[42]. Every attempt to bound compressed instruction location to certain

boundaries constrains compression. For instance, if the first instruction of a basic block would

be aligned to the nearest byte boundary, compression degradation will range between one and

three percent. If every instruction would be bounded, compression degradation would become

unacceptable (more than ten or fifteen percent). If a high degree of compression is desired, each

option must be considered and least bounded scheme selected. Once this is accepted, it should

be realized that once different instructions obtain different length of codes, the original branch

targets become meaningless. In fact the address space of a compressed code segment with

Figure 2.13 Branch Target Randomization

0000
0020
0040
0060
0080
00A0
00C0
00E0

0000
0020
0040
0060

Before Compression
Aligned at 32bit addresses

After Compression
Aligned at Random
Addresses Boundaries

 36

unbounded compression is absolutely chaotic (see Figure 2.13). Clearly, some kind of branch

target address recalculation or translation must be performed.

First and the simplest solution is to convert the original branch targets to the compressed

targets at compilation. This process could be performed in two passes. In the first pass a new

code layout and new target addresses are generated (with enough space left for later ‘plug in’ of

new targets in relative branches). On the second pass, new addresses are ‘plugged’ or ‘inserted’

into the target slots and jump tables are updated. This method is a better fit for the Tailored

ISAs than for code compression schemes, because compressed code with new targets will have

to be recompressed with certain restrictions. Branch instructions could also remain

uncompressed in which case a special ‘escape’ symbol should be added.

 Another solution to the branch target problem is to leave the original target addresses the

way they are, unchanged (just compress them along with the rest of the code) and provide a

dynamic translation mechanism at run time. This approach is very well known in general

purpose computing for the mapping of virtual address space to the physical one via the

Figure 2.14 ATB Miss Ratio

0.0%

1.0%

2.0%

3.0%

4.0%

5.0%

6.0%

7.0%

8.0%

compress go li ijpeg perl m88ksim vortex gcc Mean

Benchmark

A
T

B
 M

is
s

R
at

io

 37

Translation Lookaside Buffer (TLB). Similar hardware named the Cache Lookaside Buffer

(CLB) is also employed in studies by Wolfe, et al. [1],[17] and has proven to be effective. We

use a similar approach to map the original address space into the compressed space with aid

from the compiler. The hardware structure is called the Address Translation Buffer (ATB) and

the static table is the Address Translation Table (ATT). The ATB holds pairs of addresses,

which maps the original address space to the compressed space along with information to aid

decoding, decompression and Next PC computation. The ATT has one entry for each atomic

compression block (currently a basic block). ATT is generated by the compiler and stored in

memory in compressed form. The additional information stored in the ATB includes the

number of memory lines that need to be fetched in order to get the whole block, and the number

of operations in the block (or simply the number of VLIW multiops in the block. Portions of the

ATT are uploaded to the ATB as needed. Due to the normally high spatial locality, the ATB has

very low level of contention (see Figure 2.14) and the ATT has a tolerable static size (see Table

1). The Table 1 shows the results for Tailored instruction set encoding only. The overhead

results for custom compression schemes are similar since they are not dependent on the

compression algorithm employed. Nevertheless, the ATT does add some overhead to the final

storage. In general, when number of basic blocks is not optimized, the ATT adds on average

15% to the compressed size of the ROM. This fact calls for a solution to minimize its size. As

have been discussed before, the easiest way to reduce the size of ATT is to minimize the number

of atomic units in the code through a compiler optimization known as the multi-way branching

(this optimization was described in greater details in section 2.5.3) or use different atomic

blocks. When the multi-way branching only is performed, the total overhead of the ATT table is

reduced to 11%. If this optimization would be combined with a different atomic block

 38

granularity, the overhead could be reduced even further, but this process needs a deeper

investigation and is rserved as a future work.

 ATT

Entries

ATB Miss

ratio

ATT Size

(compressed,

bytes)

Tailored ISA

Code

Segment size

Degree of

Compression

without ATT

(%)

Degree of

Compression

including ATT

(%)

compress 352 0.0016 1,223 5,260 60.16% 74.14%

go 14,036 0.0029 51,853 199,420 63.32% 79.78%

li 4,027 0.0629 12,879 44,484 59.49% 76.72%

ijpeg 8,792 0.0004 32,570 176,252 68.95% 81.69%

perl 18,130 0.0764 72,012 259,736 63.04% 80.52%

m88ksim 8,413 0.0012 30,241 148,752 67.25% 80.92%

vortex 30,699 0.0830 117,421 629,636 64.25% 76.23%

gcc 98,564 0.0842 404,664 1,468,500 68.50% 87.37%

Mean 22,877 0.0018 91,758 366,505 66.47% 83.11%

 Average: 64.60% 80.05%

Briefly, at run time the ATB will provide the following information: the address of the

requested block in compressed memory, the PC offset of the last operation in the block, and the

predicted PC of the following fetch block. This information is enough to fetch atomic blocks in

a pipelined fashion. There is also a clear tradeoff between the amount of additional information

Table 1 ATB Characteristics for Tailored ISA compression

 39

in ATT and the compressed instruction cache performance. All the above-mentioned

information could be deducted at run time and cached in ATB. If this would be done, the ATT

size overhead would go down to approximately six percent. Nevertheless the rest of this work

assumes that the support information is present in the ATT.

 The next issue in this category is physical ROM access. The vast majority of modern

memory systems support only byte or word aligned accesses. The access granularity could also

be limited by the address bus width and should not be sacrificed. This puts some, but non-

critical, limitations on code placement in the compressed storage. This issue is addressed by

aligning only the first operation of a block to the physical ROM access boundaries. For the

current study these boundaries are assumed to be byte aligned. This assumption means that if an

atomic unit ends at a middle of a byte of storage, it is padded with up to seven bits at the end

Figure 2.15 Compression Including ATT Size

20%

30%

40%

50%

60%

70%

80%

90%

100%

compress go li ijpeg perl m88ksim vortex gcc Mean

%
 o

f
th

e
o

ri
g

in
al

 s
iz

e

Tailored Huffman_Full Huffman_Stream Huffman_Stream_1 Huffman_Byte

 40

(see Figure 2.9 and discussion at the beginning of this section), so the first operation in the next

atomic block is byte aligned. All consecutive compressed operations in the block are

sequentially placed in memory. Padding add some overhead to the overall compressed segment

size (from one to three percent on average) and should be factored in for overall size calculation.

 After all of these ‘extras’ were factored into the general compression picture, and the

Multi-way Branching and Jump optimization were applied to reduce the number of atomic

compression blocks (see Section 2.5.3), the final compressions looks like follows: (see Figure

2.15). The relative performance of all algorithms remained unchanged and only a slight overall

increase in size could be seen. Nevertheless, this fact might encourage us to re-evaluate some of

the conclusions. The tradeoff between decoding complexity and the degree of encoding is still

factual. But another component needs to be factored into the overall equation – the extra

information needed for compressed instruction cache operation if it has to be stored along with

the compressed code segment (as in the case of the ATT table).

2.6.2 Base Line Instruction Cache Design

 The instruction cache is a critical element of any high performance system, and it is

especially important for this study. The main instruction cache tradeoff in a compressed system

is the address space to which it belongs. In other words, whether the cache holds compressed or

uncompressed operations (see the discussion at the beginning of 2.5, Section 2.5.1). Most of the

researchers [1],[9],[10] uncompress their instructions prior to putting them into the instruction

cache. This decision normally allows them to hide the performance penalty associated with the

decompression of encoded instructions. But as have been mentioned previously in Section

 41

2.5.1, the compressed cache is able to hold several times more instructions than an

uncompressed one. (See Figure 2.7 and Figure 2.8) The only problem is that some work should

be performed at the hit path, which potentially increases the branch missprediction penalty (if

instruction fetch hierarchy is pipelined) or stretches the cache access cycle time. Since the

vertical size of the cache main storage can be reduced now with no loss in performance, cycle

time stretch is less likely. Nevertheless, this study assumes pipelined hierarchy and further

concentrates on keeping the pipeline full at all times.

 The next important issue is the NextPC calculation. A cache that supports a zero-NOP

encoding employs a NextPC calculation mechanism [8],[7] that is applicable to this study as

well. Let us differentiate the NextPC within a block and the NextPC of the next block. The

NextPC within a block does not need to be predicted (since by definition we are going to fetch

the block till the end) but rather can be locally calculated with dedication of some additional

hardware [8]. This hardware, along with the access pattern, varies with placement and

Figure 2.16 Banked Cache Architecture

... ...

a b c d e f

f’ g x

tagA

tagX

tagC

c d e nop f g

=? =?

x’ y z

c d e ff ‘ g x

tagX’

Bank 0 Bank 1

B
an

kB
it

O
ff

se
t

Tag Tag
B

an
kB

it

O
ff

se
t

Mop Select
and Expand

NextPC Logic

Current
 PC

NextPC

NextBr
Target

Prediction

P
ip

el
in

e
St

ag
es

 42

invalidation policies. If a block is atomically (in unbroken form) placed in the cache, an

intermediate instruction access does not have to be checked for validity. If a block id displaced

from the cache, it is invalidated entirely, so no partial hit is possible. This will be called the

restricted placement model.

 If pieces of the block (like individual encoded instructions) are allowed to be scattered

around the storage, cache controller needs to generate an intermediate PC within each multiop,

and locally ‘re-access’ the cache to check if we have the valid data present. The invalidation is

possible on individual instruction level, so a partial miss might occur. In the latter case, all

additional information (individual MOP length in terms of encoded instructions for instance)

could be extracted from a fetched block at miss-repair time and stored in the cache with

association to the first instruction of the MOP. In the tailored ISA approach, it is especially easy

to do since the size of all operations of the same type and opcode is the same, and the location of

this information is fixed within an operation (see Section 2.3). For the Huffman compressed

encoding approach, this information might be generated by the compiler and stored along with

ATT in compressed form (which will further increase the space penalty). For all the outlined

reasons, and for sake of relative simplicity, in the current study we only consider the restricted

placement model.

 The Next PC of the next block to be fetched is the more traditional branch target

problem. This address needs to be dynamically predicted if we want to achieve full capacity for

the instruction fetch pipeline. This prediction is even more important if a sophisticated (like in

our case) instruction fetch is used (which means longer pipeline and higher missprediction

penalty). In the current study, we have coupled the branch prediction table with the ATB. This

combination means that for every block entry, there is one branch predictor with taken/not-taken

 43

and target address prediction information. It predicts the outcome of the last instruction in the

block (which by definition is always a branch, see Section 2.5.2). To predict the outcome of the

branch, a simple two-bit saturating counter is used [13]. To predict the target address, the ‘last-

target address’ (if branch predicted taken), or next sequential address (otherwise) heuristic is

employed. We have to keep the last taken address of the branch locally because we cannot wait

for the branch instruction to get decoded (which happens much later in the processor pipeline).

Theoretically, a more complex branch predictor could be used (e.g., gshare or PAs

Yeh/Patt predictor) since there will most likely be several cycles to access the prediction, unless

the code has multiple sequential branches with no other computation in between. But this

option is not considered at this point of time and is reserved as future work.

The baseline cache that was selected for this study is the Banked Cache described in

[7],[8]. Originally designed to fetch variable length MOPs for Zero-NOP encoding, it fits to all

the requirements outlined earlier: fetches unaligned blocks, could be pipelined and wastes no

storage. The structure of it is depicted in Figure 2.16.

 The storage of the Banked Cache is separated in two banks, similar to that of the Intel

Pentium processor [20]. The cache line size is equal to the maximum size MOP, which in turn

is proportional to the issue width of the processor core. In our case, it is a six wide issue TEPIC

VLIW core. A MOP can begin at an arbitrary location in the bank and span two cache blocks,

but it still can be extracted in a single reference to the bank storage (see the MOP ‘cdefg’ in

Figure 2.16, which spans form the Bank0 to Bank1; the shaded region correspond to alignment

padding for the first operation in MOP). Two sub-blocks are brought down to the alignment

stage on a cache hit -- the block that was referenced by PC, and the next sequential blocks. If for

example the beginning of a MOP resides in the Bank1 at index N, the next sequential block is

 44

brought from the Bank0, index N+1. The MOP is guaranteed to be within these two cache sub-

blocks because their combined size equals to the maximum sized MOP. Then the alignment

hardware scans individual operations in parallel, but with left-to-right priority for the Tail bits

(see Section 2.3). Then it extracts the original MOP (see Figure 2.16). The whole process from

receiving an original address till the NextPC calculation is accommodated in two pipeline stages

– storage search and tag match followed by alignment network operation. More details on the

design and tradeoffs of the base line Banked Cache can be found in [7],[8].

2.7 Compressed Instruction Cache Hardware Implementation

2.7.1 The Instruction Cache Design for Compressed Encoding

 The implementation of the instruction cache for the compressed encoding is designed to

reduce the impact of decompression time on the instruction fetch rate. One atomic block is

decompressed at a time and is held in a buffer, which is accessed in parallel with (but has a

priority over) the main cache. This buffer is organized as a small fully associative cache. In

general, the whole structure could be seen as a two-level instruction cache, where decoding is

done at miss time of the L1 cache and the buffer is, in essence, an L0 cache. This organization

makes sense if we analyze the overall situation from a standpoint of data usage. Since code is

compressed based on the static distribution and does not take into account the frequency of

certain block usage we might have suboptimal performance. It might occur when the most

commonly used block is present in the cache, but is kept compressed throughout access time.

Even with the high rate of following block address prediction, we will have to perform

 45

decompression again and again, and even though it might not slow down execution (due to

pipelining of the whole process), it might affect power consumption. For these reasons we are

trying to keep the most frequently used block in uncompressed form in the buffer. It also should

be remembered that by the block here we mean the atomic unit of compression, which in this

case is a basic block. The buffer is not explicitly purged when new block is placed in it, so it

potentially can hold several commonly accessed basic blocks.

The main cache storage is organized the same way as the Banked Cache described in

Section 2.6.2. The size of the buffer (L0) has been set at 32 operation entries (160 bytes for the

operation size of 40 bits). From the performed experiments there are indications that tight,

frequently executed loops (like DSP kernels) can fit into this buffer completely, which will

result in equivalent (or possibly better) performance (access time) to an uncompressed cache.

Nevertheless it is very important to keep the size of this buffer at minimum in order to not

Figure 2.17 Instruction Cache Structure for Compressed Encoding

 a b

c d e f

f g

. . .

 Huffman Decoder/Uncompressor

ATB

Original
address

Memory (ROM)

Banked Cache

The Buffer

122

Compressed
address

3216

3232

122

123

 2Ops

 5Ops

123

 Service

124

P
ip

el
in

e
S

ta
ge

s

... ...

a b c d e f

f’ g x

tagA

tagX

tagC

=?

x’ y ztagX’

=? c d e ff ‘ g x

c d e f g

Processor Pipeline

NextPC Logic

NextPC

PC

 46

compromise the performance of the main compressed storage. In addition to that, some

researchers [24] indicate that similar two-level architecture organization might contribute

significantly to low-power design, since the buffer cache filters out power-consuming accesses

to the larger L1 cache. The structure of the entire system is depicted in Figure 2.17. The

pipeline stages are outlined in the diagram. The worst hit time for a compressed block that is

located in main storage and needs to be uncompressed is three cycles. The detailed cycle count

assumptions could be found in the Appendix Table 2.

The cache has the above-described mechanism for dynamic address translation (ATB)

and coupled branch predictor. It is important to notice that the location of this branch predictor

differs from the conventional. In a majority of today’s systems, branch prediction is performed

later in the pipeline. Often it is no earlier then the decode stage – the predictor is accessed once

Figure 2.18 Instruction Cache Structure for the Tailored Encoding

... ...

- 6 Unit wide machine
- AB, CDEFG, XYZ are MOPs
- Fetching CDEFG
- A MOP guaranteed to feet in
 two cache lines

a b c d e f

f’ g x

Fetch, Routing and Prefetch Logick

tagA

ATB Buffer

tagX

tagC

ROM

Addr BrPred Serv. Info

=?

a b
c d

f’ g
x’ y z

e f

n

x

...

x’ y ztagX’

c d e nop f g

=? c d e ff ‘ g x

P
ip

el
in

e
S

ta
ge

s

NextPC Logic

NextPC

PC

O
ff

se
,b

an
k

O
ff

se
,b

an
k

PC

...

C X 5ops

 47

it is known that the instruction being decoded is a branch. If the branch predictor is accessed

with address of every instruction, it is destined to be polluted and has to be of a large size to

guarantee low level of conflicts. In this case the branch prediction is moved all the way to the

instruction cache. Since we know that the last instruction of an atomic fetch block (basic block)

is a branch, the branch predictor could be indexed with the address of first instruction in the

block, without increasing aliasing or causing conflicts. The NextPC calculation is identical to

that of the base line banked cache (described in Section 2.6.2). The only difference from

architectural standpoint is the ‘black box’ – the decompressor being added between the main

storage and the buffer.

 48

2.7.2 The Instruction Cache Design for the Tailored ISA

 The objectives for the tailored ISA cache are quite different from the compressed

encoding cache. The operations are stored in a form ready for consumption by the core decoder.

However, this cache also uses the Banked Cache as its core design element to guarantee single

cycle access for unaligned MOPs. The key difference is the logic in the miss path, which is

responsible for the extraction and placement of MOPs in the main banked storage. The overall

organization is shown in Figure 2.18.

The hit path now has only one stage for the alignment of operations. Branch prediction is

still used to ensure high pipeline utilization. From an architectural point of view, an extra stage

is added on the miss path. (For the detailed summary of all the performance penalty

assumptions, please refer to the Appendix, Table 1.)

Figure 2.19 Cache Study Summary. Instruction Delivered per Cycle.

Instructions Delivered per Cycle

0

0.5

1

1.5

2

2.5

3

compress go li ijpeg perl m88ksim vortex gcc Mean

Benchmark

ID
P

C

Base Compressed Tailored Ideal

 49

For the experiments we choose moderately sized caches on a scale suitable for an

embedded system: 16KB, 2-way set associative for both compressed and tailored models. The

baseline cache has to have a block size that is a multiple of the TEPIC 40bit op size, so its

effective size is slightly larger: 20KB, 2-way set associative. All results are summarized in

Figure 2.19. The metric is a measure of instructions (operations) delivered per cycle. The issue

width for the core is six operations. The average for “Ideal” is limited by the quality of the

schedule as well as ideal cache and branch predictor performance. The “Base” represents

uncompressed code, whereas “Compressed” uses the Full operation compression scheme and

“Tailored” is for Tailored ISAs. It is particularly interesting to note that both the Compressed

and Tailored exceed Base on average, although the Compressed does poorer than Base for

several benchmarks (compress, go, ijpeg and m88ksim). This decrease in performance is due to

the higher missprediction/miss repair penalties for Compressed compared with Tailored.

Introducing a larger buffer size and more accurate branch predictor could significantly increase

the performance of the compressed cache model, but that was not the main goal of the

Figure 2.20 Instruction Memory Bus Traffic Summary

Bus Flip Transactions

1.00E+03

1.00E+04

1.00E+05

1.00E+06

1.00E+07

compress go li ijpeg perl m88ksim vortex gcc Mean

Benchmark

N
u

m
b

er
 o

f
F

lip
 t

ra
n

sa
ct

io
n

s

Base Tailored Compressed

 50

experiment.

 Another interesting result is the change in the amount of bus traffic due to instruction

cache misses. It is one of the defining factors of power consumption, especially if the ROM is

placed on a separate die. In the experiments, power is modeled by counting the number of

transactions on the memory bus when bits are flipped. With the increase of hit ratio, the number

of blocks needed to be brought from the memory for miss repair drops. The summary of these

changes is presented in Figure 2.20. The results track the degree of compression and show

savings for the Tailored and Compressed encodings over the Base. From this it can be

concluded that each of the compression schemes brings in more instructions for a given number

of bit flips.

 One interpretation of the combined results of Figures 9, 12, and 13 is that the Tailored

Figure 2.21 Verilog Code for Decoder Example (Custom – left, Byte Based Huffman –

right)

module custom_decoder (clock,code_bus,h_bus,opc_bus,src1_bus,src2_bus,

sp_src_1_bus,sp_src_2_bus,sp_src_3_bus,dst1_bus);

input clock;

input [31:0] code_bus;

output h_bus;

output [5:0] opc_bus;

output [7:0] src1_bus;

output [8:0] src2_bus;

output [2:0] sp_src_1_bus;

output [2:0] sp_src_2_bus;

output [2:0] sp_src_3_bus;

output [6:0] dst1_bus;

reg [7:0] src1_bus;

reg [8:0] src2_bus;

reg [2:0] sp_src_1_bus;

reg [2:0] sp_src_2_bus;

reg [2:0] sp_src_3_bus;

reg [6:0] dst1_bus;

assign h_bus = code_bus[31];

assign opc_bus = code_bus[30:26];

always@(posedge clock)

begin

case(opc_bus)

0: begin /* ADD */

src1_bus[7:1] = code_bus[25:19];

src2_bus[8:0] = code_bus[18:10];

sp_src_1_bus[2:0] = code_bus[9:7];

dst1_bus[6:0] = code_bus[6:0];

end

21: begin /* MOVE */

src1_bus[7:0] = code_bus[25:18];

sp_src_1_bus[2:2] = code_bus[17:17];

dst1_bus[6:0] = code_bus[16:10];

end

……..

module huffman_decoder (code_bus,instruction_bus);

input [14:0] code_bus;

output [8:0] instruction_bus;

reg [8:0] instruction_bus;

always@(code_bus)

casez(code_bus)

14’b0zzzzzzzzzzzzz: instruction_bus = 8’b00000000;

14’b10000zzzzzzzzz: instruction_bus = 8’b00000010;

14’b1000100zzzzzzz: instruction_bus = 8’b00001011;

14’b100010100zzzzz: instruction_bus = 8’b00110001;

14’b100010101zzzzz: instruction_bus = 8’b00010101;

14’b10001011zzzzzz: instruction_bus = 8’b00011001;

14’b1000110zzzzzzz: instruction_bus = 8’b00000111;

14’b10001110zzzzzz: instruction_bus = 8’b00011100;

14’b10001111zzzzzz: instruction_bus = 8’b00001001;

14’b10010000zzzzzz: instruction_bus = 8’b00000101;

14’b100100010zzzzz: instruction_bus = 8’b00011101;

14’b10010001100zzz: instruction_bus = 8’b00010100;

14’b10010001101zzz: instruction_bus = 8’b00011110;

14’b10010001110zzz: instruction_bus = 8’b10000100;

14’b10010001111zzz: instruction_bus = 8’b11110000;

14’b1001001zzzzzzz: instruction_bus = 8’b00000100;

14’b10010100zzzzzz: instruction_bus = 8’b00010010;

14’b100101010zzzzz: instruction_bus = 8’b00000110;

……..

14’b11011111zzzzzz: instruction_bus = 8’b11000000;

14’b111zzzzzzzzzzz: instruction_bus = 8’b00000001;

default : instruction_bus = 8’b0; endcase

endmodule

 51

ISA encoding has more advantages than otherwise clear from the degree of compression data of

Figure 5. Because an additional decoder is not required (as opposed to the Huffman-based

schemes), there is a net savings in the processor core that can be significant. What is more

interesting is that, although the Tailored encoding achieves a lower overall cache utilization, the

missing extra cycle of branch missprediction penalty more than makes up for this absence in

overall performance.

2.7.3 Decoding Complexity Evaluation

 Since, in the case of code compression, we choose to place decoding on the critical path

of the instruction fetch mechanism, it should be made as efficient and fast as possible. In

essence, it is now the critical factor for the compression algorithm’s selection, which directly

corresponds to the degree of compression (see discussion in Section 2.4). Fortunately, the

compression algorithm is static in time. Once selected, based on static frequencies of elements

in code segment, it remains the same. Therefore a fast fixed hardware decoder can be generated.

Figure 2.22 The Huffman Tree Decoder Structure

A: 0000

B: 0011

C: 0100D: 1000

0

0

0

1

1

1

Huffman Code: 0 0 0 ==> n bits

D:
1

1

0
0
0

0

0
0

C:

B:
1
0

0
0

A: 0
0

0
0

1
0

0

C:

0

Decoded word: => m

Original Tree:

 52

As have been mentioned before, the compiler has all the information needed and

generates Verilog description (see Figure 2.21) of the decoder that could be used to program the

PLA decoder or as an input for custom decoder design (after possible steps for optimization). In

the case of the Tailored encoding, this problem is somewhat less critical. Decoding of tailored

instructions is a part of the processor pipeline. Nevertheless, it might be more complex when

compared to the traditional fixed-size-op decoder. An interesting consideration would be to

combine the Huffman decompressor with the processor decoder on the logical design level, and

optimize it as a flat logic. This approach might present more opportunities for CAD tools for

optimization and result in a smaller overall decoder. There is only one consideration which

prevents us from attempting it in the current study, – we want to affect the design of the core

processor as little as possible (if any at all) so the instruction fetch process remains completely

transparent for it. Nevertheless, this topic could be considered in future research, which would

include fully customized processor core design.

 Since, in this study, we generate a multitude of various decoders we need to establish a

mean for their fast evaluation and comparison. As a method of comparison of the Huffman

decoder size, we can evaluate the complexity of the correspondent Huffman tree. If we imagine

the structure presented in Figure 2.22 (where n is the longest Huffman code size, k is number of

entries in the Huffman dictionary and m is longest dictionary entry size), it is possible to derive

an equation to estimate the worst-case decoder complexity. It is not intended to suggest a real

hardware implementation, but only as a criterion for evaluation. The worst-case number of

elements in a Huffman decoder can be expressed as follows:

 53

 nmmT nnn 2)122(4)12(2 1 +−−+−= − (Equation 3)

This equation assumes a multiplexer implementation using CMOS transmission gates

(TG), which account for the fact that the first row passes constants and needs only one transistor

to operate. Elements to form inverters (dual rails) are included as well.

Figure 2.23 Estimated Huffman Decoder Complexity.

Decoder Complexity

1.00E+02

1.00E+03

1.00E+04

1.00E+05

1.00E+06

1.00E+07

1.00E+08

1.00E+09

1.00E+10

1.00E+11

compress go li ijpeg perl m88ksim vortex gcc Mean

T
ra

n
zi

st
o

rs

Huffman_Full Huffman_Byte Huffman_Stream Huffman_Stream_1 Custom

 54

Assuming this model we can evaluate complexity of the various Huffman decoders (see

Error! Reference source not found.) without actually synthesizing every one of them. Error!

Reference source not found. in conjunction with Figure 2.15 and the Table 1 allows us clearly

see the tradeoff between the decoder complexity and degree of compression. The best

compression algorithm (the Full Huffman) yields the largest decoder size. This relationship is

not necessarily linear. Byte-wise compression yields an intermediate degree of code

compression. It is approximately 72% of the original image size yet has the smallest decoder

(See Error! Reference source not found.). The worst Huffman compression scheme, the

Stream, achieves approximately 75% of the original image size. Yet, it has a significant decoder

complexity. The reason is the limited input width and dictionary size of the Byte method.

 After the initial estimation, several decoders were actually synthesized with the Synopsys

CAD tools in order to compare actual parameters with the estimated ones. As we can see in

Figure 2.25 the real synthesized numbers are less then one percent of the estimated worst case,

Figure 2.24 Estimated to Real Size Comparison for the Byte Based Compression

Decoder (for the Compress Benchmark)

20,000

40,000

60,000

80,000

100,000

120,000

140,000

160,000

180,000

200,000

compress go li ijpeg perl m88ksim vortex gcc Mean

T
ra

n
si

st
o

rs

Post_Synthesys_Real_Size_Byte Estimated_Size_Byte

 55

which proves the possibility of such a design. Regardless that we miss the actual decoder size

by 99% while estimating it we still can use the estimated value for relative evaluation of the

design.

If we ever wonder into generating a custom compression algorithm for each particular

application (as oppose to just using the same Huffman algorithm for all of them) we will need a

cost function to describe all the parameters of the new algorithm. Definite components of the

cost function are resulting code size, decompression speed/complexity, and the decoder

size/complexity-weighted according to their importance. For one of the major parameters to this

cost functions -the decoder complexity estimation – a similar function could be used. An

interesting issue is estimating the speed of decoding, which is virtually impossible until real

hardware is generated. Let us reserve this issue as a future work.

The fact that our estimate was so far from actual numbers is rather understandable for

two reasons. First, the worst case is always pessimistic comparing to the actual decoder

Figure 2.25 Estimated to Real Size Comparison for the Byte Based, Full Compression and

Custom Coding Schemes (for the Compress Benchmark)

5,000

10,000

15,000

20,000

25,000

compress go li ijpeg perl m88ksim vortex gcc Mean

T
ra

n
si

st
o

rs

Post_Synthesys_Real_Size_Byte Post_Syntesys_Huffman_Full Post_Syntesys_Custom

 56

structure and second, the design tools provide comprehended Boolean optimizations which

further reduces the complexity of the decoder. The longest synthesized delay chain included, on

average, five levels of logic, which promises a high speed of operation.

Several implementations of the Huffman decoder in hardware have been proposed in

previous studies [17,18]. Both models are strongly dependent on specific implementation

(MPEG-2 decompression for example), but generally can achieve 300-600 Mbit/sec for a table

with 114 dictionary entries and codes in range from 1 to 16 bits. The real-estate budget ranges

from 10,000 to 28,000 transistors. This data allows an assumption for the time needed to

decompress the code. For the 20-50ns cycle times typical in embedded processors, we can

assume decoding of 40 bits (op size in the baseline TEPIC architecture) is practical. Therefore,

it is assumed that one op could be decoded in a cycle. Furthermore the decoding process is

pipelined. Since instructions are supplied to the processor on each cycle we can keep this

pipelined filled (warm) if we correctly predict the next sequential block after the current (being

decoded). As we will see soon we couple the compressed cache design with a branch predictor,

which aids in continuous (streaming) decompression.

 57

3 Data Segment Redundancy Reduction

 So far the author have only considered the code segment as the subject for redundancy

reduction. Nevertheless, the memory is also occupied by the data segment as well. Besides, the

data fetch performance might be an important bottleneck of overall system performance. There

are three general sections that could be recognized in a Data Segment (DS): Initialized data,

Storage Reservation (or uninitialized data) and the dynamically allocated Heap. In the

framework of this study the next logical step would be to reduce redundancy of these elements

as well. If that could be done so that the performance of the data path from memory to the

processor gets improved, overall performance of the system will be further increased.

3.1 Available Redundancy and Compression Strategy

 The first question that needs to be answered is whether or not the compression of the

data segment will result in any significant savings. An important consideration is the fact that

the compression circumstances for the data segment are rather different than that for the code

segment. Furthermore, different parts of the data segment require different approaches.

Ultimately, a dynamic data stream as opposed to a static data set is compressed. The main

difference here is in the static availability of data and the purpose of compression. If in the case

of the code segment we needed to improve static characteristics of the code (the size), now we

 58

need to optimize the dynamic qualities, so a different kind of information should be obtained.

 Although several compression algorithms were considered (Arithmetic Coding [55],[46],

Huffman [2], Lempel-Ziv [39]), a variation of the Huffman code compression algorithm was

chosen (see discussion in Section 2.3). The Huffman method produces near optimal results for

an integer number of code bits. It also allows reasonably fast decompression (either as FSM or

via a lookup table) at a realistic real estate price [17],[18]. Nevertheless, the application of this

algorithm should be different. If in the case of the code segment we had all the data to be

compressed statically available to us, and the histogram was static, now, in the case of the data

segment the story is different. When dealing with Initialized data, we still have somewhat fixed

histogram and static availability of data (though the nature of data is different). But in case of

the Heap (or dynamically allocated memory) there is no prior knowledge of what we are going

to be dealing with. The Uninitialized storage in its original form could not be compressed at all

because the programmer has just reserves an area of memory without providing any additional

information on what kind of data will occupy it. One possible optimization for the uninitialized

storage is static conversion to the dynamically allocated storage. This conversion might be a

compiler optimization hidden from the user. In either way (whether we perform this

optimization or not) the impact of the uninitialized storage on the overall data stream

compression performance is minimal, as we will soon see.

Instead of applying the traditional adaptive Huffman algorithm [54], a discrete

regeneration approach was chosen. This approach is based on the following assumptions:

• The frequency distribution is nearly constant during a short period of time (t)

where t is bounded to the number of references to the cache;

• The next time slot (t+1) is likely to exhibit behavior similar to the current time

 59

slot (t); and,

• By analyzing the data stream during time slot (t), it is possible to come out with

near-optimal encoding for the time period (t+1).

If t is carefully chosen we will have an adaptive algorithm which has a fixed encoding for

time period t. This fact is important for a caching structure because the compressed codes are

statically stored within the time period t and is flexible enough to adjust to the changing

environment while maintaining a near optimal quality of compression. In order to select an

optimal t value, a set of experiments was conducted. Results are summarized in Table 2. A

positive compression difference means a decrease in compression effectiveness.

Number of references (t) 1,000 5,000 10,000 50,000 100,000

Average Compression

Difference

+0.028% +0.024% 0 +0.041% +0.054%

Taking into account all the facts outlined above, we used three following adaptations of

the Huffman encoding for use with the data segment. The first is called Rigid Huffman (RH).

The histogram for this method is calculated once, at the compilation time, based on the

initialized data segment and is not changed thereafter. This is the simplest and cheapest method,

and should work fine for programs that do not use dynamically allocated memory much or

who’s dynamic histogram, is similar to the static one.

The second method is the Flexible Huffman (FH) (not to be mistaken with the Dynamic

Hufmann or other dynamic compression algorithms [39]) method. This method’s histogram is

Table 2 Regeneration Period selection

 60

being recalculated with certain period at execution time and a new encoding is generated. The

profile data is being collected all the time and is discarded at the regeneration points. In this

sense, the method remains static between regeneration points, which allows the storing of

compressed data at these periods of time. This method is extensively opportunistic, and

assumes that for the period of time t+1, the histogram will be similar to the period t but different

from the histogram in the period t-1.

The third method is the Flexible Huffman with Long Memory (FHLM). It is similar to the

previous method except the fact that its statistics keep on accumulating. This accumulation

means that history is collected across multiple regeneration points, but is ignored only if some

hardware limit is reached. A good example of one such event would be a counter overflow, in

which case the counter just saturates. As suggested from the name, this method has a ‘long

memory’ and should work best with highly unpredictable patterns: it will be more conservative

in taking new opportunities, which might turn out to be either good or bad decision.

The last question to answer here is what granularity of compression to use. Based on the

discussion in Section 2.3, the choices are unlimited, and as is commonly known, the bigger the

atomic unit of compression, the better size reduction, and more complex is the decoder. In the

case of the data segment compression, as we will soon see, decoder size is critical and some

hardware structure is needed to collect the frequencies of all atomic elements. Sizes of both

those hardware structures directly correlate to the size (and therefore the total number) of the

atomic compression units. All these facts leads us to conclude that byte-level compression

would be an optimal choice. This way the profiling hardware unit would consist of 256 counters

and the decoder will be of a manageable size (more discussion is in the following section).

 Now we should select the point where profile observation takes place. The natural

 61

choice is the data bus between the processor and the main memory. What we going to see there

is a stream of data going in both directions in response to the load and store instructions issued

by the core processor. An important consideration for this introductory experiment is whether a

data cache is present or not. It is not a trivial task to calculate the available redundancy, so first

we monitor the system without the data cache. Below in Figures 14 through 21 the behavior of

all the three compression methods is shown for each benchmark separately. The summary is in

the Table 3 and Figure 22.

 It is clearly can be seen that amount and dynamic performance of compression strongly

depends on the benchmark and differs from region to region.

 Rigid Huffman Flexible Huffman Flex/w Long Memory

Huffman

Compress 0.90769 0.1569917 0.1570149

Go 0.55434 0.4612735 0.4478486

m88ksim 0.426866 0.32564377 0.33425884

Li 0.822175 0.6050848 0.581241

ijpeg 1.04028 0.8594622 0.809376

Vortex 0.741659 0.43141306 0.431698

Perl 0.720565 0.51699235 0.517772

Gcc 0.760478 0.55783421 0.577297

Average 0.735123 0.487659 0.482756

Table 3 Data Segment Compressibility Summary

 62

Figure 3.1 Dynamic Compression for M88ksim

Figure 3.2 Dynamic Compression for Go

Go BW reduction

20%

30%

40%

50%

60%

70%

80%

90%

10
00

1

40
00

4

70
00

7

10
00

10

13
00

13

16
00

16

19
00

19

22
00

22

25
00

25

28
00

28

31
00

31

34
00

34

37
00

37

40
00

40

43
00

43

46
00

46

49
00

49

52
00

52

55
00

55

58
00

58

61
00

61

64
00

64

67
00

67

70
00

70

73
00

73

76
00

76

79
00

79

82
00

82

85
00

85

88
00

88

91
00

91

94
00

94

97
00

97

Samples

%
 o

f
o

ri
g

in
al

 s
iz

e

Rigid Huffman Flexible Huffman Flex/w Long Memory Huffman

m88ksim BW reduction

0%

20%

40%

60%

80%

100%

120%

10
00

1

40
00

4

70
00

7

10
00

10

13
00

13

16
00

16

19
00

19

22
00

22

25
00

25

28
00

28

31
00

31

34
00

34

37
00

37

40
00

40

43
00

43

46
00

46

49
00

49

52
00

52

55
00

55

58
00

58

61
00

61

64
00

64

67
00

67

70
00

70

73
00

73

76
00

76

79
00

79

82
00

82

85
00

85

88
00

88

91
00

91

94
00

94

97
00

97

samples

%
 o

f
th

e
o

ri
g

in
al

 s
iz

e

Rigid Huffman Flexible Huffman Flex/w Long Memory Huffman

 63

Figure 3.3 Dynamic Compression for Vortex

Figure 3.4 Dynamic Compression for Gcc

Gcc BW Reduction

20%

30%

40%

50%

60%

70%

80%

90%

100%

110%

10
00

1

40
00

4

70
00

7

10
00

10

13
00

13

16
00

16

19
00

19

22
00

22

25
00

25

28
00

28

31
00

31

34
00

34

37
00

37

40
00

40

43
00

43

46
00

46

49
00

49

52
00

52

55
00

55

58
00

58

61
00

61

64
00

64

67
00

67

70
00

70

73
00

73

76
00

76

79
00

79

82
00

82

85
00

85

88
00

88

91
00

91

94
00

94

97
00

97

Samples

%
 o

f
o

ri
g

in
al

Rigid Huffman Flexible Huffman Flex/w Long Memory Huffman

Vortex BW reduction

30%

40%

50%

60%

70%

80%

10
00

1

40
00

4

70
00

7

10
00

10

13
00

13

16
00

16

19
00

19

22
00

22

25
00

25

28
00

28

31
00

31

34
00

34

37
00

37

40
00

40

43
00

43

46
00

46

49
00

49

52
00

52

55
00

55

58
00

58

61
00

61

64
00

64

67
00

67

70
00

70

73
00

73

76
00

76

79
00

79

82
00

82

85
00

85

88
00

88

91
00

91

94
00

94

97
00

97

Samples

%
 o

f
o

ri
g

in
al

 s
iz

e

Rigid Huffman Flexible Huffman Flex/w Long Memory Huffman

 64

Figure 3.5 Dynamic Compression for Perl

Figure 3.6 Dynamic Compression for Ijpeg

ijpeg BW reduction

40%

60%

80%

100%

120%

140%
10

00
1

40
00

4

70
00

7

10
00

10

13
00

13

16
00

16

19
00

19

22
00

22

25
00

25

28
00

28

31
00

31

34
00

34

37
00

37

40
00

40

43
00

43

46
00

46

49
00

49

52
00

52

55
00

55

58
00

58

61
00

61

64
00

64

67
00

67

70
00

70

73
00

73

76
00

76

79
00

79

82
00

82

85
00

85

88
00

88

91
00

91

94
00

94

97
00

97

Samples

%
 o

f
o

ri
g

in
al

 s
iz

e
Rigid Huffman Flexible Huffman Flex/w Long Memory Huffman

Perl BW reduction

45%

50%

55%

60%

65%

70%

75%

80%

85%

10
00

1

40
00

4

70
00

7

10
00

10

13
00

13

16
00

16

19
00

19

22
00

22

25
00

25

28
00

28

31
00

31

34
00

34

37
00

37

40
00

40

43
00

43

46
00

46

49
00

49

52
00

52

55
00

55

58
00

58

61
00

61

64
00

64

67
00

67

70
00

70

73
00

73

76
00

76

79
00

79

82
00

82

85
00

85

88
00

88

91
00

91

94
00

94

97
00

97

Samples

%
 o

f
o

ri
g

in
al

 s
iz

e

Rigid Huffman Flexible Huffman Flex/w Long Memory Huffman

 65

Figure 3.7 Dynamic Compression for Li

Figure 3.8 Dynamic Compression for Compress

Compress BW reduction

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

10
00

1

40
00

4

70
00

7

10
00

10

13
00

13

16
00

16

19
00

19

22
00

22

25
00

25

28
00

28

31
00

31

34
00

34

37
00

37

40
00

40

43
00

43

46
00

46

49
00

49

52
00

52

55
00

55

58
00

58

61
00

61

64
00

64

67
00

67

70
00

70

73
00

73

76
00

76

79
00

79

82
00

82

85
00

85

88
00

88

91
00

91

94
00

94

97
00

97

samples

%
 o

f
th

e
o

ri
g

in
al

 s
iz

e

Rigid Huffman Flexible Huffman Flex/w Long Memory Huffman

Li BW reduction

50%

55%

60%

65%

70%

75%

80%

85%

90%

95%

100%

10
00

1

40
00

4

70
00

7

10
00

10

13
00

13

16
00

16

19
00

19

22
00

22

25
00

25

28
00

28

31
00

31

34
00

34

37
00

37

40
00

40

43
00

43

46
00

46

49
00

49

52
00

52

55
00

55

58
00

58

61
00

61

64
00

64

67
00

67

70
00

70

73
00

73

76
00

76

79
00

79

82
00

82

85
00

85

88
00

88

91
00

91

94
00

94

97
00

97

Samples

%
 o

f
o

ri
g

in
al

 s
iz

e

Rigid Huffman Flexible Huffman Flex/w Long Memory Huffman

 66

The important detail for this experiment is that only original data request (regardless of

granularity) have been served. Our assumptions for the performance of the three schemes turned

out to be true. The Rigid Huffman performs well only at the initial stages of a program, when

the initialized data is being accessed and then, when new values are generated, performs very

poorly. It is very spectacular in the case of the compress benchmark. For ijped the compressed

data size even exceeds the original data segment size. The reason for this increase is the fact

that at initial region a precompressed (ijpeg coded) image is being loaded, so the data entropy is

already high. Then, after a short period of time, where the image is being processed (and

entropy of memory references is very low) it is stored back, causing new rise of entropy and fall

of compression.

The Flexible Huffman takes every opportunity to adjust compression algorithm which

may not always be the best choice, but it performs much better then the Rigid Huffman in

Figure 3.9 Summary of Data Segment Compressibility

DS compressability

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

110%

compress go m88ksim li jpeg vortex perl gcc Average

bm

%
 o

f
o

ri
g

in
al

 s
iz

e

RH FH FHLM

 67

general. A good example of this behavior is the go benchmark. The performance of the

Flexible Huffman with Long Memory is very similar to that of the Flexible Huffman and

depends on benchmark, with overall results being slightly better (See Figure 3.9). Generally

speaking, the Flexible Huffman is easier to implement in hardware than the Flexible Huffman

with Long Memory since no care should be taken of the overflow support, which may prove to

be the most practical approach. The summary of change in entropy of the stream before and

after compression is presented in Figure 3.10. We can see that information density did increase,

but still remains substantially lower then the perfect measure. In the 4 we will propose a way to

utilize this available slack to reduce power consumption of the data bus this code is being

transferred on.

The final issue in this category is the selection of regeneration points. The importance of

this issue becomes obvious when we recall that the contents of a caching structure must be

purged every time the encoding changes. This will definitely hurt the overall performance and

Figure 3.10 Entropy Change Due to Compression

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

compress go m88ksim li ijpeg perl vortex gcc Mean

P
er

ce
n

t

Compression(FHLM) Entropy_compressed Entropy_original

 68

could be considered as a catastrophic event. It is especially true if a software interrupt will be

used to perform encoding regeneration. Generally speaking using an interrupt is the easiest

approach to minimize the amount of hardware needed to support the flexible Huffman encoding.

To prevent often regeneration from happening all we need to do is introduce a performance

monitor. It could be easily implemented as a pair of counters with simple glue logic.

If the current compression is bellow certain threshold (for example 80% of original size

have been used) we do not attempt to regenerate encoding and just keep on using the current

one. However, if the compressor is not doing a good job, overall cache performance will

degrade any way and purging the storage will probably not hurt the performance any further.

Table 4 demonstrates dependency between threshold value and performance degradation.

‘Regeneration Frequency’ refers to percentage of checkpoints, which actually caused algorithm

regeneration. For the rest of the work 75% threshold is used.

Figure 3.11 Dynamic Compression for M88ksim in presence of a Data cache

m88ksim

0%

20%

40%

60%

80%

100%

120%

140%

1 13 25 37 49 61 73 85 97 10
9

12
1

13
3

14
5

15
7

16
9

18
1

19
3

20
5

21
7

22
9

24
1

25
3

26
5

27
7

28
9

30
1

31
3

32
5

33
7

34
9

36
1

37
3

38
5

39
7

40
9

42
1

43
3

44
5

45
7

46
9

48
1

49
3

C
o

m
p

re
ss

io
n

RealCompression RealEntropy CompCached EntropyCached

 69

Threshold 65% 75% 85%

Regeneration Frequency 35% 40% 70%

Compression Degradation 8-15% < 3% < 1%

3.2 Effects of the Data Cache on Data Compressibility

In the next set of experiments we increase the realism of the experimental setup by

introducing a small data cache into the system. Now the author is attempting to investigate the

change in behavior of the data stream between the data cache and the next level of memory

hierarchy. Theoretically, we should see a significant difference in the compression algorithm

performance. Instead of serving every load and store instruction issued by the processor, next

level of memory hierarchy should respond to the stream of miss repair requests with a block of

data. If there is no prefetch model is employed (like in our case, there is no explicit prefetch is

done), the minimal block of data being transferred at a time is a cache block. The size of the

cache block is fixed at four words (16 bytes).

Table 4 Compression degradation vs. threshold selection

 70

Indeed, the data stream characteristics become nearly unrecognizable. Instead of the

dynamic picture we have seen for the m88ksim and li previously (in Figure 3.1 and Figure 3.7) we

go this new distribution (see Figure 3.11 and Figure 3.12), which is strongly inferior to the case

without a cache. The perl’s behavior also endured strong changes but remained manageable for

redundancy-reducing algorithm (see Figure 3.13). The reader should note also an additional set

of data in those figures labeled ‘real compression’ and ‘real entropy’. In all the figures (Figure

3.11 through Figure 3.13) these ‘real’ label refers to the activity produced by a zero-sized cache

(‘real entropy’ refers to the entropy of the data stream for this case).

Figure 3.12 Dynamic Compression for Li in presence of a Data cache

Li

0%

20%

40%

60%

80%

100%

120%

140%

160%

1 13 25 37 49 61 73 85 97 10
9

12
1

13
3

14
5

15
7

16
9

18
1

19
3

20
5

21
7

22
9

24
1

25
3

26
5

27
7

28
9

30
1

31
3

32
5

33
7

34
9

36
1

37
3

38
5

39
7

40
9

42
1

43
3

44
5

45
7

46
9

48
1

49
3

x

C
o

m
p

re
ss

io
n

RealCompression RealEntropy CompCached EntropyCached

 71

This ‘real’ case is slightly different from the picture seen in Figure 3.1 and Figure 3.7

because this data stream is generated by the miss repair data requests that would be issued by a

cache controller with zero storage array (which normally, as we just mentioned, requests one

cache block at a time as oppose to a single word or byte at a time as assumed in the previous set

of experiments).

The degradation in compression performance is quite understandable once we bear in mind

that caching itself works by exploiting repetitiveness of references (time and spatial locality),

which directly correlates to the stream redundancy. The data compression algorithm will be

deprived of its primary resource – the redundancy. The data cache selected for this experiment

is a small 4K direct mapped with Write Back, Write Allocate update policies. It seems that the

Write Through and the No Write Allocate update policies would save the situation by allowing

Figure 3.13 Dynamic Compression for Perl in presence of a Data cache

Perl

40%

50%

60%

70%

80%

90%

100%

110%

1 13 25 37 49 61 73 85 97 10
9

12
1

13
3

14
5

15
7

16
9

18
1

19
3

20
5

21
7

22
9

24
1

25
3

26
5

27
7

28
9

30
1

31
3

32
5

33
7

34
9

36
1

37
3

38
5

39
7

40
9

42
1

43
3

44
5

45
7

46
9

48
1

49
3

x

C
o

m
p

re
ss

io
n

RealCompression RealEntropy CompCached EntropyCached

 72

enough traffic behind the cache, but it is not entirely true. After attempting to use the Write

Through and No Write Allocate update policy it have been discovered that similar (or even

lower) level of performance remains, while bus traffic increases unreasonably. The final results

are summarized in Figure 3.14. The only compression scheme utilized in this experiment is the

Flexible Huffman with Long Memory (as the best performer in the previous study). It is clear

that the entropy of the data stream with the data cache present changes dramatically but still

remains substantially large. We will investigate this matter further in Chapter 5.

 Now that we see that a significant gain (of 50 % on average) could be achieved by

compressing the data segment let us find a way to utilize it. Unlike the compression of the code

segment this technique is not limited to embedded system domain. The dynamic data

compression could be used anywhere when space and bandwidth is an issue. It can reduce

Figure 3.14 Effect of Data Cache on Data Stream compressibility

Harmonic means means

0

0.2

0.4

0.6

0.8

1

1.2

compress go m88ksim li ijpeg perl vortex gcc Mean

D
eg

re
e

HmeanRealComp HmeanRealEntropy HmeanCachedComp HmeanCachedEntropy

 73

memory bus traffic, increase data cache capacity (and hit ratio as a result) and reduce power

consumption as a net effect. It can even be used in a multiprocessor environment to optimize

inter-processor communications. The first area of application for the dynamic data stream

compression is the system bus utilization and it is discussed in the next chapter.

 74

4 System Data Bus Redundancy Utilization

4.1 Motivation and Experimental Setup

This chapter investigates the serious degradation from redundancy of the original data

that can significantly benefit from exploration of the available redundancy: the system data bus

[33],[34],[49]. The code segment is not the only portion of the program that contains high level

of redundancy. In addition, the data segment suffers from excessive redundancy as well. In

some instances the data stream, consisting of data produced and consumed by the program, is

even worse. Moreover, the quality of the data stream strongly correlates to the region of the

Figure 4.1 Traditional. Bus Encoding Experimental Setup

Uncompressed
Memory

Uncompressed
Memory

CompressorCompressor DecompressorDecompressor

CompressorCompressor DecompressorDecompressor

BufferBuffer

Uncompressed Dcache (L0)Uncompressed Dcache (L0)

BufferBuffer

Gray Coder/DecoderGray Coder/Decoder

Gray Coder/DecoderGray Coder/Decoder

 75

program and is time variant. The instruction bus is viewed as a conductor for a dynamic stream

of data with a random, nearly uniformly distributed sequence of values with a high level of

redundancy. The bus is optimized for both shorter transaction cycle and lower switching

activity without sacrificing the overall throughoutput. The reduction of the switching activity

directly contributes to reliability (data integrity) of the bus and low power design. It is well

known that Input/Output (I/O) circuits are one of the major power consumers in a system

[33],[34],[35]. Their share of power dissipation could easily reach 30-40% and some times even

can exceed 50 % of overall power consumption. When transactions on I/O bus compared with

internal transactions, the former dissipate 100-1000 times more power [33]. This is happening

due to their large capacitance (three orders of magnitude) when compared to internal circuits

[33],[34],[49].

This problem is further intensified by the fact that due to the low information contents of

data being transferred through I/O subsystem, it ending up being used more intensive than really

necessary. For instance, from the initial experiments it has been found that at some regions of

the SPECInt95 programs [45] the system data bus transfers solid blocks of zeroes eighty percent

Figure 4.2 Bus Blocks and Tuples Structure

A
B
C

Bus Block
might be composed
of several compressed
cache blocks

A Pair of Sequential
Bus Blocks is named
a Tuple

Tuples
frequencies

AA 200
AB 100
BC 80
AC 1
AD 1

Bus
Block

Gray
Code

A
B
C
D

000
001
011
010

Data Bus

One Bus
Cycle

 76

of the time.

Following the integral approach to the embedded system improvement in general, and

the front end of it in particular, it is necessary to pay close attention to the I/O subsystem. By

creative involvement of compiler and run time collected information, this situation can be

improved on. It has been found that by removing redundancy from the data sent over the system

bus the throughoutput of the bus was doubled. Nevertheless, if low power is the primal goal of

this optimization, some additional coding is needed. By superimposing the Gray code [30] on

the top of compression the ultimate goal of higher throughoutput with lower switching activity

can be achieved.

Although power consumption is very hard to estimate statically, it is safe to assume that

majority of the power is consumed when a bit flips (changes its value) on the I/O pad and the

correspondent bus line. This fact means that power consumption for I/O circuits is in direct

correlation with the information contents of the data being sent through the bus. So in the spirit

Figure 4.3 Busy Bus Cycles

BusCycles

0

100,000

200,000

300,000

400,000

500,000

600,000

compress go m88ksim li jpeg vortex perl gcc Average

CompBusCycles UncompBusCycles

 77

of the previous discussion, let us investigate the reduction of switching activity and the increase

of utilization of the data bus by the reduction of redundancy in the data stream going through it.

 The first set of experiments were conducted in an idealized environment where there

were no additional structures other than the core processor, a very small L0 data cache, and the

off-chip memory (see Figure 4.1). By ‘small cache’ (one cache line) we understand here some

kind of a read buffer or a memory controller, and the only purpose of it in the current

experimental setup is to model a real cache data request activity. As have been discussed in the

previous chapter, the difference between no-cache and a tiny cache is how main memory is

accessed on a data request. If the processor attempts to load a byte the memory is normally

accessed for at least a cache block (given that the reference missed in the cache). If prefetching

is used multiple cache blocks could be delivered on a single miss. With the cache block set for

16-bytes, we can realistically model memory bus traffic without having the effect of a large

Figure 4.4 Entropy Changes due to Caching

Harmonic means

0

0.2

0.4

0.6

0.8

1

1.2

compress go m88ksim li ijpeg perl vortex gcc Mean

D
eg

re
e

HmeanRealComp HmeanRealEntropy HmeanCachedComp HmeanCachedEntropy

 78

cache use. Neither the processor nor the rest of the memory hierarchy sustains any changes.

Bus operations are completely transparent for them. The bus itself is modeled as a queue (FIFO

structure) through which a sequence of bus blocks is transferred. It should be noted that those

bus blocks might be unrelated to either of the logical blocks commonly assumed in the memory

interface. In other words, a single bus block might include either multiple or fractional parts of a

cache block mixed in random order (see Figure 4.2).

 From now on for all the bus compression purposes we need only consider bus blocks.

The first set of experiments illuminates the effect of compression. We are trying to reduce the

number of cycles that the bus remains busy. The compression algorithm used is the Flexible

Huffman with Long Memory. Figure 4.3 summarizes this information. We can clearly see that

certain benchmarks can significantly increase their bus utilization in time (throughoutput). For

Figure 4.5 Oracle Block Distribution

Mean Static Oracle Block Distribution

Once
80%

Twice
12%

3
4%

4
2%

5
1%

 79

example go, ijpeg and compress nearly double it. But there is one catch: with the reduction in

the amount of time the data is being transferred reduced, but the amount of information

remaining unchanged, resulting entropy increases and the switching activity multiplies. This

effect could be illustrated in the following way (see Figure 4.6). In this figure two abstract

distributions corresponding to two different transfers on bus are presented. One (S2) is

presenting the transaction of data in the original form and derived from figures (Figure 3.1

through Figure 3.8). The other one (S1) is representing switching activity for compressed data

segment being sent through the bus. The important quality is that shaded areas underneath the

curves (S1 and S2) are of equal in size. The measure of this activity increase is experimentally

confirmed and summarized in Figure 4.3 and Figure 4.4. Apparently sole compression of the

data bus only leads to the time savings, but defeats the purpose of low power design. Instead of

an even distribution of switching activity over a longer period of time, we will have a short burst

of activity, increasing the peak power consumption (which ultimately could require a larger

power supply).

This fact leads us to the conclusion that some additional encoding is needed if we still

want to use bus compression. If compressed bus blocks are considered to be atomic units of

transfer, we can attempt to establish a correlation between their sequences (order) and the

switching activity. From the same Figure 4.4, we can also see that there is still a certain amount

of redundancy available, even after compression has been performed. This leaves us some room

for improvement. A natural choice to reduce switching between sequential states is to apply the

Gray coding [30] to the compressed blocks. We should also mention that Gray coding imposes

minimum amount of delay for both encoding and decoding. With this double encoding each

cache block appears to be compressed in two dimensions: in space and in time with a net result

 80

of higher entropy and low switching activity.

4.2 Data Bus Coding Algorithms

The Gray coding algorithm itself should be modified so that it may adapt to the constantly

changing bus activity. The basic idea is simple: to make most common pairs of compressed bus

blocks differ in a minimum number of bits (perfectly just one bit). Let us call a pair of

compressed bus blocks a tuple. If the two sequential blocks are different, this is a real tuple, if

they are the same, this is an empty tuple (see Figure 4.2). From now on we only interested in

optimizing real tuples. There were several dynamic modifications proposed - Oracle Gray,

Adaptive Age, Adaptive Infinite Tuples and Adaptive Limited Tuples.

Figure 4.6 Density of the Switching Activity on Compressed Data Bus

time

S
w

itc
hi

n g
 A

ct
iv

ity

t1

t2

S2

S1

 81

The Oracle Gray is an idealized structure (not necessarily hardware implementable),

which has full knowledge of all compressed bus block frequencies prior to execution. The list

of all possible blocks is sorted in descending probability order and Gray codes are assigned to

this list in the same order. This guarantees that the most frequent blocks will have the least bit

‘distance’ (differ in the least number of bits). Practical implementation of the Oracle Gray is

only possible if accurate profiling of all possible data sets can be performed. In this case, we

would know the probability of any common block to appear on the bus. Theoretically, there

might be widthBus _2 blocks, but as have been discovered, only about 5-10% of them are

commonly seen and the total span is only 50-60% of the maximum number. Basically, it means

that if we simply enumerate all possible blocks we should already see a large drop in switching

activity. Furthermore, greater reduction is expected with the Gray encoding. The major

Figure 4.7 Transaction Intensity

Transaction Intensity

0

1,000,000

2,000,000

3,000,000

4,000,000

5,000,000

6,000,000

7,000,000

8,000,000

compress go m88ksim li jpeg vortex perl gcc Average

F
lip

s

CompBitFlips UncomBitFlips OracleGray AdaptAge AdaptTupleInfinite AdaptTupleFinite

 82

advantage of this method is the fact that both the encoder and decoder have a full table of all

common blocks prior to execution. For an adaptive scheme, it means that original blocks

should never been transferred in unencoded form. Figure 4.5 represents an example of blocks

distribution. It gives an example of how many blocks have been seen once, twice and so on (this

is the arithmetic mean across all benchmarks).

 The next method, the Adaptive Age, attempts to model the Oracle encoding in a real

time system with no prior profiling. After a compressed block is first seen (and transferred in its

original form) both the encoder and decoder create an entry in their table. The next time the

block is seen, the code is sent instead of the original form. Every time the block is seen again,

its frequency is increased, and at a certain period of time the Gray codes are recalculated with

Figure 4.8 Transaction Density

Transaction Density

0

5

10

15

20

25

compress go m88ksim li jpeg vortex perl gcc Average

T
ra

n
sa

ct
io

n
s/

cy
cl

e

UncompDensity CompDensity OrGrayDens AdaptiveAgeDens AdaptiveTupleDensity AdaptiveTupleRestrictedDens

 83

these updated frequencies in mind. The recalculation point could be predefined (for instance

every million transfers) or flexible. If flexible regeneration points are used, some monitoring

hardware might be dedicated to detect the need for code regeneration. Additional overhead for

such a system is an extra physical line needed to be added to the bus. This line indicates

whether a Gray coded or an original block is being transferred. With multiple service lines

already used on buses, some of the existing connections can be utilized.

 The next two Gray encoders are trying to utilize frequencies of tuples being transferred

as opposed to previously used frequencies of individual blocks (see Figure 4.2). The general

idea is, instead of looking at individual blocks and their frequencies, to collect statistics on pairs

of blocks. This method allows us to take away uncertainty on what block is being followed by

what, but requires much more information to be kept around. The first method is the Adaptive

Infinite tuples algorithm. It method is theoretical and assumes infinite storage for all possible

tuples frequencies. This algorithm is only used here to estimate available performance gain.

The second – Limited Adaptive Tuple – limits tuples frequency storage to a finite number: 1024

entries. Experimental results are summarized in Figure 4.7 and Figure 4.8. While the Figure 4.7

gives the absolute number of flips the Figure 4.8 normalizes them to the shortened (due to initial

compression) period of time: compressed bus cycles. In either case, the Oracle Gray achieves a

significant reduction of bus activity on top of compression. It even does better, on average, than

the original uncompressed data stream. This fact basically means that if the Oracle Gray code

conditions can be practically achieved (implemented in hardware with aid from the compiler),

then the ultimate reward of shorter bus busy state time and lower power consumption can be

achieved. On the other hand, all the ‘practical’ implementations suffer from the fact that each

block should be sent through the bus at least once to be encoded in the future. Nevertheless all

 84

of them do reduce the bit flip activity overhead from compressing the original data stream.

The final step in this study would be changing the overall conditions to something more

realistic, such as increasing the L0 data cache size to 32KB. This is the memory interface setup

most of existing systems are utilizing. As we described in Section 3.2, the problem is that both

the data cache and the bus encoding mechanism (in this case) are utilizing the same basic quality

of the data stream (redundancy/entropy). Since the cache is closer to the original source of the

redundancy, the processor, it gets the best of it. The cache virtually prevents most common

blocks from appearing on the bus. (Refer back to the discussion in section 3.2). Once the data

stream is ‘filtered’ through the data cache, its entropy increases and the bus encoder has nothing

to work with: all it sees are unique blocks that a rarely repeating. This conclusion conforms to

our previous findings regarding the entropy of data filtered by a small cache (see Section 3.2).

This observation might be considered a negative result in general case. But for some embedded

systems, which do not use caching at all, or have very small caches, it might prove to be useful.

 85

5 Compressed Data Cache Hardware Implementation

5.1 Motivation

 This chapter deals with another key component of an embedded system, which can be

significantly improved by reducing the redundancy of original data stream: the data cache.

There has been little work in hardware design schemes for exploiting data value compressibility.

This is understandable, since on-die data memory capacity today is not a performance-limiting

Figure 5.1 Compressed Data Cache Architecture

Tag Index Offset

5bit10bit

9bit 6bit

Original Hash Function
Equivalent of DM placement

New Hash Function
equivalent of 2way SA

Tag State Displacement

Search/Maximum
Placement

range depends on
the maximum

allowed compression

Original memory block,
One cache block

A B C D E F G H

Compressed memory block,
1.875 cache blocks

a b c d e f g h k l m n o p q

Compressed block

Uncompressed block

Compressed block

+7

+0

+12

CB

UB

CB

Address

Write Uncompressed Buffer Write Uncompressed Buffer Searched in parallel
with main storage

Read Uncompressed BufferRead Uncompressed Buffer

CompressorCompressor

DecompressorDecompressor

Searched in parallel
with main storage

Tag A

Tag X

Tag Y

 86

factor for general-purpose processors. However, this is not the case for special-purpose or

embedded processors that often share the die with the rest of the system. In several recently

announced embedded systems like the MIPS64 20Kc [52] and the IBM PowerPC 750x [53], on

chip instruction and data caches occupies approximately 50% of the silicon area and consume a

significant share of total power. In these situations, there is a need for very highly efficient use

of data memory, or other alternatives to use smaller hardware structures while delivering a

similar level of performance.

Moreover, since we found that the data cache is the primary consumer of the available

redundancy of the data stream, the next logical step is to attempt to increase its performance the

same way we did for the instruction cache – by compressing it. As have been mentioned before,

though similar at the first glance, the actual coding conditions for code set and data stream are

drastically different. The major difference is that instead of a static code segment, we are

dealing with a constantly changing dynamic data stream, so we cannot apply static compression

algorithm (with fixed frequency distribution). In addition to that, since the compressed data

should be stored (statically) for some period of time prior to decompression, we cannot apply a

truly adaptive compression algorithm either. With all this in mind, we have a new and unique

set of contradictory problems to solve.

5.2 Compressed Data Cache Architecture

Following the detailed analysis of data stream compressibility in section 3.1, we can

affirm that the compression algorithm that best fits this set of coding conditions is the Discrete

Adaptive Huffman. Let us now define several basic assumptions for design of the proposed

 87

compressed data cache:

- The cache is direct mapped in essence, but provides an implicit associativity (see

explanation below);

- Both compressed and uncompressed data blocks can be stored in the cache at the

same time;

- The smallest compressible block is a cache line; (no partial compression for fractions

of a cache line);

- A block of data is stored in compressed form only if compression reduces its size;

- Hashing is a function of compressibility of the datum (implicit associativity); and,

- The cache uses write allocate/ write back update policies.

 Let us begin by describing the implicit associativity mechanism. One of the basic

features of this cache is the variable hashing function. The whole design is built around of the

Figure 5.2 Block Placement Example - Expanded Block Placement

Original memory blockA B C D

Compressed memory block
Compression did not help,
but increased the original size:
Better keep it in original form.

Original address: 0x4000b740

32 bytes

a b c d

…0000.1011.0111.0100.0000Hashing function:

17bit 10bit 5bit

A B C D

441

442

443

450

Max searchable range
for the index 442: 8 lines

State Age DeltaIndex

N

UC

N

Line
Number

-1

0

-1

Tag Index Offset

0

0

0

N -1 0

Line choice: from 442 till 442
Choose 442, since there was no
compression applied

 88

idea of variable compressibility of the available data, and the hashing function reflects it. There

are three possible outcomes for an attempt to compress a block of data: its size is reduced,

remains unchanged or is increased. Obviously the outcome depends on frequency of elements

that make up that block. If we want to store compressed blocks of a random size, we need to

provide a flexible mechanism for it. But the point is that we want to preserve precious storage

within the data cache, so only blocks that reduce its size after compression are stored and

placement policy is modified accordingly. In other words the more compressible a cache block

is the more flexibility on its placement is allowed. This mechanism is best explained with an

example.

 In the Figure 5.2 we see an example of the case where compression attempt produced

negative results - the cache block was increased in size after compression. This happens when a

cache block contains rarely used bytes. Fortunately, those blocks are infrequently encountered

as well. Nevertheless, in this case the block is stored in the compressed cache in its original

form (uncompressed), and the hashing function is equivalent to the one for the direct mapped

cache (see Figure 5.2). A different approach is taken for blocks that are reduced in size after

Figure 5.3 Block Placement Example - Reduced Block Placement

Original memory block
Same block, new data.

E F G H

New Compressed memory block,
fitted more then one original
block

Original address: 0x4000b740

32 bytes

…0000.1011.0111.0100.0000
New Hashing function:

17bit 9bit 6bit

e f g h z

A B C D

441

442

443

450

Max searchable range
for the index 442: 8 lines

State Age DeltaIndex

N

UN

UC

Line
Number

-1

1

0

Tag Index Offset

0

0

1

N -1 0

Line choice: from 442 till 443
Choose 443 as ‘oldest’

e f g h z

 89

compression (see Figure 5.3).

Before we proceed with this example, let us first define granularity level for the cache.

The granularity level directly correlates to the smallest addressable unit in the cache, which

normally is word or byte. Let us use a single byte as atomic unit in our case. Depending on the

granularity level, when a single additional atomic unit is added to the compressed block (in

Figure 5.3 the original size of z is multiple of a byte), the compressed block offset automatically

‘increased’ by one bit (in this example to six from five), and its index is ‘reduced’ by one bit (to

nine from ten). This shorter offset in turn implicitly doubles the line selection choice – now this

compressed block could be placed in either line 442 or the line 443 in main cache storage. This

process is repeated until a compressed block’s size equals or exceeds the original block size. By

Figure 5.4 Read Pipeline. Multiple Set storage

latchlatch block latchblock latch

block selectblock select====

====
Block latch and shift <<Block latch and shift <<

word selectword select

tag index offsettag index offset

Uncompressed Block Atag A

latchlatch

Disp.

Block latch and shift <<Block latch and shift <<

<<<<Decoder

Compressed Block Btag B

latchlatch latchlatch block latchblock latch

- The displacement
provides information
on the number of bytes
in the compressed
block and the offset to
the end of the
first block
- Hit/miss is detected
prior to the
decompression

 90

this time, the compressed block might contain multiple cache blocks (up to the maximum

available number allowed by the compression algorithm – in this example eight). Among the

possible line candidates, the least recently used (LRU) is chosen. This process is named the

implicit associativity.

As it has been mentioned before, for the byte-base compression algorithm, which is used

in this set of experiments, the granularity is a single byte, so the best potential compression

occurs when a whole byte is represented with a single bit, i.e. by eight fold (8x). Given this

information, up to eight cache blocks can be present in a single compressed cache line. This in

turn means that a line can be placed anywhere within this eight line window with original (direct

Figure 5.5 Read Pipeline. Two cycle access

latchlatch block latch and shiftblock latch and shift

====

====

word selectword select

tag index offsettag index offset

Uncompressed Block Atag A

latchlatch

Disp.

Block latch and shift <<Block latch and shift <<

<<<<Decoder

Compressed Block Btag B

latchlatch latchlatch

index +1 Disp.

-Block A, mapped by
the index is brought to
the block latch at first
access
- If this is not the block
needed, the right one
(B) is brought down in
the next cycle

 91

mapping) address inside of it. Therefore, in order to find a single block, we need to search all

the entries for all possible locations of the compressed cache block. In current case this would

be equivalent to an eight-way set associative cache. If this search range ever appears to be a

limiting factor for hardware implementation of the algorithm, the maximum compressibility

could be limited, with corresponding degradation of performance (from 0.023 average miss ratio

for the 8x unbounded compression down to the 0.031 for 2x restricted compression).

Figure 5.4 shows the example of a 2x limited compression and also presents a potential

implementation of the cache read pipeline. If the read mechanism used in conventional two-way

set associative cache is implemented, both cache storage and tag/displacement array can either

be banked (the traditional implementation with hardware duplication) or dual ported. It is well

known that multiporting of more then two presents an extreme design challenge and calls for

custom design and layout. Because of this, 8x compression might have impractical hardware

requirements for this scheme.

Figure 5.6 2x Restricted Compression Block Placement and Access

Displacement Fields

a b0 15 95 127+8 bytes

Total Bytes Second Block

+0 bytes CTag CTag C

Tag Storage

y<= z <xy<= z <x

Tag B

15

0142

143

142

Tag aTag a

0

x
y

z

y<= z <xy<= z <x

x
y

z

Hit!

Miss!

Pad area due to
2x Compression
restriction

Load Address

Passed to the
Decompressor to
Detect the Critical
Block Location

 92

There are two tradeoffs that can be exploited in order to implement implicit associativity

for multi-way compression, depending on target implementation: (1) if the access latency is

critical, the scheme presented in Figure 5.4 can be used, or (2) if an extra cycle for some (not all)

accesses can be tolerated, the scheme presented in Figure 5.5 can be used instead. In this

scheme, access to an uncompressed block is done in one cycle, and access to a compressed

block takes one or two cycles plus time for decompression. In either case, once a block is found

and it is uncompressed, it could be delivered in the same way as a traditional cache does (see

discussion below). If the block is compressed, it must be uncompressed first into the read buffer

(uncompressed blocks are not placed there, see below). The critical block can be decompressed

first using some additional information (6-bit displacement) which is stored along with the block

tag in the displacement field (see Figure 5.6, the ‘second block’ field). If the next load hits in

the same line or one of the following blocks, it is likely to be already uncompressed and resident

in the read buffer. To improve access time, the read and write buffers are searched in parallel

Figure 5.7 WUB Organization

Write Uncompressed Buffer (for 2x bounded compression)

255

Tag B 142 2

Store Address

Storing single Unaligned Byte C

C

Optional Shadow Compression BufferOptional Shadow Compression Buffer

Compression
Module

Compression
Module

<<<<

Word SelectWord Select

Missed part of the
Unaligned Block
Must be Prefetched

For 2x WUB is
Two-block long
Block size is 16Byte

0TagBTagB

=?=?

0 127

 93

with main cache storage. In this sense this scheme is similar to the open page policy in DRAMs.

 Now the read and write sequences should be described in greater details. On a write to

the cache (the processor stores a datum) the data does not goes directly into the compressed

storage. It is first written into the Write Uncompressed Buffer (WUB) (see Figure 5.1 and

Figure 5.7). The WUB can hold up to eight (or whatever the compression limit is) sequential

cache blocks. If the compression latency poses a delay on the write procedure, each block

written into WUB can be speculatively pre-compressed and stored in a shadow compressed

buffer. If the datum being stored by the processor is not aligned at the beginning position of a

cache block, the missing portion of the block is prefetched (see Figure 5.7). The next write to

the cache is checked against the block currently located in the WUB. If this datum is from the

same block (which often is the case), it is accumulated in the WUB. Potentially up to eight

cache blocks can be accumulated in the WUB. It is important to notice that there is no

limitation on order and permutation of reads and writes since we have two independent

Figure 5.8 Logical Structure of the Reprogrammable Huffman Decoder

1**

01*

000

001

A: 0000

B: 0011

C: 0100D: 1000

0

0

0

1

1

1

Original Huffman Tree:A

B

C

D

256
entries

Modified
CAM Storage

Input Sequence: aaacdbac

1.1.1.000.001.01.1.000

Output Sequence:

0000.0000.0000.0100
1000.0011.0000.0100

<<<<

0000

0011

0001

0010

0100

1000

Shift Register

1

2

Shift
amount

3

3

 94

hardware paths in the cache to handle them.

Once the maximum capacity of the WUB is reached, or there was a datum from a

different block encountered (miss in the WUB), the whole contents of the WUB is compressed,

one block at a time. For each individual block the decision is made whether it is stored in

compressed or uncompressed form. The only restriction for this process is the sequentiality. If

for example, out of the eight sequential blocks in the WUB, the first two get compressed and the

following two do not, while the remain four do, we will have three independent groups to be

placed into the storage. The first and the last compressed groups will have a choice of

placement (two lines each) while the uncompressed group will be placed at rigid location. So in

this way all the content of the WUB is transferred into the compressed (main) cache storage. No

stalls are produced by this process, so the store latency is zero cycles.

 On a read from the cache (the processor executes a load), three separate locations within

the cache are checked in parallel: the main compressed storage, the WUB, and the Read

Uncompressed Buffer (RUB) (see Figure 5.1). The read uncompressed buffer holds the mostly

recently read cache block in uncompressed form. This once again means that up to eight

Figure 5.9 Dual Bank RAM Implementation of the Huffman Decoder

A: 0000 D: 0011

F: 0111E: 1010

0

0

0

1

1

1

Original Huffman Tree:

11.111.1

Input Sequence:
aacdf

11.11.100.01.000

F-3

E-3

D-2

0 1

Decoder

01

C: 0100B: 1000

01

D-2

C-3

B-3

A-2

A-2 Symbol for A
and shift amount:
0000; <<2
Besides
we already decoded
the first bit of the next
symbol

<<

 95

consecutive uncompressed cache blocks can actually reside simultaneously in the RUB. If the

read hits in either the WUB or RUB the access could be served in a single cycle (or whatever is

equivalent hit time for direct mapped cache in the current setup). If the read hits in the main

compressed storage access time depends on whether the data accessed is in compressed or

uncompressed form. If the data uncompressed, the latency is the same as for conventional direct

mapped cache. If the block is compressed, the latency might vary depending on decompression

mechanism employed. The entire flow graph for this process could be found in the Appendix

Table 3.

 Now we should recall that the compression algorithm employed – the adaptive Huffman

– have periodic adjustment phases, which change the frequency distribution used. On the

catastrophic event when the compression algorithm is being adjusted, certain actions should take

place in the cache storage. As was mentioned before in Section 3.1 in most cases this is a rare

event and we can dedicate a software interrupt to serve it. This interrupt will use the profile

information accumulated since the last regeneration point and produce new and improved

Figure 5.10 Multiple Symbol Decoding Example

A: 0000

D: 0011

F: 0111C: 1010

0

0

0

1

1

1

Original Huffman Tree:

1.1.11.1.1

Input Sequence:
aaacdf

1.1.1.001.01.000

F-3

C-3

D-2

0 1

Decoder

DA-3

A-1

A-1

AA-2

AAA-3 Symbol for three A
and shift amount:
0000.0000.0000; <<3

<<

 96

distribution to be used by the compression algorithm. From an architectural standpoint, all

previously compressed items should be discarded because new algorithm would be unable to

interpret them. But, it does not mean we should completely purge the cache storage. First, just

a portion of the data in the cache is actually compressed, so the uncompressed portion is not

affected by compression algorithm change and could remain untouched. Second, the

compressed part could be uncompressed with the old algorithm prior to its regeneration, and left

at the appropriate location (according to the direct mapping placement algorithms). Regardless

of that certain portion of resident cache blocks does get lost, but all these features allow

lessening the impact of the compression algorithm regeneration on the overall cache

performance.

5.3 Dynamic Decoding Structure

 Now we have come to the most important part of the compressed cache design - the

Figure 5.11 Biased Huffman Tree Example

A: 0000

D: 0011

F: 0111C: 1010

0

0

0

1

1

1

Original Huffman Tree:
000000

Input Sequence:
cdf

0001.001.00001

F-4

C-4

0 1

Decoder

A-1

AB-2

AA-2

AAA-3

Symbol for C
and shift amount:
3 + 1

<<

B: 1011

01 ….

D-3

B-2

BA-3

 97

decoder. Unlike the decoder for the instruction cache, this decoder needs to be reprogrammable,

because the compression/decompression algorithm changes periodically. This fact means that

no static and fast hardware structure could be built, so we need to propose a way to implement

the adaptive Huffman decoder in reprogrammable form. In addition to that we cannot rely on

pipelining to reduce the overall latency of access. Unlike for the code segment and instruction

cache, the data cache reads could be spread apart in time with multiple cycles between them, so

the pipeline hardly could be kept filled. Finally, it should occupy minimal physical size because

otherwise the whole purpose of using a smaller smart cache instead of a large unsophisticated

one might be defeated all together. Figure 5.7 presents the logical/functional organization of

such a decoder as a priority decoder.

 The Huffman code fragment, needed to be interpreted, addresses the RAM. The RAM

storage entry holds the uncompressed symbol and shift amounts for each original code (Huffman

alphabet entry). The shift register is capable of holding up to eSizeLongestCod2 bits of the input

encoded stream, which are then passed as an input to the left-to-right priority decoder. Match is

Figure 5.12 Restricted Huffman Decoder Structure

A: 0000

D: 0011

F: 0111C: 1010

0

0

0

1

1

1

Original Huffman Tree:
100100

Input Sequence:
ada

1.001.0000

0 1

Decoder

A-1

AB-2

AA-2

AAA-3

Symbol for A
and shift amount: 1

<<

B: 1011

01 Forbidden

D-3

B-2

BA-3

 98

detected when all left-side bits for the RAM contents match the left-most part of the shift

register. Once a match is found, a symbol is generated (based on the code location in the RAM

– simply the line number), and the shift amount is used to update the shift register (so the

decoded symbol is shifted out). The critical part here is that multiple cycles are needed to

decode one cache block and a large physical size for the RAM storage and the priority decoder

logic. With these points in mind, the following Dual Bank RAM implementation was proposed

(see Figure 5.9).

In this scheme, the RAM storage is split in two banks of equivalent size. This separation

corresponds to the splitting at the root of the Huffman tree. In Figure 5.9, the right bank

corresponds to all of the Huffman codes that begin with one and the left bank for all that begins

with zero. Obviously the storage could not be split any more, since the shortest Huffman code

could contain just a single bit.

The advantages of such a structure include multiple symbols decoding in a single cycle

Figure 5.13 Profile Point Selection

MemoryMemory

Data CacheData Cache

CPUCPU

Profiling
Point

Memory Bus
Miss Repair

Traffic

CPU Bus
Fetch

Traffic

 99

and the fact that the critical ‘vertical’ search range is reduced in half. Figure 5.10 gives an

example of three symbols being decoded in a single access to the dual bank RAM decoder. This

case is far from purely theoretical - virtually all benchmarks in SpecInt95 at some regeneration

period have a single dominating byte (usually zero), which outweighs the combined probabilities

of all other symbols and gets encoded with a single bit.

 Unfortunately, the opposite situation, where a tree is strongly asymmetric due to

presence of an unlikely bit, is also possible (see Figure 5.11). In this case, we need more than

256 entries, potentially up to the eSizeLongestCod2 entries in the RAM storage. For a typical

LongestCodeSize of up to 16 bits the RAM size gets unreasonable big.

Fortunately, there are several features specific to our setup that allows to optimize this

decoder size. First of all, it is important to remember that codes are produced and consumed

Figure 5.14 Compression Dependence on Profile Point Selection. Memory side vs.

Processor Side

-5%

0%

5%

10%

15%

20%

25%

30%

compress go m88ksim li ijpeg perl vortex gcc Average

P
ro

ce
ss

o
r

S
id

e
b

et
te

r
<

=
 C

o
m

p
re

ss
io

n
 =

>
 M

em
o

ry
 S

id
e

B
et

te
r

16KComp16B 16KComp32B 8KComp16B 8KComp32B 16KRes16B 16KRes32B 8KRes16B 8KRes32K

 100

locally in the cache. Second, according to the policy of not storing excessive codes, we are

likely not to use long codes any way. From this, we are proposing the Restricted Compression

model. The key feature of this compression model is the fact that only bytes whose Huffman

codes are equal to or less then eight bits are compressed. All others are considered forbidden.

The size limitation is chosen arbitrarily and could be varied. The biggest single advantage of

using eight beet threshold is the fact that non of produced codes will exceed size of the original

block, so no hardware ‘adjustment’ is needed to deal with longer codes. If a cache block

contains a single forbidden byte, it is considered forbidden as well and is not compressed. This

Restricted Compression model allows us to use only a 256-entry decoder. We guarantee that the

encoder will not produce forbidden codes (the LongestCodeSize is now less then or equal to

eight bit and total decoder size is fixed) (see Figure 5.12).

Just as have been outlined above, the decoder RAM is split into two banks (each one

now is 128 lines long). The leftmost bit of the shift register selects the bank. The rest of the bits

in the shift register (seven bits) serve as an address into the correspondent bank. As we showed

before, the addressed RAM line might actually contain multiple codes (see Figure 5.10). Once

the line is found, it produces one or several symbols and a cumulative (for the several codes

being uncompressed) shift amount. With this implementation, the speed of decoding will vary

with the data being decoded, and the most likely (and shortest) symbols will be decoded the

fastest. To decode a 16-byte block we might need between two and 16 cycles. If the decoder is

sub-clocked at half the cache clock time it translates into between one and eight cycles.

 The encoder is actually ‘the easy part’, when compared to the decoder. Just as we

mentioned earlier in the Section 5.2, since encoding is a rarely performed operation, it can get a

dedicated operating system (OS) interrupt. This interrupt will generate new encoding and

 101

update the changing part of the hardware decoder. This interrupt will have to perform all actions

outline earlier including new distribution and new optimal algorithm generation along with

selective purging of data compressed with old algorithm. It is important to note that no

immediate recompression with the newly generated algorithm was considered at this time, but it

is a possible option. Though the algorithm regeneration is a catastrophic event we can reduce its

occurrences by dedicating minimum amount of hardware. This will have to be a small hardware

profiler that is updated in parallel with data compression and holds the degree of compression

since last regeneration point. It is important to notice that we still maintain minimum time

granularity in asserting this hardware (every 1000 references for example). This will prevent us

from multiple ‘back to back’ algorithm regeneration. Once the measured degree of compression

falls bellow certain threshold, the interrupt to generate new encoding is generated. With the

current threshold set at 70% of the original size, only five to twenty percent of checkpoints call

for actual algorithm regeneration.

A much more important and interesting question is how to collect accurate profile

information for all bytes in the input data stream. Generally this profile should give us the

frequency of any byte appearance in the data stream since the last regeneration point and its

accuracy defines effectiveness of compression in general. The straightforward solution would

be to maintain an array of 256 counters and update them as we progress. This update is

occurring in parallel with the fetch process and does not impose any time penalty. Nevertheless,

the use of this array of counters equals an increase in the hardware budget. Let us investigate

this issue in greater details.

 102

5.4 Variations on the Compressed Data Cache Design

 As have been just mentioned, an important option and interesting question in regard to

profile accuracy is where the statistics on the data stream are being collected. First it was briefly

addressed in Section 3.1, and now it is time for the detailed discussion. As we remember from

the code segment, there was no such issue as profile point selection. The code segment was

statically available and optimized for static storage. Here we optimizing the dynamic stream for

dynamic storage and the question is: which part of the stream is more representative.

Figure 5.15 Miss Ratio Dependence on Profile Point Selection. Memory side vs.

Processor Side

-1.8%

-1.3%

-0.8%

-0.3%

0.2%

0.7%

1.2%

compress go m88ksim li ijpeg perl vortex gcc Mean

P
ro

ce
ss

o
r

S
id

e
is

 b
et

te
r

<=
 M

is
s

R
at

io
 =

>
M

em
o

ry
 s

id
e

is
 b

et
te

r

16KComp16B 16KComp32B 8KComp16B 8KComp32B 16KRes16B 16KRes32B 8KRes16B 8KRes32K

 103

 The obvious choices are whether to collect statistics at the processor or memory side of

the cache (see Figure 5.13). The processor bus side gives us a picture of which bytes are

actually used by the processor. Theoretically, bytes more commonly used by the processor could

be narrowed down. Then, once compressed those bytes get the best size reduction opportunity.

Nevertheless, to profile the processor side stream, more references to the profiling hardware are

needed. This imbalance does not impose immediate performance penalty, but in a long run

might turn out to be a power issue. On the other hand, the memory side monitor only sees the

stream of bytes in response to miss repair (we do not monitor write backs for obvious reason),

which is normally less then ten percent of references of the processor side. It will give us

slightly different distribution, which is more representative for bytes being not in storage when

needed.

Figure 5.16 Compression Dependence on Profile Point Selection. Memory side vs. Storage

Contents

-15%

-10%

-5%

0%

5%

10%

15%

compress go m88ksim li ijpeg perl vortex gcc Average

S
to

ra
g

e
is

 b
et

te
r

<=
 C

o
m

p
re

ss
io

n
 =

>
M

em
o

ry
 is

 b
et

te
r

16KComp16B 16KComp32B 8KComp16B 8KComp32B 16KRes16B 16KRes32B 8KRes16B 8KRes32K

 104

The Figure 5.14 summarizes the difference in degree of compression and the Figure

5.15shows the difference in miss ratio based on where the data were collected. As we can see

on average memory side is doing better in compression, and being less often accessed

(comparing to the processor side) is clearly a better choice for implementation. This result in

some way is counterintuitive. Nevertheless, once we analyze which blocks are resident in cache

we will find out that blocks that are mostly accessed by the processor are also the longest

residing in the storage. In addition they are also the ones that stay the longest in the read buffer

in uncompressed form. On the other hand, blocks that are comparatively rarely accessed are

causing the most of cancellations due to conflicts in the storage. If those blocks are compressed

the most, those effects are lessened. A naïve but excellent example of this phenomenon would

be pouring a cane of poppy seed into a full can of beans. It will fit almost entirely into the empty

Figure 5.17 Miss Ratio Dependence on Profile Point Selection. Memory side vs.

Storage Contents

-0.75%

-0.25%

0.25%

0.75%

1.25%

1.75%

compress go m88ksim li ijpeg perl vortex gcc MeanS
to

ra
g

e
b

et
te

r<
=

M
is

s
R

at
io

 =
>M

em
o

ry
 is

 b
et

te
r

16KComp16B 16KComp32B 8KComp16B 8KComp32B 16KRes16B 16KRes32B 8KRes16B 8KRes32K

 105

space in-between the beans. And since the poppy seed is the one to go in and out of the can all

the time, it better be small, so beans do not have to be removed.

Nevertheless, there is yet another, and in some way, more elegant solution for the profile

collection. Generally we can generate the byte distribution based on the current contents of the

data cache. It should represent a snapshot of activity during the period since the last code

generation and it does not take any additional hardware to keep the statistics. As the OS

interrupt goes through the storage and selectively purges the compressed blocks it must

uncompress them first in order to leave the block that maps into the current line resident and

uncompressed (see Section 5.2). At the same time, the desired byte profile could be performed.

This distribution should be blind to frequency of byte usage by processor. It might turn out to be

either advantageous or degrading. As could be seen from the Figure 5.16 after experimenting

Figure 5.18 Two Level Compressed Data Cache

Tag State New Offset

Compressed block

Uncompressed block

Compressed block

OrigIndex+6

5

10

CD

UC

CD

Searched before
the main storage

L0 Cache

Compressed Storage L1 Cache

8 times the size of original cache line

Same organization
for the compressed

storage

Up to eight Uncompressed Sequential blocks

Up to eight Uncompressed Sequential blocks

To and From the CPU

To and From the Memory

 106

with all the three options, the assumption about low representativeness of the processor side

stream turned out to be true – for most of benchmarks storage profiling gives better

compression. Nevertheless once we look at Figure 5.19 we can see that overall miss ratio is

virtually unchanged. It might mean two things. First is the possibility that we already have near

optimal profiling with memory side monitoring. The second possibility is that it is not as much

important how much we compress but rather what we compress. But for the reason of the

smaller hardware budget and lower power consumption we should recommend the storage

profiling as a better solution.

The next option needed to be described is the sizes of read and write buffers. If one

carefully analyses the structure of the original compressed data cache (Figure 5.1) it could be

seen that the read and write uncompressed buffers play significant role in the operation of this

cache. In essence, they could be viewed as a small L0 cache split into two parts: read and write

branches. The question is what is going to happen if we significantly increase the size of those

Figure 5.19 Miss Ratio for Two-Level Cache compared with the Original

Implementation

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

compress go m88ksim li ijpeg perl vortex gcc Mean

M
is

s
R

at
io

8KRes32B_L0Mem 8KRes32BPMem 8KRes32B_L0Proc 8KRes32BProc

 107

buffers. In fact we would probably want to merge both buffers and slightly reorganize overall

design.

The Figure 5.18 presents the revised design. Both the read and write uncompressed

buffers are merged into one L0 storage array. Each line in the L0 can hold up to eight sequential

memory blocks. The fact that resident blocks are sequential is rather important here. It allows

easy compressed block formation, but results in low hardware utilization, since one hundred

percent compression is an infrequent event. The L0 filters all accesses to the compressed cache

storage – both write and read first go through it and only then access the main storage. The size

of L0 is set to 32 lines. In this configuration, a byte frequency profile is collected between L0

and main storage, with additional monitoring of the processor side of L0. This is done to

guarantee the proper distribution for code regeneration – we do not want build our compression

Figure 5.20 Reference Hit Breakdown for the Original Compressed Data Cache

8K Rest 32B Proc

0%

20%

40%

60%

80%

100%

compress go m88ksim li ijpeg perl vortex gcc Average

ReadBufferHit WriteBufferHit CompStorageHit UncompStorageHit

 108

solely on the storage contents or memory side. The reasons for that were described in great

details in 4 and includes the change in the data stream entropy filtered by a caching structure.

The first set of experiments for the two-level cache revealed its low performance and

practicality (see Figure 5.19). In this figure, one of the configurations of the original

compressed data cache is compared to the two-level cache. For the bigger hardware budget we

got slight degradation of performance for most of the benchmarks. The only exception is the

perl benchmark, which exhibits high degree of spatial locality, so as a result, most of the used

data fit into the L0 cache.

Figure 5.21 Reference Hit Breakdown for the Two-Level Data Cache

0%

20%

40%

60%

80%

100%

go m88ksim li ijpeg perl vortex gcc Average

L0 CompStorageHit UncompStorageHit

 109

In order to further analyze this degradation of performance in two-level cache we need to

look at internal cycle distribution of both original and the two-level caches. In Figure 5.20 the

ReadBufferHit part of the bar corresponds to all the references that hit in the uncompressed read

buffer (the read from the same block that was read recently and still resides in the read buffer).

The WriteBufferHit part corresponds to all of the references that hit in write uncompressed

buffer (a write followed by a read from the same address before the block got a chance to be

compressed). The other two sections correspond to the main compressed storage. Since a

reference could hit in either compressed or uncompressed block we must differentiate. As we

can see from Figure 5.21, majority of the references hit in the compressed storage. This fact is

the main reason for the performance increase of compressed data cache comparing to the

uncompressed one.

Figure 5.22 Two Level Cache Size Variation (Logarithmic Scale)

0.01

0.1

1
1block 2block 4block 8block

8KRest32B_MissRatio 8K32B_MissRatio Compression_Restricted Compression

 110

If now we analyze similar distribution for the two-level cache, we will see completely

different picture (see Figure 5.21). Now the majority of references hit in the L0 storage, which

effectively filters out references to the main storage. As a result small portion of data does get

compressed, and it could be seen that only a small fraction of the references that got to the main

storage actually hit in the compressed block.

The final variation in the L0 experiment is varying the size of the L0 cache from one to

eight lines. The results for mss ration and degree of compression are summarized in Figure

5.22. It can be clearly seen that with increase of the L0 size the compression performance

degrades quickly (just as in the case with bus compression). The miss ratio drops at two-block

L0 size and then slowly improves as the L0 size increases since L0 now serves majority of

Figure 5.23 Miss Ratio Comparison between Compressed and Uncompressed Caches

0%

1%

2%

3%

4%

5%

6%

7%

8%

9%

10%

compress go m88ksim li ijpeg perl vortex gcc Mean

M
is

s
R

at
io

16K_2way_16B 16K_2way_32B 8K_2way_16B 8K_2way_32B

16KComp16B 16KComp32B 8KComp16B 8KComp32B

16KRes16B 16KRes32B 8KRes16B 8KRes32B

 111

references. It is also should be clear that overall performance per hardware unit uniformly

degrades, since increase in L0 size equals total hardware budget increase with minimal return.

5.5 Final Configuration for the Compressed Data Cache

Once we have iterated over several design options we can come up with a proposal for

the final and optimal solution for the compressed data cache design. With everything mentioned

earlier the cache that uses original configuration and storage based profile collection with a

choice of storage size between eight and 32 Kbytes and block size of 16 bytes could be

considered near optimal. It is very important to note that it is only optimal for the current set of

Figure 5.24 Absolute Dynamic Compression for Storage Profile Scheme

0%

10%

20%

30%

40%

50%

60%

compress go m88ksim li ijpeg perl vortex gcc Average

C
o

m
p

re
ss

io
n

16KComp16B 16KComp32B 8KComp16B 8KComp32B 16KRes16B 16KRes32B 8KRes16B 8KRes32K

 112

benchmarks. For a different type of application this configuration should be revised. Also some

of the applications (like streaming data processors) might be better without data cache at all.

The final simulation results for the best configuration are presented in Figure 5.23 and

Figure 5.24. The compressed cache is compared against a similarly sized uncompressed two-

way set associative cache. From the results we can see that an eight Kbytes compressed cache

with restricted compression model on average performs as the traditional 16 Kbytes two-way set

associative cache. For more sophisticated compression model, the miss ratio difference easily

reaches a two-time reduction for the same size of storage. In order to prove the statement made

in Section 2.5.1 about entropy miss ratio the following set of experiments was performed. The

compression algorithm was limited to maximum of 2x compression rate and 2way-like

placement policy. The comparison between correspondent 2 and 8 way set associative

traditional cache vs. 2x and 8x limited compressed cache performed. The results are

Figure 5.25 Entropy Miss Ratio Summary

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

16KComp16B 16KComp32B 8KComp16B 8KComp32B 16KRes16B 16KRes32B 8KRes16B 8KRes32B Average

M
is

s
R

at
io

2_way_uncompressed 2_way_compressed 8_way_uncompressed 8_way_compressed_implicit

 113

summarized in Figure 5.25.

 From everything said so far it could be conclude that even with restricted compression

model the compressed data cache can perform better then a similar uncompressed cache, and

intelligent choice should be made for every specific architecture whether it can benefit from

compression of data cache.

 114

6 Conclusions and Future Work

 The main purpose of this work is to study the available redundancy and potential

compressibility of an embedded processor program in general and find ways to use it. As a

result, we can reduce both static and dynamic program size, which results not only in increasing

overall performance but also in smaller code ROM size and lower power consumption. It is

important to reemphasize that ultimate goal of higher performance and smaller program at the

same time was achieved. The system with compressed encoding and redesigned instruction

cache actually runs faster than the system with the original configuration and native code.

If was also shown that there is no single engineering solution to the problem, but rather a

combination of several different techniques aimed at the same goal. Part of this approach is to

use compiler as extensively as possible. For example we use it to extract the pipeline decoder

logic for an embedded processor in software at system development time. By doing this we

facilitated flexible approach to the design of this decoder, and as a result permitted the

compression. In essence the compiler is employed not only for removing complex decisions

from run time into compilation time (VLIW approach) but also for dictating the overall system

architecture according to the implementation. This customization is performed in light and

transparent fashion and only requires modification of instruction and/or data cache while the rest

of the system remains unchanged.

As for the instruction fetch pipeline design, by Huffman compressing and Tailor coding

the ISA of the original program significant code segment size reduction was achieved. This

 115

work also detailed the design of instruction fetch mechanisms for both this compression

schemes, and then discusses their performance and cost tradeoffs. Some interesting results were

found. In particular, the degree of compression for the ROM doesn’t necessarily translate into

an improvement in instructions delivered per cycle. Experiments found that when the

missprediction penalty of the added Huffman decoder stage was taken into account, the Tailored

instruction sat architecture approach produced a higher performance. Nevertheless, pipeline

performance is not always the central goal of embedded systems. Methods like the Full

Huffman compression scheme that operates at instruction cache hit time still achieved median

performance advantage over the baseline, while providing significant ROM size savings.

 Next close attention had been paid to the data stream compressibility and system data

bus design as well. The amount of redundant data stored in expensive caches and transmitted

through tight bottleneck of instruction fetch and data path is hardly tolerable. First we address

the dynamic data stream redundancy by optimizing the system bus between CPU and memory.

The main conclusion from that study was that if there is no caching structures are present in the

system, significant gain could be achieved from coding the bus. This gain is expressed in both

higher throughoutput and lower power consumption. But if there is even a small cache used on

the CPU side, hardly any optimizations are possible.

Next we turned to the data cache design. By reducing redundancy of data stored in the

data cache we break an age-old capacity limit of cache storage and defined a new entropy

capacity limit. With the modern applications considered the effective capacity of a cache can

easily be doubled (expressed in reduction of miss ratio) by partially compressing the cache

storage. The main challenge encountered in compressed data cache design was the adaptive

decoder for compressed data. Since the data cache could hardly be pipelined (or just would not

 116

benefit from it) the latency for decompression of data is critical. Two different approaches to

the reconfigurable data decompression has been advised – full and restricted compression

scheme. While the full compression scheme utilizes every opportunity for compression and

generally yields near optimal results, the restricted model is much simpler. Because of this

simplicity it is more practical to implement in real hardware, so once again, similarly to the code

segment compression we can see the tradeoff between degree of compression and complexity of

the decoder. Next some variations in the design of the compressed data cache have been

considered. The main and the most interesting conclusion was that multi-level caching where

first (zero) level is uncompressed and the next one is, would defeat the purpose of cache

compression in the first place.

 Regardless of the comprehensiveness of the study, many questions remain open, and

some new perspectives are unrevealed. For the code compression, it is important to consider

different compression algorithms and variations of the ones used. It is also very important to

consider the use of different atomic fetch units like superblocks and possibly treegions. These

blocks should significantly reduce the overhead due to address translation table, since it will

require fewer entries. If these blocks will ever be used in the compressed data cache, better

branch predictors will become necessary. Otherwise the pollution of cache will become

unavoidable which will defeat the purpose of compressing it in first place.

And last but not least, after the findings in data cache decoding technology we might try to

use a restricted compression model in compressed instruction cache as well in order to simplify

decoding. It is also might be possible to collapse the extra pipeline stage needed for

decompression and shorten the instruction fetch pipeline. For a more general view creation of a

unique compression algorithms based on a unique and complex cost function for each

 117

application is interesting.

For data compression the future work should include different decoders construction and

compiler optimizations to aid high data entropy and reference locality. Generally speaking if

compiler technology would be perfected to the point where no low entropy data transfers were

needed the current research would become obsolete. All those issues are reserved and suggested

as a future work.

 118

 References

[1] Andrew Wolfe, Alex Chanin “Executing Compressed Programs on An Embedded RISC

Architecture”, In Proceedings of 25th International Symposium on

Microarchitecture, 1992

[2] D.A. Huffman “A Method for the Construction of Minimum-Redundancy Codes”, in

Proceedings of the IRE, Vol. 4D, pp. 1098-1101, Sep. 1952

[3] Clifford Liem, “Retargetable Compilers for Embedded Core Processors”, Kluwer

Academic Publishers, 1997.

[4] William .A. Havanki “Treegion scheduling for VLIW processor” MS thesis. Dept. ECE

North Carolina State University, Raleigh NC, 1997

[5] Sanjeev Banerjia, William A. Havanki, Thomas M. Conte “Treegion scheduling for

highly parallel processor” in Proceedings of Euro-Par’97 (Paris, France) 1997

[6] William A. Havanki, Sanjeev Banerjia, Thomas M. Conte “Treegion Scheduling for

Wide Issue Processors” in Proceedings of the 1997 4th International Symposium on

High-Performance Computer Architecture (HPCA-4), (Las Vegas), Feb. 1998.

[7] Thomas M. Conte, Sanjeev Banerjia, Sergei Y. Larin, Kishore N. Menezes, Sumedh W.

Sathaye, ``Instruction fetch mechanisms for VLIW architectures with compressed

encodings''. In Proceedings of the 29th International Symposium on

Microarchitecture (Paris, France), pp.201-211, Dec. 1996.

[8] Sanjeev Banerjia, Kishore N. Menezes, Thomas M. Conte “NextPC Computation for

Banked Instruction Cache for VLIW architecture with a Compressed Encoding”

 119

Technical report Dept. of ECE, North Carolina State University, Raleigh, NC 27695-

7911, June 1996.

[9] Jens Ernst, William Evans, Christopher W. Fraser, Steven Lucco Todd A. Proebsting

“Code Compression” In Proc. of the ‘97 International Conf. on Programming

Language Design and Implementation, (Las Vegas, NV) 1997

[10] M. Game, A. Booker “CodePack: Code Compression for PowerPC Processors”, IBM

Microelectronics Division, RTP NC.

[11] Thomas M. Conte, “The TINKER Machine Language Manual” North Carolina State

University, Raleigh NC 27695-7911, 1995.

[12] K.D. Cooper, N. McIntosh “Enhanced Code Compression for Embedded RISC

Processors” In Proc. of the ‘99 International Conf. on Programming Language

Design and Implementation, (Atlanta, Ga) 1999

[13] C.W. Fraser “Automatic Inference of models for Statistical Code Compression” In Proc.

of the ‘99 International Conf. on Programming Language Design and

Implementation, (Atlanta, Ga) 1999

[14] J.E. Smith "A Study of Branch Prediction Strategies" Proc. 8th Ann. Int’l. Symp.

Computer Architecture, 1981.

[15] Stan.Y. Liao, Srinivas Devadas, Kurt Keutzer “Code density optimization for embedded

DSP processors using data compression techniques” In Proc. of 16th Conference on

Advanced Research in VLSI, (Los Alamitos, CA) 1995.

[16] Joseph A. Fisher “Trace Scheduling: A Technique for Global Microcode Compaction”

IEEE Transactions on Computers, Vol. C-30, No. 7, July 1981.

[17] M. Kosuch, A. Wolfe “Compression of Embedded System Programs” IEEE

 120

International Conference on Computer Design, October 1994.

[18] M. Benes, A. Wolfe, S.M. Nowick “A High-speed Asynchronous Decompression Circuit

for Embedded Processors” in Proc. of the 17th Conference on Advanced Research in

VLSI, (Los Alamitos, CA) 1997.

[19] M.K. Rudberg L Wanhammar “New Approaches to High Speed Huffman Decoding” in

Proc. of ISCAS, 1996.

[20] D. Alpert, D. Avnon “Architecture of the Pentium Microprocessor” IEEE Micro, vol. 13,

pp. 11-21, June 1993.

[21] Vinod Kathail, Michael Schlansker, Bob R. Rau “HPL PlayDoh architecture

specification” Technical Report HPL-93-80 HP Labs, Palo Alto,CA 1994.

[22] Wen-Mei W. Hwu, Scott A. Mahlke, W.Y. Chen, Pohua P. Chang, N.J. Warter,R.A.

Bringmann, R.G. Ouellette, R.E. Hank, T. Kiyohara, G.E. Haab, J.G. Holm, D.M.

Lavery “The Superblock: An effective structure for VLIW and Superscalar

compilation” The Journal of Supercomputing, vol 7, Jan 1993

[23] J.A. Storer, T.G. Szymanski “Data Compression via Textual Substitution” Journal of the

ACM, 29(4) pp. 928-951, October 1982.

[24] J. Kin, M. Gupta, W.H. Mangione-Smith “The Filter Cache: An energy efficient memory

structure” in Proc. 30th International Symposium on Microarchitecture, Raleigh NC,

Dec. 1997.

[25] Charles Lefurgy, P. Bird, I. Chen, Trevor Mudge “Improving Code Density Using

Compression Techniques” in Proc. 30th International Symposium on

Microarchitecture, Raleigh NC, Dec. 1997.

[26] S. Segars, K. Clarke, L. Goudge “Embedded Control Problems, Thumb, and the

 121

ARM7TDMI” IEEE Micro, October 1995.

[27] K. Kissell “MIPS16: High-density MIPS for the Embedded Market” Silicon Graphics

MIPS Group, 1997.

[28] Texas Instruments “TMS320C2x User’s Guide”, January 1993

[29] C. E. Shannon “A Mathematical Theory of Communication”, The Bell System Technical

Journal, Vol. 27, pp.374-423,623-656, July, October 1948.

[30] W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery “Numerical Recipes in C

The Art of Scientific Computing”, Cambridge University Press. Second Edition 1997

[31] J. D. Gee, M. D. Hill, D. N. Pnevmatikatos, A. J. Smith “cache Performance of the

SPEC92 Benchmark Suite” IEEE Micro 13:4, pp. 17-27, 1993

[32] M. J. Flynn “Very high-speed computing systems” in Proc. IEEE 54:12, December 1966

[33] Mircea R. Stan, Wayne P. Burleson “Low-Power Encodings for Global Communication

in CMOS VLSI” IEEE Transactions on VLSI Systems, Vol.5, No, 4, Dec. 1997

[34] Mircea R. Stan, Wayne P. Burleson “Bus-Invert Coding for Low-Power I/O”, IEEE

Transactions on VLSI Systems, Vol.3, No, 1, Mar 1995

[35] M. Pedram, “Power Minimization in IC Design”, ACM Transactions on Design

Automation of Electronic Systems Vol.1, No.1, Jan 1996

[36] A. V. Aho, R. Sethi, J. D. Ullman “Compilers. Principles, Techniques, and Tools”

Addison-Wesley Publishing Company.

[37] S. S. Muchnick “Advanced Compiler Design and Implementation” Morgan Kaufmann

Publishers

[38] C. L. Su, C. Y. Tsui, A. M. Despain “Saving Power in the Control Path of Embedded

Processors”, IEEE Design Test Comput., vol 11, 1994

 122

[39] J. Ziv, A. Lempel, “A universal Algorithm for Sequential Data Compression,” IEEE

Transactions on Information Theory vol 23, 1977.

[40] David W. Hammerstrom E. S. Davidson “Information Content of CPU Memory

Referencing Behavior” in Proc. 4th Annual Symposium on Computer Architecture

1977 pp.184-192.

[41] Musoll, E.; Lang, T.; Cortadella, J. “Working-Zone Encoding for Reducing the Energy in

Microprocessor Address Buses,” IEEE Transactions on Very Large Scale Integration

Systems, vol. 6(4) 1998

[42] IBM “CodePac PowerPC Code Compression Utility,” User’s Manual Ver. 3.0 IBM 1998

[43] Charles Lefurgy, Trevor Mudge “Fast Software-managed Code Decompression,” in

Proc. of Computer and Architecture Support for Embedded Systems pp. 139-143

October 1999

[44] Charles Lefurgy, Eva Piccininni, and Trevor Mudge “Reducing Code Size with Run-time

Decompression,” Proceedings of the 6th International Symposium on High-

Performance Computer Architecture (HPCA) January 2000

[45] SPEC CPU 95, Technical Manual, August 1995

[46] Haris Lekatsas, Wayne Wolf “Random Access Decompression using Binary Arithmetic

Coding” Technical Report Princeton University.

[47] Yukihiro Yoshida, Bao-Yu Song, Hiroyuki Okuhata, Tako Onoye, Isao Shirakawa “ An

Object Code Compression Approach to Embedded Processors” in Proc. 30th

International Symposium on Microarchitecture, Raleigh NC, Dec. 1997.

[48] Charles Lefurgy, Eva Piccininni, Trevor Mudge “ Evaluation of a High Performance

Code Compression Method”, in Proc. 32th International Symposium on

 123

Microarchitecture, Haifa Israel, Nov. 1999

>��@� D. del Corso, H. Kirrmann, J. D. Nicoud “Microcomputer Buses and Links” New York

Academic, 1986�

>��@� S. Y. Larin and T. M. Conte, "Compiler-driven Cached Code Compression Schemes for

Embedded ILP Processors,", in Proceedings of the 32nd Annual International

Symposium on Microarchitecture, (Haifa, Isreal), Nov. 1999. �

[51] M. H. Lipasti, C. B. Wilkerson, J. P. Shen, "Value Locality and Load Value Prediction"

in Proceed. of the 7th International Conference on Architecture Support for

Programming Languages and Operating Systems, October 1996

>��@� V. Peng "MIPS64 20K: Family of Processors and Core Designs", in Proc. of the

Embedded Processor Forum, San Jose CA 2000�

[53] P. Sandon "PowerPC 750CX: High Performance with Integrated Multilevel Caching", in

Proc. of the Embedded Processor Forum, San Jose CA 2000

[54] R. W. Hamming, “Coding and Information Theory,” Prentice-Hall, Englewood Cliffs,

NJ, 1980

[55] Ian H. Witten, Radford M. Neal, John G. Cleary “Arithmetic coding for data

compression” Communications of the ACM, Volume 30, Number 6, p. 520-546, June

1987

�

 124

7 Appendix

 Base Tailored Compressed

Next Block Cache Hit Buffer Hit 1cycle 1cycle 1cycle

prediction Buffer Miss 1cycle 1cycle 1+(n-1)

Correct Cache Miss Buffer Hit 1+(n-1) 2+(n-1) 1cycle

 Buffer Miss 1+(n-1) 2+(n-1) 3+(n-1)

Next Block Cache Hit Buffer Hit 2cycles 2cycles 1cycle

prediction Buffer Miss 2cycles 2cycles 2+(n-1)

Incorrect Cache Miss Buffer Hit 8+(n-1) 9+(n-1) 1cycle

 Buffer Miss 8+(n-1) 9+(n-1) 10+(n-1)

Table 1. Cache study cycle count assumptions summary. Note that Base and Tailored

do not employ a buffer, which is why Buffer Hit/Miss have no effect

 125

Table 2.

TEPIC Instruction set Summary.

Integer ALU Operation

Integer Compare-to-Predicate Operation

T S OPT OPCODE PREDICATE

1 1 2 5 5 5 2 8 5 1 5

T S OPT OPCODE PREDICATE

1 1 2 5 5 5 2 3 5 5 1 5

 Src1 Src 2 BHWX Reserved Dest L1

 Src1 Src2 BHWX D1 Reserved Dest L1

390

Integer Load Immediate Operation

T S OPT OPCODE PREDICATE

1 1 2 5 20 5 1 5

 Src1 Dest L1

Floatin Point Operation

T S OPT OPCODE PREDICATE

1 1 2 5 5 5 1 6 3 5 1 5

 Src1 Src2 S/D Reserved tssL/U Dest L1

Load Operation

T S OPT OPCODE PREDICATE

1 1 2 5 5 2 2 1 2 3 5 5 1 5

 Src1 BHWX SCS Res TCS Reserved Lat Dest Rsv

Store Operation

T S OPT OPCODE PREDICATE

1 1 2 5 5 5 2 2 11 1 5

 Src1 Src2 BHWX TCS Reserved L1

Branch Operation

T S OPT OPCODE PREDICATE

1 1 2 5 5 5 16 5

 Src1 Counter Reserved

 126

Table 3

Compressed Data Cache Control Flow Chart

Load Store

Hit in one of the
Buffers

Miss in both
Buffers

Miss in
storage

Hit in
storage

Block is
uncompressed

Block is
compressed

Uncompress
the block

Send the block to processor

Block is
compressible

Block is
uncompressible

Fetch whole block
and place it to

compressed buffer

Save contents of
compressed buffer to

the storage

Place the
block in to

storage

Read and
update
buffer

Hit in
uncompressed

buffer

Miss in
uncompressed

buffer

Update Uncompressed buffer

Hit in
storage

Miss in
storage

Block is
compressed

It is not…

Uncompress it
and place to

uncompressed buffer

Write to
the block

Place in to
uncompressed

buffer

When Uncompressed buffer is full,
try to compress it and place to the

storage. If conflict found, write back

