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During the last 15 years embedded systems have grown rapidly in complexity and performance 
to a point where they now rival the design challenges of desktop systems.  Embedded systems 
are now targets for contradictory requirements:  they are expected to occupy a small amount of 
physical space (e.g., low package count), be inexpensive, consume low power and be highly 
reliable.  Regardless of the decades of intensive research and development, there are still areas 
that can promise significant benefits if further researched.  One such area is the quality of the 
data which embedded system operates upon.  This includes both code and data segments of an 
embedded system application.  This work presents a unified, compiler-driven approach to 
solving the redundancy problem.  It attempts to increase the quality of the data stream that 
embedded systems are operating upon while preserving the original functionality.  The code size 
reduction is achieved by Huffman compressing or tailor encoding the ISA of the original 
program.  The data segment size reduction is accomplished by modified Discrete Dynamic 
Huffman encoding.  This work is the first such study that also details the design of instruction 
fetch mechanisms for the proposed compression schemes.   
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1  Introduction  

 

 

1.1 Introduction and Motivation 

 

The importance of embedded systems today is easy to underestimate.  During the last 15 

years embedded systems have grown rapidly in complexity and performance to a point where 

they now rival the design challenges of desktop systems.  This evolutionary trend is known as 

the fifth era of computing: from main frames to minicomputers to microcomputers followed by 

PC or desktop era and finally into the embedded system age.  In the last year the number of 

embedded processors sold actually exceeded the amount of general-purpose units sold.  And the 

trend is growing.  With the popularity comes the challenge.  Embedded systems are now targets 

for contradictory requirements:  they are expected to occupy a small amount of physical space 

(e.g., low package count), be inexpensive, consume low power and be highly reliable.  However, 

they are asked to take on more complex functions [3],[17],[47].  The digital image processing, 

DVD and third generation cell phone base station require server-like performance from 

embedded processors and most of the time they stand up to the challenge.  

Regardless of the decades of intensive research and development, there are still areas that 

can promise significant benefits if further researched.  One such area is the quality of the data 

which embedded system operates upon.  This includes both code and data segments of an 

application.  Designers spend a long time on logical optimization and minimization of 

applications, but they can only achieve as much as the original instruction set architecture (ISA) 

will permit.  Moreover, excessively cautious and there forth often redundant approach have to be 
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taken for data accommodation and processing.  As a result, most of the time the code and data 

used on embedded systems contains a significant amount of redundancy.   

The presence of this redundancy would degrade the potential performance of any 

processor.  The Flynn’s bottleneck [32] is one of the toughest frontiers in high performance 

system design.  It receives increasing amount of attention as the core vs. memory speed gap 

multiplies.  An elaborate design approaches and compiler techniques are taken to reduce this 

gap.  Nevertheless few designers actually pay attention to the fact that information contents of 

data transferred through those elaborate units is relatively low.  

As the complexity and size of applications increase, the traditional method of hand 

coding applications for embedded systems is quickly becoming obsolete.  Although hand coding 

is still practiced for critical regions of a program, and is very popular for simple DSP 

applications, optimizing compilers starting to play a major role in the overall process[3],[28].  

But, those compilers are normally built to compile a relatively wide spectrum of applications.  

So, compilers have to tolerate some redundancy in the code they produce in order to support the 

numerous applications encountered.  For some real world applications (like the SpecInt95 

benchmarks [45] compiled with the optimizing GCC compiler –O2 option for HP PA 

architecture) entropy ranges between 0.75 and 0.80, which means that the spilt between two 

possible symbols is 70 to 30%.  On the other hand compilers have extensive information about 

the application being compiled which could be effectively utilized.  

This work presents a unified, compiler-drive approach to solving the redundancy problem.  

It attempts to increase quality of the data stream that embedded systems are operating upon 

while preserving the original functionality.  Moreover, some of the proposed methods offer 

increase in performance combined with smaller code and data sizes, which proves the negative 
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effect of high redundancy data and ultimate benefits that could be achieved by removing it.  

There are three major components of embedded system front end considered in this thesis. 

- Instruction fetch mechanism and instruction cache design; 

- System bus;  

- Data fetch mechanism and data cache design; 

The first part considers reduction in static size of code segment and alternative design for 

instruction cache.  It is primarily targeted at reduction of the instruction memory size 

requirements for System On Chip (SOC) architectures.  It is achieved by compression or 

customization of the original instruction set to meet the needs of each particular application.  

Several prior approaches to this problem have either defined new instruction-set architectures 

(e.g., the ARM Thumb Instruction Set [26] or SGI MIPS16 [27]) or defined elaborate 

compression schemes without taking the impact on instruction fetch into account (e.g., IBM 

CodePack [9], Cooper and McIntosh [12]).  The main contribution of this study is a unified, 

compiler-driven approach to the problem.  It presents both code compression strategies and their 

corresponding instruction fetch mechanisms along with compiler techniques to facilitate them.  

The instruction cache is also reconsidered, and it is allowed to hold the high entropy 

representation of the original code segment.  This fact significantly increases instruction cache 

effective capacity and ultimately results in a higher performance.  

The second part of this work pays attention to communication issues within the memory 

hierarchy and front end of embedded processors.  Following many previous researches in the 

area [33],[34],[49] this thesis research utilization, throughoutput and power consumption on 

memory and system buses in SOC.  The improvement is achieved through dual coding of the 

original stream: a variation of Gray coding is applied on top of dynamic Huffman compression.  
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For some configurations the ultimate goal of shorter transaction time with lower switching 

activity is attained. 

The last, but not least, considered component is the data cache.  Even with a perfect 

instruction cache, a processor can only operate as fast as data could be delivered to it.  

Unfortunately dynamically accessed data contains a significant amount of redundancy, which 

reduces the effectiveness of the data fetch mechanism.  The quality of this data could be 

significantly improved by dynamic compression, if a practical scheme can be invented to exploit 

this data quality.  It is no surprise that dynamically accessed data is compressible.  Research into 

value prediction hints at high rates of redundant data accesses [51].  However, exploiting this 

property to yield a performance benefit has been difficult so far.  With the help from compiler 

and the run time profiling we can double performance (miss ratio) of the data fetch path.  But it 

can only be truly effectively explored if the data cache is permitted to hold compressed blocks.  

This fact in turn introduces serious design challenges.   

To summarize the proposed solutions to the above-mentioned problems it is necessary to 

state the following.  In any embedded system, especially in those based upon the VLIW 

architecture, static (or compile time) part of design cycle gains greater importance very rapidly.  

This offers unique opportunity to improve performance of the available hardware base with 

minimal dedication of some logic complexity and maximum utilization of the compile 

technology.  The target of optimization is the available redundancy in application.  The 

beneficiary is the front end of an embedded system.  The gain is lower physical space, higher 

performance and lower power dissipation. 
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1.2  Previous work  

 

1.2.1 Previous Work in Code Compression for Embedded Systems 

 

This study would not be complete without first mentioning previous research in this area.  

As was briefly mentioned in the introduction, in the past there were several studies regarding the 

reduction of the ROM size in an embedded system [1],[9],[10],[12],[17],[18],[47].  

In several works by Wolfe, et al. [1],[17],[18], a technique to execute compressed 

programs on an embedded RISC architecture (MIPS was used as an example) was studied.  The 

initial motivation involved reducing the code size difference between the RISC and CISC 

embedded processors.  Besides the diversity in target architecture, one of the major differences 

from the current study was in the unified approach to the compression.  Wolfe’s studies used the 

Huffman algorithm for compression, but only one common histogram was built for a set of all 

experimental benchmarks and only byte-based alphabet was considered.  In addition to that a 

fixed-size 32-byte blocks were considered an atomic unit of compression.  The goal was to 

create a single encoding for a fixed architecture and satisfy some range of applications.  This 

single encoding scheme is important when building a general-purpose system, but seems less 

effective for embedded applications with their unique code base.  In the Wolfe’s work [1] code 

is uncompressed at the instruction cache miss path, and the study does not discuss further details 

of instruction cache design.  A special hardware structure (called Cache Line Address Lookaside 

Buffer) was provided to guarantee dynamic conversion between compressed and original 

address space.  Regardless all the differences, the original work by Wolfe [1] was one of the 

major inspirations for the code compression part of this thesis. 
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Several industrial solutions to the code segment size problem include the IBM CodePack 

[10],[42], the ARM Thumb [26], and the SGI MIPS16 [27].  The first one uses the dictionary 

Huffman compression scheme, while the latter two of these provide special compact subsets of 

the original instruction set architecture (ISA).  Truncating the original ISA reduces its flexibility, 

which ultimately results in increased instruction count and, in general, slower running 

applications.  The CodePack also has the disadvantage of keeping the instruction cache 

uncompressed.  The consequences of this decision are discussed in this study in great details.  

Recently some design issues regarding instruction fetch mechanism for IBM’s PowerPC 405 

(which uses Code Pack) were revisited by Lefurgy in [48].  The important achievement was the 

fact that after certain improvement to existing hardware structures (instruction fetch pipeline 

architecture) the compressed code exhibit better performance then the native program.  

A work by Yoshida et al. [47] specifically concentrates on low power embedded system 

processor design.  They are using a compression method to reduce power consumption of an 

embedded chip.  It is specifically targeted at I/O interface by means of substituting original 32-

bit instructions to a set of references in transform table (which resided on chip).  This way by 

execising tradeoff between silicon area and encoding complexity they significantly decrease I/O 

load and executable size.  For ARM610 used in experiments, for some benchmarks 12-bit 

pseudo instructions we reported to be sufficient to substitute original 32-bit operations.  

 Cooper and McIntosh [12] spend most of their effort reorganizing code at the assembly 

level via suffix-tree code compression.  They reported a very moderate level of compression (5 

to 15% reduction).  In either way this study is orthogonal to the approach taken in this work.  

A series of works by Fraser, et al. [9],[13] considers elaborate compression algorithms at 

the assembly level with the same lack of attention to the instruction fetch issues.  The 
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experimental results in this thesis show that neglecting instruction fetch performance in the 

presence of compression may lead to incorrect conclusions about the appropriate scheme to 

implement. 

A recent series of publications by Lefurgy [25],[43],[44] describes a way to manage the 

compressed code segment with software.  In the [44], authors proposed software managed 

decompression tightly coupled with the instruction cache.  The compression granularity in [44] 

is a single cache line, as opposed to a single basic block used in this thesis. 

 An interesting study by Liao, et al. [15] employs an effective compression algorithm 

(External Pointer Model by Storer and Szymanski [24]) at the assembly level.  In essence this 

method introduces a micro procedure calls to a common regions of code.  Liao reported an 

average of 30% code size reduction.  Two implementations, software-only and ‘call-dictionary’ 

are considered.  Both increase the number of branches in the code and (reportedly 

insignificantly) the operation count.  Also due to high granularity, some opportunities for 

compression are missed, and as with the CodePack and many others instruction fetch schemes 

use decompression at miss time and uncompressed cache. 

 

 

1.2.2 Previous Work in Bus Optimization  

 

The next set of relevant research deals with bus power consumption.  A number of 

researchers addressed power consumption on address buses.  It is understandable since address 

stream exhibits a great deal of repetitiveness and very low entropy.  The fundamental work by 

Hammerstrom and Davidson [40] in 1977 showed that there is less than or equal to one percent 

of information content in a typical address trace.  This is rather understandable since majority of 
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the time address (Next PC) is merely an increment of the previous value.  Combined with 

normally high spatial locality of references, this accounts for very low information contents.   

There were several researches in the area, and the most relevant are as follows.  The 

work by Su et al. [38] used the Gray Coding for address generation in RISC-like VLSI-BAM.  

The idea was to make program counter produce Gray codes as oppose to normal increment.  

Certain care had to be taken of branch target addresses and reported savings were up to 58% 

switching activity reduction.  The next work by Musol et al [41] concentrated on improving the 

Address bus Gray coding by proposing a Working-Zone Encoding.  This approach is based on 

observation that different address space areas exhibit different behavior.  For some cases authors 

reported up to 65% switching activity reduction.   

In the domain of data buses coding the following work deserves attention.  The work by 

Stan and Burleson [33] concentrated on special encoding for terminated off-chip broad –level 

busses and tri-state on-chip buses for low-power communication.  Authors considered not one 

but several different techniques for minimizing transaction activity.  Those methods included 

not only logical minimization (via compression and special coding) but also by phase 

modulation of bus signals.  Several techniques combining various encoding models were 

proposed.  For their experimental setup savings of up to 68% were achieved.  The same authors 

in [34] also proposed a Bus-Invert method which tradeoff performance and area for low power 

dissipation. 

Finally in the area of data cache compression no previous research was found.  
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1.3 Target Architecture Description 

 

 All experiments in this work are based on the TEPIC (TINKER EPIC) VLIW embedded 

architecture [11].  It is a 40-bit version of the HP PlayDoh VLIW machine specification [21], 

adapted for embedded system use.  It is important to note that the TEPIC ISA encoding is very 

similar to the Intel/HP IA-64 ISA, since the PlayDoh was one of the major influences for the IA-

64.  For a core processor configuration, we assume a six-wide issue machine, with four 

execution units that can execute any instruction except for memory access, and two universal 

units (that can perform any instruction including memory accesses).  The register files are fixed 

to 32 general-purpose, 32 floating point and 32 predicate registers.  The detailed encoding 

formats for operations are shown in the Appendix Table 1.  

A special compact encoding is used to encode a single VLIW Operation (MultiOP or 

MOP for short – it combines all the instructions that must be issued in the same cycle).  This 

compact encoding is known as Zero-NOP encoding and was originally designed to decrease the 

size of the VLIW code segment as compared to an equivalent RISC code [7].  Each operation in 

the original ISA is equipped with a dedicated bit, which is set only for the last operation in a 

MOP (See example in Figure 2.3).  This encoding allows exclusion of the empty instructions 

(NOPs) in the final scheduling, which are normally the major contributors to the traditional 

VLIW code size explosion.  

Generally speaking, TEPIC is a very powerful architecture, and a rather aggressive 

approach to an embedded system implementation.  But with the current rate of progress, 

(Moores’s law) it seems to be a very likely scenario for near future designs [52],[53].  However 
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the target architecture does not obscure the importance of the code and data compression in the 

current work, which might prove even more relevant for smaller systems.  

As was mentioned before, the LEGO optimizing compiler [7] is used to schedule and 

optimize the code.  The LEGO compiler employs standard optimizations and global instruction 

scheduling using Treegion [4],[5],[6] block forming.  A modified version of the original 

TINKER assembler is used to generate custom encoding, compressed object file as well as the 

synthesizeable Verilog for the decoder.  The compiler is able to output an intermediate code 

(Rebel) that is executed via the TINKER YULA emulation tool.  Annotations are added by the 

compiler to emit an instruction address or load/store trace for simulations (these annotations are 

not included when determining the instruction addresses or performing compression).  All the 

studied hardware structures are modeled via simulators using an execution-driven trace. 

The SPECint95 [45] benchmark suite is used for all experiments.   
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2 Code Segment Redundancy Reduction 

 

 

2.1 Motivation 

 

The instruction fetch process is a well-known bottleneck for any architecture, and is a 

crucial process for embedded systems.  Initial analysis shows that most of the time the 

information contents in typical applications is as low as 20 -30% [50].  This means that the 

expensive instruction fetch mechanism 80-70% of the time performing redundant operations.  

The code segment’s size can be reduced as much as 50% [50], by modifying the original ISA 

design and adjusting the design of the instruction cache.  As a result the new program can be 

executed at the same, or even faster rate, when compared to the original (native) code.  By 

Figure 2.1 Traditional ASIC Design 
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tuning the instruction fetch pipeline, not only the performance but also the embedded system’s 

overall size, cost and, indirectly, the power consumption are improved, without reducing 

original functionality.  The key feature is that the original ISA is uniquely adjusted for the 

specific conditions of each particular application.  The ISA could be either custom tailored or 

compressed.  Once the code is compressed, it is kept this way throughout the whole instruction 

fetch pipeline, from the code ROM to the decoding stage of the processor.  An important and 

unique contribution to the previous research in this area is the fact that the instruction cache 

itself is kept compressed, which significantly increases its effective capacity.   

One commonly employed approach in building an embedded system is by using an 

Application-Specific Integrated Circuit (ASIC) [3],[27],[28],[42] design.  It is commonly known 

as a System On Chip (SOC).  Such a system is normally composed of several building blocks 

taken from a component library.  All application code is stored in a ROM and an off-shelf on-

chip core processor is used for execution [3],[52],[53] (see Figure 2.1).  This method is a 

flexible and powerful way to quick implementation of an embedded system with minimal 

resources.  At the same time, due to the inherited flexibility, a number of high level architectural 

enhancement are possible, which makes it easy to put into operation techniques and solutions 

described in this thesis.  

First and probably the most important problem with modular ASIC approach and off-

shelf core processor is that the instruction memory ROM size multiplies with the growth of the 

device’s functionality.  The ROM size will soon become the major cost defining factor and 

bottleneck for the instruction fetch (IFetch) mechanism [1],[3],[14],[27],[28],[50] as well as 

overall system implementability.  As a result, the code ROM often has to be implemented on a 

separate chip, which involves the familiar difficulties associated with remote instruction 
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fetching and off-die power consumption.  One of the many challenges of an embedded system 

design is to reduce the size of the ROM without sacrificing the functionality and performance of 

the system.  As have been mentioned before, the approach taken in this work for the code 

segment is trying to reduce redundancy of the code stored in the ROM by customizing the 

original ISA or by utilizing compression to modify the existing code.  This increases the 

utilization of the entire instruction fetch pipeline and in turn reduces the ROM size.  This effect 

can only be achieved if a substantial amount of redundancy indeed exists in the code.   

With the growth of embedded systems application complexity far beyond familiar 

embedded DSP applications, as have been mentioned before, the traditional methods of hand 

coding and optimizing are becoming less and less effective and increasingly time consuming.  In 

addition market’s requirements of a short design cycle and increased reliability have become a 

limiting factor.  A practical way to use a high level programming language, while maintaining 

optimal target code quality is needed [3].  This calls for developing a sophisticated compile 

technology and majority of vendors invested tremendous amount of time and effort in doing 

that.  For example, the TI 320Cxxx series of DSP processors has been successful in large part 

due to the vendor-supplied optimizing compiler [28].  This work follows this trend by focusing 

on compiler-driven code design and data optimization for embedded systems applications.  The 

compiler used for this study is the optimizing LEGO compiler developed in the Tinker group at 

North Carolina State University (NCSU) [4],[5],[6],[11].  This is a highly optimizing 

speculating compiler targeted to a wide range of very long instruction word (VLIW) 

architectures including the Intel IA-64 prototype.  It uses Treegion-based scheduling [4],[5],[6] 

and provides a comprehensive set of traditional optimizations.  While being a research compiler 

it is available for easy modification to fit the current study. 
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In general an important feature of embedded systems is their specific code base.  Since 

an embedded system is likely to execute the same code base throughout its life span, the 

compiler can customize the original instruction set architecture.  After scheduling and 

optimization, once the final image is available, the compiler generates an efficient custom-

tailored instruction set architecture and decoder structure, which can interpret it.  In other words 

this study is not bounded by the rigid traditional instruction set architecture.  As have been 

mentioned before, traditional ISA’s are normally designed to fit a wide spectrum of applications.  

In this study, the instruction set architecture is a parameter and is optimized for space and cache 

performance.  In general the ISA could also be improved for power consumption, branch/data 

prediction accuracy, and various other design goals.  Nevertheless only code size is considered 

at this point.  Another closely coupled possibility is compression of the original ISA.  The result 

is a compressed set of original instructions that need to be uncompressed prior to execution.  

The code could remain compressed all the way down to the instruction cache, with obvious 

advantages in the amount of required space.  (See Section 2.3 for a more detailed discussion).   

Figure 2.2 Proposed Approach to Embedded System Design. 
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Another element of this work involves the justification of use of VLIW architectures for 

embedded systems in general.  Obviously the VLIW architecture seems to be a natural fit for the 

embedded system environment since many traditional VLIW problems do not affect embedded 

systems.  There is almost no code compatibility problem between generations.  The use of 

relatively simpler hardware leads to a higher performance and low power consumption, when 

compared to an equivalent issue-width superscalar architecture.  And one of the foremost 

advantages for this work is the primary role of compiler in producing the code.  Since normally 

extensive information is available about the dynamic behavior of the program, high quality 

schedules can be produced by the optimizing compiler.  All these statements were proven to be 

accurate at the design of the commercial TI DSP processors [28].  The familiar challenges 

present are the static code size and effective high bandwidth instruction fetch.  The object code 

size difference between the VLIW and the superscalar architectures is first reduced by using the 

Zero-NOP encoding [7] and restricted code duplication in the LEGO compiler to the lower 

RISC-like levels.  Then the code is further optimized for required space by reduction on an 

individual operation size through tailor customization or compression.  The instruction fetch 

related issues for the Zero-NOP encoding have been discussed in [7],[8] and are further 

extended in this work.  The decoder’s structure for the optimized encoding is produced by the 

compiler, which has all of the information needed – logical functionality, in- and output 

connectors along with the required control signals.  The overall structure of such a system is 

presented in Figure 2.2.  Thus the compiler now plays a major role in dictating not only the 

ROM’s contents (the executable code), but also the core processor decoder’s logic and other 

components design. 
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2.2 Measuring the Available Redundancy 

 

In order to estimate the amount of useful information in a data set we should choose a way 

to measure the present redundancy.  The available redundancy could be measured by calculating 

the entropy of the code as it was defined by Shannon in [29].  In the Equation 1, )(xPx  is the 

probability of alphabet character x in the set. The base of the logarithm only matters for 

convenience of presentation and is normally set to ten. 

 

    )(log)()(
0)(,

xPxxPxxH
xPxx

b∑
≠

−=  (Equation 1) 

For a binary system (see Equation 2), 0P is the probability of zero and 1P is the probability of one 

in the set (or embedded system application executable code in our case).  It is also more 

convenient to use logarithm base two to represent results. 

 

     )loglog( 121020 PPPPH +−=  (Equation 2) 

 

So for the logarithm base two, when the entropy is equal to zero this means that all probabilities 

but one are equal to zero (just one symbol in the set) and information contents is none.  On the 

other hand, when the entropy is equal to one, all symbols in the set are equally probable and the 

amount of information contents is at the maximum.  Once it was proven that there is sufficient 

slack in the data set, we should define a strategy on its removal, and first the redundancy of code 

segment is discussed. 

 Traditionally, there are two general approaches for the reduction of a program 
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redundancy (or increasing its entropy in different terms).  One is the reduction of the number of 

redundant assembly operations in the code [9],[12],[13],[15],[27], and the other is the reduction 

of the operation size [1],[10],[28].  Generally, these two approaches are both trying to achieve 

the same goal – to increase the entropy of the code, but it is achieved in different ways.  This 

means that applying both of them to the same portion of code obviously will not result in better 

compression.  (Nevertheless different areas of code could be optimized with different methods.)  

It is important to notice that this statement is assuming that all traditional optimizations (like 

constant propagation, redundant computation and dead code removal) have been done and code 

does not contain any logically redundant operations or computations.  This work chiefly 

concentrates on the latter approach - reducing the operation size.   

 There are two methodologies for reducing operation size: tailoring the ISA or 

compressing the code.  The tailored ISA is a new and unique encoding, which is generated for 

one particular program/application and best fits its characteristics.  After decoding a tailored 

operation, the internal processor signals are obtained.  Because of the tailoring process, different 

Figure 2.3 Zero-NOP Encoding Example 
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operations are getting different sizes, which affects the branching mechanism (this topic will be 

discussed in greater details in Section 2.4).  

On the other hand, compression of the code segment takes an existing encoding (ISA), 

and, according to the static frequencies of elements in the source code, determines the best way 

to pack it.  Once a compressed operation is uncompressed at execution time, it still needs to be 

decoded to obtain internal processor signals.  Theoretically tailoring the ISA should yield better 

performance (e.g., no intermediate decompression needed), while compression should yield a 

smaller code size.  This work finds that this intuition holds, even when the improved instruction 

cache performance from caching compressed code is taken into account (see Section 2.7). 

 

 

2.3 Code Compression Techniques 

 

 Let us first discuss compression of the original instruction set.  In general, the 

compression circumstances for embedded systems code segment are very favorable, since the 

entire code image is available statically for the compression algorithm and compression 

objectives are to reduce the static size of the code.  A fast hardware decoder could be used for 

decompression and interpretation.  The main issue is the complexity, and therefore size and 

speed, of the decoder.  There are virtually thousands of potential compression algorithms to 

choose from.  First, we can safely eliminate dynamic compression algorithms since we need to 

store compressed code and also fully utilize its static availability.  Here it is important to 

reemphasize that since we are concerned only with the static size of code (ROM size), we only 

need to know the static distribution of elements.  This might not be the case for compressing 
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dynamic data sets, as we will soon see.  Also if code segment would be optimizing for dynamic 

interpretability, it might involve dynamic profiling and analysis.  Nevertheless for the static 

environment, the Huffman lossless compression algorithm [2],[30] produces near optimal results 

for an integer number of code bits.  It is an entropy-bounded code and will use ii PN 2log−=  

bits to encode character i in the range ersrOfCharactTotalNumbeNi ≤≤1 .  It also allows reasonably fast 

decompression (FSM or table lookup) at a realistic real estate price [17],[18].  For similar 

reasons, the Huffman compression algorithm was used in several previous studies [1],[9].  The 

closest rival to the Huffman compression scheme is the Arithmetic Coding compression 

[55],[30],[46] algorithm (or simply arithmetic coding), which could use a fractional number of 

code bits to encode the original symbol.  Nevertheless, the arithmetic coding compression 

algorithm is much harder to decode in hardware and also might need some additional overhead 

for stop symbols on a low granularity compression [46].   

In addition to the described methods, a new and unique compression algorithm could be 

created if a precise cost function would be defined, and this is reserved as a future work.  

Meanwhile for the rest of this work we will be using variations of the Huffman compression 

algorithm. 

 There were three major variations considered.  They all differ in ways of composing the 

input alphabet for the Huffman compression algorithm.  The first variation is the traditional 

byte-based method [1],[2].  The code segment is treated as a stream of bytes and compressed 

accordingly.  As we will see shortly, this method produces the smallest decoding table and the 

simplest decoder. 

 Second variation is the stream-based approach.  The idea behind it is that certain fields 

in an instruction encoding exhibit more repetitive patterns when taken as independent 
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compression streams, than when combined with other fields (see Figure 2.4 and Table 2 in 

Appendix).  For example OpType and OpCode fields of the TEPIC operation encoding are set to 

‘INT_OpType’ and ‘ADD_OpCode’ very often (up to 30% in some applications).  The same is 

true for the predicate field, which is most of the time (except for the if-converted code) is set to 

predicate register number one which in the TEPIC architecture is hard-wired to ‘true’ and means 

unconditional execution of the operation.  According to that observation, alphabet streams are 

fixed at certain operation field boundaries, as shown in Figure 2.4.  The initial boundary 

selection was made manually after careful examination of the generated assembly code.  

Nevertheless, there were several experiments conducted in order to prove this selection and they 

will be discussed shortly.  However, stream based encoding is not entirely new.  A similar 

observation was made in the IBM CodePac [10],[42] instruction set architecture and used there 

as a base assumption for further Huffman table-compression scheme. 

 The last approach to alphabet selection for the Huffman input alphabet composition is to 

Figure 2.4 Stream-based Huffman Encoding 
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consider the whole operation as a compression unit.  Theoretically this alphabet might have up 

to 402  entries (since operation size is 40 bit long), but in practice this number is significantly 

smaller.  This method produces the largest decoding table, but surprisingly enough, has the 

greatest potential for compression.  This result becomes more understandable when one 

examines the generated Huffman codes.  Even with a large number of dictionary entries, the size 

of the popular ADD instruction often went down from 40 to six bits.  Furthermore, none of the 

Huffman codes for the full compression model has exceed the original operation size.  In 

contrast, the maximum degree of compression of either stream approach is the sum of the 

maximum compression of all (four in our case) streams, which easily exceeds six bits in most 

cases.  From another perspective the whole operation compression method (Full Huffman from 

now on) should take us as close to the entropy of the code as possible.  If all possible bit 

combinations for all the possible instructions in the code would be determined (extract all 

unique instructions), and then encoded with the least number of bits according to their absolute 

frequency, we will get virtually perfect (or bottom line) compression while still having separate 

instructions in the code. 

 One additional detail of Huffman compression involves the maximum symbol length.  

For some inputs, the Huffman algorithm produces very long output codes that might exceed the 

original operation size and become incompatible with the instruction fetch hardware (like 

instruction bus weight for example).  The compiler keeps track of such events, and either 

alternates the compression process (similar to the Bounded Huffman code described by Wolfe 

[1], where some additional encoding is required to guarantee the size) or substitutes the rare 

instruction with an equivalent group of more common ones.  It is important to notice that 

virtually no such events were detected for the current experimental setup.  
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2.4  Tailored Encoding  

 

 

 The main idea behind the Tailored encoding is to provide to an operation as much space 

as it really needs in the contents of the current application, but not to compress it otherwise.  At 

the same time we need to guarantee that within the same operation type/code instruction field 

boundaries remain at fixed locations.  This requirement does not impose critical limitations on 

size reduction but significantly simplifies the decoder.  As we will soon see, the tailored 

encoding method still gets significant space savings compared to the original instruction set 

architecture, but avoids the intermediate decompression stage entirely.  As a tailor-encoded 

instruction is decoded, the core processor’s internal control signals are obtained directly.  In this 

study, the Verilog code for the decoder is produced by the compiler and can be used to create 

Figure 2.5 Tailored Encoding Example 
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real hardware structure. 

 The algorithm for generating the Tailored encoding is rather straightforward.  First, the 

entire code segment is ‘logically’ profiled/analyzed.  The profiling information includes the 

number of operations used within each operation type, the maximum number of registers 

simultaneously live, the size of absolute field values (like addresses and immediate values 

included into operation body), and some others.  If for example the application uses less than 

eight floating-point operations the floating point OpCode field only needs three bits.  If a literal 

in an immediate field of some operation exceeds some threshold value (16 bits in the current 

study), this operation is separated into a Load Immediate instruction followed by the original 

operation with register use instead of an immediate value.  Similarly, after the register 

allocation, if no more than four different registers of some type are live at the same time in some 

source position, the source position needs only two bits to encode.  The result is an 

Figure 2.6 Comparison of Different Compression Techniques (code segment only). 
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uncompressed, but compact version of the original program nearly optimal for this particular 

application (see Figure 2.5).   

As have been mentioned at the beginning of this section, while forming the Tailored 

instruction set architecture, some enhancements are possible for the decoding stage.  Indeed it is 

a big issue, because if we overly aggressive follow the minimum requirements for operation 

field we might end up with as many unique encodings (or masks) as there are different 

instructions in the application.  That is why some size reduction needs to be sacrificed to 

guarantee interpretability of the customized code.  For instance, if every instruction has its Tail 

bit, OpType and OpCode fields (see Figure 2.5) in a fixed position (and possibly of a fixed size) 

within the custom operation, decoding is significantly simplified.  In addition to this, those fields 

could be grouped together for a MOP and placed at a certain location.  Since the compiler is the 

one who generates the encoding and decoder, it looks for opportunities like this when it creates 

the Tailored ISA. 

 A comparison between all of these methods is presented in Figure 2.6 for the code 

segment only (see Section 3.3 below for more discussion).  It should also be noted that for the 

stream based encoding, in addition to just choosing different fields for a stream, we could 

permute and combine them.  This could potentially result in N! different combinations, where N 

is number of bits in uncompressed instruction (40 bit for the TEPIC).  In order to select the 

optimal stream for all the benchmarks a variation of genetic algorithm have been used.  From all 

the considered possibilities, only six different stream configurations were selected, and the two 

best performers are shown in Figure 2.6.  The streams presented here were selected for the 

smallest average code size (stream_1) and for the smallest average decoder size (stream) among 

considered variations.   
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While analyzing the compression study results, several interesting points could be noted.  

The firs, and the most important one is that a significant amount of redundancy does exist in the 

code segment.  It is quite understandable since an ISA is designed for a broad range of 

applications, and the application under consideration might use only a small fraction of the 

presented possibilities, it is intuitive that redundancy would be present.  The second obvious 

conclusion is that not all compression algorithms are equally successful in removing this 

redundancy.  The traditional byte-wise compression method could be used as a base line to 

evaluate others.  This algorithm views the image as a byte stream with no other considerations, 

which yielding an approximate 25% size reduction.  The antipode of the byte-based compression 

method is the Full Huffman encoding scheme, which compresses the image on an operation per 

operation level (40bit at a time).  Note the remarkable code size reduction with the Full Huffman 

compression scheme (less than 30% of original size or 70% reduction on average).  As have 

been mentioned before, this method approaches the entropy limit of the program’s information 

contents.  But, as we will see in Section 2.7.3, it produces a very large decoder, which in turn 

might prevent the use of this algorithm as the primary compression algorithm.  This fact leads us 

to the final conclusion that there exists a tradeoff between the degree of compression and the 

complexity of the decoder.  The tailored ISA approach produces code on the order of 64% of the 

original size, which can have favorable results for very little additional hardware overhead, so it 

is represents a middle point between high complexity of decoding and low compression 

effectiveness.   

The results presented in the Figure 2.6 neglect the branch target table overhead, which is 

an integral part of the compression scheme.  The goal thus far has been to address the 

compressibility of the code segment and reachability of the entropy threshold.  All 
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implementation details are discussed in Section 2.5 below.   
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2.5 Instruction Fetch Mechanism Issues 

 

 

2.5.1 Instruction Fetch Organization and Modification of the Instruction Cache 

 

 A significant component of this work is the joint consideration of the instruction 

encoding and instruction fetch organization.  Once original ISA has been modified the whole 

instruction fetch pipeline must be adjusted.  In order to interpret new instructions, the core 

decoder must be changed, cache design adjusted and system bus design reconsidered.  All of it is 

done with the help from the compiler.  But most importantly of all those components, the 

organization of instruction cache must be reconsidered.  In order to utilize the new low-entropy 

encoding throughout the whole instruction fetch pipeline (and not only as ROM size-reducing 

Figure 2.7 Traditional Distribution of Miss Rate 
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technique) the instruction cache must be allowed to hold newly encoded blocks of instructions.  

For simplicity of discussion let us disregard the method of encoding and just call those 

instructions compressed.   

The fact that the instruction cache holds compressed instructions increases its capacity 

and, as a result, the overall throughput.  It is important to stress that we are breaking a 

fundamental limitation of current cache technology: the capacity miss ratio which is normally 

only attempted to be approached by a multi-way associativity and similar improvements.  Figure 

2.7 is adapted from Gee et al. [31].  The figure presents a breakdown of a miss component for 

caches of different associativity.  The fundamental limit of a cache is compulsory (or first-seen) 

misses.  Compulsory misses cannot be eliminated, unless some sophisticated prefetch scheme is 

used.  Traditionally, the next limit was always considered the capacity misses, which only 

depends on the physical size of the cache storage.  Finally, conflict misses are normally defeated 

by a higher associativity and intelligent replacement policies.   

Now with the compressed cache storage we are approaching the next fundamental limit: 

Figure 2.8 Entropy Based Distribution 
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the entropy capacity (see Figure 2.8).  In this notation, no storage is wasted due to the low 

entropy of data being stored.  This fact leads us to a paradoxical conclusion that we can improve 

the overall performance of a system by applying the compression technique, even though more 

work must be done to interpret the code.  A disadvantage is that the cache controller needs to be 

designed differently to handle the compressed contents.  However, on the positive side, the 

cache’s data path design is not dependent on any particular encoding and could be generalized.  

This independence in turn makes modular core processor design possible. 

 

 

2.5.2 Program Layout 

 

 Let us now define an atomic fetch block as a sequence of instructions guaranteed (or 

likely to be) executed sequentially once we start execution of the first instruction in the block.  

The simplest example of an atomic block is the Basic Block (a region of code with a single entry 

Figure 2.9 Atomic Fetch Block Structure 

{  A
    B  }

BB_1:

{  C
    D  }
{  E
    F
    G  }

BB_2: {  X
    Y  }
{   Z  }

BB_9:

a b

c d
f g

x y z

Alignment Boundarys
(Byte Align)

Random Placement

a) Original DAG b) Compressed  Memory layout 

e f

m

At most 7 bits for Byte
Aligned

Atomic Fetch Unit

x

n

{...} - VLIW 
MultiOp Boundaries



  30

and a single exit point).  More sophisticated examples include a sequence of basic blocks with 

no side entrances, but multiple side exits (like Superblocks [22] or Fisher-style Traces [16]).  Let 

us consider the simplest type for now, the basic block (BB).   

As have been said before, the basic block can be treated as an atomic unit of instruction 

fetch (see Figure 2.9).  This implies that cache can be accessed initially for only the first 

operation in the basic block.  After this, the cache can supply operations in a streaming 

(pipelined if needed) fashion, until the end of the basic block is reached.  This approach is 

completely transparent for the processor – it might keep on supplying each MOP address to the 

cache, but the cache controller does not need it to serve a miss.  It starts to issue the MOP that is 

only going to be requested by the processor in the next cycle.  This short term ‘looking ahead’ is 

a valid approach for the following reasons.  First, control transfer can only occur to the first 

operation of a basic block (branch target).  Second, a basic block should always be executed 

from the beginning to the end unless an interrupt has occurred, and even then its execution will 

be completed after the interrupt has been handled (here subroutine calls are considered to be 

branches that end a basic block).  All the necessary NextPC computations local to the basic 

block are done within the cache, and are insignificant for the processor core, as long as correct 

VLIW group (MOP) is forwarded to the core decoder every cycle.  Nevertheless this mechanism 

might be implementation specific and could depend on each particular embedded system 

architecture. 
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 The use of more complicated blocks as atomic units is a matter of performance, not 

correctness.  If the block is permitted to have side exits, we should guarantee that they are not 

taken frequently (or the instruction cache will get over-polluted).  This requirement is true for 

superblocks [22] and Fisher-style traces [16], which are formed at compilation time with the use 

of profile information.  But it is also true that for complex blocks some additional invalidation 

mechanism is needed.  Nevertheless, in this study, only basic block atomic units are considered.  

(Note however that the code was scheduled by first building trees of basic blocks [i.e., 

treegions,] and then decomposed into basic blocks after the global scheduling pass.) 

 

 

2.5.3 Compiler Optimizations to Enhance Code Layout 

 

 There are a number of possible code enhancements that could be performed in order to 

enhance the code’s compressibility and the instruction cache’s performance [36],[37].  They 

Figure 2.10 Treegion forming Example 
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include traditional optimizations as well as some specific actions.  Since VLIW architecture 

chiefly depends on the compiler to achieve a high level of performance, it is essential to be 

aware of this matter during the scheduling.  

 The first enhancement is the Intelligent Code Layout to increase spatial reference 

locality.  This optimization places the most commonly used sequences of basic blocks in close 

proximity of each other in the memory.  In order to determine which basic blocks are more 

commonly used and in which order they should be laid out, the optimization requires some 

profiling information.  This profile information is collected through execution of the application 

with some representative input data set and recording some run time statistics.  The most 

important of those are number of times a basic block has been executed, and order in which 

most executed basic blocks were visited.  In addition to that, if memory paging is used, the 

layout optimization also attempts to reduce the number of pages needed to execute commonly 

used parts of the program.  This optimization increases spatial locality and is normally used to 

Figure 2.11 Jump Optimization Example 
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increase instruction cache performance and has been proven to be effective.  

 The next set of compile time optimization is the Jump optimization and Multi-way 

branching.  These optimizations are related to the code layout enhancement, but are more 

specific for the Treegion scheduling.   

As have been mentioned before, the LEGO optimizing compiler conducts aggressive 

static scheduling of VLIW code.  An integral part of the scheduling process is instruction 

speculation [37],[36].  Sometimes after instruction speculation by the scheduler, some basic 

blocks ‘loose’ all of their instructions except for the branch (see Figure 2.10 and Figure 2.11).  

This loss leads to multiple ‘back to back’ branches, which are hard to handle in the instruction 

fetch pipeline and often are logically redundant.  Jump optimization tries to replace long chains 

of jumps (with no computations in between) to shorter ones by removing redundant branch 

instructions (see Figure 2.11).   

Figure 2.12 Multi-way Branching Example 
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The multi-way branching on the other hand allows more then one branch to be executed 

in a single cycle.  For a VLIW architecture this branching scheme allows multiple branches a in 

a single VLIW instruction with priority given in left-to-right order.  For control flow graph 

(CFG) multiple branches translate into multiple control edges from a single basic block.  Since 

each branch instruction has an explicit conditional register (a predicate) associated with it, the 

sequence of branches is guaranteed to execute correctly.  Besides obvious performance 

enhancement from these optimizations, they allow a reduction in the total number of basic 

blocks in the program which directly correlates to the size of the static address translation tables 

as will be described shortly.  

 Standard optimizations like common subexpression elimination (CSE), strength 

reduction and constant propagation [36],[37] generally contribute to logically compact code and 

undoubtedly are important for the current work.  For example strength reduction might 

substitute a complicate uncommon instruction by a sequence of simpler, more common 

operations.  Normally, all of these optimizations are performed prior to scheduling the code.  

 On the other hand, in the context of code size reduction, many of the traditional 

optimizations like loop peeling and unrolling [36] become less favorable.  It is an important 

tradeoff between extracting or increasing the available instruction level parallelism (ILP) in a 

program and keeping the program size moderate.  Since our primary goal in this study is the 

static code size reduction, no loop unrolling was performed.  
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2.6 Address Space Conversion  

 

2.6.1 Branch Target Address Randomization  

 

 A critical issue for the execution of any compressed program is the change in branch 

target addresses [1],[27],[42].  Every attempt to bound compressed instruction location to certain 

boundaries constrains compression.  For instance, if the first instruction of a basic block would 

be aligned to the nearest byte boundary, compression degradation will range between one and 

three percent.  If every instruction would be bounded, compression degradation would become 

unacceptable (more than ten or fifteen percent).  If a high degree of compression is desired, each 

option must be considered and least bounded scheme selected.  Once this is accepted, it should 

be realized that once different instructions obtain different length of codes, the original branch 

targets become meaningless.  In fact the address space of a compressed code segment with 

Figure 2.13 Branch Target Randomization 
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unbounded compression is absolutely chaotic (see Figure 2.13).  Clearly, some kind of branch 

target address recalculation or translation must be performed.   

First and the simplest solution is to convert the original branch targets to the compressed 

targets at compilation.  This process could be performed in two passes.  In the first pass a new 

code layout and new target addresses are generated (with enough space left for later ‘plug in’ of 

new targets in relative branches).  On the second pass, new addresses are ‘plugged’ or ‘inserted’ 

into the target slots and jump tables are updated.  This method is a better fit for the Tailored 

ISAs than for code compression schemes, because compressed code with new targets will have 

to be recompressed with certain restrictions.  Branch instructions could also remain 

uncompressed in which case a special ‘escape’ symbol should be added.   

 Another solution to the branch target problem is to leave the original target addresses the 

way they are, unchanged (just compress them along with the rest of the code) and provide a 

dynamic translation mechanism at run time.  This approach is very well known in general 

purpose computing for the mapping of virtual address space to the physical one via the 

Figure 2.14 ATB Miss Ratio 
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Translation Lookaside Buffer (TLB).  Similar hardware named the Cache Lookaside Buffer 

(CLB) is also employed in studies by Wolfe, et al. [1],[17] and has proven to be effective.  We 

use a similar approach to map the original address space into the compressed space with aid 

from the compiler.  The hardware structure is called the Address Translation Buffer (ATB) and 

the static table is the Address Translation Table (ATT).  The ATB holds pairs of addresses, 

which maps the original address space to the compressed space along with information to aid 

decoding, decompression and Next PC computation.  The ATT has one entry for each atomic 

compression block (currently a basic block).  ATT is generated by the compiler and stored in 

memory in compressed form.  The additional information stored in the ATB includes the 

number of memory lines that need to be fetched in order to get the whole block, and the number 

of operations in the block (or simply the number of VLIW multiops in the block.  Portions of the 

ATT are uploaded to the ATB as needed.  Due to the normally high spatial locality, the ATB has 

very low level of contention (see Figure 2.14) and the ATT has a tolerable static size (see Table 

1).  The Table 1 shows the results for Tailored instruction set encoding only.  The overhead 

results for custom compression schemes are similar since they are not dependent on the 

compression algorithm employed.  Nevertheless, the ATT does add some overhead to the final 

storage.  In general, when number of basic blocks is not optimized, the ATT adds on average 

15% to the compressed size of the ROM.  This fact calls for a solution to minimize its size.  As 

have been discussed before, the easiest way to reduce the size of ATT is to minimize the number 

of atomic units in the code through a compiler optimization known as the multi-way branching 

(this optimization was described in greater details in section 2.5.3) or use different atomic 

blocks.  When the multi-way branching only is performed, the total overhead of the ATT table is 

reduced to 11%.  If this optimization would be combined with a different atomic block 
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granularity, the overhead could be reduced even further, but this process needs a deeper 

investigation and is rserved as a future work. 

 

 ATT 

Entries 

ATB Miss 

ratio 

ATT Size 

(compressed, 

bytes) 

Tailored ISA 

Code 

Segment size 

Degree of 

Compression 

without ATT 

(%) 

Degree of 

Compression 

including ATT 

(%) 

compress 352 0.0016 1,223 5,260 60.16% 74.14% 

go 14,036 0.0029 51,853 199,420 63.32% 79.78% 

li 4,027 0.0629 12,879 44,484 59.49% 76.72% 

ijpeg 8,792 0.0004 32,570 176,252 68.95% 81.69% 

perl 18,130 0.0764 72,012 259,736 63.04% 80.52% 

m88ksim 8,413 0.0012 30,241 148,752 67.25% 80.92% 

vortex 30,699 0.0830 117,421 629,636 64.25% 76.23% 

gcc 98,564 0.0842 404,664 1,468,500 68.50% 87.37% 

Mean 22,877 0.0018 91,758 366,505 66.47% 83.11% 

    Average: 64.60% 80.05% 

 

 

Briefly, at run time the ATB will provide the following information: the address of the 

requested block in compressed memory, the PC offset of the last operation in the block, and the 

predicted PC of the following fetch block.  This information is enough to fetch atomic blocks in 

a pipelined fashion.  There is also a clear tradeoff between the amount of additional information 

Table 1 ATB Characteristics for Tailored ISA compression 
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in ATT and the compressed instruction cache performance.  All the above-mentioned 

information could be deducted at run time and cached in ATB.  If this would be done, the ATT 

size overhead would go down to approximately six percent.  Nevertheless the rest of this work 

assumes that the support information is present in the ATT.  

 The next issue in this category is physical ROM access.  The vast majority of modern 

memory systems support only byte or word aligned accesses.  The access granularity could also 

be limited by the address bus width and should not be sacrificed.  This puts some, but non-

critical, limitations on code placement in the compressed storage.  This issue is addressed by 

aligning only the first operation of a block to the physical ROM access boundaries.  For the 

current study these boundaries are assumed to be byte aligned.  This assumption means that if an 

atomic unit ends at a middle of a byte of storage, it is padded with up to seven bits at the end 

Figure 2.15 Compression Including ATT Size 
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(see Figure 2.9 and discussion at the beginning of this section), so the first operation in the next 

atomic block is byte aligned.  All consecutive compressed operations in the block are 

sequentially placed in memory.  Padding add some overhead to the overall compressed segment 

size (from one to three percent on average) and should be factored in for overall size calculation. 

 After all of these ‘extras’ were factored into the general compression picture, and the 

Multi-way Branching and Jump optimization were applied to reduce the number of atomic 

compression blocks (see Section 2.5.3), the final compressions looks like follows: (see Figure 

2.15).  The relative performance of all algorithms remained unchanged and only a slight overall 

increase in size could be seen.  Nevertheless, this fact might encourage us to re-evaluate some of 

the conclusions.  The tradeoff between decoding complexity and the degree of encoding is still 

factual.  But another component needs to be factored into the overall equation – the extra 

information needed for compressed instruction cache operation if it has to be stored along with 

the compressed code segment (as in the case of the ATT table).   

 

 

2.6.2 Base Line Instruction Cache Design 

 

 The instruction cache is a critical element of any high performance system, and it is 

especially important for this study.  The main instruction cache tradeoff in a compressed system 

is the address space to which it belongs.  In other words, whether the cache holds compressed or 

uncompressed operations (see the discussion at the beginning of 2.5, Section 2.5.1).  Most of the 

researchers [1],[9],[10] uncompress their instructions prior to putting them into the instruction 

cache.  This decision normally allows them to hide the performance penalty associated with the 

decompression of encoded instructions.  But as have been mentioned previously in Section 
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2.5.1, the compressed cache is able to hold several times more instructions than an 

uncompressed one. (See Figure 2.7 and Figure 2.8)  The only problem is that some work should 

be performed at the hit path, which potentially increases the branch missprediction penalty (if 

instruction fetch hierarchy is pipelined) or stretches the cache access cycle time.  Since the 

vertical size of the cache main storage can be reduced now with no loss in performance, cycle 

time stretch is less likely.  Nevertheless, this study assumes pipelined hierarchy and further 

concentrates on keeping the pipeline full at all times.  

 The next important issue is the NextPC calculation.  A cache that supports a zero-NOP 

encoding employs a NextPC calculation mechanism [8],[7] that is applicable to this study as 

well.  Let us differentiate the NextPC within a block and the NextPC of the next block.  The 

NextPC within a block does not need to be predicted (since by definition we are going to fetch 

the block till the end) but rather can be locally calculated with dedication of some additional 

hardware [8].  This hardware, along with the access pattern, varies with placement and 

Figure 2.16 Banked Cache Architecture 

... ...

a          b c    d       e      f

f’       g          x

tagA

tagX

tagC

c         d          e          nop        f            g

=? =?

x’     y        z

c    d       e      ff ‘      g           x

tagX’

Bank 0 Bank 1

B
an

kB
it

O
ff

se
t

Tag Tag
B

an
kB

it

O
ff

se
t

Mop Select
and Expand

NextPC Logic

Current
 PC

NextPC

NextBr 
Target

Prediction

P
ip

el
in

e 
St

ag
es



  42

invalidation policies.  If a block is atomically (in unbroken form) placed in the cache, an 

intermediate instruction access does not have to be checked for validity.  If a block id displaced 

from the cache, it is invalidated entirely, so no partial hit is possible.  This will be called the 

restricted placement model.  

 If pieces of the block (like individual encoded instructions) are allowed to be scattered 

around the storage, cache controller needs to generate an intermediate PC within each multiop, 

and locally ‘re-access’ the cache to check if we have the valid data present.  The invalidation is 

possible on individual instruction level, so a partial miss might occur.  In the latter case, all 

additional information (individual MOP length in terms of encoded instructions for instance) 

could be extracted from a fetched block at miss-repair time and stored in the cache with 

association to the first instruction of the MOP.  In the tailored ISA approach, it is especially easy 

to do since the size of all operations of the same type and opcode is the same, and the location of 

this information is fixed within an operation (see Section 2.3).  For the Huffman compressed 

encoding approach, this information might be generated by the compiler and stored along with 

ATT in compressed form (which will further increase the space penalty).  For all the outlined 

reasons, and for sake of relative simplicity, in the current study we only consider the restricted 

placement model. 

 The Next PC of the next block to be fetched is the more traditional branch target 

problem.  This address needs to be dynamically predicted if we want to achieve full capacity for 

the instruction fetch pipeline.  This prediction is even more important if a sophisticated (like in 

our case) instruction fetch is used (which means longer pipeline and higher missprediction 

penalty).  In the current study, we have coupled the branch prediction table with the ATB.  This 

combination means that for every block entry, there is one branch predictor with taken/not-taken 



  43

and target address prediction information.  It predicts the outcome of the last instruction in the 

block (which by definition is always a branch, see Section 2.5.2).  To predict the outcome of the 

branch, a simple two-bit saturating counter is used [13].  To predict the target address, the ‘last-

target address’ (if branch predicted taken), or next sequential address (otherwise) heuristic is 

employed.  We have to keep the last taken address of the branch locally because we cannot wait 

for the branch instruction to get decoded (which happens much later in the processor pipeline).  

Theoretically, a more complex branch predictor could be used (e.g., gshare or PAs 

Yeh/Patt predictor) since there will most likely be several cycles to access the prediction, unless 

the code has multiple sequential branches with no other computation in between.  But this 

option is not considered at this point of time and is reserved as future work.  

The baseline cache that was selected for this study is the Banked Cache described in 

[7],[8].  Originally designed to fetch variable length MOPs for Zero-NOP encoding, it fits to all 

the requirements outlined earlier: fetches unaligned blocks, could be pipelined and wastes no 

storage.  The structure of it is depicted in Figure 2.16.  

 The storage of the Banked Cache is separated in two banks, similar to that of the Intel 

Pentium processor [20].  The cache line size is equal to the maximum size MOP, which in turn 

is proportional to the issue width of the processor core.  In our case, it is a six wide issue TEPIC 

VLIW core.  A MOP can begin at an arbitrary location in the bank and span two cache blocks, 

but it still can be extracted in a single reference to the bank storage (see the MOP ‘cdefg’ in 

Figure 2.16, which spans form the Bank0 to Bank1; the shaded region correspond to alignment 

padding for the first operation in MOP).  Two sub-blocks are brought down to the alignment 

stage on a cache hit -- the block that was referenced by PC, and the next sequential blocks.  If for 

example the beginning of a MOP resides in the Bank1 at index N, the next sequential block is 
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brought from the Bank0, index N+1.  The MOP is guaranteed to be within these two cache sub-

blocks because their combined size equals to the maximum sized MOP.  Then the alignment 

hardware scans individual operations in parallel, but with left-to-right priority for the Tail bits 

(see Section 2.3). Then it extracts the original MOP (see Figure 2.16).  The whole process from 

receiving an original address till the NextPC calculation is accommodated in two pipeline stages 

– storage search and tag match followed by alignment network operation.  More details on the 

design and tradeoffs of the base line Banked Cache can be found in [7],[8]. 

 

 

2.7 Compressed Instruction Cache Hardware Implementation 

 

2.7.1 The Instruction Cache Design for Compressed Encoding 

 

 The implementation of the instruction cache for the compressed encoding is designed to 

reduce the impact of decompression time on the instruction fetch rate.  One atomic block is 

decompressed at a time and is held in a buffer, which is accessed in parallel with (but has a 

priority over) the main cache. This buffer is organized as a small fully associative cache. In 

general, the whole structure could be seen as a two-level instruction cache, where decoding is 

done at miss time of the L1 cache and the buffer is, in essence, an L0 cache.  This organization 

makes sense if we analyze the overall situation from a standpoint of data usage.  Since code is 

compressed based on the static distribution and does not take into account the frequency of 

certain block usage we might have suboptimal performance.  It might occur when the most 

commonly used block is present in the cache, but is kept compressed throughout access time.  

Even with the high rate of following block address prediction, we will have to perform 
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decompression again and again, and even though it might not slow down execution (due to 

pipelining of the whole process), it might affect power consumption.  For these reasons we are 

trying to keep the most frequently used block in uncompressed form in the buffer.  It also should 

be remembered that by the block here we mean the atomic unit of compression, which in this 

case is a basic block.  The buffer is not explicitly purged when new block is placed in it, so it 

potentially can hold several commonly accessed basic blocks. 

The main cache storage is organized the same way as the Banked Cache described in 

Section 2.6.2.  The size of the buffer (L0) has been set at 32 operation entries (160 bytes for the 

operation size of 40 bits).  From the performed experiments there are indications that tight, 

frequently executed loops (like DSP kernels) can fit into this buffer completely, which will 

result in equivalent (or possibly better) performance (access time) to an uncompressed cache.  

Nevertheless it is very important to keep the size of this buffer at minimum in order to not 

Figure 2.17 Instruction Cache Structure for Compressed Encoding 
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compromise the performance of the main compressed storage.  In addition to that, some 

researchers [24] indicate that similar two-level architecture organization might contribute 

significantly to low-power design, since the buffer cache filters out power-consuming accesses 

to the larger L1 cache.  The structure of the entire system is depicted in Figure 2.17.  The 

pipeline stages are outlined in the diagram.  The worst hit time for a compressed block that is 

located in main storage and needs to be uncompressed is three cycles.  The detailed cycle count 

assumptions could be found in the Appendix Table 2. 

The cache has the above-described mechanism for dynamic address translation (ATB) 

and coupled branch predictor.  It is important to notice that the location of this branch predictor 

differs from the conventional.  In a majority of today’s systems, branch prediction is performed 

later in the pipeline.  Often it is no earlier then the decode stage – the predictor is accessed once 

Figure 2.18 Instruction Cache Structure for the Tailored Encoding 
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it is known that the instruction being decoded is a branch.  If the branch predictor is accessed 

with address of every instruction, it is destined to be polluted and has to be of a large size to 

guarantee low level of conflicts.  In this case the branch prediction is moved all the way to the 

instruction cache.  Since we know that the last instruction of an atomic fetch block (basic block) 

is a branch, the branch predictor could be indexed with the address of first instruction in the 

block, without increasing aliasing or causing conflicts.  The NextPC calculation is identical to 

that of the base line banked cache (described in Section 2.6.2).  The only difference from 

architectural standpoint is the ‘black box’ – the decompressor being added between the main 

storage and the buffer.  
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2.7.2 The Instruction Cache Design for the Tailored ISA 

 

 The objectives for the tailored ISA cache are quite different from the compressed 

encoding cache.  The operations are stored in a form ready for consumption by the core decoder.  

However, this cache also uses the Banked Cache as its core design element to guarantee single 

cycle access for unaligned MOPs.  The key difference is the logic in the miss path, which is 

responsible for the extraction and placement of MOPs in the main banked storage.  The overall 

organization is shown in Figure 2.18. 

The hit path now has only one stage for the alignment of operations. Branch prediction is 

still used to ensure high pipeline utilization.  From an architectural point of view, an extra stage 

is added on the miss path.  (For the detailed summary of all the performance penalty 

assumptions, please refer to the Appendix, Table 1.)  

Figure 2.19 Cache Study Summary. Instruction Delivered per Cycle. 
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For the experiments we choose moderately sized caches on a scale suitable for an 

embedded system: 16KB, 2-way set associative for both compressed and tailored models.  The 

baseline cache has to have a block size that is a multiple of the TEPIC 40bit op size, so its 

effective size is slightly larger: 20KB, 2-way set associative.  All results are summarized in 

Figure 2.19.  The metric is a measure of instructions (operations) delivered per cycle.  The issue 

width for the core is six operations.  The average for “Ideal” is limited by the quality of the 

schedule as well as ideal cache and branch predictor performance.  The “Base” represents 

uncompressed code, whereas “Compressed” uses the Full operation compression scheme and 

“Tailored” is for Tailored ISAs.  It is particularly interesting to note that both the Compressed 

and Tailored exceed Base on average, although the Compressed does poorer than Base for 

several benchmarks (compress, go, ijpeg and m88ksim).  This decrease in performance is due to 

the higher missprediction/miss repair penalties for Compressed compared with Tailored.  

Introducing a larger buffer size and more accurate branch predictor could significantly increase 

the performance of the compressed cache model, but that was not the main goal of the 

Figure 2.20 Instruction Memory Bus Traffic Summary 
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experiment.  

 Another interesting result is the change in the amount of bus traffic due to instruction 

cache misses. It is one of the defining factors of power consumption, especially if the ROM is 

placed on a separate die. In the experiments, power is modeled by counting the number of 

transactions on the memory bus when bits are flipped.  With the increase of hit ratio, the number 

of blocks needed to be brought from the memory for miss repair drops.  The summary of these 

changes is presented in Figure 2.20.  The results track the degree of compression and show 

savings for the Tailored and Compressed encodings over the Base.  From this it can be 

concluded that each of the compression schemes brings in more instructions for a given number 

of bit flips. 

 One interpretation of the combined results of Figures 9, 12, and 13 is that the Tailored 

Figure 2.21 Verilog Code for Decoder Example (Custom – left, Byte Based Huffman – 

right) 

module custom_decoder (clock,code_bus,h_bus,opc_bus,src1_bus,src2_bus,

sp_src_1_bus,sp_src_2_bus,sp_src_3_bus,dst1_bus);

input clock;

input [31:0] code_bus;

output h_bus;

output [5:0] opc_bus;

output [7:0] src1_bus;

output [8:0] src2_bus;

output [2:0] sp_src_1_bus;

output [2:0] sp_src_2_bus;

output [2:0] sp_src_3_bus;

output [6:0] dst1_bus;

reg [7:0] src1_bus;

reg [8:0] src2_bus;

reg [2:0] sp_src_1_bus;

reg [2:0] sp_src_2_bus;

reg [2:0] sp_src_3_bus;

reg [6:0] dst1_bus;

assign h_bus = code_bus[31];

assign opc_bus = code_bus[30:26];

always@(posedge clock)

begin

case(opc_bus)

0: begin /* ADD */

src1_bus[7:1] = code_bus[25:19];

src2_bus[8:0] = code_bus[18:10];

sp_src_1_bus[2:0] = code_bus[9:7];

dst1_bus[6:0] = code_bus[6:0];

end

21: begin /* MOVE */

src1_bus[7:0] = code_bus[25:18];

sp_src_1_bus[2:2] = code_bus[17:17];

dst1_bus[6:0] = code_bus[16:10];

end

……..

module huffman_decoder (code_bus,instruction_bus);

input [14:0] code_bus;

output [8:0] instruction_bus;

reg [8:0]  instruction_bus;

always@(code_bus)

casez(code_bus)

14’b0zzzzzzzzzzzzz: instruction_bus  = 8’b00000000;

14’b10000zzzzzzzzz: instruction_bus  = 8’b00000010;

14’b1000100zzzzzzz: instruction_bus  = 8’b00001011;

14’b100010100zzzzz: instruction_bus  = 8’b00110001;

14’b100010101zzzzz: instruction_bus  = 8’b00010101;

14’b10001011zzzzzz: instruction_bus  = 8’b00011001;

14’b1000110zzzzzzz: instruction_bus  = 8’b00000111;

14’b10001110zzzzzz: instruction_bus  = 8’b00011100;

14’b10001111zzzzzz: instruction_bus  = 8’b00001001;

14’b10010000zzzzzz: instruction_bus  = 8’b00000101;

14’b100100010zzzzz: instruction_bus  = 8’b00011101;

14’b10010001100zzz: instruction_bus  = 8’b00010100;

14’b10010001101zzz: instruction_bus  = 8’b00011110;

14’b10010001110zzz: instruction_bus  = 8’b10000100;

14’b10010001111zzz: instruction_bus  = 8’b11110000;

14’b1001001zzzzzzz: instruction_bus  = 8’b00000100;

14’b10010100zzzzzz: instruction_bus  = 8’b00010010;

14’b100101010zzzzz: instruction_bus  = 8’b00000110;

……..

14’b11011111zzzzzz: instruction_bus  = 8’b11000000;

14’b111zzzzzzzzzzz: instruction_bus  = 8’b00000001;

default : instruction_bus = 8’b0; endcase

endmodule
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ISA encoding has more advantages than otherwise clear from the degree of compression data of 

Figure 5.  Because an additional decoder is not required (as opposed to the Huffman-based 

schemes), there is a net savings in the processor core that can be significant.  What is more 

interesting is that, although the Tailored encoding achieves a lower overall cache utilization, the 

missing extra cycle of branch missprediction penalty more than makes up for this absence in 

overall performance. 

 

2.7.3 Decoding Complexity Evaluation 

 

 Since, in the case of code compression, we choose to place decoding on the critical path 

of the instruction fetch mechanism, it should be made as efficient and fast as possible.  In 

essence, it is now the critical factor for the compression algorithm’s selection, which directly 

corresponds to the degree of compression (see discussion in Section 2.4).  Fortunately, the 

compression algorithm is static in time.  Once selected, based on static frequencies of elements 

in code segment, it remains the same.  Therefore a fast fixed hardware decoder can be generated. 

Figure 2.22 The Huffman Tree Decoder Structure 

A: 0000

B: 0011

C: 0100D: 1000

0

0

0

1

1

1

Huffman Code: 0      0    0  ==> n bits

D:
1

1

0
0
0

0

0
0

C:

B:
1
0

0
0

A: 0
0

0
0

1
0

0

C:

0

Decoded word: => m

Original Tree:



  52

As have been mentioned before, the compiler has all the information needed and 

generates Verilog description (see Figure 2.21) of the decoder that could be used to program the 

PLA decoder or as an input for custom decoder design (after possible steps for optimization).  In 

the case of the Tailored encoding, this problem is somewhat less critical.  Decoding of tailored 

instructions is a part of the processor pipeline.  Nevertheless, it might be more complex when 

compared to the traditional fixed-size-op decoder.  An interesting consideration would be to 

combine the Huffman decompressor with the processor decoder on the logical design level, and 

optimize it as a flat logic.  This approach might present more opportunities for CAD tools for 

optimization and result in a smaller overall decoder.  There is only one consideration which 

prevents us from attempting it in the current study, – we want to affect the design of the core 

processor as little as possible (if any at all) so the instruction fetch process remains completely 

transparent for it.  Nevertheless, this topic could be considered in future research, which would 

include fully customized processor core design.  

 Since, in this study, we generate a multitude of various decoders we need to establish a 

mean for their fast evaluation and comparison.  As a method of comparison of the Huffman 

decoder size, we can evaluate the complexity of the correspondent Huffman tree.  If we imagine 

the structure presented in Figure 2.22 (where n is the longest Huffman code size, k is number of 

entries in the Huffman dictionary and m is longest dictionary entry size), it is possible to derive 

an equation to estimate the worst-case decoder complexity.  It is not intended to suggest a real 

hardware implementation, but only as a criterion for evaluation.  The worst-case number of 

elements in a Huffman decoder can be expressed as follows: 
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  nmmT nnn 2)122(4)12(2 1 +−−+−= −  (Equation 3) 

This equation assumes a multiplexer implementation using CMOS transmission gates 

(TG), which account for the fact that the first row passes constants and needs only one transistor 

to operate.  Elements to form inverters (dual rails) are included as well.   

Figure 2.23 Estimated Huffman Decoder Complexity. 
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Assuming this model we can evaluate complexity of the various Huffman decoders (see 

Error! Reference source not found.) without actually synthesizing every one of them.  Error! 

Reference source not found. in conjunction with Figure 2.15 and the Table 1 allows us clearly 

see the tradeoff between the decoder complexity and degree of compression.  The best 

compression algorithm (the Full Huffman) yields the largest decoder size.  This relationship is 

not necessarily linear.  Byte-wise compression yields an intermediate degree of code 

compression.  It is approximately 72% of the original image size yet has the smallest decoder 

(See Error! Reference source not found.).  The worst Huffman compression scheme, the 

Stream, achieves approximately 75% of the original image size.  Yet, it has a significant decoder 

complexity.  The reason is the limited input width and dictionary size of the Byte method.  

 After the initial estimation, several decoders were actually synthesized with the Synopsys 

CAD tools in order to compare actual parameters with the estimated ones.  As we can see in 

Figure 2.25 the real synthesized numbers are less then one percent of the estimated worst case, 

Figure 2.24 Estimated to Real Size Comparison for the Byte Based Compression 

Decoder (for the Compress Benchmark) 
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which proves the possibility of such a design.  Regardless that we miss the actual decoder size 

by 99% while estimating it we still can use the estimated value for relative evaluation of the 

design.   

If we ever wonder into generating a custom compression algorithm for each particular 

application (as oppose to just using the same Huffman algorithm for all of them) we will need a 

cost function to describe all the parameters of the new algorithm.  Definite components of the 

cost function are resulting code size, decompression speed/complexity, and the decoder 

size/complexity-weighted according to their importance.  For one of the major parameters to this 

cost functions -the decoder complexity estimation – a similar function could be used.  An 

interesting issue is estimating the speed of decoding, which is virtually impossible until real 

hardware is generated.  Let us reserve this issue as a future work. 

The fact that our estimate was so far from actual numbers is rather understandable for 

two reasons.  First, the worst case is always pessimistic comparing to the actual decoder 

Figure 2.25 Estimated to Real Size Comparison for the Byte Based, Full Compression and 

Custom Coding Schemes (for the Compress Benchmark) 
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structure and second, the design tools provide comprehended Boolean optimizations which 

further reduces the complexity of the decoder.  The longest synthesized delay chain included, on 

average, five levels of logic, which promises a high speed of operation.   

Several implementations of the Huffman decoder in hardware have been proposed in 

previous studies [17,18].  Both models are strongly dependent on specific implementation 

(MPEG-2 decompression for example), but generally can achieve 300-600 Mbit/sec for a table 

with 114 dictionary entries and codes in range from 1 to 16 bits.  The real-estate budget ranges 

from 10,000 to 28,000 transistors.  This data allows an assumption for the time needed to 

decompress the code.  For the 20-50ns cycle times typical in embedded processors, we can 

assume decoding of 40 bits (op size in the baseline TEPIC architecture) is practical.  Therefore, 

it is assumed that one op could be decoded in a cycle. Furthermore the decoding process is 

pipelined.  Since instructions are supplied to the processor on each cycle we can keep this 

pipelined filled (warm) if we correctly predict the next sequential block after the current (being 

decoded).  As we will see soon we couple the compressed cache design with a branch predictor, 

which aids in continuous (streaming) decompression.  
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3 Data Segment Redundancy Reduction 

 

 

 So far the author have only considered the code segment as the subject for redundancy 

reduction. Nevertheless, the memory is also occupied by the data segment as well.  Besides, the 

data fetch performance might be an important bottleneck of overall system performance.  There 

are three general sections that could be recognized in a Data Segment (DS): Initialized data, 

Storage Reservation (or uninitialized data) and the dynamically allocated Heap.  In the 

framework of this study the next logical step would be to reduce redundancy of these elements 

as well.  If that could be done so that the performance of the data path from memory to the 

processor gets improved, overall performance of the system will be further increased. 

 

 

3.1 Available Redundancy and Compression Strategy 

 

 The first question that needs to be answered is whether or not the compression of the 

data segment will result in any significant savings.  An important consideration is the fact that 

the compression circumstances for the data segment are rather different than that for the code 

segment.  Furthermore, different parts of the data segment require different approaches.  

Ultimately, a dynamic data stream as opposed to a static data set is compressed.  The main 

difference here is in the static availability of data and the purpose of compression.  If in the case 

of the code segment we needed to improve static characteristics of the code (the size), now we 
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need to optimize the dynamic qualities, so a different kind of information should be obtained.  

 Although several compression algorithms were considered (Arithmetic Coding [55],[46], 

Huffman [2], Lempel-Ziv [39]), a variation of the Huffman code compression algorithm was 

chosen (see discussion in Section 2.3).  The Huffman method produces near optimal results for 

an integer number of code bits.  It also allows reasonably fast decompression (either as FSM or 

via a lookup table) at a realistic real estate price [17],[18].  Nevertheless, the application of this 

algorithm should be different.  If in the case of the code segment we had all the data to be 

compressed statically available to us, and the histogram was static, now, in the case of the data 

segment the story is different.  When dealing with Initialized data, we still have somewhat fixed 

histogram and static availability of data (though the nature of data is different).  But in case of 

the Heap (or dynamically allocated memory) there is no prior knowledge of what we are going 

to be dealing with.  The Uninitialized storage in its original form could not be compressed at all 

because the programmer has just reserves an area of memory without providing any additional 

information on what kind of data will occupy it.  One possible optimization for the uninitialized 

storage is static conversion to the dynamically allocated storage.  This conversion might be a 

compiler optimization hidden from the user.  In either way (whether we perform this 

optimization or not) the impact of the uninitialized storage on the overall data stream 

compression performance is minimal, as we will soon see. 

Instead of applying the traditional adaptive Huffman algorithm [54], a discrete 

regeneration approach was chosen.  This approach is based on the following assumptions: 

• The frequency distribution is nearly constant during a short period of time (t) 

where t is bounded to the number of references to the cache; 

• The next time slot (t+1) is likely to exhibit behavior similar to the current time 
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slot (t); and, 

• By analyzing the data stream during time slot (t), it is possible to come out with 

near-optimal encoding for the time period (t+1). 

If t is carefully chosen we will have an adaptive algorithm which has a fixed encoding for 

time period t.  This fact is important for a caching structure because the compressed codes are 

statically stored within the time period t and is flexible enough to adjust to the changing 

environment while maintaining a near optimal quality of compression.  In order to select an 

optimal t value, a set of experiments was conducted.  Results are summarized in Table 2.  A 

positive compression difference means a decrease in compression effectiveness.  

 

Number of references (t) 1,000 5,000 10,000 50,000 100,000 

Average Compression 

Difference 

+0.028% +0.024% 0 +0.041% +0.054% 

 

Taking into account all the facts outlined above, we used three following adaptations of 

the Huffman encoding for use with the data segment.  The first is called Rigid Huffman (RH).  

The histogram for this method is calculated once, at the compilation time, based on the 

initialized data segment and is not changed thereafter.  This is the simplest and cheapest method, 

and should work fine for programs that do not use dynamically allocated memory much or 

who’s dynamic histogram, is similar to the static one.  

The second method is the Flexible Huffman (FH) (not to be mistaken with the Dynamic 

Hufmann or other dynamic compression algorithms [39]) method.  This method’s histogram is 

Table 2 Regeneration Period selection 
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being recalculated with certain period at execution time and a new encoding is generated.  The 

profile data is being collected all the time and is discarded at the regeneration points.  In this 

sense, the method remains static between regeneration points, which allows the storing of 

compressed data at these periods of time.  This method is extensively opportunistic, and 

assumes that for the period of time t+1, the histogram will be similar to the period t but different 

from the histogram in the period t-1.  

The third method is the Flexible Huffman with Long Memory (FHLM). It is similar to the 

previous method except the fact that its statistics keep on accumulating.  This accumulation 

means that history is collected across multiple regeneration points, but is ignored only if some 

hardware limit is reached.  A good example of one such event would be a counter overflow, in 

which case the counter just saturates.  As suggested from the name, this method has a ‘long 

memory’ and should work best with highly unpredictable patterns: it will be more conservative 

in taking new opportunities, which might turn out to be either good or bad decision.  

The last question to answer here is what granularity of compression to use.  Based on the 

discussion in Section 2.3, the choices are unlimited, and as is commonly known, the bigger the 

atomic unit of compression, the better size reduction, and more complex is the decoder.  In the 

case of the data segment compression, as we will soon see, decoder size is critical and some 

hardware structure is needed to collect the frequencies of all atomic elements.  Sizes of both 

those hardware structures directly correlate to the size (and therefore the total number) of the 

atomic compression units.  All these facts leads us to conclude that byte-level compression 

would be an optimal choice.  This way the profiling hardware unit would consist of 256 counters 

and the decoder will be of a manageable size (more discussion is in the following section).  

 Now we should select the point where profile observation takes place.  The natural 
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choice is the data bus between the processor and the main memory.  What we going to see there 

is a stream of data going in both directions in response to the load and store instructions issued 

by the core processor.  An important consideration for this introductory experiment is whether a 

data cache is present or not.  It is not a trivial task to calculate the available redundancy, so first 

we monitor the system without the data cache.  Below in Figures 14 through 21 the behavior of 

all the three compression methods is shown for each benchmark separately.  The summary is in 

the Table 3 and Figure 22. 

 It is clearly can be seen that amount and dynamic performance of compression strongly 

depends on the benchmark and differs from region to region. 

 

 

 Rigid Huffman Flexible Huffman Flex/w Long Memory 

Huffman 

Compress 0.90769 0.1569917 0.1570149 

Go 0.55434 0.4612735 0.4478486 

m88ksim 0.426866 0.32564377 0.33425884 

Li 0.822175 0.6050848 0.581241 

ijpeg 1.04028 0.8594622 0.809376 

Vortex 0.741659 0.43141306 0.431698 

Perl 0.720565 0.51699235 0.517772 

Gcc 0.760478 0.55783421 0.577297 

Average 0.735123 0.487659 0.482756 

Table 3 Data Segment Compressibility Summary 
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Figure 3.1 Dynamic Compression for M88ksim 

Figure 3.2 Dynamic Compression for Go 
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Figure 3.3 Dynamic Compression for Vortex 

Figure 3.4 Dynamic Compression for Gcc 
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Figure 3.5 Dynamic Compression for Perl 

Figure 3.6 Dynamic Compression for Ijpeg 
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Figure 3.7 Dynamic Compression for Li 

Figure 3.8 Dynamic Compression for Compress 
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The important detail for this experiment is that only original data request (regardless of 

granularity) have been served.  Our assumptions for the performance of the three schemes turned 

out to be true.  The Rigid Huffman performs well only at the initial stages of a program, when 

the initialized data is being accessed and then, when new values are generated, performs very 

poorly.  It is very spectacular in the case of the compress benchmark.  For ijped the compressed 

data size even exceeds the original data segment size.  The reason for this increase is the fact 

that at initial region a precompressed (ijpeg coded) image is being loaded, so the data entropy is 

already high.  Then, after a short period of time, where the image is being processed (and 

entropy of memory references is very low) it is stored back, causing new rise of entropy and fall 

of compression. 

The Flexible Huffman takes every opportunity to adjust compression algorithm which 

may not always be the best choice, but it performs much better then the Rigid Huffman in 

Figure 3.9 Summary of Data Segment Compressibility 
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general.  A good example of this behavior is the go benchmark.  The performance of the 

Flexible Huffman with Long Memory is very similar to that of the Flexible Huffman and 

depends on benchmark, with overall results being slightly better (See Figure 3.9).  Generally 

speaking, the Flexible Huffman is easier to implement in hardware than the Flexible Huffman 

with Long Memory since no care should be taken of the overflow support, which may prove to 

be the most practical approach.  The summary of change in entropy of the stream before and 

after compression is presented in Figure 3.10.  We can see that information density did increase, 

but still remains substantially lower then the perfect measure.  In the 4 we will propose a way to 

utilize this available slack to reduce power consumption of the data bus this code is being 

transferred on.  

The final issue in this category is the selection of regeneration points.  The importance of 

this issue becomes obvious when we recall that the contents of a caching structure must be 

purged every time the encoding changes.  This will definitely hurt the overall performance and 

Figure 3.10 Entropy Change Due to Compression 
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could be considered as a catastrophic event. It is especially true if a software interrupt will be 

used to perform encoding regeneration.  Generally speaking using an interrupt is the easiest 

approach to minimize the amount of hardware needed to support the flexible Huffman encoding.  

To prevent often regeneration from happening all we need to do is introduce a performance 

monitor.  It could be easily implemented as a pair of counters with simple glue logic.   

If the current compression is bellow certain threshold (for example 80% of original size 

have been used) we do not attempt to regenerate encoding and just keep on using the current 

one.  However, if the compressor is not doing a good job, overall cache performance will 

degrade any way and purging the storage will probably not hurt the performance any further.  

Table 4 demonstrates dependency between threshold value and performance degradation.  

‘Regeneration Frequency’ refers to percentage of checkpoints, which actually caused algorithm 

regeneration.  For the rest of the work 75% threshold is used. 

 

Figure 3.11 Dynamic Compression for M88ksim in presence of a Data cache 
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Threshold 65% 75% 85% 

Regeneration Frequency 35% 40% 70% 

Compression Degradation 8-15% < 3% < 1% 

 

 

 

3.2 Effects of the Data Cache on Data Compressibility 

 

In the next set of experiments we increase the realism of the experimental setup by 

introducing a small data cache into the system.  Now the author is attempting to investigate the 

change in behavior of the data stream between the data cache and the next level of memory 

hierarchy.  Theoretically, we should see a significant difference in the compression algorithm 

performance.  Instead of serving every load and store instruction issued by the processor, next 

level of memory hierarchy should respond to the stream of miss repair requests with a block of 

data.  If there is no prefetch model is employed (like in our case, there is no explicit prefetch is 

done), the minimal block of data being transferred at a time is a cache block.  The size of the 

cache block is fixed at four words (16 bytes).  

Table 4 Compression degradation vs. threshold selection 
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Indeed, the data stream characteristics become nearly unrecognizable.  Instead of the 

dynamic picture we have seen for the m88ksim and li previously (in Figure 3.1 and Figure 3.7) we 

go this new distribution (see Figure 3.11 and Figure 3.12), which is strongly inferior to the case 

without a cache.  The perl’s behavior also endured strong changes but remained manageable for 

redundancy-reducing algorithm (see Figure 3.13).  The reader should note also an additional set 

of data in those figures labeled ‘real compression’ and ‘real entropy’.  In all the figures (Figure 

3.11 through Figure 3.13) these ‘real’ label refers to the activity produced by a zero-sized cache 

(‘real entropy’ refers to the entropy of the data stream for this case).   

Figure 3.12 Dynamic Compression for Li in presence of a Data cache 
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This ‘real’ case is slightly different from the picture seen in Figure 3.1 and Figure 3.7 

because this data stream is generated by the miss repair data requests that would be issued by a 

cache controller with zero storage array (which normally, as we just mentioned, requests one 

cache block at a time as oppose to a single word or byte at a time as assumed in the previous set 

of experiments).   

The degradation in compression performance is quite understandable once we bear in mind 

that caching itself works by exploiting repetitiveness of references (time and spatial locality), 

which directly correlates to the stream redundancy.  The data compression algorithm will be 

deprived of its primary resource – the redundancy.  The data cache selected for this experiment 

is a small 4K direct mapped with Write Back, Write Allocate update policies.  It seems that the 

Write Through and the No Write Allocate update policies would save the situation by allowing 

Figure 3.13 Dynamic Compression for Perl in presence of a Data cache 
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enough traffic behind the cache, but it is not entirely true.  After attempting to use the Write 

Through and No Write Allocate update policy it have been discovered that similar (or even 

lower) level of performance remains, while bus traffic increases unreasonably.  The final results 

are summarized in Figure 3.14.  The only compression scheme utilized in this experiment is the 

Flexible Huffman with Long Memory (as the best performer in the previous study).  It is clear 

that the entropy of the data stream with the data cache present changes dramatically but still 

remains substantially large.  We will investigate this matter further in Chapter 5.  

 Now that we see that a significant gain (of 50 % on average) could be achieved by 

compressing the data segment let us find a way to utilize it.  Unlike the compression of the code 

segment this technique is not limited to embedded system domain.  The dynamic data 

compression could be used anywhere when space and bandwidth is an issue.  It can reduce 

Figure 3.14 Effect of Data Cache on Data Stream compressibility 
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memory bus traffic, increase data cache capacity (and hit ratio as a result) and reduce power 

consumption as a net effect.  It can even be used in a multiprocessor environment to optimize 

inter-processor communications.  The first area of application for the dynamic data stream 

compression is the system bus utilization and it is discussed in the next chapter.  
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4 System Data Bus Redundancy Utilization 

 

 

4.1 Motivation and Experimental Setup 

 

This chapter investigates the serious degradation from redundancy of the original data 

that can significantly benefit from exploration of the available redundancy: the system data bus 

[33],[34],[49].  The code segment is not the only portion of the program that contains high level 

of redundancy.  In addition, the data segment suffers from excessive redundancy as well.  In 

some instances the data stream, consisting of data produced and consumed by the program, is 

even worse.  Moreover, the quality of the data stream strongly correlates to the region of the 

Figure 4.1 Traditional. Bus Encoding Experimental Setup 
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program and is time variant.  The instruction bus is viewed as a conductor for a dynamic stream 

of data with a random, nearly uniformly distributed sequence of values with a high level of 

redundancy.  The bus is optimized for both shorter transaction cycle and lower switching 

activity without sacrificing the overall throughoutput.  The reduction of the switching activity 

directly contributes to reliability (data integrity) of the bus and low power design.  It is well 

known that Input/Output (I/O) circuits are one of the major power consumers in a system 

[33],[34],[35].  Their share of power dissipation could easily reach 30-40% and some times even 

can exceed 50 % of overall power consumption.  When transactions on I/O bus compared with 

internal transactions, the former dissipate 100-1000 times more power [33].  This is happening 

due to their large capacitance (three orders of magnitude) when compared to internal circuits 

[33],[34],[49].   

This problem is further intensified by the fact that due to the low information contents of 

data being transferred through I/O subsystem, it ending up being used more intensive than really 

necessary.  For instance, from the initial experiments it has been found that at some regions of 

the SPECInt95 programs [45] the system data bus transfers solid blocks of zeroes eighty percent 

Figure 4.2 Bus Blocks and Tuples Structure 
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of the time.   

Following the integral approach to the embedded system improvement in general, and 

the front end of it in particular, it is necessary to pay close attention to the I/O subsystem.  By 

creative involvement of compiler and run time collected information, this situation can be 

improved on.  It has been found that by removing redundancy from the data sent over the system 

bus the throughoutput of the bus was doubled.  Nevertheless, if low power is the primal goal of 

this optimization, some additional coding is needed.  By superimposing the Gray code [30] on 

the top of compression the ultimate goal of higher throughoutput with lower switching activity 

can be achieved.  

Although power consumption is very hard to estimate statically, it is safe to assume that 

majority of the power is consumed when a bit flips (changes its value) on the I/O pad and the 

correspondent bus line.  This fact means that power consumption for I/O circuits is in direct 

correlation with the information contents of the data being sent through the bus.  So in the spirit 

Figure 4.3 Busy Bus Cycles  
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of the previous discussion, let us investigate the reduction of switching activity and the increase 

of utilization of the data bus by the reduction of redundancy in the data stream going through it.   

 The first set of experiments were conducted in an idealized environment where there 

were no additional structures other than the core processor, a very small L0 data cache, and the 

off-chip memory (see Figure 4.1).  By ‘small cache’ (one cache line) we understand here some 

kind of a read buffer or a memory controller, and the only purpose of it in the current 

experimental setup is to model a real cache data request activity.  As have been discussed in the 

previous chapter, the difference between no-cache and a tiny cache is how main memory is 

accessed on a data request.  If the processor attempts to load a byte the memory is normally 

accessed for at least a cache block (given that the reference missed in the cache).  If prefetching 

is used multiple cache blocks could be delivered on a single miss.  With the cache block set for 

16-bytes, we can realistically model memory bus traffic without having the effect of a large 

Figure 4.4 Entropy Changes due to Caching 
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cache use.  Neither the processor nor the rest of the memory hierarchy sustains any changes.  

Bus operations are completely transparent for them.  The bus itself is modeled as a queue (FIFO 

structure) through which a sequence of bus blocks is transferred.  It should be noted that those 

bus blocks might be unrelated to either of the logical blocks commonly assumed in the memory 

interface.  In other words, a single bus block might include either multiple or fractional parts of a 

cache block mixed in random order (see Figure 4.2). 

 From now on for all the bus compression purposes we need only consider bus blocks.  

The first set of experiments illuminates the effect of compression.  We are trying to reduce the 

number of cycles that the bus remains busy.  The compression algorithm used is the Flexible 

Huffman with Long Memory. Figure 4.3 summarizes this information.  We can clearly see that 

certain benchmarks can significantly increase their bus utilization in time (throughoutput).  For 

Figure 4.5 Oracle Block Distribution 
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example go, ijpeg and compress nearly double it.  But there is one catch: with the reduction in 

the amount of time the data is being transferred reduced, but the amount of information 

remaining unchanged, resulting entropy increases and the switching activity multiplies.  This 

effect could be illustrated in the following way (see Figure 4.6).  In this figure two abstract 

distributions corresponding to two different transfers on bus are presented.  One (S2) is 

presenting the transaction of data in the original form and derived from figures (Figure 3.1 

through Figure 3.8). The other one (S1) is representing switching activity for compressed data 

segment being sent through the bus.  The important quality is that shaded areas underneath the 

curves (S1 and S2) are of equal in size.  The measure of this activity increase is experimentally 

confirmed and summarized in Figure 4.3 and Figure 4.4.  Apparently sole compression of the 

data bus only leads to the time savings, but defeats the purpose of low power design.  Instead of 

an even distribution of switching activity over a longer period of time, we will have a short burst 

of activity, increasing the peak power consumption (which ultimately could require a larger 

power supply).  

This fact leads us to the conclusion that some additional encoding is needed if we still 

want to use bus compression.  If compressed bus blocks are considered to be atomic units of 

transfer, we can attempt to establish a correlation between their sequences (order) and the 

switching activity.  From the same Figure 4.4, we can also see that there is still a certain amount 

of redundancy available, even after compression has been performed.  This leaves us some room 

for improvement.  A natural choice to reduce switching between sequential states is to apply the 

Gray coding [30] to the compressed blocks.  We should also mention that Gray coding imposes 

minimum amount of delay for both encoding and decoding.  With this double encoding each 

cache block appears to be compressed in two dimensions: in space and in time with a net result 
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of higher entropy and low switching activity.  

 

 

4.2 Data Bus Coding Algorithms 

 

The Gray coding algorithm itself should be modified so that it may adapt to the constantly 

changing bus activity.  The basic idea is simple: to make most common pairs of compressed bus 

blocks differ in a minimum number of bits (perfectly just one bit).  Let us call a pair of 

compressed bus blocks a tuple.  If the two sequential blocks are different, this is a real tuple, if 

they are the same, this is an empty tuple (see Figure 4.2).  From now on we only interested in 

optimizing real tuples.  There were several dynamic modifications proposed - Oracle Gray, 

Adaptive Age, Adaptive Infinite Tuples and Adaptive Limited Tuples.   

Figure 4.6 Density of the Switching Activity on Compressed Data Bus 
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The Oracle Gray is an idealized structure (not necessarily hardware implementable), 

which has full knowledge of all compressed bus block frequencies prior to execution.  The list 

of all possible blocks is sorted in descending probability order and Gray codes are assigned to 

this list in the same order.  This guarantees that the most frequent blocks will have the least bit 

‘distance’ (differ in the least number of bits).  Practical implementation of the Oracle Gray is 

only possible if accurate profiling of all possible data sets can be performed.  In this case, we 

would know the probability of any common block to appear on the bus.  Theoretically, there 

might be widthBus _2  blocks, but as have been discovered, only about 5-10% of them are 

commonly seen and the total span is only 50-60% of the maximum number.  Basically, it means 

that if we simply enumerate all possible blocks we should already see a large drop in switching 

activity.  Furthermore, greater reduction is expected with the Gray encoding.  The major 

Figure 4.7 Transaction Intensity 
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advantage of this method is the fact that both the encoder and decoder have a full table of all 

common blocks prior to execution.  For an adaptive scheme, it means that original blocks 

should never been transferred in unencoded form.  Figure 4.5 represents an example of blocks 

distribution.  It gives an example of how many blocks have been seen once, twice and so on (this 

is the arithmetic mean across all benchmarks).  

 The next method, the Adaptive Age, attempts to model the Oracle encoding in a real 

time system with no prior profiling.  After a compressed block is first seen (and transferred in its 

original form) both the encoder and decoder create an entry in their table.  The next time the 

block is seen, the code is sent instead of the original form.  Every time the block is seen again, 

its frequency is increased, and at a certain period of time the Gray codes are recalculated with 

Figure 4.8 Transaction Density 
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these updated frequencies in mind.  The recalculation point could be predefined (for instance 

every million transfers) or flexible.  If flexible regeneration points are used, some monitoring 

hardware might be dedicated to detect the need for code regeneration.  Additional overhead for 

such a system is an extra physical line needed to be added to the bus.  This line indicates 

whether a Gray coded or an original block is being transferred.  With multiple service lines 

already used on buses, some of the existing connections can be utilized. 

 The next two Gray encoders are trying to utilize frequencies of tuples being transferred 

as opposed to previously used frequencies of individual blocks (see Figure 4.2).  The general 

idea is, instead of looking at individual blocks and their frequencies, to collect statistics on pairs 

of blocks.  This method allows us to take away uncertainty on what block is being followed by 

what, but requires much more information to be kept around.  The first method is the Adaptive 

Infinite tuples algorithm.  It method is theoretical and assumes infinite storage for all possible 

tuples frequencies.  This algorithm is only used here to estimate available performance gain.  

The second – Limited Adaptive Tuple – limits tuples frequency storage to a finite number: 1024 

entries.  Experimental results are summarized in Figure 4.7 and Figure 4.8.  While the Figure 4.7 

gives the absolute number of flips the Figure 4.8 normalizes them to the shortened (due to initial 

compression) period of time: compressed bus cycles.  In either case, the Oracle Gray achieves a 

significant reduction of bus activity on top of compression.  It even does better, on average, than 

the original uncompressed data stream.  This fact basically means that if the Oracle Gray code 

conditions can be practically achieved (implemented in hardware with aid from the compiler), 

then the ultimate reward of shorter bus busy state time and lower power consumption can be 

achieved.  On the other hand, all the ‘practical’ implementations suffer from the fact that each 

block should be sent through the bus at least once to be encoded in the future.  Nevertheless all 
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of them do reduce the bit flip activity overhead from compressing the original data stream. 

The final step in this study would be changing the overall conditions to something more 

realistic, such as increasing the L0 data cache size to 32KB.  This is the memory interface setup 

most of existing systems are utilizing.  As we described in Section 3.2, the problem is that both 

the data cache and the bus encoding mechanism (in this case) are utilizing the same basic quality 

of the data stream (redundancy/entropy).  Since the cache is closer to the original source of the 

redundancy, the processor, it gets the best of it.  The cache virtually prevents most common 

blocks from appearing on the bus.  (Refer back to the discussion in section 3.2).  Once the data 

stream is ‘filtered’ through the data cache, its entropy increases and the bus encoder has nothing 

to work with: all it sees are unique blocks that a rarely repeating.  This conclusion conforms to 

our previous findings regarding the entropy of data filtered by a small cache (see Section 3.2).  

This observation might be considered a negative result in general case.  But for some embedded 

systems, which do not use caching at all, or have very small caches, it might prove to be useful.   
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5 Compressed Data Cache Hardware Implementation 

 

 

5.1 Motivation  

 

 This chapter deals with another key component of an embedded system, which can be 

significantly improved by reducing the redundancy of original data stream: the data cache.  

There has been little work in hardware design schemes for exploiting data value compressibility.  

This is understandable, since on-die data memory capacity today is not a performance-limiting 

Figure 5.1 Compressed Data Cache Architecture 
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factor for general-purpose processors.  However, this is not the case for special-purpose or 

embedded processors that often share the die with the rest of the system.  In several recently 

announced embedded systems like the MIPS64 20Kc [52] and the IBM PowerPC 750x [53], on 

chip instruction and data caches occupies approximately 50% of the silicon area and consume a 

significant share of total power.  In these situations, there is a need for very highly efficient use 

of data memory, or other alternatives to use smaller hardware structures while delivering a 

similar level of performance.  

Moreover, since we found that the data cache is the primary consumer of the available 

redundancy of the data stream, the next logical step is to attempt to increase its performance the 

same way we did for the instruction cache – by compressing it.  As have been mentioned before, 

though similar at the first glance, the actual coding conditions for code set and data stream are 

drastically different.  The major difference is that instead of a static code segment, we are 

dealing with a constantly changing dynamic data stream, so we cannot apply static compression 

algorithm (with fixed frequency distribution).  In addition to that, since the compressed data 

should be stored (statically) for some period of time prior to decompression, we cannot apply a 

truly adaptive compression algorithm either.  With all this in mind, we have a new and unique 

set of contradictory problems to solve.   

 

 

5.2 Compressed Data Cache Architecture 

 

Following the detailed analysis of data stream compressibility in section 3.1, we can 

affirm that the compression algorithm that best fits this set of coding conditions is the Discrete 

Adaptive Huffman.  Let us now define several basic assumptions for design of the proposed 
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compressed data cache: 

- The cache is direct mapped in essence, but provides an implicit associativity (see 

explanation below); 

- Both compressed and uncompressed data blocks can be stored in the cache at the 

same time; 

- The smallest compressible block is a cache line; (no partial compression for fractions 

of a cache line); 

- A block of data is stored in compressed form only if compression reduces its size; 

- Hashing is a function of compressibility of the datum (implicit associativity); and,  

- The cache uses write allocate/ write back update policies. 

 Let us begin by describing the implicit associativity mechanism.  One of the basic 

features of this cache is the variable hashing function.  The whole design is built around of the 

Figure 5.2 Block Placement Example - Expanded Block Placement 
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idea of variable compressibility of the available data, and the hashing function reflects it.  There 

are three possible outcomes for an attempt to compress a block of data: its size is reduced, 

remains unchanged or is increased.  Obviously the outcome depends on frequency of elements 

that make up that block.  If we want to store compressed blocks of a random size, we need to 

provide a flexible mechanism for it.  But the point is that we want to preserve precious storage 

within the data cache, so only blocks that reduce its size after compression are stored and 

placement policy is modified accordingly.  In other words the more compressible a cache block 

is the more flexibility on its placement is allowed.  This mechanism is best explained with an 

example.  

 In the Figure 5.2 we see an example of the case where compression attempt produced 

negative results - the cache block was increased in size after compression.  This happens when a 

cache block contains rarely used bytes.  Fortunately, those blocks are infrequently encountered 

as well.  Nevertheless, in this case the block is stored in the compressed cache in its original 

form (uncompressed), and the hashing function is equivalent to the one for the direct mapped 

cache (see Figure 5.2).  A different approach is taken for blocks that are reduced in size after 

Figure 5.3 Block Placement Example - Reduced Block Placement 
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compression (see Figure 5.3).   

Before we proceed with this example, let us first define granularity level for the cache.  

The granularity level directly correlates to the smallest addressable unit in the cache, which 

normally is word or byte.  Let us use a single byte as atomic unit in our case.  Depending on the 

granularity level, when a single additional atomic unit is added to the compressed block (in 

Figure 5.3 the original size of z is multiple of a byte), the compressed block offset automatically 

‘increased’ by one bit (in this example to six from five), and its index is ‘reduced’ by one bit (to 

nine from ten).  This shorter offset in turn implicitly doubles the line selection choice – now this 

compressed block could be placed in either line 442 or the line 443 in main cache storage.  This 

process is repeated until a compressed block’s size equals or exceeds the original block size.  By 

Figure 5.4 Read Pipeline. Multiple Set storage 
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this time, the compressed block might contain multiple cache blocks (up to the maximum 

available number allowed by the compression algorithm – in this example eight).  Among the 

possible line candidates, the least recently used (LRU) is chosen.  This process is named the 

implicit associativity.  

As it has been mentioned before, for the byte-base compression algorithm, which is used 

in this set of experiments, the granularity is a single byte, so the best potential compression 

occurs when a whole byte is represented with a single bit, i.e. by eight fold (8x).  Given this 

information, up to eight cache blocks can be present in a single compressed cache line.  This in 

turn means that a line can be placed anywhere within this eight line window with original (direct 

Figure 5.5 Read Pipeline. Two cycle access 
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mapping) address inside of it.  Therefore, in order to find a single block, we need to search all 

the entries for all possible locations of the compressed cache block.  In current case this would 

be equivalent to an eight-way set associative cache.  If this search range ever appears to be a 

limiting factor for hardware implementation of the algorithm, the maximum compressibility 

could be limited, with corresponding degradation of performance (from 0.023 average miss ratio 

for the 8x unbounded compression down to the 0.031 for 2x restricted compression).   

Figure 5.4 shows the example of a 2x limited compression and also presents a potential 

implementation of the cache read pipeline.  If the read mechanism used in conventional two-way 

set associative cache is implemented, both cache storage and tag/displacement array can either 

be banked (the traditional implementation with hardware duplication) or dual ported.  It is well 

known that multiporting of more then two presents an extreme design challenge and calls for 

custom design and layout.  Because of this, 8x compression might have impractical hardware 

requirements for this scheme.   

Figure 5.6 2x Restricted Compression Block Placement and Access 
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There are two tradeoffs that can be exploited in order to implement implicit associativity 

for multi-way compression, depending on target implementation:  (1) if the access latency is 

critical, the scheme presented in Figure 5.4 can be used, or (2) if an extra cycle for some (not all) 

accesses can be tolerated, the scheme presented in Figure 5.5 can be used instead.  In this 

scheme, access to an uncompressed block is done in one cycle, and access to a compressed 

block takes one or two cycles plus time for decompression.  In either case, once a block is found 

and it is uncompressed, it could be delivered in the same way as a traditional cache does (see 

discussion below).  If the block is compressed, it must be uncompressed first into the read buffer 

(uncompressed blocks are not placed there, see below).  The critical block can be decompressed 

first using some additional information (6-bit displacement) which is stored along with the block 

tag in the displacement field (see Figure 5.6, the ‘second block’ field).  If the next load hits in 

the same line or one of the following blocks, it is likely to be already uncompressed and resident 

in the read buffer.  To improve access time, the read and write buffers are searched in parallel 

Figure 5.7 WUB Organization  
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with main cache storage.  In this sense this scheme is similar to the open page policy in DRAMs.  

 Now the read and write sequences should be described in greater details.  On a write to 

the cache (the processor stores a datum) the data does not goes directly into the compressed 

storage.  It is first written into the Write Uncompressed Buffer (WUB) (see Figure 5.1 and 

Figure 5.7).  The WUB can hold up to eight (or whatever the compression limit is) sequential 

cache blocks.  If the compression latency poses a delay on the write procedure, each block 

written into WUB can be speculatively pre-compressed and stored in a shadow compressed 

buffer.  If the datum being stored by the processor is not aligned at the beginning position of a 

cache block, the missing portion of the block is prefetched (see Figure 5.7).  The next write to 

the cache is checked against the block currently located in the WUB.  If this datum is from the 

same block (which often is the case), it is accumulated in the WUB.  Potentially up to eight 

cache blocks can be accumulated in the WUB.  It is important to notice that there is no 

limitation on order and permutation of reads and writes since we have two independent 

Figure 5.8 Logical Structure of the Reprogrammable Huffman Decoder 
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hardware paths in the cache to handle them.   

Once the maximum capacity of the WUB is reached, or there was a datum from a 

different block encountered (miss in the WUB), the whole contents of the WUB is compressed, 

one block at a time.  For each individual block the decision is made whether it is stored in 

compressed or uncompressed form.  The only restriction for this process is the sequentiality.  If 

for example, out of the eight sequential blocks in the WUB, the first two get compressed and the 

following two do not, while the remain four do, we will have three independent groups to be 

placed into the storage.  The first and the last compressed groups will have a choice of 

placement (two lines each) while the uncompressed group will be placed at rigid location.  So in 

this way all the content of the WUB is transferred into the compressed (main) cache storage.  No 

stalls are produced by this process, so the store latency is zero cycles. 

 On a read from the cache (the processor executes a load), three separate locations within 

the cache are checked in parallel: the main compressed storage, the WUB, and the Read 

Uncompressed Buffer (RUB) (see Figure 5.1).  The read uncompressed buffer holds the mostly 

recently read cache block in uncompressed form.  This once again means that up to eight 

Figure 5.9 Dual Bank RAM Implementation of the Huffman Decoder 
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consecutive uncompressed cache blocks can actually reside simultaneously in the RUB.  If the 

read hits in either the WUB or RUB the access could be served in a single cycle (or whatever is 

equivalent hit time for direct mapped cache in the current setup).  If the read hits in the main 

compressed storage access time depends on whether the data accessed is in compressed or 

uncompressed form.  If the data uncompressed, the latency is the same as for conventional direct 

mapped cache.  If the block is compressed, the latency might vary depending on decompression 

mechanism employed.  The entire flow graph for this process could be found in the Appendix 

Table 3. 

 Now we should recall that the compression algorithm employed – the adaptive Huffman 

– have periodic adjustment phases, which change the frequency distribution used.  On the 

catastrophic event when the compression algorithm is being adjusted, certain actions should take 

place in the cache storage.  As was mentioned before in Section 3.1 in most cases this is a rare 

event and we can dedicate a software interrupt to serve it.  This interrupt will use the profile 

information accumulated since the last regeneration point and produce new and improved 

Figure 5.10 Multiple Symbol Decoding Example 
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distribution to be used by the compression algorithm.  From an architectural standpoint, all 

previously compressed items should be discarded because new algorithm would be unable to 

interpret them.  But, it does not mean we should completely purge the cache storage.  First, just 

a portion of the data in the cache is actually compressed, so the uncompressed portion is not 

affected by compression algorithm change and could remain untouched.  Second, the 

compressed part could be uncompressed with the old algorithm prior to its regeneration, and left 

at the appropriate location (according to the direct mapping placement algorithms).  Regardless 

of that certain portion of resident cache blocks does get lost, but all these features allow 

lessening the impact of the compression algorithm regeneration on the overall cache 

performance. 

 

 

5.3  Dynamic Decoding Structure 

 

 Now we have come to the most important part of the compressed cache design - the 

Figure 5.11 Biased Huffman Tree Example 
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decoder. Unlike the decoder for the instruction cache, this decoder needs to be reprogrammable, 

because the compression/decompression algorithm changes periodically.  This fact means that 

no static and fast hardware structure could be built, so we need to propose a way to implement 

the adaptive Huffman decoder in reprogrammable form.  In addition to that we cannot rely on 

pipelining to reduce the overall latency of access.  Unlike for the code segment and instruction 

cache, the data cache reads could be spread apart in time with multiple cycles between them, so 

the pipeline hardly could be kept filled.  Finally, it should occupy minimal physical size because 

otherwise the whole purpose of using a smaller smart cache instead of a large unsophisticated 

one might be defeated all together. Figure 5.7 presents the logical/functional organization of 

such a decoder as a priority decoder.  

 The Huffman code fragment, needed to be interpreted, addresses the RAM.  The RAM 

storage entry holds the uncompressed symbol and shift amounts for each original code (Huffman 

alphabet entry).  The shift register is capable of holding up to eSizeLongestCod2  bits of the input 

encoded stream, which are then passed as an input to the left-to-right priority decoder.  Match is 

Figure 5.12 Restricted Huffman Decoder Structure 
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detected when all left-side bits for the RAM contents match the left-most part of the shift 

register.  Once a match is found, a symbol is generated (based on the code location in the RAM 

– simply the line number), and the shift amount is used to update the shift register (so the 

decoded symbol is shifted out).  The critical part here is that multiple cycles are needed to 

decode one cache block and a large physical size for the RAM storage and the priority decoder 

logic.  With these points in mind, the following Dual Bank RAM implementation was proposed 

(see Figure 5.9).   

In this scheme, the RAM storage is split in two banks of equivalent size.  This separation 

corresponds to the splitting at the root of the Huffman tree.  In Figure 5.9, the right bank 

corresponds to all of the Huffman codes that begin with one and the left bank for all that begins 

with zero.  Obviously the storage could not be split any more, since the shortest Huffman code 

could contain just a single bit.   

The advantages of such a structure include multiple symbols decoding in a single cycle 

Figure 5.13 Profile Point Selection 
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and the fact that the critical ‘vertical’ search range is reduced in half.  Figure 5.10 gives an 

example of three symbols being decoded in a single access to the dual bank RAM decoder.  This 

case is far from purely theoretical - virtually all benchmarks in SpecInt95 at some regeneration 

period have a single dominating byte (usually zero), which outweighs the combined probabilities 

of all other symbols and gets encoded with a single bit. 

 Unfortunately, the opposite situation, where a tree is strongly asymmetric due to 

presence of an unlikely bit, is also possible (see Figure 5.11).  In this case, we need more than 

256 entries, potentially up to the eSizeLongestCod2  entries in the RAM storage.  For a typical 

LongestCodeSize of up to 16 bits the RAM size gets unreasonable big.   

Fortunately, there are several features specific to our setup that allows to optimize this 

decoder size.  First of all, it is important to remember that codes are produced and consumed 

Figure 5.14 Compression Dependence on Profile Point Selection. Memory side vs. 

Processor Side 
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locally in the cache.  Second, according to the policy of not storing excessive codes, we are 

likely not to use long codes any way.  From this, we are proposing the Restricted Compression 

model.  The key feature of this compression model is the fact that only bytes whose Huffman 

codes are equal to or less then eight bits are compressed.  All others are considered forbidden.  

The size limitation is chosen arbitrarily and could be varied.  The biggest single advantage of 

using eight beet threshold is the fact that non of produced codes will exceed size of the original 

block, so no hardware ‘adjustment’ is needed to deal with longer codes.  If a cache block 

contains a single forbidden byte, it is considered forbidden as well and is not compressed.  This 

Restricted Compression model allows us to use only a 256-entry decoder.  We guarantee that the 

encoder will not produce forbidden codes (the LongestCodeSize is now less then or equal to 

eight bit and total decoder size is fixed) (see Figure 5.12).   

Just as have been outlined above, the decoder RAM is split into two banks (each one 

now is 128 lines long).  The leftmost bit of the shift register selects the bank.  The rest of the bits 

in the shift register (seven bits) serve as an address into the correspondent bank.  As we showed 

before, the addressed RAM line might actually contain multiple codes (see Figure 5.10).  Once 

the line is found, it produces one or several symbols and a cumulative (for the several codes 

being uncompressed) shift amount.  With this implementation, the speed of decoding will vary 

with the data being decoded, and the most likely (and shortest) symbols will be decoded the 

fastest.  To decode a 16-byte block we might need between two and 16 cycles.  If the decoder is 

sub-clocked at half the cache clock time it translates into between one and eight cycles. 

 The encoder is actually ‘the easy part’, when compared to the decoder.  Just as we 

mentioned earlier in the Section 5.2, since encoding is a rarely performed operation, it can get a 

dedicated operating system (OS) interrupt.  This interrupt will generate new encoding and 
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update the changing part of the hardware decoder.  This interrupt will have to perform all actions 

outline earlier including new distribution and new optimal algorithm generation along with 

selective purging of data compressed with old algorithm.  It is important to note that no 

immediate recompression with the newly generated algorithm was considered at this time, but it 

is a possible option.  Though the algorithm regeneration is a catastrophic event we can reduce its 

occurrences by dedicating minimum amount of hardware.  This will have to be a small hardware 

profiler that is updated in parallel with data compression and holds the degree of compression 

since last regeneration point.  It is important to notice that we still maintain minimum time 

granularity in asserting this hardware (every 1000 references for example).  This will prevent us 

from multiple ‘back to back’ algorithm regeneration.  Once the measured degree of compression 

falls bellow certain threshold, the interrupt to generate new encoding is generated.  With the 

current threshold set at 70% of the original size, only five to twenty percent of checkpoints call 

for actual algorithm regeneration.  

A much more important and interesting question is how to collect accurate profile 

information for all bytes in the input data stream.  Generally this profile should give us the 

frequency of any byte appearance in the data stream since the last regeneration point and its 

accuracy defines effectiveness of compression in general.  The straightforward solution would 

be to maintain an array of 256 counters and update them as we progress.  This update is 

occurring in parallel with the fetch process and does not impose any time penalty.  Nevertheless, 

the use of this array of counters equals an increase in the hardware budget.  Let us investigate 

this issue in greater details. 
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5.4 Variations on the Compressed Data Cache Design 

 

 

 As have been just mentioned, an important option and interesting question in regard to 

profile accuracy is where the statistics on the data stream are being collected.  First it was briefly 

addressed in Section 3.1, and now it is time for the detailed discussion.  As we remember from 

the code segment, there was no such issue as profile point selection.  The code segment was 

statically available and optimized for static storage.  Here we optimizing the dynamic stream for 

dynamic storage and the question is: which part of the stream is more representative.   
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 The obvious choices are whether to collect statistics at the processor or memory side of 

the cache (see Figure 5.13).  The processor bus side gives us a picture of which bytes are 

actually used by the processor.  Theoretically, bytes more commonly used by the processor could 

be narrowed down.  Then, once compressed those bytes get the best size reduction opportunity.  

Nevertheless, to profile the processor side stream, more references to the profiling hardware are 

needed.  This imbalance does not impose immediate performance penalty, but in a long run 

might turn out to be a power issue.  On the other hand, the memory side monitor only sees the 

stream of bytes in response to miss repair (we do not monitor write backs for obvious reason), 

which is normally less then ten percent of references of the processor side.  It will give us 

slightly different distribution, which is more representative for bytes being not in storage when 

needed.   

Figure 5.16 Compression Dependence on Profile Point Selection. Memory side vs. Storage 
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The Figure 5.14 summarizes the difference in degree of compression and the Figure 

5.15shows the difference in miss ratio based on where the data were collected.  As we can see 

on average memory side is doing better in compression, and being less often accessed 

(comparing to the processor side) is clearly a better choice for implementation.  This result in 

some way is counterintuitive.  Nevertheless, once we analyze which blocks are resident in cache 

we will find out that blocks that are mostly accessed by the processor are also the longest 

residing in the storage.  In addition they are also the ones that stay the longest in the read buffer 

in uncompressed form.  On the other hand, blocks that are comparatively rarely accessed are 

causing the most of cancellations due to conflicts in the storage.  If those blocks are compressed 

the most, those effects are lessened.  A naïve but excellent example of this phenomenon would 

be pouring a cane of poppy seed into a full can of beans.  It will fit almost entirely into the empty 

Figure 5.17 Miss Ratio Dependence on Profile Point Selection. Memory side vs. 

Storage Contents 
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space in-between the beans.  And since the poppy seed is the one to go in and out of the can all 

the time, it better be small, so beans do not have to be removed. 

Nevertheless, there is yet another, and in some way, more elegant solution for the profile 

collection.  Generally we can generate the byte distribution based on the current contents of the 

data cache.  It should represent a snapshot of activity during the period since the last code 

generation and it does not take any additional hardware to keep the statistics.  As the OS 

interrupt goes through the storage and selectively purges the compressed blocks it must 

uncompress them first in order to leave the block that maps into the current line resident and 

uncompressed (see Section 5.2).  At the same time, the desired byte profile could be performed.  

This distribution should be blind to frequency of byte usage by processor.  It might turn out to be 

either advantageous or degrading.  As could be seen from the Figure 5.16 after experimenting 

Figure 5.18 Two Level Compressed Data Cache 
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with all the three options, the assumption about low representativeness of the processor side 

stream turned out to be true – for most of benchmarks storage profiling gives better 

compression.  Nevertheless once we look at Figure 5.19 we can see that overall miss ratio is 

virtually unchanged.  It might mean two things.  First is the possibility that we already have near 

optimal profiling with memory side monitoring.  The second possibility is that it is not as much 

important how much we compress but rather what we compress.  But for the reason of the 

smaller hardware budget and lower power consumption we should recommend the storage 

profiling as a better solution. 

The next option needed to be described is the sizes of read and write buffers.  If one 

carefully analyses the structure of the original compressed data cache (Figure 5.1) it could be 

seen that the read and write uncompressed buffers play significant role in the operation of this 

cache.  In essence, they could be viewed as a small L0 cache split into two parts: read and write 

branches.  The question is what is going to happen if we significantly increase the size of those 

Figure 5.19 Miss Ratio for Two-Level Cache compared with the Original 
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buffers.  In fact we would probably want to merge both buffers and slightly reorganize overall 

design.   

The Figure 5.18 presents the revised design.  Both the read and write uncompressed 

buffers are merged into one L0 storage array.  Each line in the L0 can hold up to eight sequential 

memory blocks.  The fact that resident blocks are sequential is rather important here.  It allows 

easy compressed block formation, but results in low hardware utilization, since one hundred 

percent compression is an infrequent event.  The L0 filters all accesses to the compressed cache 

storage – both write and read first go through it and only then access the main storage.  The size 

of L0 is set to 32 lines.  In this configuration, a byte frequency profile is collected between L0 

and main storage, with additional monitoring of the processor side of L0.  This is done to 

guarantee the proper distribution for code regeneration – we do not want build our compression 

Figure 5.20 Reference Hit Breakdown for the Original Compressed Data Cache 
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solely on the storage contents or memory side.  The reasons for that were described in great 

details in 4 and includes the change in the data stream entropy filtered by a caching structure.   

The first set of experiments for the two-level cache revealed its low performance and 

practicality (see Figure 5.19).  In this figure, one of the configurations of the original 

compressed data cache is compared to the two-level cache.  For the bigger hardware budget we 

got slight degradation of performance for most of the benchmarks.  The only exception is the 

perl benchmark, which exhibits high degree of spatial locality, so as a result, most of the used 

data fit into the L0 cache.   

Figure 5.21 Reference Hit Breakdown for the Two-Level Data Cache 
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In order to further analyze this degradation of performance in two-level cache we need to 

look at internal cycle distribution of both original and the two-level caches.  In Figure 5.20 the 

ReadBufferHit part of the bar corresponds to all the references that hit in the uncompressed read 

buffer (the read from the same block that was read recently and still resides in the read buffer).  

The WriteBufferHit part corresponds to all of the references that hit in write uncompressed 

buffer (a write followed by a read from the same address before the block got a chance to be 

compressed).  The other two sections correspond to the main compressed storage.  Since a 

reference could hit in either compressed or uncompressed block we must differentiate.  As we 

can see from Figure 5.21, majority of the references hit in the compressed storage.  This fact is 

the main reason for the performance increase of compressed data cache comparing to the 

uncompressed one.   

Figure 5.22 Two Level Cache Size Variation (Logarithmic Scale) 
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If now we analyze similar distribution for the two-level cache, we will see completely 

different picture (see Figure 5.21).  Now the majority of references hit in the L0 storage, which 

effectively filters out references to the main storage.  As a result small portion of data does get 

compressed, and it could be seen that only a small fraction of the references that got to the main 

storage actually hit in the compressed block.   

The final variation in the L0 experiment is varying the size of the L0 cache from one to 

eight lines.  The results for mss ration and degree of compression are summarized in Figure 

5.22.  It can be clearly seen that with increase of the L0 size the compression performance 

degrades quickly (just as in the case with bus compression).  The miss ratio drops at two-block 

L0 size and then slowly improves as the L0 size increases since L0 now serves majority of 

Figure 5.23 Miss Ratio Comparison between Compressed and Uncompressed Caches 
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references.  It is also should be clear that overall performance per hardware unit uniformly 

degrades, since increase in L0 size equals total hardware budget increase with minimal return. 

 

 

5.5 Final Configuration for the Compressed Data Cache 

 

Once we have iterated over several design options we can come up with a proposal for 

the final and optimal solution for the compressed data cache design.  With everything mentioned 

earlier the cache that uses original configuration and storage based profile collection with a 

choice of storage size between eight and 32 Kbytes and block size of 16 bytes could be 

considered near optimal.  It is very important to note that it is only optimal for the current set of 

Figure 5.24 Absolute Dynamic Compression for Storage Profile Scheme 
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benchmarks.  For a different type of application this configuration should be revised.  Also some 

of the applications (like streaming data processors) might be better without data cache at all.   

The final simulation results for the best configuration are presented in Figure 5.23 and 

Figure 5.24.  The compressed cache is compared against a similarly sized uncompressed two-

way set associative cache.  From the results we can see that an eight Kbytes compressed cache 

with restricted compression model on average performs as the traditional 16 Kbytes two-way set 

associative cache.  For more sophisticated compression model, the miss ratio difference easily 

reaches a two-time reduction for the same size of storage.  In order to prove the statement made 

in Section 2.5.1 about entropy miss ratio the following set of experiments was performed.  The 

compression algorithm was limited to maximum of 2x compression rate and 2way-like 

placement policy.  The comparison between correspondent 2 and 8 way set associative 

traditional cache vs. 2x and 8x limited compressed cache performed.  The results are 

Figure 5.25 Entropy Miss Ratio Summary 
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summarized in Figure 5.25.   

 From everything said so far it could be conclude that even with restricted compression 

model the compressed data cache can perform better then a similar uncompressed cache, and 

intelligent choice should be made for every specific architecture whether it can benefit from 

compression of data cache.  
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6 Conclusions and Future Work 

 

 

 The main purpose of this work is to study the available redundancy and potential 

compressibility of an embedded processor program in general and find ways to use it.  As a 

result, we can reduce both static and dynamic program size, which results not only in increasing 

overall performance but also in smaller code ROM size and lower power consumption.  It is 

important to reemphasize that ultimate goal of higher performance and smaller program at the 

same time was achieved.  The system with compressed encoding and redesigned instruction 

cache actually runs faster than the system with the original configuration and native code.   

If was also shown that there is no single engineering solution to the problem, but rather a 

combination of several different techniques aimed at the same goal.  Part of this approach is to 

use compiler as extensively as possible.  For example we use it to extract the pipeline decoder 

logic for an embedded processor in software at system development time.  By doing this we 

facilitated flexible approach to the design of this decoder, and as a result permitted the 

compression.  In essence the compiler is employed not only for removing complex decisions 

from run time into compilation time (VLIW approach) but also for dictating the overall system 

architecture according to the implementation.  This customization is performed in light and 

transparent fashion and only requires modification of instruction and/or data cache while the rest 

of the system remains unchanged.   

As for the instruction fetch pipeline design, by Huffman compressing and Tailor coding 

the ISA of the original program significant code segment size reduction was achieved.  This 
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work also detailed the design of instruction fetch mechanisms for both this compression 

schemes, and then discusses their performance and cost tradeoffs.  Some interesting results were 

found.  In particular, the degree of compression for the ROM doesn’t necessarily translate into 

an improvement in instructions delivered per cycle.  Experiments found that when the 

missprediction penalty of the added Huffman decoder stage was taken into account, the Tailored 

instruction sat architecture approach produced a higher performance.  Nevertheless, pipeline 

performance is not always the central goal of embedded systems.  Methods like the Full 

Huffman compression scheme that operates at instruction cache hit time still achieved median 

performance advantage over the baseline, while providing significant ROM size savings. 

 Next close attention had been paid to the data stream compressibility and system data 

bus design as well.  The amount of redundant data stored in expensive caches and transmitted 

through tight bottleneck of instruction fetch and data path is hardly tolerable.  First we address 

the dynamic data stream redundancy by optimizing the system bus between CPU and memory.  

The main conclusion from that study was that if there is no caching structures are present in the 

system, significant gain could be achieved from coding the bus.  This gain is expressed in both 

higher throughoutput and lower power consumption.  But if there is even a small cache used on 

the CPU side, hardly any optimizations are possible.   

Next we turned to the data cache design.  By reducing redundancy of data stored in the 

data cache we break an age-old capacity limit of cache storage and defined a new entropy 

capacity limit.  With the modern applications considered the effective capacity of a cache can 

easily be doubled (expressed in reduction of miss ratio) by partially compressing the cache 

storage.  The main challenge encountered in compressed data cache design was the adaptive 

decoder for compressed data.  Since the data cache could hardly be pipelined (or just would not 
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benefit from it) the latency for decompression of data is critical.  Two different approaches to 

the reconfigurable data decompression has been advised – full and restricted compression 

scheme.  While the full compression scheme utilizes every opportunity for compression and 

generally yields near optimal results, the restricted model is much simpler.  Because of this 

simplicity it is more practical to implement in real hardware, so once again, similarly to the code 

segment compression we can see the tradeoff between degree of compression and complexity of 

the decoder.  Next some variations in the design of the compressed data cache have been 

considered.  The main and the most interesting conclusion was that multi-level caching where 

first (zero) level is uncompressed and the next one is, would defeat the purpose of cache 

compression in the first place.   

 Regardless of the comprehensiveness of the study, many questions remain open, and 

some new perspectives are unrevealed.  For the code compression, it is important to consider 

different compression algorithms and variations of the ones used.  It is also very important to 

consider the use of different atomic fetch units like superblocks and possibly treegions.  These 

blocks should significantly reduce the overhead due to address translation table, since it will 

require fewer entries.  If these blocks will ever be used in the compressed data cache, better 

branch predictors will become necessary.  Otherwise the pollution of cache will become 

unavoidable which will defeat the purpose of compressing it in first place.   

And last but not least, after the findings in data cache decoding technology we might try to 

use a restricted compression model in compressed instruction cache as well in order to simplify 

decoding.  It is also might be possible to collapse the extra pipeline stage needed for 

decompression and shorten the instruction fetch pipeline.  For a more general view creation of a 

unique compression algorithms based on a unique and complex cost function for each 
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application is interesting.   

For data compression the future work should include different decoders construction and 

compiler optimizations to aid high data entropy and reference locality.  Generally speaking if 

compiler technology would be perfected to the point where no low entropy data transfers were 

needed the current research would become obsolete.  All those issues are reserved and suggested 

as a future work. 
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7 Appendix 

 

 

 

 

 

   Base Tailored Compressed 

Next Block Cache Hit Buffer Hit 1cycle 1cycle 1cycle 

prediction  Buffer Miss 1cycle 1cycle 1+(n-1) 

Correct Cache Miss Buffer Hit 1+(n-1) 2+(n-1) 1cycle 

  Buffer Miss 1+(n-1) 2+(n-1) 3+(n-1) 

Next Block Cache Hit Buffer Hit 2cycles 2cycles 1cycle 

prediction  Buffer Miss 2cycles 2cycles 2+(n-1) 

Incorrect Cache Miss Buffer Hit 8+(n-1) 9+(n-1) 1cycle 

  Buffer Miss 8+(n-1) 9+(n-1) 10+(n-1) 

 

Table 1. Cache study cycle count assumptions summary.  Note that Base and Tailored 

do not employ a buffer, which is why Buffer Hit/Miss have no effect 
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Table 2. 

TEPIC Instruction set Summary. 

 

Integer ALU Operation

Integer Compare-to-Predicate Operation

T  S   OPT  OPCODE PREDICATE

1    1     2             5  5                 5              2      8                              5            1             5

T   S  OPT   OPCODE PREDICATE

1    1     2            5   5                  5             2            3               5                             5          1            5

   Src1        Src 2        BHWX         Reserved                          Dest       L1

   Src1         Src2         BHWX    D1        Reserved                 Dest       L1

390

Integer Load Immediate Operation

T   S  OPT   OPCODE PREDICATE

1    1     2            5 20                 5          1            5

   Src1                       Dest        L1

Floatin Point Operation

T   S  OPT   OPCODE PREDICATE

1    1     2            5   5                  5            1                    6                      3              5          1            5

   Src1         Src2         S/D           Reserved             tssL/U     Dest       L1

Load Operation

T   S  OPT   OPCODE PREDICATE

1    1     2            5   5                 2         2       1        2               3               5           5          1             5

   Src1       BHWX  SCS  Res   TCS           Reserved  Lat      Dest      Rsv

Store Operation

T   S  OPT   OPCODE PREDICATE

1    1     2            5   5                  5             2            2                       11                               1            5

   Src1         Src2         BHWX    TCS               Reserved                      L1

Branch Operation

T   S  OPT   OPCODE PREDICATE

1    1     2            5   5                  5                  16 5

   Src1        Counter                  Reserved
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Table 3  

Compressed Data Cache Control Flow Chart 
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