Abstract

Larin, Sergel Y urievich

Exploiting Program Redundancy to | mprove Perfor mance, Cost

and Power Consumption in Embedded Systems

Under direction of Prof. Thomas Conte

During the last 15 years embedded systems have grown rapidly in complexity and performance
to a point where they now rival the design challenges of desktop systems. Embedded systems
are now targets for contradictory requirements. they are expected to occupy a small amount of
physical space (e.g., low package count), be inexpensive, consume low power and be highly
reliable. Regardless of the decades of intensive research and development, there are still areas
that can promise significant benefits if further researched. One such area is the quality of the
data which embedded system operates upon. This includes both code and data segments of an
embedded system application. This work presents a unified, compiler-driven approach to
solving the redundancy problem. It attempts to increase the quality of the data stream that
embedded systems are operating upon while preserving the original functionality. The code size
reduction is achieved by Huffman compressing or tailor encoding the ISA of the origina
program. The data segment size reduction is accomplished by modified Discrete Dynamic
Huffman encoding. This work is the first such study that also details the design of instruction
fetch mechanisms for the proposed compression schemes.

Exploiting Program Redundancy to | mprove Performance, Cost and
Power Consumption in Embedded Systems

by
Sergel Y. Larin

A dissertation submitted to the Graduate Faculty of
North Carolina State University
In partial fulfillment of the
Requirementsfor the Degree of
Doctor of Philosophy

Department of Electrical and Computer Engineering
North Carolina State University
Raleigh, North Carolina

August 2000

Approved by:

Prof. Thomas Conte Prof. Eric Rotenberg
Chair of Advisory Committee

Prof. Edward W. Davis Prof. Paul D. Franzon

Biography

| was born in a small town in the southern portion of Russia — Taganrog. In 1993, |
enrolled in the Master of Science program at the Electrical and Computer Engineering
department at the University of South Carolina under the supervision of Dr. Thomas M. Conte.
After completion of my MS program, in 1995, | enrolled in the PhD program at North Carolina
State University under the supervision of Dr. Thomas M. Conte and | have completed this

program at August 2000.

Acknowledgments

Following the age-old tradition | would like to thank everybody who made this work
possible.

The first and the most important are my parents Yuriy Alexeevich and Ludmila
Vladimirovna Larin who made everything possible and supported me on each step of the way.

Thank Y ou.

As my parents granted me physical existence, my advisor Thomas Conte granted me the
‘academic life’. Without his careful guiding and encouraging this thesis would never materialize.
Thank You.

Next my thanks are going to my wife, Elena Vasiluevna Larina who helped and supported
me in every possible way.

And final, but nonetheless important, | would like to thanks those who did not get in my

way. Well, thank you.

Table of Contents

1

INEFOTUCTTION ...t bbb bbbt bt e e s b nn e ne e e 1
1.1 Introduction @nd MOLIVELION.........ccceirririeiriisiee et 1
1.2 PrOVIOUS WOIK. ..ottt bttt s e et snennenne s 5

121 Previous Work in Code Compression for Embedded Systems............ccccceevveneee. 5

122 Previous Work in Bus OptimiZationcccoerererinereneseeeeeesee e 7
1.3 Target ArchiteCture DESCIIPLION......ccuviie e 9

Code Segment Redundancy REAUCTIONcoerieiiiiiereiereeeee s 11
2.1 IMOUIVELION ...ttt e et et b e e b e e en e nn e n e 11
2.2 Measuring the Available ReUNANCY..........ccoeeiriierieierereeeeeeee e 16
2.3 Code Compression TECANIGUES..........ucveieeriiesieseeseeieseesreesseeeesseessesseesseessesnnesneensens 18
24 Talored ENCOUING......ccouiiiieiiiesiesie sttt sn e sa e 22
2.5 Instruction Fetch MeChaniSM ISSUESccoiiueirinereeirie e 27

251 Instruction Fetch Organization and Modification of the Instruction Cache........ 27

2.5.2 Program LaYOULcooiiiiiiie ittt sss e sreeenn 29

253 Compiler Optimizations to Enhance Code Layout.............ccocceeveveeneniienceninnnnn. 31
2.6 Address SPace CONVEISION.......ccuiieiieeiieieesteeseseeseesesees e eeesseessessesseesseseesseensesnenns 35

26.1 Branch Target Address RandomiZationccecveveereneneneneneeeeseesee e 35

2.6.2 Base Line Instruction Cache DESIQNccceeeeiieiie e 40
2.7 Compressed Instruction Cache Hardware Implementation.............ccoceeveeeeicneencneenne. 44

2.7.1 The Instruction Cache Design for Compressed Encodingcccevevvecieieenen. 44

2.17.2 The Instruction Cache Design for the Tailored ISA ... 48

2.7.3 Decoding Complexity EValUationccccceieeieeeeiecie e sieesee e see e 51

Data Segment RedundanCy REAUCTIONcc.oiiiiiririiieeeiee s 57
3.1 Available Redundancy and COmpression Strategycceeeereeveeseeriesieesseessesseeseenens 57
3.2 Effectsof the Data Cache on Data Compressibility.........ccooveeeieieieneni s 69

4 System Data Bus Redundancy UtHIZationcccceeviiieiieiecie et 74

41 Motivation and EXperimental SEtUP..........ccooeeeriririieieresee s 74
4.2 DataBusCoding AlQOrithmS.........cccceeiiiieiieie e 80
5 Compressed Data Cache Hardware Implementation.............ccccoererenenenenieeneesese e 85
5.1 IMOUVELION ...ttt n et b e n e s e s e nenn e 85
52 Compressed Data Cache ArChiteCIUIE..........ccooviiiiiirerieeeeee e 86
5.3 Dynamic Decoding SEIUCLUMEcecueeieieeiieeseeste e stee e sre et e e e enneeneas 96
5.4 Variations on the Compressed Data Cache Design.........ccocevereeieenenene s 102
5.5 Fina Configuration for the Compressed Data Cache..........c.cccevveveieeveeviesceeseenns 111
6 Conclusions and FULUrE WOTKooerieiiiiesieseeee e 114
REFEIENCES ...ttt e et bt b et b et r e n s 118
T APPENAIX .ttt b et e et R ARt R e R e e e r e n e r e ene e 124

Table of Figures

Figure 2.1 Traditional ASIC DESION ...c.vvieeiieiecie ettt ettt s sne e 11
Figure 2.2 Proposed Approach to Embedded System DeSIgN.........cccooeierererieeieenienesesee e 14
Figure 2.3 Zero-NOP Encoding EX@mMPIE.......c.cceeiiiiiiiere et 17
Figure 2.4 Stream-based HUffman ENCOAING ..o 20
Figure 2.5 Tailored ENcoding EXAmMPIEcccviieiieieciesece et 22
Figure 2.6 Comparison of Different Compression Techniques (code segment only). 23
Figure 2.7 Traditional Distribution of MiSS RaLE..........ccccviriieiiericie e 27
Figure 2.8 Entropy Based DiStriDULION............ooiiiiiiiieceeeeee s 28
Figure 2.9 Atomic FetCh BIOCK SLIUCLUEcc.ecvieeeiece ettt 29
Figure 2.10 Treegion forming EXamPle.........co i 31
Figure 2.11 Jump OptimiZation EXAMPIEcccviieiieeceecece e 32
Figure 2.12 Multi-way Branching EXamMpPIe...........ccooiiiniiieeee e 33
Figure 2.13 Branch Target RandOmMiZationcocvevieiieiecie e 35
FIQUre 2.14 ATB IMISS RELIOcueiveriiitiiiieeee ettt nne s 36
Figure 2.15 Compression INCIUdING ATT SIZEcccuveeceeeeee e e 39
Figure 2.16 Banked Cache ArChITECTUEcoiiiiiieieeceeeee e 41
Figure 2.17 Instruction Cache Structure for Compressed ENcoding..........cccevveveveeniecceeseenenn 45
Figure 2.18 Instruction Cache Structure for the Tailored ENncodingccooeeeereeeeieeeeeneenne 46
Figure 2.19 Cache Study Summary. Instruction Delivered per Cycle.........ccceovevevveiecceesieennene. 48
Figure 2.20 Instruction Memory Bus TraffiC SUMMAIYccooeiiiiienininieeeeeeeees e 49
Figure 2.21 Verilog Code for Decoder Example (Custom — left, Byte Based Huffman — right) 50
Figure 2.22 The Huffman Tree DeCcOder SIrUCTUIEccuiiiiiieiiiiiiiiiii e 51
Figure 2.23 Estimated Huffman Decoder COMPIEXItY...........uuururuiiiiiiiiie e 53

Figure 2.24 Estimated to Real Size Comparison for the Byte Based Compression Decoder (for

the Compress BENChMArK)oooeiiiiiiiii e

Vi

Figure 2.25 Estimated to Real Size Comparison for the Byte Based, Full Compression and

Custom Coding Schemes (for the Compress Benchmark)cccoeveieieniniininieneneees 55
Figure 3.1 Dynamic Compression for MB8KSIM...........ccceveeiieieiiesece e 62
Figure 3.2 DynamiC COmMPreSSiON fOr GOcoueieierierieriesiesieseeee e 62
Figure 3.3 Dynamic Compression fOF VOIEXccciveceieeiieeieseesie e see e see e 63
Figure 3.4 DynamiC COmPreSSION fOr GCC.......ccueveriiriirierieniiseeieee et 63
Figure 3.5 Dynamic Compression fOr Perl ..o e 64
Figure 3.6 Dynamic CompressioNn fOr [JPBJc.urverrerererieniireeieie et 64
Figure 3.7 Dynamic ComMPresSiON FOF Li......cuccviieieeieieese e ceesie e s 65
Figure 3.8 Dynamic Compression fOr COMPIESS.........covieiirierireee et 65
Figure 3.9 Summary of Data Segment Compressibility.........ccccceeeeiieeiivierese e 66
Figure 3.10 Entropy Change Due t0 COMPIrESSION.........ccveuerieriinreriesieseeeeeesee e eneenes 67
Figure 3.11 Dynamic Compression for M88ksim in presence of a Data cache...............c.......... 68
Figure 3.12 Dynamic Compression for Li in presence of aDatacache...........cccoovenireninennne 70
Figure 3.13 Dynamic Compression for Perl in presence of a Datacache..........ccccccccvvvevvnnennen. 71
Figure 3.14 Effect of Data Cache on Data Stream compressibility..........ccceoeverenenencnenennene 72
Figure 4.1 Traditional. Bus Encoding Experimental SEtup.........ccccecvveeveccnsiese e 74
Figure 4.2 Bus Blocks and TUPIES SITUCKTUNE..........coviiiieriieieeeieeeeeeese et 75
Figure 4.3 BUSY BUS CYCIESeeieieece ettt st et nne s 76
Figure 4.4 Entropy Changes due to CaChing.........courereeieeriereriene st 77
Figure 4.5 Oracle BIOCK DiStrTDULTON..........cceeiuiiieieccie et 78
Figure 4.6 Density of the Switching Activity on Compressed DataBus............cccceeevereicriennnne 80
Figure 4.7 TransaCtion INEENSITYeoiieiieieeie ettt e e e e e 81
Figure 4.8 TranSaCtion DENSITYcccoiiiriiiiiiieee e 82
Figure 5.1 Compressed Data Cache ArChiteCIUreccueveeiieeie e 85
Figure 5.2 Block Placement Example - Expanded Block Placement............cccceoeieeriinienieneenne 87
Figure 5.3 Block Placement Example - Reduced Block Placement...........cccccevveeevvcceeneceenee. 88
Figure 5.4 Read Pipeline. Multiple SEt SIOrage........covvirerieieierieseee s 89
Figure 5.5 Read Pipelinge. TWO CYCI@ @CCESScouviieiieiie e steesteeee st ste e sre e e e 90
Figure 5.6 2x Restricted Compression Block Placement and ACCESS.........ccccverenerenereseennnn. 91
Figure 5.7 WUB OrganiZatiONccceiieiieeiieseeseesieseesteenseseesseessesseesseessessessseensessssssesssesneesns 92

Vii

Figure 5.8 Logical Structure of the Reprogrammable Huffman Decoderccceveveviecnennee. 93

Figure 5.9 Dual Bank RAM Implementation of the Huffman Decodercccccriiiinnnnenene 94
Figure 5.10 Multiple Symbol Decoding EXamPIe...........cccveeiiereeieseene e 95
Figure 5.11 Biased HUFfMan Tree EXamMPIe........ccoiiiiiiiineeeeeeeese e 96
Figure 5.12 Restricted Huffman Decoder SETUCKUTE..........coeoieeieceesece e 97
Figure 5.13 Profile POINt SEI@CHIONcoeiieeeeeseee e s 98
Figure 5.14 Compression Dependence on Profile Point Selection. Memory side vs. Processor
S oL T TP USUSTPPPPRPRN 99
Figure 5.15 Miss Ratio Dependence on Profile Point Selection. Memory side vs. Processor Side
... 102
Figure 5.16 Compression Dependence on Profile Point Selection. Memory side vs. Storage
CONLENES. ...ttt h et e R e bt e e eae e b e e ese R n e ne e 103
Figure 5.17 Miss Ratio Dependence on Profile Point Selection. Memory side vs. Storage
CONLENES. ...t b et s R e bt e n e R b e e e ne e n e ne e 104
Figure 5.18 Two Level Compressed Data Cache..........ccvecvieeieeiiecieseesie e 105
Figure 5.19 Miss Ratio for Two-Level Cache compared with the Original Implementation.... 106
Figure 5.20 Reference Hit Breakdown for the Origina Compressed Data Cache.................... 107
Figure 5.21 Reference Hit Breakdown for the Two-Level Data Cache...........ccccoovveceniineennee. 108
Figure 5.22 Two Level Cache Size Variation (Logarithmic Scal€)ccoeceveeveececeeciecne 109
Figure 5.23 Miss Ratio Comparison between Compressed and Uncompressed Caches.......... 110
Figure 5.24 Absolute Dynamic Compression for Storage Profile Scheme..........cccccooveivnenee. 111
Figure 5.25 Entropy MiSS RaLIO SUMMEIYcceririiriiniiriieieeesiesee s nee s 112

viii

1 Introduction

1.1 Introduction and Motivation

The importance of embedded systemstoday is easy to underestimate. During the last 15
years embedded systems have grown rapidly in complexity and performance to a point where
they now rival the design challenges of desktop systems. This evolutionary trend is known as
the fifth era of computing: from main frames to minicomputers to microcomputers followed by
PC or desktop eraand finally into the embedded system age. In the last year the number of
embedded processors sold actually exceeded the amount of genera-purpose units sold. And the
trend is growing. With the popularity comes the challenge. Embedded systems are now targets
for contradictory requirements: they are expected to occupy a small amount of physical space
(e.g., low package count), be inexpensive, consume low power and be highly reliable. However,
they are asked to take on more complex functions [3],[17],[47]. The digital image processing,
DVD and third generation cell phone base station require server-like performance from
embedded processors and most of the time they stand up to the challenge.

Regardless of the decades of intensive research and development, there are till areas that
can promise significant benefitsif further researched. One such areaisthe quality of the data
which embedded system operates upon. Thisincludes both code and data segments of an
application. Designers spend along time on logical optimization and minimization of
applications, but they can only achieve as much as the original instruction set architecture (ISA)

will permit. Moreover, excessively cautious and there forth often redundant approach have to be

taken for data accommodation and processing. Asaresult, most of the time the code and data
used on embedded systems contains a significant amount of redundancy.

The presence of this redundancy would degrade the potential performance of any
processor. The Flynn’s bottleneck [32] is one of the toughest frontiers in high performance
system design. It receives increasing amount of attention as the core vs. memory speed gap
multiplies. An elaborate design approaches and compiler techniques are taken to reduce this
gap. Nevertheless few designers actually pay attention to the fact that information contents of
data transferred through those elaborate units is relatively low.

As the complexity and size of applications increase, the traditional method of hand
coding applications for embedded systems is quickly becoming obsolete. Although hand coding
is still practiced for critical regions of a program, and is very popular for simple DSP
applications, optimizing compilers starting to play a major role in the overall process[3],[28].
But, those compilers are normally built to compile a relatively wide spectrum of applications.
So, compilers have to tolerate some redundancy in the code they produce in order to support the
numerous applications encountered. For some real world applications (like the SpecInt95
benchmarks [45] compiled with the optimizing GCC compiler —O2 option for HP PA
architecture) entropy ranges between 0.75 and 0.80, which means that the spilt between two
possible symbols is 70 to 30%. On the other hand compilers have extensive information about
the application being compiled which could be effectively utilized.

This work presents a unified, compiler-drive approach to solving the redundancy problem.
It attempts to increase quality of the data stream that embedded systems are operating upon
while preserving the original functionality. Moreover, some of the proposed methods offer

increase in performance combined with smaller code and data sizes, which proves the negative

effect of high redundancy data and ultimate benefits that could be achieved by removing it.

There are three major components of embedded system front end considered in this thesis.

- Instruction fetch mechanism and instruction cache design;

- System bus,

- Datafetch mechanism and data cache design;

Thefirst part considers reduction in static size of code segment and alternative design for
instruction cache. It is primarily targeted at reduction of the instruction memory size
requirements for System On Chip (SOC) architectures. It is achieved by compression or
customization of the original instruction set to meet the needs of each particular application.
Several prior approaches to this problem have either defined new instruction-set architectures
(e.g., the ARM Thumb Instruction Set [26] or SGI MIPS16 [27]) or defined elaborate
compression schemes without taking the impact on instruction fetch into account (e.g., IBM
CodePack [9], Cooper and Mcintosh [12]). The main contribution of this study is a unified,
compiler-driven approach to the problem. It presents both code compression strategies and their
corresponding instruction fetch mechanisms along with compiler techniques to facilitate them.
The instruction cache is also reconsidered, and it is alowed to hold the high entropy
representation of the original code segment. Thisfact significantly increases instruction cache
effective capacity and ultimately resultsin a higher performance.

The second part of thiswork pays attention to communication issues within the memory
hierarchy and front end of embedded processors. Following many previous researchesin the
area [33],[34],[49] thisthesis research utilization, throughoutput and power consumption on
memory and system busesin SOC. The improvement is achieved through dual coding of the

original stream: avariation of Gray coding is applied on top of dynamic Huffman compression.

For some configurations the ultimate goal of shorter transaction time with lower switching
activity is attained.

Thelast, but not least, considered component is the data cache. Even with a perfect
instruction cache, a processor can only operate as fast as data could be delivered to it.
Unfortunately dynamically accessed data contains a significant amount of redundancy, which
reduces the effectiveness of the data fetch mechanism. The quality of this data could be
significantly improved by dynamic compression, if apractical scheme can be invented to exploit
this data quality. Itisno surprise that dynamically accessed datais compressible. Research into
value prediction hints at high rates of redundant data accesses [51]. However, exploiting this
property to yield a performance benefit has been difficult so far. With the help from compiler
and the run time profiling we can double performance (miss ratio) of the datafetch path. But it
can only betruly effectively explored if the data cache is permitted to hold compressed blocks.
Thisfact in turn introduces serious design challenges.

To summarize the proposed solutions to the above-mentioned problemsit is necessary to
state the following. In any embedded system, especially in those based upon the VLIW
architecture, static (or compiletime) part of design cycle gains greater importance very rapidly.
This offers unique opportunity to improve performance of the available hardware base with
minimal dedication of some logic complexity and maximum utilization of the compile
technology. The target of optimization isthe available redundancy in application. The
beneficiary is the front end of an embedded system. The gainislower physical space, higher

performance and lower power dissipation.

1.2 Previouswork

1.2.1 PreviousWork in Code Compression for Embedded Systems

This study would not be complete without first mentioning previous research in this area.
Aswas briefly mentioned in the introduction, in the past there were severa studies regarding the
reduction of the ROM size in an embedded system [1],[9],[10],[12],[17],[18],[47].

In several works by Wolfe, et al. [1],[17],[18], atechnique to execute compressed

programs on an embedded RISC architecture (MIPS was used as an example) was studied. The
initial motivation involved reducing the code size difference between the RISC and CISC
embedded processors. Besides the diversity in target architecture, one of the major differences
from the current study was in the unified approach to the compression. Wolfe’s studies used the
Huffman algorithm for compression, but only one common histogram was built for a set of all
experimental benchmarks and obige-based alphabet was considered. In addition to that a
fixed-size 32-byte blocks were considered an atomic unit of compression. The goal was to
create a single encoding for a fixed architecture and satisfy some range of applications. This
single encoding scheme is important when building a general-purpose system, but seems less
effective for embedded applications with their unique code base. In the Wolfe’s work [1] code
is uncompressed at the instruction cache miss path, and the study does not discuss further details
of instruction cache design. A special hardware structure (called Cache Line Address Lookaside
Buffer) was provided to guarantee dynamic conversion between compressed and original
address space. Regardless all the differences, the original work by Wolfe [1] was one of the

major inspirations for the code compression part of this thesis.

Several industrial solutions to the code segment size problem include the IBM CodePack
[10],[42], the ARM Thumb [26], and the SGI MIPS16 [27]. The first one uses the dictionary
Huffman compression scheme, while the latter two of these provide special compact subsets of
the original instruction set architecture (ISA). Truncating the original 1SA reduces its flexibility,
which ultimately resultsin increased instruction count and, in general, slower running
applications. The CodePack also has the disadvantage of keeping the instruction cache
uncompressed. The consequences of this decision are discussed in this study in great details.

Recently some design issues regarding instruction fetch mechanism for IBM’s PowerPC 405
(which uses Code Pack) were revisited by Lefurgy in [48]. The important achievement was the
fact that after certain improvement to existing hardware structures (instruction fetch pipeline
architecture) the compressed code exhibit better performance then the native program.

A work by Yoshida et al. [47] specifically concentrates on low power embedded system
processor design. They are using a compression method to reduce power consumption of an
embedded chip. It is specifically targeted at I/O interface by means of substituting original 32-
bit instructions to a set of references in transform table (which resided on chip). This way by
execising tradeoff between silicon area and encoding complexity they significantly decrease 1/0
load and executable size. For ARM610 used in experiments, for some benchmarks 12-bit
pseudo instructions we reported to be sufficient to substitute original 32-bit operations.

Cooper and Mcintosh [12] spend most of their effort reorganizing code at the assembly
level via suffix-tree code compression. They reported a very moderate level of compression (5
to 15% reduction). In either way this study is orthogonal to the approach taken in this work.

A series of works by Fraser, et al. [9],[13] considers elaborate compression algorithms at

the assembly level with the same lack of attention to the instruction fetch issues. The

experimental resultsin this thesis show that neglecting instruction fetch performance in the
presence of compression may lead to incorrect conclusions about the appropriate scheme to
implement.

A recent series of publications by Lefurgy [25],[43],[44] describes a way to manage the
compressed code segment with software. 1n the [44], authors proposed software managed
decompression tightly coupled with the instruction cache. The compression granularity in [44]
isasingle cache line, as opposed to asingle basic block used in thisthesis.

An interesting study by Liao, et a. [15] employs an effective compression algorithm
(External Pointer Model by Storer and Szymanski [24]) at the assembly level. In essence this
method introduces a micro procedure calls to a common regions of code. Liao reported an
average of 30% code size reduction. Two implementations, software-only and ‘call-dictionary’
are considered. Both increase the number of branches in the code and (reportedly
insignificantly) the operation count. Also due to high granularity, some opportunities for
compression are missed, and as with the CodePack and many others instruction fetch schemes

use decompression at miss time and uncompressed cache.

1.2.2 PreviousWork in Bus Optimization

The next set of relevant research deals with bus power consumption. A number of
researchers addressed power consumptiaddress buses. It is understandable since address
stream exhibits a great deal of repetitiveness and very low entropy. The fundamental work by
Hammerstrom and Davidson [40] in 1977 showed that there is less than or equal to one percent

of information content in a typical address trace. This is rather understandable since majority of

7

the time address (Next PC) is merely an increment of the previous value. Combined with
normally high spatial locality of references, this accounts for very low information contents.

There were several researchesin the area, and the most relevant are asfollows. The
work by Su et a. [38] used the Gray Coding for address generation in RISC-like VLSI-BAM.
The idea was to make program counter produce Gray codes as oppose to normal increment.
Certain care had to be taken of branch target addresses and reported savings were up to 58%
switching activity reduction. The next work by Musol et a [41] concentrated on improving the
Address bus Gray coding by proposing a Working-Zone Encoding. This approach is based on
observation that different address space areas exhibit different behavior. For some cases authors
reported up to 65% switching activity reduction.

In the domain of data buses coding the following work deserves attention. The work by
Stan and Burleson [33] concentrated on special encoding for terminated off-chip broad —level
busses and tri-state on-chip buses for low-power communication. Authors considered not one
but several different techniques for minimizing transaction activity. Those methods included
not only logical minimization (via compression and special coding) but also by phase
modulation of bus signals. Several techniques combining various encoding models were
proposed. For their experimental setup savings of up to 68% were achieved. The same authors
in [34] also proposed a Bus-Invert method which tradeoff performance and area for low power
dissipation.

Finally in the area of data cache compression no previous research was found.

1.3 Target Architecture Description

All experimentsin thiswork are based on the TEPIC (TINKER EPIC) VLIW embedded
architecture [11]. It isa40-bit version of the HP PlayDoh VLIW machine specification [21],
adapted for embedded system use. It isimportant to note that the TEPIC ISA encoding is very
similar to the Intel/HP |A-64 ISA, since the PlayDoh was one of the major influences for the IA-
64. For acore processor configuration, we assume a six-wide issue machine, with four
execution units that can execute any instruction except for memory access, and two universal
units (that can perform any instruction including memory accesses). The register files are fixed
to 32 general-purpose, 32 floating point and 32 predicate registers. The detailed encoding
formats for operations are shown in the Appendix Table 1.

A specia compact encoding is used to encode asingle VLIW Operation (MultiOP or
MOP for short — it combines all the instructions that must be issued in the same cycle). This
compact encoding is known Z@ero-NOP encoding and was originally designed to decrease the
size of the VLIW code segment as compared to an equivalent RISC code [7]. Each operation in
the original ISA is equipped with a dedicated bit, which is set only for the last operation in a
MOP (See example in Figure 2.3). This encoding allows exclusion of the empty instructions
(NOPs) in the final scheduling, which are normally the major contributors to the traditional
VLIW code size explosion.

Generally speaking, TEPIC is a very powerful architecture, and a rather aggressive
approach to an embedded system implementation. But with the current rate of progress,

(Moores’s law) it seems to be a very likely scenario for near future designs [52],[53]. However

the target architecture does not obscure the importance of the code and data compression in the
current work, which might prove even more relevant for smaller systems.

As was mentioned before, the LEGO optimizing compiler [7] is used to schedule and
optimize the code. The LEGO compiler employs standard optimizations and global instruction
scheduling using Treegion [4],[5],[6] block forming. A modified version of the original
TINKER assembler is used to generate custom encoding, compressed object file as well asthe
synthesizeable Verilog for the decoder. The compiler is able to output an intermediate code
(Rebel) that is executed viathe TINKER YULA emulation tool. Annotations are added by the
compiler to emit an instruction address or load/store trace for simulations (these annotations are
not included when determining the instruction addresses or performing compression). All the
studied hardware structures are modeled via simulators using an execution-driven trace.

The SPECIint95 [45] benchmark suite is used for all experiments.

10

2 Code Segment Redundancy Reduction

2.1 Motivation

The instruction fetch process is a well-known bottleneck for any architecture, and isa
crucial process for embedded systems. Initia analysis shows that most of the time the
information contents in typical applicationsis aslow as 20 -30% [50]. This meansthat the
expensive instruction fetch mechanism 80-70% of the time performing redundant operations.
The code segment’s size can be reduced as much as 50% [50], by modifying the original ISA

design and adjusting the design of the instruction cache. As a result the new program can be

Special -
purpose
function
units

Core (VLIW)
micr opr ocessor

 processor local bus

1
1
i On-chip
: memory

Code
ROM

Figure 2.1 Traditional ASIC Design

executed at the same, or even faster rate, when compared to the original (native) code. By

11

tuning the instruction fetch pipeline, not only the performance but also the embedded system’s
overall size, cost and, indirectly, the power consumption are impresgndut reducing

original functionality. The key feature is that the original ISA is uniquely adjusted for the
specific conditions oéach particular application. The ISA could be either custom tailored or
compressed. Once the code is compressed, it is kept this way throughout the whole instruction
fetch pipeline, from the code ROM to the decoding stage of the processor. An important and
unique contribution to the previous research in this area is the fact that the instruction cache
itself is kept compressed, which significantly increases its effective capacity.

One commonly employed approach in building an embedded system is by using an
Application-Specific Integrated Circuit (ASIC) [3],[27],[28],[42] design. It is commonly known
as a System On Chip (SOC). Such a system is normally composed of several building blocks
taken from a component library. All application code is stored in a ROM and an off-shelf on-
chip core processor is used for execution [3],[52],[53] (see Figure 2.1). This method is a
flexible and powerful way to quick implementation of an embedded system with minimal
resources. At the same time, due to the inherited flexibility, a number of high level architectural
enhancement are possible, which makes it easy to put into operation techniques and solutions
described in this thesis.

First and probably the most important problem with modular ASIC approach and off-
shelf core processor is that the instruction memory ROM size multiplies with the growth of the
device’s functionality. The ROM size will soon become the major cost defining factor and
bottleneck for the instruction fetch (IFetch) mechanism [1],[3],[14],[27],[28],[50] as well as
overall system implementability. As a result, the code ROM often has to be implemented on a

separate chip, which involves the familiar difficulties associated with remote instruction

12

fetching and off-die power consumption. One of the many challenges of an embedded system
design isto reduce the size of the ROM without sacrificing the functionality and performance of
the system. As have been mentioned before, the approach taken in this work for the code
segment is trying to reduce redundancy of the code stored in the ROM by customizing the
original ISA or by utilizing compression to modify the existing code. Thisincreases the
utilization of the entire instruction fetch pipeline and in turn reduces the ROM size. This effect
can only be achieved if a substantial amount of redundancy indeed exists in the code.

With the growth of embedded systems application complexity far beyond familiar
embedded DSP applications, as have been mentioned before, the traditional methods of hand
coding and optimizing are becoming less and |ess effective and increasingly time consuming. In
addition market’s requirements of a short design cycle and increased reliability have become a
limiting factor. A practical way to use a high level programming language, while maintaining
optimal target code quality is needed [3]. This calls for developing a sophisticated compile
technology and majority of vendors invested tremendous amount of time and effort in doing
that. For example, the Tl 320Cxxx series of DSP processors has beess$ul in large part
due to the vendor-supplied optimizing compiler [28]. This work follows this trend by focusing
on compiler-driven code design and data optimization for embedded systems applications. The
compiler used for this study is the optimizing LEGO compiler developed in the Tinker group at
North Carolina State University (NCSU) [4],[5],[6],[11]. This is a highly optimizing
speculating compiler targeted to a wide range of very long instruction word (VLIW)
architectures including the Intel 1A-64 prototype. It uses Treegion-based scheduling [4],[5],[6]
and provides a comprehensive set of traditional optimizations. While being a research compiler

it is available for easy modification to fit the current study.

13

In general an important feature of embedded systemsistheir specific code base. Since
an embedded system is likely to execute the same code base throughout its life span, the
compiler can customize the original instruction set architecture. After scheduling and
optimization, once the final image is available, the compiler generates an efficient custonm-

tailored instruction set architecture and decoder structure, which can interpret it. In other words

/" """ -""-""//"-"/"-"/" - ' - - - - - - - - -"-"—-"—" " —" =" *1

Application il !

- Core (VLIW) Special |
purpose

MiCroprocessor .
P function 1/0

7]

>

O

- :
Decoder % units

processor | local bus
I |

2

(LEGO) Compiler
generates Tailored -
decoder and encoding

=M Code On-chip
ROM memory

Figure 2.2 Proposed Approach to Embedded System Design.

this study is not bounded by the rigid traditional instruction set architecture. As have been

mentioned before, traditional ISA’s are normally designed to fit a wide spectrum of applications.
In this study, the instruction set architecture is a parameter and is optimized for space and cache
performance. In general the ISA could also be improved for power consumption, branch/data
prediction accuracy, and various other design goals. Nevertheless only code size is considered
at this point. Another closely coupled possibility is compression of the original ISA. The result
Is a compressed set of original instructions that need to be uncompressed prior to execution.
The code could remain compressed all the way down to the instruction cache, with obvious

advantages in the amount of required space. (See Section 2.3 for a more detailed discussion).

14

Another element of this work involves the justification of use of VLIW architectures for
embedded systemsin general. Obviously the VLIW architecture seemsto be a natural fit for the
embedded system environment since many traditional VLIW problems do not affect embedded
systems. Thereisamost no code compatibility problem between generations. The use of
relatively simpler hardware leads to a higher performance and low power consumption, when
compared to an equivalent issue-width superscalar architecture. And one of the foremost
advantages for thiswork is the primary role of compiler in producing the code. Since normally
extensive information is available about the dynamic behavior of the program, high quality
schedules can be produced by the optimizing compiler. All these statements were proven to be
accurate at the design of the commercial TI DSP processors [28]. The familiar challenges
present are the static code size and effective high bandwidth instruction fetch. The object code
size difference between the VLIW and the superscalar architecturesis first reduced by using the
Zero-NOP encoding [7] and restricted code duplication in the LEGO compiler to the lower
RISC-like levels. Then the code is further optimized for required space by reduction on an
individual operation size through tailor customization or compression. The instruction fetch
related issues for the Zero-NOP encoding have been discussed in [7],[8] and are further
extended in this work. The decoder’s structure for the optimized encoding is produced by the
compiler, which has all of the information needed — logical functionality, in- and output
connectors along with the required control signals. The overall structure of such a system is
presented in Figure 2.2. Thus the compiler now plays a major role in dictating not only the
ROM'’s contents (the executable code), but also the core processor decoder’s logic and other

components design.

15

2.2 Measuring the Available Redundancy

In order to estimate the amount of useful information in a data set we should choose a way
to measure the present redundancy. The available redundancy could be measured by calculating

the entropy of the code as it was defined by Shannon in [29]. In the Equation 1, P, (x) isthe

probability of alphabet character x in the set. The base of the logarithm only matters for

convenience of presentation and is normally set to ten.

H(x) = Z— Px(x)log,Px(x) (Equation 1)

x,Px(x)#0
For abinary system (see Equation 2), P, isthe probability of zero and P, isthe probability of one

in the set (or embedded system application executable code in our case). It isalso more

convenient to use logarithm base two to represent results.
H =-(R,log, R, + R log, B) (Equation 2)

So for the logarithm base two, when the entropy is equal to zero this means that all probabilities
but one are equal to zero (just one symbol in the set) and information contentsis none. On the
other hand, when the entropy is equal to one, all symbolsin the set are equally probable and the
amount of information contentsis at the maximum. Once it was proven that there is sufficient
slack in the data set, we should define a strategy on its removal, and first the redundancy of code
segment is discussed.

Traditionally, there are two general approaches for the reduction of a program

16

redundancy (or increasing its entropy in different terms). Oneis the reduction of the number of
redundant assembly operations in the code [9],[12],[13],[15],[27], and the other is the reduction
of the operation size[1],[10],[28]. Generally, these two approaches are both trying to achieve
the same goa — to increase the entropy of the code, but it is achieved in different ways. This
means that applyinigoth of them to the same portion of code obviously will not result in better
compression. (Nevertheless different areas of code could be optimized with different methods.)
It is important to notice that this statement is assuming that all traditional optimizations (like
constant propagation, redundant computation and dead code removal) have been done and code
does not contain any logically redundant operations or computations. This work chiefly
concentrates on the latter approach - reducing the operation size.

There are two methodologies for reducing operation s&#dering the |SA or

Traditional encoding Total 960 bit, 560 bit arein NOPs

0 nop nop Op A2 nop Op A 4 nop nop nop
8| OpBO nop Op B 2 nop nop OpB5| OpB 6 nop
16 | Op_C O nop Op C 2 nop OpC4 nop nop OpC7
TINKER Zero-NOP encoding
: ! ..0pType
0 |0i OpAZ2]1: OpA4 Total 400 bit, O bit arein NOPs
2|0l opBoO |0 opB 2|0 OpB5 |1l OpB6
6 |0/ OpCO |o! OpC2|o} OpCA4 |1 OpC7

Figure 2.3 Zer o-NOP Encoding Example

compressing the code. The tailored ISA is a new and unique encoding, which is generated for
one particular program/application and best fits its characteristics. After decoding a tailored

operation, the internal processor signals are obtained. Because of the tailoring process, different

17

operations are getting different sizes, which affects the branching mechanism (this topic will be
discussed in greater detailsin Section 2.4).

On the other hand, compression of the code segment takes an existing encoding (1SA),
and, according to the static frequencies of elements in the source code, determines the best way
to pack it. Once a compressed operation is uncompressed at execution time, it still needsto be
decoded to obtain internal processor signals. Theoretically tailoring the ISA should yield better
performance (e.g., no intermediate decompression needed), while compression should yield a
smaller code size. Thiswork finds that this intuition holds, even when the improved instruction

cache performance from caching compressed code is taken into account (see Section 2.7).

2.3 Code Compression Techniques

Let usfirst discuss compression of the original instruction set. In general, the
compression circumstances for embedded systems code segment are very favorable, since the
entire code image is available statically for the compression algorithm and compression
objectives are to reduce the static size of the code. A fast hardware decoder could be used for
decompression and interpretation. The main issue is the complexity, and therefore size and
speed, of the decoder. There are virtually thousands of potential compression algorithms to
choose from. First, we can safely eliminate dynamic compression algorithms since we need to
store compressed code and also fully utilize its static availability. Hereit isimportant to
reemphasize that since we are concerned only with the static size of code (ROM size), we only

need to know the static distribution of elements. This might not be the case for compressing

18

dynamic data sets, as we will soon see. Also if code segment would be optimizing for dynamic
interpretability, it might involve dynamic profiling and analysis. Nevertheless for the static
environment, the Huffman lossless compression algorithm [2],[30] produces near optimal results

for an integer number of code bits. It is an entropy-bounded code and will use N, =-log, P
bits to encode character i intherange 1<i < Ny umerorcharacers - |t &S0 alows reasonably fast

decompression (FSM or table lookup) at arealistic real estate price [17],[18]. For similar
reasons, the Huffman compression algorithm was used in several previous studies [1],[9]. The
closest rival to the Huffman compression scheme is the Arithmetic Coding compression
[55],[30],[46] agorithm (or simply arithmetic coding), which could use a fractional number of
code bits to encode the original symbol. Nevertheless, the arithmetic coding compression
algorithm is much harder to decode in hardware and also might need some additional overhead
for stop symbols on alow granularity compression [46].

In addition to the described methods, a new and unique compression algorithm could be
created if a precise cost function would be defined, and thisis reserved as a future work.
Meanwhile for the rest of this work we will be using variations of the Huffman compression
algorithm.

There were three major variations considered. They al differ in ways of composing the
input alphabet for the Huffman compression algorithm. The first variation is the traditional
byte-based method [1],[2]. The code segment istreated as a stream of bytes and compressed
accordingly. Aswe will see shortly, this method produces the smallest decoding table and the
simplest decoder.

Second variation is the stream-based approach. The idea behind it isthat certain fields

in an instruction encoding exhibit more repetitive patterns when taken as independent

19

compression streams, than when combined with other fields (see Figure 2.4 and Table 2 in

Appendix). For example OpType and OpCode fields of the TEPIC operation encoding are set to
‘INT_OpType’ and ‘ADD_OpCode’ very often (up to 30% in some applications). The same is
true for the predicate field, which is most of the time (except for the if-converted code) is set to
predicate register number one which in the TEPIC architecture is hard-wired to ‘true’ and means
unconditional execution of the operation. According to that observation, alphabet streams are
fixed at certain operation field boundaries, as shown in Figure 2.4. The initial boundary
selection was made manually after careful examination of the generated assembly code.
Nevertheless, there were several experiments conducted in order to prove this selection and they
will be discussed shortly. However, stream based encoding is not entirely new. A similar
observation was made in the IBM CodePac [10],[42] instruction set architecture and used there
as a base assumption for further Huffman table-compression scheme.

The last approach to alphabet selection for the Huffman input alphabet composition is to

Integer ALU Operation

11 2 5 | 5 5 2 | 8 5 1] 5 |
T|S|OPT |OPCODE Srcl Src2 BHWX Reserved Dest |[L1| PREDICATE
0 39

I I I
I I I I
| Integer Compare-to-Predicate Operation i | |
I I I I

111 2 5 . 5 5 2 ! 3 5 5 1 5 !
T| S|oPT |OPCODE| Srcl | Src2 | BHWX | D1| Reserved Dest |L1|PREDICATE]
0 39
3 Load Operation | 3 3 |
11 2 5 ! 5 2 2 1 2. 3 5 5 11 5 |
T| s|oPT |OPCODE| Srcl VE\;lr;l(SCS [Red TCS Reserved Lat | Dest |Rsv| PREDICATE]

! Stream 0 Stream 1 i Stream 2 | Stream3 |

Figure 2.4 Stream-based Huffman Encoding

20

consider the whole operation as a compression unit. Theoretically this al phabet might have up
to 2% entries (since operation sizeis 40 bit long), but in practice this number is significantly
smaller. This method produces the largest decoding table, but surprisingly enough, has the
greatest potential for compression. This result becomes more understandable when one
examines the generated Huffman codes. Even with alarge number of dictionary entries, the size
of the popular ADD instruction often went down from 40 to six bits. Furthermore, none of the
Huffman codes for the full compression model has exceed the original operation size. In
contrast, the maximum degree of compression of either stream approach is the sum of the
maximum compression of all (four in our case) streams, which easily exceeds six bitsin most
cases. From another perspective the whole operation compression method (Full Huffman from
now on) should take us as close to the entropy of the code as possible. If al possible bit
combinations for all the possible instructionsin the code would be determined (extract all
unique instructions), and then encoded with the least number of bits according to their absolute
frequency, we will get virtually perfect (or bottom line) compression while still having separate
instructions in the code.

One additional detail of Huffman compression involves the maximum symbol length.
For some inputs, the Huffman algorithm produces very long output codes that might exceed the
original operation size and become incompatible with the instruction fetch hardware (like
instruction bus weight for example). The compiler keeps track of such events, and either
aternates the compression process (similar to the Bounded Huffman code described by Wolfe
[1], where some additional encoding is required to guarantee the size) or substitutes the rare
instruction with an equivalent group of more common ones. It isimportant to notice that

virtually no such events were detected for the current experimental setup.

21

2.4 Tailored Encoding

The main idea behind the Tailored encoding is to provide to an operation as much space
asit really needsin the contents of the current application, but not to compressit otherwise. At
the same time we need to guarantee that within the same operation type/code instruction field
boundaries remain at fixed locations. This requirement does not impose critical limitations on

size reduction but significantly simplifies the decoder. Aswe will soon see, the tailored

a) Original ADD Operation

11 2 5 5 5 2 8 5 1 5
T|S [OPT |OPCODE Srcl Src 2 BHWX Reserved Dest |L1| PREDICATE]
0 39

b) Tailored ADD Operation
11 6 5 5 2 5 1

T| S|OPCODE Srcl Src 2 BHWX Dest L1
0 25

¢) Original Store Operation
11 2 5 5 5 2 2 11 1 5

T|S |OPT [OPCODE Srcl Src2 BHWX|TCS Reserved L1| PREDICATE
0 39

d) Tailored Store Operation

1 2 5 4 1 1 5
T| OPT [OPCODE| Srcl Src 2 L1 Dest
0 18

Figure 2.5 Tailored Encoding Example
encoding method still gets significant space savings compared to the original instruction set
architecture, but avoids the intermediate decompression stage entirely. Asatailor-encoded
instruction is decoded, the core processor’s internal control signals are obtained directly. In this

study, the Verilog code for the decoder is produced by the compiler and can be used to create

22

real hardware structure.

The algorithm for generating the Tailored encoding is rather straightforward. First, the
entire code segment is ‘logically’ profiled/analyzed. The profiling information includes the
number of operations used within each operation type, the maximum number of registers
simultaneously live, the size of absolute field values (like addresses and immediate values
included into operation body), and some others. If for example the application uses less than

eight floating-point operations the floating point OpCode field only needs three bits. If a literal

Compression

90% ’4{ OHuffman_Stream W Huffman_Stream_1 OHuffman_Byte ETailored W Huffman_Full }7

80%

70%

60% -

50% -

40% +

% of original size

30% 1

20%

10% -

0% +
compress go li ijpeg perl ma88ksim vortex gcc Mean

Benchmarks

Figure 2.6 Comparison of Different Compression Techniques (code segment only).

in an immediate field of some operation exceeds some threshold value (16 bits in the current
study), this operation is separated into a Load Immediate instruction followed by the original
operation with register use instead of an immediate value. Similarly, after the register
allocation, if no more than four different registers of some type are live at the same time in some

source position, the source position needs only two bits to encode. The result is an

23

uncompressed, but compact version of the original program nearly optimal for this particul ar
application (see Figure 2.5).

As have been mentioned at the beginning of this section, while forming the Tailored
instruction set architecture, some enhancements are possible for the decoding stage. Indeed it is
abig issue, because if we overly aggressive follow the minimum requirements for operation
field we might end up with as many unique encodings (or masks) as there are different
instructions in the application. That iswhy some size reduction needs to be sacrificed to
guarantee interpretability of the customized code. For instance, if every instruction hasits Tail
bit, OpType and OpCode fields (see Figure 2.5) in afixed position (and possibly of afixed size)
within the custom operation, decoding is significantly ssimplified. In addition to this, those fields
could be grouped together for aMOP and placed at a certain location. Since the compiler isthe
one who generates the encoding and decoder, it looks for opportunities like this when it creates
the Tailored ISA.

A comparison between all of these methods is presented in Figure 2.6 for the code
segment only (see Section 3.3 below for more discussion). It should also be noted that for the
stream based encoding, in addition to just choosing different fields for a stream, we could
permute and combine them. This could potentially result in N! different combinations, where N
is number of bitsin uncompressed instruction (40 bit for the TEPIC). In order to select the
optimal stream for all the benchmarks a variation of genetic algorithm have been used. From all
the considered possibilities, only six different stream configurations were selected, and the two
best performers are shown in Figure 2.6. The streams presented here were selected for the
smallest average code size (stream 1) and for the smallest average decoder size (stream) among

considered variations.

24

While analyzing the compression study results, several interesting points could be noted.
The firs, and the most important one is that a significant amount of redundancy does exist in the
code segment. It is quite understandable since an ISA is designed for a broad range of
applications, and the application under consideration might use only a small fraction of the
presented possibilities, it isintuitive that redundancy would be present. The second obvious
conclusion isthat not all compression algorithms are equally successful in removing this
redundancy. The traditional byte-wise compression method could be used as a base line to
evaluate others. This algorithm views the image as a byte stream with no other considerations,
which yielding an approximate 25% size reduction. The antipode of the byte-based compression
method is the Full Huffman encoding scheme, which compresses the image on an operation per
operation level (40bit at atime). Note the remarkable code size reduction with the Full Huffman
compression scheme (less than 30% of original size or 70% reduction on average). As have
been mentioned before, this method approaches the entropy limit of the program’s information
contents. But, as we will see in Section 2.7.3, it produces a very large decoder, which in turn
might prevent the use of this algorithm as the primary compression algorithm. This fact leads us
to the final conclusion that there exists a tradeoff between the degree of compression and the
complexity of the decoder. The tailored ISA approach produces code on the order of 64% of the
original size, which can have favorable results for very little additional hardware overhead, so it
is represents a middle point between high complexity of decoding and low compression
effectiveness.

The results presented in the Figure 2.6 neglect the branch target table overhead, which is
an integral part of the compression scheme. The goal thus far has been to address the

compressibility of the code segment and reachability of the entropy threshold. All

25

implementation details are discussed in Section 2.5 below.

26

2.5 Instruction Fetch Mechanism | ssues

2.5.1 Instruction Fetch Organization and M odification of the Instruction Cache

A significant component of thiswork is the joint consideration of the instruction
encoding and instruction fetch organization. Once original ISA has been modified the whole
instruction fetch pipeline must be adjusted. In order to interpret new instructions, the core

decoder must be changed, cache design adjusted and system bus design reconsidered. All of itis

0.12 O1-way m2-way
O4-way 08-way

B Capacity @ Compulsory

1K 2K 4K 8K 16K 32K 64K 128K

Figure 2.7 Traditional Distribution of Miss Rate

done with the help from the compiler. But most importantly of all those components, the
organization of instruction cache must be reconsidered. In order to utilize the new |ow-entropy

encoding throughout the whole instruction fetch pipeline (and not only as ROM size-reducing

27

technique) the instruction cache must be allowed to hold newly encoded blocks of instructions.
For ssimplicity of discussion let us disregard the method of encoding and just call those
instructions compressed.

The fact that the instruction cache holds compressed instructions increases its capacity
and, as aresult, the overal throughput. It isimportant to stress that we are breaking a
fundamental limitation of current cache technology: the capacity miss ratio which is normally
only attempted to be approached by a multi-way associativity and similar improvements. Figure
2.7 isadapted from Gee et a. [31]. The figure presents a breakdown of a miss component for

caches of different associativity. The fundamental limit of a cache is compulsory (or first-seen)

O1-way m2-way
O4-way O8-way

W Capacity D EntropyCapacity

W Compulsory

EntropyCapacity

1K 2K 4K 8K 16K 32K 64K 128K

Figure 2.8 Entropy Based Distribution

misses. Compulsory misses cannot be eliminated, unless some sophisticated prefetch schemeis
used. Traditionally, the next limit was always considered the capacity misses, which only
depends on the physical size of the cache storage. Finally, conflict misses are normally defeated
by a higher associativity and intelligent replacement policies.

Now with the compressed cache storage we are approaching the next fundamental limit:

28

the entropy capacity (see Figure 2.8). In this notation, no storage is wasted due to the low

entropy of data being stored. Thisfact leads usto a paradoxical conclusion that we can improve

the overall performance of a system by applying the compression technigque, even though more

work must be done to interpret the code. A disadvantage is that the cache controller needsto be

designed differently to handle the compressed contents. However, on the positive side, the

cache’s data path design is not dependent on any particular encoding and could be generalized.

This independence in turn makes modular core processor design possible.

2.5.2 Program Layout

Let us now definan atomic fetch block as a sequence of instructions guaranteed (or

likely to be) executed sequentially once we start execution of the first instruction in the block.

\ * Random Placement At most 7 bits for Byte
Aligned

BB.1 | { A {.}-vLiw

B} MultiOp Boundaries
BB_2: { C BB_9: { X Atomic Fetch Unit

D} Y}

{E {2}
F .
G} * Alignment Boundarys
(Byte Align)

]

a) Originad DAG b) Compressed Memory layout

Figure 2.9 Atomic Fetch Block Structure

The simplest example of an atomic block is Basic Block (a region of code with a single entry

29

and asingle exit point). More sophisticated examples include a sequence of basic blocks with
no side entrances, but multiple side exits (like Superblocks [22] or Fisher-style Traces[16]). Let
us consider the smplest type for now, the basic block (BB).

As have been said before, the basic block can be treated as an atomic unit of instruction
fetch (see Figure 2.9). Thisimpliesthat cache can be accessed initialy for only the first
operation in the basic block. After this, the cache can supply operationsin a streaming
(pipelined if needed) fashion, until the end of the basic block isreached. This approach is
completely transparent for the processor — it might keep on supplying each MOP address to the
cache, but the cache controller does not need it to serve a miss. It starts to issue the MOP that is
only going to be requested by the processor in the next cycle. This short term ‘looking ahead’ is
a valid approach for the following reasons. First, control transfer can only occur to the first
operation of a basic block (branch target). Second, a basic block should always be executed
from the beginning to the end unless an interrupt has occurred, and even then its execution will
be completed after the interrupt has been handled (here subroutine calls are considered to be
branches that end a basic block). All the necessary NextPC computations local to the basic
block are done within the cache, and are insignificant for the processor core, as long as correct
VLIW group (MOP) is forwarded to the core decoder every cycle. Nevertheless this mechanism
might be implementation specific and could depend on each particular embedded system

architecture.

30

The use of more complicated blocks as atomic units is a matter of performance, not

correctness. If the block is permitted to have side exits, we should guarantee that they are not

taken frequently (or the instruction cache will get over-polluted). This requirement istrue for

Origina
Code

Fragment

BB2

BB4

BB5

superblocks [22] and Fisher-style traces [16], which are formed at compilation time with the use

rO=rl+r2
Branch BB4

BB5

r4=r0+r2

After Tail Duplication

and

Treegion forming...

BB2

BB3

BB4

Branch BB5')} | Branch BB6’

BB4'

r4=r0+r2
Branch BB

Figure 2.10 Treegion forming Example

Branch BB

r4=r3+r2
Branch BB

BB6’

of profileinformation. But it isalso true that for complex blocks some additional invalidation

mechanism is needed. Nevertheless, in this study, only basic block atomic units are considered.

(Note however that the code was scheduled by first building trees of basic blocks[i.e.,

treegions,] and then decomposed into basic blocks after the global scheduling pass.)

2.5.3 Compiler Optimizationsto Enhance Code L ayout

There are anumber of possible code enhancements that could be performed in order to

enhance the code’s compressibility and the instruction cache’s performance [36],[37]. They

31

include traditional optimizations as well as some specific actions. Since VLIW architecture
chiefly depends on the compiler to achieve ahigh level of performance, it is essential to be
aware of this matter during the scheduling.

The first enhancement is the Intelligent Code Layout to increase spatial reference
locality. This optimization places the most commonly used sequences of basic blocksin close
proximity of each other in the memory. In order to determine which basic blocks are more

commonly used and in which order they should be laid out, the optimization requires some

After Speculation
and partial
If-Conversion

r0O=r1+r2 if (p4)
r0=r1+r3 if (~p4)
r0=r0+r2
r4=r0+r2 if(p4)
r4=r3+r2 if(~p4)

After Jump
Optimisation

r0=r1+r2 if (p4)
r0=r1+r3 if (~p4)
r0=r0+r2
if(p4)

if(p4) Branch BB7
Branch BB2 else
else Branch BB8
Branch BB3
BB2 BB3
Branch BB# [Branch BB

BB4 if(p5) if(p5) BB4’
Branch BB Branch BB6
else else
Branch BB5[| Branch BB6’
BB5 BB6’

Branch BB, |Branch BB| Branch BBi Branch BB|

Figure 2.11 Jump Optimization Example

profiling information. This profile information is collected through execution of the application
with some representative input data set and recording some run time statistics. The most
important of those are number of times a basic block has been executed, and order in which
most executed basic blocks were visited. In addition to that, if memory paging is used, the
layout optimization also attempts to reduce the number of pages needed to execute commonly

used parts of the program. This optimization increases spatial locality and is normally used to

32

increase instruction cache performance and has been proven to be effective.

The next set of compile time optimization is the Jump optimization and Multi-way
branching. These optimizations are related to the code layout enhancement, but are more
specific for the Treegion scheduling.

As have been mentioned before, the LEGO optimizing compiler conducts aggressive
static scheduling of VLIW code. An integral part of the scheduling processisinstruction

speculation [37],[36]. Sometimes after instruction speculation by the scheduler, some basic

After Tail Duplication After Multi-way

and Branching rO=r1+r2 if (p4)
Treegion forming... Optimization r0O=r1+r3 if (~p4)
r0=r0+r2

if(p4&p5) Branch BB5
if(p4&~p5) Branch BBY’
BB2 BB3 If(~p4&p5) Branch BB6

Else Branch BB6’
\BBS

Branch BB4, |Branch BB.

BB4| r0=r0+r2 r2=r0+r2 §BB4’ r7=r0+r2 || r8=ro+r2 r5=r3+r2 r6=r3+r2
if(pS) if(pS) Branch BB :
Branch BB5 Branch BB6
else else

Branch BB5'f| | Branch BB6’

r5=r3+r2 r6=r3+r2

Figure 2.12 Multi-way Branching Example

blocks ‘loose’ all of their instructions except for the branch (see Figure 2.10 and Figure 2.11).
This loss leads to multiple ‘back to back’ branches, which are hard to handle in the instruction
fetch pipeline and often are logically redundant. Jump optimization tries to replace long chains
of jumps (with no computations in between) to shorter ones by removing redundant branch

instructions (see Figure 2.11).

33

The multi-way branching on the other hand allows more then one branch to be executed
inasingle cycle. For aVLIW architecture this branching scheme allows multiple branches ain
asingle VLIW instruction with priority given in left-to-right order. For control flow graph
(CFG) multiple branches translate into multiple control edges from asingle basic block. Since
each branch instruction has an explicit conditional register (a predicate) associated with it, the
sequence of branches is guaranteed to execute correctly. Besides obvious performance
enhancement from these optimizations, they allow areduction in the total number of basic
blocks in the program which directly correlates to the size of the static address trandlation tables
as will be described shortly.

Standard optimizations like common subexpression elimination (CSE), strength
reduction and constant propagation [36],[37] generally contribute to logically compact code and
undoubtedly are important for the current work. For example strength reduction might
substitute a complicate uncommon instruction by a sequence of simpler, more common
operations. Normally, al of these optimizations are performed prior to scheduling the code.

On the other hand, in the context of code size reduction, many of the traditional
optimizations like loop peeling and unrolling [36] become less favorable. It isan important
tradeoff between extracting or increasing the available instruction level paralelism (ILP) ina
program and keeping the program size moderate. Since our primary goal in this study isthe

static code size reduction, no loop unrolling was performed.

2.6 Address Space Conversion

2.6.1 Branch Target Address Randomization

A critical issue for the execution of any compressed program is the change in branch

0000 Before Compression

0020 Aligned at 32bit addresses
0040
0060
0080
00AO
00CO
00EO

Il

0000
0020
0040
0060

After Compression
Aligned at Random
Addresses Boundaries

Figure 2.13 Branch Target Randomization

target addresses [1],[27],[42]. Every attempt to bound compressed instruction location to certain
boundaries constrains compression. For instance, if the first instruction of a basic block would
be aligned to the nearest byte boundary, compression degradation will range between one and
three percent. If every instruction would be bounded, compression degradation would become
unacceptable (more than ten or fifteen percent). If ahigh degree of compression is desired, each
option must be considered and least bounded scheme selected. Once thisis accepted, it should
be realized that once different instructions obtain different length of codes, the original branch

targets become meaningless. In fact the address space of a compressed code segment with

35

unbounded compression is absolutely chaotic (see Figure 2.13). Clearly, some kind of branch
target address recalculation or trandlation must be performed.

First and the simplest solution isto convert the original branch targets to the compressed
targets at compilation. This process could be performed in two passes. In the first pass a new

code layout and new target addresses are generated (with enough space left for later ‘plug in’ of

8.0%

7.0%

6.0%

5.0%

4.0%

ATB Miss Ratio

3.0%

2.0%

1.0%

0.0% t . +

compress go li ijpeg perl m88ksim vortex gce Mean

Benchmark

Figure 2.14 ATB Miss Ratio

new targets in relative branches). On the second pass, new addresses are ‘plugged’ or ‘inserted
into the target slots and jump tables are updated. This method is a better fit for the Tailored
ISAs than for code compression schemes, because compressed code with new targets will have
to be recompressed with certain restrictions. Branch instructions could also remain
uncompressed in which case a special ‘escape’ symbol should be added.

Another solution to the branch target problem is to leave the original target addresses the
way they are, unchanged (just compress them along with the rest of the code) and provide a
dynamic translation mechanism at run time. This approach is very well known in general

purpose computing for the mapping of virtual address space to the physical one via the

36

Trandation Lookaside Buffer (TLB). Similar hardware named the Cache L ookaside Buffer
(CLB) isaso employed in studies by Wolfe, et a. [1],[17] and has proven to be effective. We
use a similar approach to map the original address space into the compressed space with aid
from the compiler. The hardware structure is called the Address Translation Buffer (ATB) and
the static table is the Address Trandlation Table (ATT). The ATB holds pairs of addresses,
which maps the original address space to the compressed space along with information to aid
decoding, decompression and Next PC computation. The ATT has one entry for each atomic
compression block (currently abasic block). ATT is generated by the compiler and stored in
memory in compressed form. The additional information stored in the ATB includes the
number of memory lines that need to be fetched in order to get the whole block, and the number
of operationsin the block (or simply the number of VLIW multiopsin the block. Portions of the
ATT are uploaded to the ATB as needed. Due to the normally high spatial locality, the ATB has
very low level of contention (see Figure 2.14) and the ATT has atolerable static size (see Table
1). The Table 1 shows the results for Tailored instruction set encoding only. The overhead
results for custom compression schemes are similar since they are not dependent on the
compression algorithm employed. Nevertheless, the ATT does add some overhead to the final
storage. In general, when number of basic blocksis not optimized, the ATT adds on average
15% to the compressed size of the ROM. Thisfact callsfor asolution to minimizeitssize. As
have been discussed before, the easiest way to reduce the size of ATT isto minimize the number
of atomic units in the code through a compiler optimization known as the multi-way branching
(this optimization was described in greater details in section 2.5.3) or use different atomic
blocks. When the multi-way branching only is performed, the total overhead of the ATT tableis

reduced to 11%. If this optimization would be combined with a different atomic block

37

granularity, the overhead could be reduced even further, but this process needs a deeper

investigation and is rserved as a future work.

Table 1 ATB Characteristics for Tailored ISA compression

ATT ATB Miss ATT Sze Tailored ISA| Degree of Degree of
Entries ratio (compressed, Code Compression | Compression
bytes) Segment size| without ATT | including ATT
(%0) (%)

compress 352 0.0016 1,223 5,260 60.16% 74.14%
go 14,036 0.0029 51,853 199,420 63.32% 79.78%
li 4,027 0.0629 12,879 44,484 59.49% 76.72%
ijpeg 8,792 0.0004 32,570 176,252 68.95% 81.69%
perl 18,130 0.0764 72,012 259,736 63.04% 80.52%
m88ksim 8,413 0.0012 30,241 148,752 67.25% 80.92%
vortex 30,699 0.0830 117,421 629,636 64.25% 76.23%
gce 98,564 0.0842 404,664 1,468,500 68.50% 87.37%
Mean 22,877 0.0018 91,758 366,505 66.47% 83.11%
Average: 64.60% 80.05%

Briefly, at run time the ATB will provide the following information: the address of the
requested block in compressed memory, the PC offset of the last operation in the block, and the
predicted PC of the following fetch block. Thisinformation is enough to fetch atomic blocks in

apipelined fashion. Thereisalso aclear tradeoff between the amount of additional information

38

in ATT and the compressed instruction cache performance. All the above-mentioned
information could be deducted at run time and cached in ATB. If thiswould be done, the ATT
size overhead would go down to approximately six percent. Nevertheless the rest of thiswork
assumes that the support information is present inthe ATT.

The next issue in this category is physical ROM access. The vast mgjority of modern

100% ’4{ M Tailored B Huffman_Full OHuffman_Stream O Huffman_Stream_1 W Huffman_Byte }7

90%

80%

70% -

% of the original size

compress go li ijpeg perl m88ksim vortex gce Mean

Figure 2.15 Compression Including ATT Size

memory systems support only byte or word aligned accesses. The access granularity could also
be limited by the address bus width and should not be sacrificed. This puts some, but non-
critical, limitations on code placement in the compressed storage. Thisissue is addressed by
aligning only the first operation of a block to the physical ROM access boundaries. For the
current study these boundaries are assumed to be byte aligned. This assumption meansthat if an

atomic unit ends at a middle of a byte of storage, it is padded with up to seven bits at the end

39

(see Figure 2.9 and discussion at the beginning of this section), so the first operation in the next
atomic block is byte aligned. All consecutive compressed operationsin the block are
sequentially placed in memory. Padding add some overhead to the overall compressed segment
size (from one to three percent on average) and should be factored in for overall size calculation.

After all of these ‘extras’ were factored into the general compression picture, and the
Multi-way Branching and Jump optimization were applied to reduce the number of atomic
compression blocks (see Section 2.5.3), the final compressions looks like follows: (see Figure
2.15). The relative performance of all algorithms remained unchanged and only a slight overall
increase in size could be seen. Nevertheless, this fact might encourage us to re-evaluate some of
the conclusions. The tradeoff between decoding complexity and the degree of encoding is still
factual. But another component needs to be factored into the overall equation — the extra
information needed for compressed instruction cache operation if it has to be stored along with

the compressed code segment (as in the case of the ATT table).

2.6.2 Baselinelnstruction Cache Design

The instruction cache is a critical element of any high performance system, and it is
especially important for this study. Thwin instruction cache tradeoff in a compressed system
is the address space to which it belongs. In other words, whether the cache holds compressed or
uncompressed operations (see the discussion at the beginning of 2.5, Section 2.5.1). Most of the
researchers [1],[9],[10] uncompress their instructions prior to putting them into the instruction
cache. This decision normally allows them to hide the performance penalty associated with the

decompression of encoded instructions. But as have been mentioned previously in Section

40

2.5.1, the compressed cache is able to hold several times more instructions than an
uncompressed one. (See Figure 2.7 and Figure 2.8) The only problem is that some work should
be performed at the hit path, which potentially increases the branch missprediction penalty (if
instruction fetch hierarchy is pipelined) or stretches the cache access cycletime. Since the
vertical size of the cache main storage can be reduced now with no loss in performance, cycle
time stretch isless likely. Nevertheless, this study assumes pipelined hierarchy and further
concentrates on keeping the pipeline full at all times.

The next important issue is the NextPC calculation. A cache that supports a zero-NOP

encoding employs a NextPC cal culation mechanism [8],[7] that is applicable to this study as

well. Let usdifferentiate the NextPC within a block and the NextPC of the next block. The

Tag Bank O Tag Bank1 A
—— o
tagA a b tagC [l [c|d | e f
& tagx || | | g I X = tag¥’|| | x |y | z 8
Current £ g of B | 678;
chall £ —1 |¥° ¥
T
. o
AN T
NextBr TR T T T 3
Target * * * | ¢ % e X ,,,,,,,,
Prediction Yvy ;
———Jpp[NextPC Logi =? f*l ¢ X =? cld | el f §
NextPC Mop Select c d e nop 1 g v

and Expand v

Figure 2.16 Banked Cache Architecture

NextPC within ablock does not need to be predicted (since by definition we are going to fetch
the block till the end) but rather can be locally cal culated with dedication of some additional

hardware [8]. This hardware, along with the access pattern, varies with placement and

41

invalidation policies. If ablock isatomically (in unbroken form) placed in the cache, an
intermediate instruction access does not have to be checked for validity. If ablock id displaced
from the cache, it isinvalidated entirely, so no partial hit ispossible. Thiswill be called the
restricted placement model.

If pieces of the block (like individual encoded instructions) are allowed to be scattered
around the storage, cache controller needs to generate an intermediate PC within each multiop,
and locally ‘re-access’ the cache to check if we have the valid data present. The invalidation is
possible on individual instruction level, so a partial miss might occur. In the latter case, all
additional information (individual MOP length in terms of encoded instructions for instance)
could be extracted from a fetched block at miss-repair time and stored in the cache with
association to the first instruction of the MOP. In the tailored ISA approach, it is especially easy
to do since the size of all operations of the same type and opcode is the same, and the location of
this information is fixed within an operation (see Section 2.3). For the Huffman compressed
encoding approach, this information might be generated by the compiler and stored along with
ATT in compressed form (which will further increase the space penalty). For all the outlined
reasons, and for sake of relative simplicity, in the current study we only consider the restricted
placement model.

The Next PC of theext block to be fetched is the more traditional branch target
problem. This address needs to be dynamically predicted if we want to achieve full capacity for
the instruction fetch pipeline. This prediction is even more important if a sophisticated (like in
our case) instruction fetch is used (which means longer pipeline and higher missprediction
penalty). In the current study, we have coupled the branch prediction table with the ATB. This

combination means that for every block entry, there is one branch predictéakeitimot-taken

42

and target address prediction information. It predicts the outcome of the last instruction in the

block (which by definition is always a branch, see Section 2.5.2). To predict the outcome of the

branch, a simple two-bit saturating counter is used [13]. To predict the target address, the ‘last-
target address’ (if branch predicted taken), or next sequential address (otherwise) heuristic is
employed. We have to keep the last taken address of the branch locally because we cannot wait
for the branch instruction to get decoded (which happens much later in the processor pipeline).

Theoretically, a more complex branch predictor could be used (e.g., gshare or PAs
Yeh/Patt predictor) since there will most likely be several cycles to access the prediction, unless
the code has multiple sequential branches with no other computation in between. But this
option is not considered at this point of time and is reserved as future work.

The baseline cache that was selected for this study Batiked Cache described in
[7],[8]. Originally designed to fetch variable length MOPs for Zero-NOP encoding, it fits to all
the requirements outlined earlier: fetches unaligned blocks, could be pipelined and wastes no
storage. The structure of it is depicted in Figure 2.16.

The storage of the Banked Cache is separated in two banks, similar to that of the Intel
Pentium processor [20]. The cache line size is equal to the maximum size MOP, which in turn
is proportional to the issue width of the processor core. In our case, it is a six wide issue TEPIC
VLIW core. A MOP can begin at an arbitrary location in the bank and span two cache blocks,
but it still can be extracted in a single reference to the bank storage (see the MOP ‘cdefg’ in
Figure 2.16, which spans form the BankO to Bank1; the shaded region correspond to alignment
padding for the first operation in MOP). Two sub-blocks are brought down &bi ¢imenent
stage on a cache hit -- the block that was referenced by PC, and the next sequential blocks. If for

example the beginning of a MOP resides in the Bank1 at iNd&he next sequential block is

43

brought from the BankO0, index N+1. The MOP is guaranteed to be within these two cache sub-

blocks because their combined size equals to the maximum sized MOP. Then the alignment

hardware scans individual operationsin paralel, but with left-to-right priority for the Tail bits

(see Section 2.3). Then it extracts the original MOP (see Figure 2.16). The whole process from
receiving an original addresstill the NextPC calculation is accommodated in two pipeline stages

— storage search and tag match followed by alignment network operation. More details on the

design and tradeoffs of the base line Banked Cache can be found in [7],[8].

2.7 Compressed Instruction Cache Hardwar e I mplementation

2.7.1 Thelnstruction Cache Design for Compressed Encoding

The implementation of the instruction cache for the compressed encoding is designed to
reduce the impact of decompression time on the instruction fetch rate. One atomic block is
decompressed at a time and is held in a buffer, which is accessed in parallel with (but has a
priority over) the main cache. This buffer is organized as a small fully associative cache. In
general, the whole structure could be seen as a two-level instruction cache, where decoding is
done at miss time of the L1 cache and the buffer is, in essence, an LO cache. This organization
makes sense if we analyze the overall situation from a standpoint of data usage. Since code is
compressed based on the static distribution and does not take into account the frequency of
certain block usage we might have suboptimal performance. It might occur when the most
commonly used block is present in the cache, but is kept compressed throughout access time.

Even with the high rate of following block address prediction, we will have to perform

44

decompression again and again, and even though it might not slow down execution (due to
pipelining of the whole process), it might affect power consumption. For these reasons we are
trying to keep the most frequently used block in uncompressed form in the buffer. It also should

be remembered that by the block here we mean the atomic unit of compression, which in this

Memory (ROM)
122
123
124

ATB Banked Cache @ @~ —~« A ,,,,,,,
Origind ~ Compressed . tagA ||| @ | b c| d | e| f
address address tagX £ | g X | y | 7
3216 122 20ps
3232 123 50ps ;
*V 7777777
A

¥ v vy

g
PC NextPC Logic =2 I f'] g X =? I cld |el f
A

NextPC

Pipeline Stages

Huffman Decoder/Uncompressor

a y |

i T

Processor Pipeline I

The Buffer | c| d|

Figure 2.17 Instruction Cache Structure for Compressed Encoding

caseisabasic block. The buffer is not explicitly purged when new block isplaced in it, so it
potentially can hold several commonly accessed basic blocks.

The main cache storage is organized the same way as the Banked Cache described in
Section 2.6.2. The size of the buffer (L0) has been set at 32 operation entries (160 bytes for the
operation size of 40 hits). From the performed experiments there are indications that tight,
frequently executed loops (like DSP kernels) can fit into this buffer completely, which will
result in equivalent (or possibly better) performance (access time) to an uncompressed cache.

Nevertheless it is very important to keep the size of this buffer at minimum in order to not

45

compromise the performance of the main compressed storage. In addition to that, some
researchers [24] indicate that similar two-level architecture organization might contribute
significantly to low-power design, since the buffer cache filters out power-consuming accesses
to thelarger L1 cache. The structure of the entire system is depicted in Figure 2.17. The
pipeline stages are outlined in the diagram. The worst hit time for a compressed block that is
located in main storage and needs to be uncompressed is three cycles. The detailed cycle count
assumptions could be found in the Appendix Table 2.
The cache has the above-described mechanism for dynamic address trandlation (ATB)
and coupled branch predictor. It isimportant to notice that the location of this branch predictor
differs from the conventional. In a majority of today’s systems, branch prediction is performed

ATB Buffer ROM

- 6 Unit wide machine

- AB, CDEFG, XYZ are MOPs

- Fetching CDEFG

- AMOP guaranteed to feet in
two cache lines

Addr| BrPred| Serv. Info
C X 50ps

Offse,bank

NextPC c d e nop f g

Figure 2.18 Instruction Cache Structurefor the Tailored Encoding

later in the pipeline. Often it is no earlier then the decode stage — the predictor is accessed once

46

it is known that the instruction being decoded is a branch. If the branch predictor is accessed

with address of every instruction, it is destined to be polluted and hasto be of alarge sizeto
guarantee low level of conflicts. In this case the branch prediction is moved al the way to the
instruction cache. Since we know that the last instruction of an atomic fetch block (basic block)
isabranch, the branch predictor could be indexed with the address of first instruction in the

block, without increasing aliasing or causing conflicts. The NextPC calculation isidentical to

that of the base line banked cache (described in Section 2.6.2). The only difference from
architectural standpoint is the ‘black box’ — the decompressor being added between the main

storage and the buffer.

a7

2.7.2 Thelnstruction Cache Design for the Tailored | SA

The objectives for the tailored ISA cache are quite different from the compressed
encoding cache. The operations are stored in aform ready for consumption by the core decoder.
However, this cache also uses the Banked Cache as its core design element to guarantee single

cycle access for unaligned MOPs. The key differenceisthe logic in the miss path, whichis

Instructions Delivered per Cycle

3 74{ W Base OCompressed @ Tailored Oldeal }—

2.5 r

compress go li ijpeg perl ma88ksim vortex gcc Mean

Benchmark

Figure 2.19 Cache Study Summary. Instruction Delivered per Cycle.

responsible for the extraction and placement of MOPs in the main banked storage. The overall
organization is shown in Figure 2.18.

The hit path now has only one stage for the alignment of operations. Branch prediction is
still used to ensure high pipeline utilization. From an architectural point of view, an extra stage
Is added on the miss path. (For the detailed summary of all the performance penalty

assumptions, please refer to the Appendix, Table 1.)

48

For the experiments we choose moderately sized caches on a scale suitable for an
embedded system: 16K B, 2-way set associative for both compressed and tailored models. The

baseline cache has to have ablock size that is a multiple of the TEPIC 40bit op size, so its

Bus Flip Transactions

1.00E+07 ,4‘ W Base ETailored O Compressed

1.00E+06

1.00E+05

Number of Flip transactions

1.00E+04

1.00E+03
compress go li ijpeg perl m88ksim vortex gce Mean

Benchmark

Figure 2.20 Instruction Memory Bus Traffic Summary

effective sizeis dightly larger: 20KB, 2-way set associative. All results are summarized in

Figure 2.19. The metric is ameasure of instructions (operations) delivered per cycle. Theissue

width for the core is six operations. The average for “Ideal” is limited by the quality of the
schedule as well as ideal cache and branch predictor performance. The “Base” represents
uncompressed code, whereas “Compressed” uses the Full operation compression scheme and
“Tailored” is for Tailored ISAs. It is particularly interesting to note that both the Compressed

and Tailored exceed Base on average, although the Compressed does poorer than Base for
several benchmarks (compress, go, ijpeg and m88ksim). This decrease in performance is due to
the higher missprediction/miss repair penalties for Compressed compared with Tailored.
Introducing a larger buffer size and more accurate branch predictor could significantly increase

the performance of the compressed cache model, but that was not the main goal of the

49

experiment.
Another interesting result is the change in the amount of bus traffic due to instruction

cache misses. It is one of the defining factors of power consumption, especialy if the ROM is

module custom_decoder (clock,code_bus,h_bus,opc_bus,srcl_bus,src2_bus, nodul e huf f man_decoder (code_bus, i nstruction_bus);
sp_sic_1_bus;sp_sc_2_bussp_sc 3 bus,dst1_bus); i nput [14:0] code_bus;
input clock; out put [8:0] i nstruction_bus;
input [31:0] code_bus;
output h_bus; reg [8:0] instruction_bus;
output [5:0] opc_bus;
output (70 scl_bus; al ways @ code_bus)
output [8:0 src2_bus; casez(code_bus)
output [2:0] sp_sic_1_bus; 14' b0zzzzzzzzzzzzz: instruction_bus = 8 b00000000;
output [20] sp_sc_2 bus; 14' b10000zzzzzzzzz: instruction_bus = 8 b00000010;
output [2:0] sp_sc 3 bus; 14' b1000100zzz2z2z: instruction_bus = 8 b00001011;
output [6:0] dstl_bus; 14' b100010100zzzzz: instruction_bus = 8 b00110001;
reg [7:0] scl_bus 14' b10001010122zzz: instruction_bus = 8 b00010101;
reg [8:0] src2_bus; 14' b100010112z2z72: instruction_bus = 8 b00011001;
reg [20] sp_src_1_bus; 14' b1000110zzzzzzz: instruction_bus = 8 b00000111;
reg [2:0] sp_sc 2 bus; 14' b10001110z22zzz: instruction_bus = 8 b00011100;
reg [2:0] sp_sc 3 bus; 14' b10001111227277: instruction_bus = 8 b00001001;
reg [6:0] dstl_bus; 14' b10010000zzzzzz: instruction_bus = 8 b00000101;
assign h_bus = code_bus[31]; 14' b100100010zzzzz: instructi on_bus = 8 b00011101;
assign opc_bus = code_bus[30:26]; 14’ b10010001100zzz: instruction_bus = 8 b00010100;
aways@(posedge clock) 14' b10010001101z2zz: instruction_bus = 8 b00011110;
begin 14' b10010001110zzz: instructi on_bus = 8 b10000100;
case(opc_bus) 14’ b10010001111zzz: instruction_bus = 8 b11110000;
0: begin I ADD */ 14' b1001001zzzzzzz: instructi on_bus = 8 b00000100;
srcl_bug[7:1] = code_bus{25:19]; 14' b10010100zzzzzz: instructi on_bus = 8 b00010010;
src2_bug{8:0] = code_bug{18:10]; 14' b100101010zzzzz: instruction_bus = 8 b00000110;
sp_sic_1_bus[2:0] = code_bus{9:7]; B
dst1_bus[6:0] = code_bus[6:0]; 14’ b11011111zzzzzz: instruction_bus = 8 b11000000;
end 14' b111zzzzzzzzzzz: instruction_bus = 8 b00000001;
21 begin I* MOVE*/ default : instruction_bus = 8 b0; endcase
srcl_bus{7:0] = code_bus{25:18]; endnmodul e
sp_src_1_bus{2:2] = code_bus{17:17];
dst1_bus[6:0] = code_bus{16:10];
end

Figure 2.21 Verilog Code for Decoder Example (Custom — left, Byte Based Huffman —

right)

placed on a separate die. In the experiments, power is modeled by counting the number of
transactions on the memory bus when bits are flipped. With the increase of hit ratio, the number
of blocks needed to be brought from the memory for miss repair drops. The summary of these
changesis presented in Figure 2.20. The results track the degree of compression and show
savings for the Tailored and Compressed encodings over the Base. From thisit can be
concluded that each of the compression schemes brings in more instructions for a given number
of bit flips.

One interpretation of the combined results of Figures 9, 12, and 13 is that the Tailored

50

ISA encoding has more advantages than otherwise clear from the degree of compression data of
Figure 5. Because an additional decoder is not required (as opposed to the Huffman-based
schemes), there is anet savings in the processor core that can be significant. What is more
interesting is that, although the Tailored encoding achieves alower overall cache utilization, the
missing extra cycle of branch missprediction penalty more than makes up for this absence in

overall performance.

2.7.3 Decoding Complexity Evaluation

Since, in the case of code compression, we choose to place decoding on the critical path
of the instruction fetch mechanism, it should be made as efficient and fast as possible. In

essence, it is now the critical factor for the compression algorithm’s selection, which directly

Huffman Code: 0 0 0 ==>n bhits

Origina Tree:

Decoded word: =>m

|D: 1000| |C: OlOO|

Figure 2.22 The Huffman Tree Decoder Structure

corresponds to the degree of compression (see discussion in Section 2.4). Fortunately, the
compression algorithm is static in time. Once selected, based on static frequencies of elements

in code segment, it remains the same. Therefore a fast fixed hardware decoder can be generated.

51

As have been mentioned before, the compiler has all the information needed and
generates Verilog description (see Figure 2.21) of the decoder that could be used to program the
PLA decoder or as an input for custom decoder design (after possible steps for optimization). In
the case of the Tailored encoding, this problem is somewhat less critical. Decoding of tailored
instructions is a part of the processor pipeline. Nevertheless, it might be more complex when
compared to the traditional fixed-size-op decoder. An interesting consideration would be to
combine the Huffman decompressor with the processor decoder on the logical design level, and
optimizeit asaflat logic. Thisapproach might present more opportunities for CAD toolsfor
optimization and result in asmaller overall decoder. Thereis only one consideration which
prevents us from attempting it in the current study, — we want to affect the design of the core
processor as little as possible (if any at all) so the instruction fetch process remains completely
transparent for it. Nevertheless, this topic could be considered in future research, which would
include fully customized processor core design.

Since, in this study, we generate a multitude of various decoders we need to establish a
mean for their fast evaluation and comparison. As a method of comparison of the Huffman
decoder size, we can evaluate the complexity of the correspdthaiéman tree. If we imagine
the structure presented in Figure 2.22 (whneiethe longest Huffman code sikds number of
entries in the Huffman dictionary andlis longest dictionary entry size), it is possible to derive
an equation to estimate the worst-case decoder complexity. It is not intended to suggest a real
hardware implementation, but only as a criterion for evaluation. The worst-case number of

elements in a Huffman decoder can be expressed as follows:

52

T=2m(2" -1) +4m(2" - 2" -1 +2n (Equation 3)

Decoder Complexity

@ Huffman_Full W Huffman_Byte OHuffman_Stream OHuffman_Stream_1 M Custom

1.00E+11

1.00E+10

1.00E+09 —

1.00E+08 + —

1.00E+07 - —

Tranzistors

1.00E+06 -

1.00E+05 +

1.00E+04 +

1.00E+03 +

1.00E+02 -
compress go li ijpeg perl ma88ksim vortex gce Mean

Figure 2.23 Estimated Huffman Decoder Complexity.

This equation assumes a multiplexer implementation using CMOS transmission gates
(TG), which account for the fact that the first row passes constants and needs only one transistor

to operate. Elementsto form inverters (dual rails) are included as well.

53

Assuming this model we can evaluate complexity of the various Huffman decoders (see
Error! Reference sour ce not found.) without actually synthesizing every one of them. Error!
Refer ence sour ce not found. in conjunction with Figure 2.15 and the Table 1 allows us clearly
see the tradeoff between the decoder complexity and degree of compression. The best

compression algorithm (the Full Huffman) yields the largest decoder size. Thisrelationship is

B Post_Synthesys_Real_Size_Byte BEstimated_Size_Byte
200,000

180,000

160,000

140,000

120,000

100,000

Transistors

80,000 1

60,000 1

40,000

20,000 1

Figure 2.24 Estimated to Real Size Comparison for the Byte Based Compression

Decoder (for the Compress Benchmark)

not necessarily linear. Byte-wise compression yields an intermediate degree of code
compression. It isapproximately 72% of the original image size yet has the smallest decoder
(SeeError! Reference sour ce not found.). The worst Huffman compression scheme, the
Stream, achieves approximately 75% of the original image size. Y et, it has a significant decoder
complexity. Thereason isthe limited input width and dictionary size of the Byte method.

After theinitial estimation, several decoders were actually synthesized with the Synopsys
CAD toolsin order to compare actual parameters with the estimated ones. Aswe can seein

Figure 2.25 the real synthesized numbers are |ess then one percent of the estimated worst case,

which proves the possibility of such adesign. Regardless that we miss the actual decoder size
by 99% while estimating it we still can use the estimated value for relative evaluation of the
design.

If we ever wonder into generating a custom compression algorithm for each particular
application (as oppose to just using the same Huffman algorithm for al of them) we will need a

cost function to describe all the parameters of the new algorithm. Definite components of the

25,000 ,4‘ BPost_Synthesys_Real_Size_Byte BPost_Syntesys_Huffman Full DOPost_Syntesys_Custom }7

20,000

15,000

£
10,000
) I I I
] M I ﬂ H I H [] [] I H [
g0 li iipeg perl gee Mean

compress

m88ksim vortex

Figure 2.25 Estimated to Real Size Comparison for the Byte Based, Full Compression and

Custom Coding Schemes (for the Compr ess Benchmar k)

cost function are resulting code size, decompression speed/complexity, and the decoder
size/complexity-weighted according to their importance. For one of the magjor parameters to this
cost functions -the decoder complexity estimation — a similar function could be used. An
interesting issue is estimating the speed of decoding, which is virtually impossible until real
hardware is generated. Let us reserve this issue as a future work.

The fact that our estimate was so far from actual numbers is rather understandable for

two reasons. First, the worst case is always pessimistic comparing to the actual decoder

55

structure and second, the design tools provide comprehended Boolean optimizations which
further reduces the complexity of the decoder. The longest synthesized delay chain included, on
average, five levels of logic, which promises a high speed of operation.

Several implementations of the Huffman decoder in hardware have been proposed in
previous studies[17,18]. Both models are strongly dependent on specific implementation
(MPEG-2 decompression for example), but generally can achieve 300-600 Mbit/sec for atable
with 114 dictionary entries and codes in range from 1 to 16 bits. The real-estate budget ranges
from 10,000 to 28,000 transistors. This data allows an assumption for the time needed to
decompress the code. For the 20-50ns cycle times typical in embedded processors, we can
assume decoding of 40 bits (op size in the baseline TEPIC architecture) is practical. Therefore,
it is assumed that one op could be decoded in a cycle. Furthermore the decoding processis
pipelined. Since instructions are supplied to the processor on each cycle we can keep this
pipelined filled (warm) if we correctly predict the next sequential block after the current (being
decoded). Aswe will see soon we couple the compressed cache design with a branch predictor,

which aids in continuous (streaming) decompression.

56

3 Data Segment Redundancy Reduction

So far the author have only considered the code segment as the subject for redundancy
reduction. Nevertheless, the memory is also occupied by the data segment aswell. Besides, the
data fetch performance might be an important bottleneck of overall system performance. There
are three general sections that could be recognized in a Data Segment (DS): Initialized data,
Storage Reservation (or uninitialized data) and the dynamically allocated Heap. In the
framework of this study the next logical step would be to reduce redundancy of these elements
aswell. If that could be done so that the performance of the data path from memory to the

processor gets improved, overall performance of the system will be further increased.

3.1 Available Redundancy and Compression Strategy

The first question that needs to be answered is whether or not the compression of the
data segment will result in any significant savings. An important consideration is the fact that
the compression circumstances for the data segment are rather different than that for the code
segment. Furthermore, different parts of the data segment require different approaches.
Ultimately, a dynamic data stream as opposed to a static data set is compressed. The main
difference hereisin the static availability of data and the purpose of compression. If in the case

of the code segment we needed to improve static characteristics of the code (the size), now we

57

need to optimize the dynamic qualities, so a different kind of information should be obtained.

Although several compression algorithms were considered (Arithmetic Coding [55],[46],
Huffman [2], Lempel-Ziv [39]), avariation of the Huffman code compression algorithm was
chosen (see discussion in Section 2.3). The Huffman method produces near optimal results for
an integer number of code bits. It also allows reasonably fast decompression (either as FSM or
viaalookup table) at arealistic real estate price [17],[18]. Nevertheless, the application of this
algorithm should be different. If in the case of the code segment we had all the datato be
compressed statically available to us, and the histogram was static, now, in the case of the data
segment the story is different. When dealing with Initialized data, we still have somewhat fixed
histogram and static availability of data (though the nature of datais different). But in case of
the Heap (or dynamically allocated memory) there is no prior knowledge of what we are going
to be dealing with. The Uninitialized storage in its original form could not be compressed at all
because the programmer has just reserves an area of memory without providing any additional
information on what kind of datawill occupy it. One possible optimization for the uninitialized
storage is static conversion to the dynamically allocated storage. This conversion might be a
compiler optimization hidden from the user. In either way (whether we perform this
optimization or not) the impact of the uninitialized storage on the overall data stream
compression performance is minimal, as we will soon see.

Instead of applying the traditional adaptive Huffman algorithm [54], a discrete
regeneration approach was chosen. This approach is based on the following assumptions:

. The frequency distribution is nearly constant during a short period of time (t)
wheret is bounded to the number of references to the cache;

. The next time dot (t+1) islikely to exhibit behavior similar to the current time

58

dot (t); and,
. By analyzing the data stream during time dlot (t), it is possible to come out with
near-optimal encoding for the time period (t+1).

If tiscarefully chosen we will have an adaptive algorithm which has afixed encoding for
time period t. Thisfact isimportant for a caching structure because the compressed codes are
statically stored within the time period t and is flexible enough to adjust to the changing
environment while maintaining a near optimal quality of compression. In order to select an
optimal t value, a set of experiments was conducted. Results are summarizedin Table 2. A

positive compression difference means a decrease in compression effectiveness.

Table 2 Regeneration Period selection

Number of references (t) | 1,000 5,000 10,000 | 50,000 100,000
Average Compression +0.028% | +0.024% |0 +0.041% | +0.054%
Difference

Taking into account all the facts outlined above, we used three following adaptations of
the Huffman encoding for use with the data segment. Thefirst is called Rigid Huffman (RH).
The histogram for this method is calculated once, at the compilation time, based on the
initialized data segment and is not changed thereafter. Thisisthe simplest and cheapest method,
and should work fine for programs that do not use dynamically allocated memory much or
who’s dynamic histogram, is similar to the static one.

The second method is théexible Huffman (FH) (not to be mistaken with the Dynamic

Hufmann or other dynamic compression algorithms [39]) method. This method’s histogram is

59

being recal culated with certain period at execution time and a new encoding is generated. The
profile datais being collected al the time and is discarded at the regeneration points. In this
sense, the method remains static between regeneration points, which allows the storing of
compressed data at these periods of time. This method is extensively opportunistic, and
assumes that for the period of time t+1, the histogram will be similar to the period t but different
from the histogram in the period t-1.

The third method is the Flexible Huffman with Long Memory (FHLM). It is similar to the
previous method except the fact that its statistics keep on accumulating. This accumul ation
means that history is collected across multiple regeneration points, but isignored only if some
hardware limit is reached. A good example of one such event would be a counter overflow, in
which case the counter just saturates. As suggested from the name, this method has a ‘long
memory’ and should work best with highly unpredictable patterns: it will be more conservative
in taking new opportunities, which might turn out to be either good or bad decision.

The last question to answer here is what granularity of compression to use. Based on the
discussion in Section 2.3, the choices are unlimited, and as is commonly known, the bigger the
atomic unit of compression, the better size reduction, and more complex is the decoder. In the
case of the data segment compression, as we will soon see, decoder size is critical and some
hardware structure is needed to collect the frequencies of all atomic elements. Sizes of both
those hardware structures directly correlate to the size (and therefore the total number) of the
atomic compression units. All these facts leads us to conclude that byte-level compression
would be an optimal choice. This way the profiling hardware unit would consist of 256 counters
and the decoder will be of a manageable size (more discussion is in the following section).

Now we should select the point where profile observation takes place. The natural

60

choice is the data bus between the processor and the main memory. What we going to see there
isastream of data going in both directions in response to the load and store instructions issued
by the core processor. An important consideration for this introductory experiment is whether a
data cacheis present or not. It isnot atrivial task to calculate the available redundancy, so first
we monitor the system without the data cache. Below in Figures 14 through 21 the behavior of
all the three compression methods is shown for each benchmark separately. The summary isin
the Table 3 and Figure 22.

It is clearly can be seen that amount and dynamic performance of compression strongly

depends on the benchmark and differs from region to region.

Table 3 Data Segment Compressibility Summary

Rigid Huffman Flexible Huffman Flex/w Long Memory
Huffman
Compress 0.90769 0.1569917 0.1570149
Go 0.55434 0.4612735 0.4478486
m88ksim 0.426866 0.32564377 0.33425884
Li 0.822175 0.6050848 0.581241
ijpeg 1.04028 0.8594622 0.809376
Vortex 0.741659 0.43141306 0.431698
Perl 0.720565 0.51699235 0.517772
Gce 0.760478 0.55783421 0.577297
Average 0.735123 0.487659 0.482756

61

m88ksim BW reduction

az|s [eulblio ay) Jo %

| T
| T
| T
| T
| T
| T
| T
| T
| T
c | T
© 4
£ ! T
= | +
5 T
I | T
> | I
o | +
e T
5] | T
= | T
j=2) £
c | 4
o 1
3 | T
2 I T
x
@ ! I
[y | T
| T
| T
| T
| T
c | 4
< I
g | T
= | I
5
I | +
) | T
2 | T
2 T
< | T
o | I
+ | T
| T
| | T
| | T
c T
5] ! ! T
£ I | I
=1 | | I
I | | T
= | | T
= T
T | | +
+ | | I
| | T
| | T
| | T
| | T
— | | T
| | | T
| | | T
| | | 1
H | | T
| " ' | T
} T f ; - }
Y Y X X X Y X
(=} (=} [=3 f=3 (=] (=} (=]
N (=} «© © < N
el -

1600L6
600176
T600T6
880088
§80058
2800¢8
6.006L
92009L
€L00€L
0.000L
190029
90079
T900T9
850085
§500SS
250025
670061
9¥009¥
€V00EY
0v000¥
LE00LE
E00vE
TEOOTE
8¢008¢
§200S¢2
¢cooce
6T006T
9T009T
€T00ET
0T000T
£000L

0001

TO00T

samples

sion for M 88ksim

a
Co

1 Dynamic Compr

Figure 3.

Go BW reduction

Flex/w Long Memory Huffman

—#— Flexible Huffman

90% 74{ ——Rigid Huffman

50% 1~ — — —

az1s [eu1bLI0 J0 9%

0%+ - — -

30% 1 — — — #—

20%

L6006
60016
T600T6
880088
80058
280028
6.006L
92009
€L00€L
0£000L
19009
90019
T900T9
850085
GS00SS
¢500¢S
670061
9v0091
EV00EY
0v000%
LE00LE
YE00VE
TEOOTE
820082
§20052
2e00ze
6T006T
9T009T
€TO0ET
0TO00T
£000L

¥000¥

T000T

Samples

Figure 3.2 Dynamic Compression for Go

62

Gcc BW Reduction

Flex/w Long Memory Huffman

—=— Flexible Huffman

1600.6
60076
160076
880088
G800S8
280028
6.006L
92009
€L00€L
0,000
190029
90079
T900T9
850085
GS00SS
25002S
6¥0061
90091
E€V00EY
0170001
L€00LE
E00VE
TeooTE
82008¢
G200S¢
2200¢e
6T006T
9T009T
€T00ET
0T000T
20002

0001

—e—Rigid Huffman
110% -

80% + —9

T000T

70% + —
60% -
50% -
40%
30%
20%

leuibiio Jo o,

Samples

on for Gec

Figure 3.4 Dynamic Compr

Vortex BW reduction

Flex/w Long Memory Huffman

—=— Flexible Huffman

—e—Rigid Huffman

T T T T T T O BV S A R
LA

9z1s [eu1B1io0 J0 9%

30%

1600.6
60016
160016
880088
580058
280028
62006.
910092
€.00€L
0,000
£900.9
¥900v9
T900T9
850085
§500SS
25002S
6¥0061
9v009
€Y00EY
0¥000%
L€00.E
vE00YE
T€00TE
8¢008¢
§¢00se
¢c00ce
6T006T
9T009T
€T00ET
0TO00T
L000L

0007

T000T

Samples

on for Vortex

eSS

Figure 3.3 Dynamic Compre
63

ijpeg BW reduction

—— Flex/w Long Memory Huffman

—#— Flexible Huffman

—e—Rigid Huffman

T T O T T T T T T T A A Y R T
L I I

140% + - - - -

120% + - - -

az1s [eu1B110 Jo %

40%

1600.6
60016
160016
880088
580058
280028
62006
92009
€.L00€L
0.000Z
290029
¥900v9
T900T9
850085
§S00SS
¢5002S
6¥0061%
9v009%
€Y00EY
0r000¥
L€00LE
veoove
T€00TE
8¢008¢
§200S¢2
¢c00ce
6T006T
9T009T
€T00ET
0T000T
L000L

0007

T000T

Samples

Figure 3.6 Dynamic Compression for |jpeg

Perl BW reduction

85% ’4{ —e—Rigid Huffman —=— Flexible Huffman

Flex/w Long Memory Huffman

az|s [eu1b110 Jo o

55% + —

50% + — -

45%

1600.6
760076
160016
880088
G800S8
2800¢8
6,006
920092
€.00€L
0,000
£900.9
9009
T900T9
850085
GS00SS
¢500¢s
670067
9¥0097
oaelelong
070001
L€00.L€
veoove
T€00TE
820082
G2005¢
ceooce
6T006T
9T009T
€TO0ET
0T000T
L000L

¥000Y

T000T

Samples

for Perl

ession

Figure 3.5 Dynamic Compr

Li BW reduction

100% ,4‘ ——Rigid Huffman ~ —#—Flexible Huffman

Flex/w Long Memory Huffman

85% 1|\ -

9z1s eu1blio Jo o,

60% 1

55% ———

50%

1600.6
600176
160076
880088
G800S8
280028
6.006L
9.009.
€.00€L
0.000L
190029
90019
T900T9
850085
GG00SS
25002S
6770067
9¥009¥
E£V00EY
0¥7000%
1€00LE
YE00VE
TE€00TE
82008¢
§G200S¢
2c00ee
610061
910097
€T00€T
0T000T
10002

000

T1000T

Samples

for L

ession

Figure 3.7 Dynamic Compr

Compress BW reduction

—=—Flex/w Long Memory Huffman

—#— Flexible Huffman

——Rigid Huffman

100%

L e e

0% 4 — — — |- — — m m mm

| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
] T
| |
| |
| |
R
X X
o (=]
© wn

30% 1 - — —
20% 1 — — —

az1s eu1b1io ay} Jo %

0%

L600L6
60076
160016
880088
§80058
2800¢8
62006L
9009
€L00EL
0£000L
190029
90079
T900T9
850085
GS00SS
25002S
6v0061
9009¥
EV00EY
07000
LE00LE
E00VE
T€00TE
820082
§2005¢
¢eooce
6T006T
9T009T
€TO00ET
0TO00T
L000L

000

T000T

samples

for Compress

ession

Figure 3.8 Dynamic Compr

65

The important detail for this experiment is that only original data request (regardless of
granularity) have been served. Our assumptions for the performance of the three schemes turned
out to be true. The Rigid Huffman performswell only at theinitial stages of a program, when

theinitialized data is being accessed and then, when new values are generated, performs very

DS compressability

no% | mRH mFH OFHLM —

100%

90%

80%

70%

60%

% of original size

50%

40%

30%

20%

10% -
compress go ma88ksim li jpeg vortex perl gce Average

bm

Figure 3.9 Summary of Data Segment Compressibility

poorly. It isvery spectacular in the case of the compress benchmark. For ijped the compressed
data size even exceeds the original data segment size. The reason for thisincreaseis the fact
that at initial region a precompressed (ijpeg coded) image is being loaded, so the data entropy is
aready high. Then, after a short period of time, where the image is being processed (and
entropy of memory referencesis very low) it is stored back, causing new rise of entropy and fall
of compression.

The Fexible Huffman takes every opportunity to adjust compression algorithm which

may not always be the best choice, but it performs much better then the Rigid Huffman in

66

general. A good example of this behavior isthe go benchmark. The performance of the
Flexible Huffman with Long Memory is very similar to that of the Flexible Huffman and
depends on benchmark, with overall results being slightly better (See Figure 3.9). Generally
speaking, the Flexible Huffman is easier to implement in hardware than the Flexible Huffman
with Long Memory since no care should be taken of the overflow support, which may prove to
be the most practical approach. The summary of change in entropy of the stream before and

after compression is presented in Figure 3.10. We can see that information density did increase,

100% } O Compression(FHLM) B Entropy_compressed O Entropy_original }

90%

80%

70%

60% —

50% + — — — 1 — —

Percent

40% — — — — — —] —

30% + — — — — — — — —

20% + — — — — — — — —

10% + — — — — — — — —

0% - T T T T T T T —
compress go m88ksim li iipeg perl vortex gce Mean

Figure 3.10 Entropy Change Due to Compression

but still remains substantially lower then the perfect measure. In the 4 we will propose away to
utilize this available slack to reduce power consumption of the data bus this code is being
transferred on.

The final issue in this category is the selection of regeneration points. The importance of
this issue becomes obvious when we recall that the contents of a caching structure must be

purged every time the encoding changes. Thiswill definitely hurt the overall performance and

67

could be considered as a catastrophic event. It is especially true if a software interrupt will be
used to perform encoding regeneration. Generally speaking using an interrupt is the easiest
approach to minimize the amount of hardware needed to support the flexible Huffman encoding.
To prevent often regeneration from happening all we need to do is introduce a performance
monitor. It could be easily implemented as a pair of counters with smple glue logic.

If the current compression is bellow certain threshold (for example 80% of original size

have been used) we do not attempt to regenerate encoding and just keep on using the current

ma88ksim

1 —=—RealEntropy —— CompCached EntropyCached ’—

140%

120%

100% 7

Compression

60%

40%

mm
mmmmmmmmmmmmmmmmmmmmmmmmmmmm

Figure 3.11 Dynamic Compression for M88ksim in presence of a Data cache

one. However, if the compressor is not doing agood job, overall cache performance will

degrade any way and purging the storage will probably not hurt the performance any further.

Table 4 demonstrates dependency between threshold value and performance degradation.
‘Regeneration Frequency’ refers to percentage of checkpoints, which actually caused algorithm

regeneration. For the rest of the work 75% threshold is used.

68

Table 4 Compression degradation vs. threshold selection

Threshold 65% 75% 85%
Regeneration Freguency 35% 40% 70%
Compression Degradation 8-15% <3% <1%

3.2 Effectsof the Data Cache on Data Compressibility

In the next set of experiments we increase the realism of the experimental setup by
introducing a small data cache into the system. Now the author is attempting to investigate the
change in behavior of the data stream between the data cache and the next level of memory
hierarchy. Theoretically, we should see a significant difference in the compression agorithm
performance. Instead of serving every load and store instruction issued by the processor, next
level of memory hierarchy should respond to the stream of miss repair requests with a block of
data. If thereisno prefetch model is employed (likein our case, thereis no explicit prefetch is

done), the minimal block of data being transferred at atime is a cache block. The size of the

cache block isfixed at four words (16 bytes).

69

Li
160% ‘+RealCompression —=—RealEntropy ~ —4— CompCached EntropyCached ‘7
!

140% -

120% -4

100% 1!

Compression
@
<]
=3

60% 1§ A

40%

20%

0%

R I = B TR B = < T B B - B oS- B ST = S~ B B B > B~ BT = S B S S - =
mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm

Figure 3.12 Dynamic Compression for Li in presence of a Data cache

Indeed, the data stream characteristics become nearly unrecognizable. Instead of the
dynamic picture we have seen for the m88ksim and li previously (in Figure 3.1 and Figure 3.7) we
go this new distribution (see Figure 3.11 and Figure 3.12), which is strongly inferior to the case
without a cache. The perl's behavior also endured strong changes but remained manageable for
redundancy-reducing algorithm (see Figure 3.13). The reader should note also an additional set
of data in those figures labeled ‘real compression’ and ‘real entropy’. In all the figures (Figure
3.11 through Figure 3.13) these ‘real’ label refers to the activity produced by a zero-sized cache

(‘real entropy’ refers to the entropy of the data stream for this case).

70

This ‘real’ case is slightly different from the picture seen in Figure 3.1 and Figure 3.7
because this data stream is generated by the miss repair data requests that would be issued by a

cache controller with zero storage array (which normally, as we just mentioned, requests one

Perl

110% } —+—RealCompression —#— RealEntropy ——CompCached En(ropyCaChed}

}
| ﬂ?

i,
90% { Yﬁ “i‘?‘sﬁﬁ.r
FP It g e it At ¥ b
IS4 TN R M. 4 5AM A o A s o s St + Yy
LI ;. kk“ U %“‘@’Tym‘“ﬂ[S Mk ifid, ’ A
‘} i s {0 & Yf’“f i W % W}M&M ¥
- l ‘ | | f Ll : LN

Compression

70% -

50% -

mm
¢

Figure 3.13 Dynamic Compression for Perl in presence of a Data cache

cache block at a time as oppose to a single word or byte at a time as assumed in the previous set
of experiments).

The degradation in compression performance is quite understandable once we bear in mind
that caching itself works by exploiting repetitiveness of references (time and spatial locality),
which directly correlates to the stream redundancy. The data compression algorithm will be
deprived of its primary resource — the redundancy. The data cache selected for this experiment
Is a small 4K direct mapped with Write Back, Write Allocate update policies. It seems that the

Write Through and the No Write Allocate update policies would save the situation by allowing

71

enough traffic behind the cache, but it is not entirely true. After attempting to use the Write
Through and No Write Allocate update policy it have been discovered that similar (or even
lower) level of performance remains, while bus traffic increases unreasonably. Thefinal results
are summarized in Figure 3.14. The only compression scheme utilized in this experiment is the
Flexible Huffman with Long Memory (as the best performer in the previous study). It is clear
that the entropy of the data stream with the data cache present changes dramatically but still
remains substantially large. We will investigate this matter further in Chapter 5.

Now that we see that a significant gain (of 50 % on average) could be achieved by

Harmonic means means

O HmeanRealComp B HmeanRealEntropy O HmeanCachedComp O HmeanCachedEntropy

12

n

Degree

0.6 —

0.4 . — — . . [

0.2 — — . .

jiIe i e h

compress go m88ksim li ijpeg perl vortex gce Mean

Figure 3.14 Effect of Data Cache on Data Stream compressibility

compressing the data segment let us find away to utilizeit. Unlike the compression of the code
segment this technique is not limited to embedded system domain. The dynamic data

compression could be used anywhere when space and bandwidth isan issue. It can reduce

72

memory bus traffic, increase data cache capacity (and hit ratio as a result) and reduce power
consumption as a net effect. It can even be used in amultiprocessor environment to optimize
inter-processor communications. Thefirst area of application for the dynamic data stream

compression is the system bus utilization and it is discussed in the next chapter.

73

4 System Data Bus Redundancy Utilization

4.1 Motivation and Experimental Setup

This chapter investigates the serious degradation from redundancy of the original data
that can significantly benefit from exploration of the available redundancy: the system data bus
[33],[34],[49]. The code segment is not the only portion of the program that contains high level
of redundancy. In addition, the data segment suffers from excessive redundancy aswell. In

some instances the data stream, consisting of data produced and consumed by the program, is

Uncompressed
Memory

Compressor Decompressor

Buffer

Gray Coder/Decoder

Gray Coder/Decoder

Compressor Decompressor

Uncompressed Dcache (L0O) I

Figure 4.1 Traditional. Bus Encoding Experimental Setup

even worse. Moreover, the quality of the data stream strongly correlates to the region of the

74

program and istime variant. Theinstruction busis viewed as a conductor for a dynamic stream
of datawith arandom, nearly uniformly distributed sequence of values with a high level of
redundancy. The busis optimized for both shorter transaction cycle and lower switching
activity without sacrificing the overall throughoutput. The reduction of the switching activity
directly contributesto reliability (dataintegrity) of the bus and low power design. Itiswell
known that Input/Output (I/O) circuits are one of the major power consumersin a system
[33],[34],[35]. Their share of power dissipation could easily reach 30-40% and some times even
can exceed 50 % of overall power consumption. When transactions on I/O bus compared with
internal transactions, the former dissipate 100-1000 times more power [33]. Thisis happening
due to their large capacitance (three orders of magnitude) when compared to internal circuits
[33],[34],[49].

This problem is further intensified by the fact that due to the low information contents of

DataBus
Bus Block Tuples Bus Gray
_.-~“might be composed frequencies Block | code
_____ L . of several compressed
7:‘ -5 cache blocks AA | 200 A 000
OneBus|__C A Pair of Sequential BC | 80 C 011
Cycle Bus Blocks is named D 010
aTuple AC 1
AD 1

Figure 4.2 Bus Blocks and Tuples Structure

data being transferred through 1/0 subsystem, it ending up being used more intensive than really
necessary. For instance, from theinitial experiments it has been found that at some regions of

the SPECInt95 programs [45] the system data bus transfers solid blocks of zeroes eighty percent

75

of the time.

Following the integral approach to the embedded system improvement in general, and
the front end of it in particular, it is necessary to pay close attention to the I/O subsystem. By
creative involvement of compiler and run time collected information, this situation can be

improved on. It has been found that by removing redundancy from the data sent over the system

BusCycles

600,000 ’4‘ B CompBusCycles B UncompBusCycles ’7

500,000

400,000

300,000

200,000

100,000 -

compress go m88ksim li jpeg vortex perl gce Average

Figure 4.3 Busy Bus Cycles

bus the throughoutput of the bus was doubled. Nevertheless, if low power isthe primal goal of
this optimization, some additional coding is needed. By superimposing the Gray code [30] on
the top of compression the ultimate goal of higher throughoutput with lower switching activity
can be achieved.

Although power consumption is very hard to estimate statically, it is safe to assume that
majority of the power is consumed when a bit flips (changes its value) on the I/0O pad and the
correspondent bus line. This fact means that power consumption for 1/O circuitsisin direct

correlation with the information contents of the data being sent through the bus. So in the spirit

76

of the previous discussion, let us investigate the reduction of switching activity and the increase
of utilization of the data bus by the reduction of redundancy in the data stream going through it.

The first set of experiments were conducted in an idealized environment where there
were no additional structures other than the core processor, a very small LO data cache, and the
off-chip memory (see Figure 4.1). By ‘small cache’ (one cache line) we understand here some
kind of a read buffer or a memory controller, and the only purpose of it in the current
experimental setup is to model a real cache data request activity. As have been discussed in the
previous chapter, the difference between no-cache and a tiny cache is how main memory is
accessed on a data request. If the processor attempts to load a byte the memory is normally

accessed for at least a cache block (given that the reference missed in the cache). If prefetching

Harmonic means

omp OHmeanCachedComp

0.8 =

0.4 — — —
0.2 — — —
0 ’_U_L T T T T T T T
Mean

compress go m88ksim li ijpeg perl vortex gce

Figure 4.4 Entropy Changes dueto Caching

is used multiple cache blocks could be delivered on a single miss. With the cache block set for

16-bytes, we can realistically model memory bus traffic without having the effect of a large

7

cache use. Neither the processor nor the rest of the memory hierarchy sustains any changes.

Bus operations are compl etely transparent for them. The busitself is modeled as a queue (FIFO
structure) through which a sequence of bus blocks istransferred. 1t should be noted that those
bus blocks might be unrelated to either of the logical blocks commonly assumed in the memory
interface. In other words, a single bus block might include either multiple or fractional parts of a
cache block mixed in random order (see Figure 4.2).

From now on for all the bus compression purposes we need only consider bus blocks.

Mean Static Oracle Block Distribution

Figure 4.5 Oracle Block Distribution

The first set of experiments illuminates the effect of compression. We are trying to reduce the
number of cycles that the bus remains busy. The compression algorithm used is the Flexible
Huffman with Long Memory. Figure 4.3 summarizes thisinformation. We can clearly see that

certain benchmarks can significantly increase their bus utilization in time (throughoutput). For

78

example go, ijpeg and compress nearly double it. But there is one catch: with the reduction in
the amount of time the datais being transferred reduced, but the amount of information
remaining unchanged, resulting entropy increases and the switching activity multiplies. This
effect could beillustrated in the following way (see Figure 4.6). In thisfigure two abstract
distributions corresponding to two different transfers on bus are presented. One (S2) is
presenting the transaction of datain the original form and derived from figures (Figure 3.1
through Figure 3.8). The other one (S1) is representing switching activity for compressed data
segment being sent through the bus. The important quality is that shaded areas underneath the
curves (S1 and S2) are of equal in size. The measure of this activity increase is experimentally
confirmed and summarized in Figure 4.3 and Figure 4.4. Apparently sole compression of the
data bus only leads to the time savings, but defeats the purpose of low power design. Instead of
an even distribution of switching activity over alonger period of time, we will have a short burst
of activity, increasing the peak power consumption (which ultimately could require a larger
power supply).

Thisfact leads us to the conclusion that some additional encoding is needed if we still
want to use bus compression. If compressed bus blocks are considered to be atomic units of
transfer, we can attempt to establish a correlation between their sequences (order) and the
switching activity. From the same Figure 4.4, we can also see that there is still a certain amount
of redundancy available, even after compression has been performed. This leaves us some room
for improvement. A natural choice to reduce switching between sequential statesisto apply the
Gray coding [30] to the compressed blocks. We should also mention that Gray coding imposes
minimum amount of delay for both encoding and decoding. With this double encoding each

cache block appears to be compressed in two dimensions: in space and in time with a net result

79

of higher entropy and low switching activity.

4.2 DataBusCoding Algorithms

The Gray coding algorithm itself should be modified so that it may adapt to the constantly
changing bus activity. The basic ideais simple: to make most common pairs of compressed bus
blocks differ in aminimum number of bits (perfectly just one bit). Let uscall apair of

compressed bus blocks atuple. If the two sequential blocks are different, thisisareal tuple, if

>
>

Switching Activity

' time

Figure 4.6 Density of the Switching Activity on Compressed Data Bus

they are the same, thisis an empty tuple (see Figure 4.2). From now on we only interested in
optimizing real tuples. There were several dynamic modifications proposed - Oracle Gray,

Adaptive Age, Adaptive Infinite Tuples and Adaptive Limited Tuples.

80

The Oracle Gray is an idealized structure (not necessarily hardware implementable),
which has full knowledge of all compressed bus block frequencies prior to execution. The list
of all possible blocksis sorted in descending probability order and Gray codes are assigned to
thislist in the same order. This guarantees that the most frequent blocks will have the least bit

‘distance’ (differ in the least number of bits). Practical implementation of the Oracle Gray is

Transaction Intensity

8.000.000 J BECompBitFlips BUncomBitFlips OOracleGray [DOAdaptAge B AdaptTupleinfinite 0 AdaptTupleFinite

7,000,000

6,000,000

5,000,000 H

ips

4,000,000 H

FI

3,000,000 B H

2,000,000 + H H

1,000,000 - H H

compress go m88ksim li jpeg vortex perl gcc Average

Figure 4.7 Transaction I ntensity

only possible if accurate profiling of all possible data sets can be performed. In this case, we
would know the probability of any common block to appear on the bus. Theoretically, there
might be 25" plocks, but as have been discovered, only about 5-10% of them are
commonly seen and the total span is only 50-60% of the maximum number. Basically, it means
that if we simplyenumerate all possible blocks we should already see a large drop in switching

activity. Furthermore, greater reduction is expected with the Gray encoding. The major

81

advantage of this method is the fact that both the encoder and decoder have afull table of all
common blocks prior to execution. For an adaptive scheme, it means that original blocks
should never been transferred in unencoded form. Figure 4.5 represents an example of blocks
distribution. It gives an example of how many blocks have been seen once, twice and so on (this
is the arithmetic mean across al benchmarks).

The next method, the Adaptive Age, attempts to model the Oracle encoding in areal

time system with no prior profiling. After acompressed block isfirst seen (and transferred in its

Transaction Density

25 - BUncompDensity B CompDensity OOrGrayDens [OAdaptiveAgeDens M AdaptiveTupleDensity E AdaptiveTupleRestrictedDens L

20

._\
o
I

Transactions/cycle

=
o

compress go ma88ksim li jpeg vortex perl gce Average

Figure 4.8 Transaction Density

original form) both the encoder and decoder create an entry in their table. The next time the
block is seen, the code is sent instead of the original form. Every time the block is seen again,

its frequency isincreased, and at a certain period of time the Gray codes are recal culated with

82

these updated frequenciesin mind. The recalculation point could be predefined (for instance
every million transfers) or flexible. If flexible regeneration points are used, some monitoring
hardware might be dedicated to detect the need for code regeneration. Additional overhead for
such asystem is an extra physical line needed to be added to the bus. This line indicates
whether a Gray coded or an original block is being transferred. With multiple servicelines
already used on buses, some of the existing connections can be utilized.

The next two Gray encoders are trying to utilize frequencies of tuples being transferred
as opposed to previously used frequencies of individual blocks (see Figure 4.2). The general
ideais, instead of looking at individual blocks and their frequencies, to collect statistics on pairs
of blocks. This method allows usto take away uncertainty on what block is being followed by
what, but requires much more information to be kept around. The first method is the Adaptive
Infinite tuples algorithm. It method is theoretical and assumes infinite storage for all possible
tuples frequencies. Thisalgorithm isonly used here to estimate available performance gain.
The second — Limited Adaptive Tuple — limits tuples frequency storage to a finite number: 1024
entries. Experimental results are summarized in Figure 4.7 and Figure 4.8. While the Figure 4.7
gives the absolute number of flips the Figure 4.8 normalizes them to the shortened (due to initial
compression) period of time: compressed bus cycles. In either case, the Oracle Gray achieves a
significant reduction of bus activity on top of compression. It even does better, on average, than
the original uncompressed data stream. This fact basically means that if the Oracle Gray code
conditions can be practically achieved (implemented in hardware with aid from the compiler),
then the ultimate reward of shorter bus busy state time and lower power consumption can be
achieved. On the other hand, all the ‘practical’ implementations suffer from the fact that each

block should be sent through the bus at least once to be encoded in the future. Nevertheless all

83

of them do reduce the bit flip activity overhead from compressing the original data stream.

The final step in this study would be changing the overall conditions to something more
realistic, such asincreasing the LO data cache size to 32KB. Thisisthe memory interface setup
most of existing systems are utilizing. Aswe described in Section 3.2, the problem is that both
the data cache and the bus encoding mechanism (in this case) are utilizing the same basic quality
of the data stream (redundancy/entropy). Since the cacheis closer to the original source of the
redundancy, the processor, it gets the best of it. The cache virtually prevents most common
blocks from appearing on the bus. (Refer back to the discussion in section 3.2). Once the data
stream is ‘filtered’ through the data cache, its entropy increases and the bus encoder has nothing
to work with: all it sees are unique blocks that a rarely repeating. This conclusion conforms to
our previous findings regarding the entropy of data filtered by a small cache (see Section 3.2).
This observation might be considered a negative result in general case. But for some embedded

systems, which do not use caching at all, or have very small caches, it might prove to be useful.

5 Compressed Data Cache Hardwar e | mplementation

5.1 Motivation

This chapter deals with another key component of an embedded system, which can be

significantly improved by reducing the redundancy of original data stream: the data cache.

(7[> T Tofe rF elr] Game™
N O 2 1 N T ==
Write Uncompressed Buffer Searched in parallel
with main storage
Compressor
Tag State Displacement
Compressed block Search/Maximum
Uncompressed block P agema:jt
Compressed block ra:ﬂ?aemmu?non

allowed compression

Decompressor

Searched in parallel
with main storage

Read Uncompressed Buffer

10bit) .. 5hit <):I Original Hash Function
Address —F R Equivalent of DM placement
Tag Index Offset
New Hash Function
it Bhit <):| equivalent of 2way SA

Figure 5.1 Compressed Data Cache Architecture

There has been little work in hardware design schemes for exploiting data value compressibility.

Thisis understandable, since on-die data memory capacity today is not a performance-limiting

85

factor for general-purpose processors. However, thisis not the case for special-purpose or
embedded processors that often share the die with the rest of the system. In several recently
announced embedded systems like the MIPS64 20K ¢ [52] and the IBM PowerPC 750x [53], on
chip instruction and data caches occupies approximately 50% of the silicon area and consume a
significant share of total power. Inthese situations, there is aneed for very highly efficient use
of data memory, or other alternativesto use smaller hardware structures while delivering a
similar level of performance.

Moreover, since we found that the data cache is the primary consumer of the available
redundancy of the data stream, the next logical step isto attempt to increase its performance the
same way we did for the instruction cache — by compressing it. As have been mentioned before,
though similar at the first glance, the actual coding conditions for code set and data stream are
drastically different. The major difference is that insteadsditec code segment, we are
dealing with a constantly changidgnamic data stream, so we cannot apply static compression
algorithm (with fixed frequency distribution). In addition to that, since the compressed data
should be stored (statically) for some period of time prior to decompression, we cannot apply a
truly adaptive compression algorithm either. With all this in mind, we have a new and unique

set of contradictory problems to solve.

5.2 Compressed Data Cache Architecture

Following the detailed analysis of data stream compressibility in section 3.1, we can
affirm that the compression algorithm that best fits this set of coding conditions is the Discrete

Adaptive Huffman. Let us now define several basic assumptions for design of the proposed

86

compressed data cache:

- Thecacheisdirect mapped in essence, but provides an implicit associativity (see
explanation below);

- Both compressed and uncompressed data blocks can be stored in the cache at the
same time;

- The smallest compressible block is acache line; (no partial compression for fractions
of acacheline);

- A block of datais stored in compressed form only if compression reduces its size;

- Hashing isafunction of compressibility of the datum (implicit associativity); and,

- The cache uses write allocate/ write back update policies.

Let us begin by describing the implicit associativity mechanism. One of the basic

32 bytes
A
Vs
Original address: Ox40006740 ’ A ‘ B ‘ c ‘ D | Original memory block
a b c d Compressed memory block
Compression did not help,
17hit 10bit Shit but increased the original size:
Better keep it in original form.
Hashing function: Line choice: from 442 till 442
ing function: ...0000.1011.0111.0100.0000 Choose 442, since there was o
Line Tag Index Offset compression applied
Number State Age Deltalndex
41 N -1 0
412 uc 0 0 A ‘ B ‘ c ‘ D
443 N -1 0
Max searchable range
for theindex 442: 8 lines
450 N -1 0

Figure 5.2 Block Placement Example - Expanded Block Placement

features of this cache is the variable hashing function. The whole design is built around of the

87

idea of variable compressibility of the available data, and the hashing function reflectsit. There
are three possible outcomes for an attempt to compress a block of data: its size is reduced,
remains unchanged or isincreased. Obviously the outcome depends on frequency of elements
that make up that block. If we want to store compressed blocks of arandom size, we need to
provide aflexible mechanism for it. But the point is that we want to preserve precious storage
within the data cache, so only blocks that reduce its size after compression are stored and
placement policy is modified accordingly. In other words the more compressible a cache block
is the more flexibility on its placement is alowed. This mechanism is best explained with an
example.

In the Figure 5.2 we see an example of the case where compression attempt produced
negative results - the cache block was increased in size after compression. This happens when a
cache block containsrarely used bytes. Fortunately, those blocks are infrequently encountered

aswell. Nevertheless, in this case the block is stored in the compressed cachein its original

32 bytes
A
a I
Original address: 0x4000b740 ’ E ‘ F ‘ G ‘ H | Original memory block
Same block, new data
’ e ‘ f ‘ g ‘ h New Compressed memory block,
fitted more then one original

17bit obit 6hit block

New Hashing function: (\/ \/ \ Line choice: from 442 till 443
...0000.1011.0111.0100.0000 Choose 443 as ‘oldest’
Tag Index Offset
Line
Number State Age Deltalndex

441 N -1 0
442 UN 1 0 A ‘ B c ‘ D
443 uc 0 1 e ‘f ‘ q h ‘ 2
Max searchable range
for theindex 442: 8 lines
450 N -1 0

Figure 5.3 Block Placement Example - Reduced Block Placement

form (uncompressed), and the hashing function is equivalent to the one for the direct mapped
cache (see Figure 5.2). A different approach istaken for blocks that are reduced in size after

88

compression (see Figure 5.3).

Before we proceed with this example, let usfirst define granularity level for the cache.
The granularity level directly correlates to the smallest addressable unit in the cache, which
normally isword or byte. Let us use asingle byte as atomic unit in our case. Depending on the
granularity level, when a single additional atomic unit is added to the compressed block (in
Figure 5.3 the original size of zis multiple of abyte), the compressed block offset automatically

‘increased’ by one bit (in this example to six from five), and its index is ‘reduced’ by one bit (to

’ tag ‘ index ‘ offset |
[
’tag A| [Disp| Uncompressed Block A
tag B A Compressed Block B
v ¥
T tacn] [racn] | block latch |
[1acn] [1acn]| block latch |
; j ;
1o block select /
v
[Blocklachand shift<< |
! v
- The displacement Decoder
provides information
on the number of bytes
in the compressed
block and the offset to
theend of the ¥
first block [Blocklachand shift<< |
- Hit/missis detected v
prior to the word sdlect /47
decompression 7

Figure 5.4 Read Pipeline. Multiple Set storage

nine from ten). This shorter offset in turn implicitly doubles the line selection choice — now this
compressed block could be placed in either line 442 or the line 443 in main cache storage. This

process is repeated until a compressed block’s size equals or exceeds the original block size. By

89

this time, the compressed block might contain multiple cache blocks (up to the maximum
available number allowed by the compression algorithm — in this example eight). Among the
possible line candidates, the least recently used (LRU) is chosen. This process is named the
implicit associativity.

As it has been mentioned before, for the byte-base compression algorithm, which is used

in this set of experiments, the granularity is a single byte, so the best potential compression

| tag | index ‘ offset I
[
tagA| | Disp] ™ Uncompressed Block A
index +1 [tag B| | Disp] Compressed Block B
v v
tach] [tacn] | [blocklachandshift |
v
Decoser
tl ==
_ v
Block A, mapped by g 0 o ana i< |
the index is brought to v
the block latch at first
d select
access Wor eCl /—
- If thisis not the block v

needed, the right one
(B) is brought down in
the next cycle

Figure 5.5 Read Pipeline. Two cycle access

occurs when a whole byte is represented with a single bit, i.e. by eight fold (8x). Given this
information, up to eight cache blocks can be present in a single compressed cache line. This in

turn means that a line can be placed anywhere within this eight line window with original (direct

90

mapping) address inside of it. Therefore, in order to find a single block, we need to search all
the entries for all possible locations of the compressed cache block. In current case this would
be equivalent to an eight-way set associative cache. If this search range ever appears to be a
limiting factor for hardware implementation of the agorithm, the maximum compressibility
could be limited, with corresponding degradation of performance (from 0.023 average miss ratio
for the 8x unbounded compression down to the 0.031 for 2x restricted compression).

Figure 5.4 shows the example of a 2x limited compression and also presents a potential

Tag Displacement Fields Storage
Total Bytes Second Block

142 TagC L +0 bytes 0 c
143 Tagal +8 bytes 50° a ‘15 b

Pad area due to
2x Compression
restriction

v Miss!
ZV y<= Z <X
Passed to the

Wit Decompressor to
B ’ Detect the Critical
S| Y= Z<X Block Location

Load Address

TagB 142 0 I

Figure 5.6 2x Restricted Compression Block Placement and Access

implementation of the cache read pipeline. If the read mechanism used in conventional two-way
set associative cache isimplemented, both cache storage and tag/displacement array can either
be banked (the traditional implementation with hardware duplication) or dual ported. It iswell
known that multiporting of more then two presents an extreme design challenge and calls for
custom design and layout. Because of this, 8x compression might have impractical hardware

requirements for this scheme.

91

There are two tradeoffs that can be exploited in order to implement implicit associativity

for multi-way compression, depending on target implementation: (1) if the access latency is

Store Address

TagB 142

2
I Storing single Unaligned Byte C

Write Uncompressed Buffer (for 2x bounded-compression)

e
] 4

Word Select / /

Y v

by =2 ’ << I

Missed part of the A 4 I

For 2x WUB is
Two-block long
Block sizeis 16Byte

Unaligned Block .
Must be Prefetched Compression
Module

Optional Shadow Compression Buffer 127

Figure5.7 WUB Organization

critical, the scheme presented in Figure 5.4 can be used, or (2) if an extra cycle for some (not all)
accesses can be tolerated, the scheme presented in Figure 5.5 can be used instead. In this

scheme, access to an uncompressed block is done in one cycle, and access to a compressed

block takes one or two cycles plus time for decompression. In either case, once a block is found

and it isuncompressed, it could be delivered in the same way as atraditional cache does (see

discussion below). If the block is compressed, it must be uncompressed first into the read buffer
(uncompressed blocks are not placed there, see below). The critical block can be decompressed

first using some additional information (6-bit displacement) which is stored along with the block

tag in the displacement field (see Figure 5.6, the ‘second block’ field). If the next load hits in

the same line or one of the following blocks, it is likely to be already uncompressed and resident

in the read buffer. To improve access time, the read and write buffers are searched in parallel

92

with main cache storage. In this sense this schemeis similar to the open page policy in DRAMs.
Now the read and write sequences should be described in greater details. On awrite to
the cache (the processor stores a datum) the data does not goes directly into the compressed

storage. Itisfirst written into the Write Uncompressed Buffer (WUB) (see Figure 5.1 and

Shift Register Input Sequence: aaacdbac
<< <::| 1.1.1.000.001.01.1.000
Modified Shift
CAM Storage v amount
0000 A | 1** 1 Original Huffman Tree:
0001
0010
Output uence:
0011 B | 01* 2 put Seq
0000.0000.0000.0100
256 1000.0011.0000.0100
entries
0100 C | 000 3
1000 D) ool 8 D: 1000 C: 0100

Figure 5.8 Logical Structure of the Reprogrammable Huffman Decoder

Figure 5.7). The WUB can hold up to eight (or whatever the compression limit is) sequential
cache blocks. If the compression latency poses a delay on the write procedure, each block
written into WUB can be speculatively pre-compressed and stored in a shadow compressed
buffer. If the datum being stored by the processor is not aligned at the beginning position of a
cache block, the missing portion of the block is prefetched (see Figure 5.7). The next write to
the cache is checked against the block currently located in the WUB. [f this datum is from the
same block (which often isthe case), it is accumulated in the WUB. Potentially up to eight
cache blocks can be accumulated in the WUB. It isimportant to notice that thereis no

limitation on order and permutation of reads and writes since we have two independent

93

hardware paths in the cache to handle them.

Once the maximum capacity of the WUB is reached, or there was a datum from a
different block encountered (missin the WUB), the whole contents of the WUB is compressed,
one block at atime. For each individual block the decision is made whether it is stored in
compressed or uncompressed form. The only restriction for this process is the sequentiality. If
for example, out of the eight sequential blocks in the WUB, the first two get compressed and the

following two do not, while the remain four do, we will have three independent groups to be

Input Sequence:
Original Huffman Tree: Decoder << aacdf
| 11.11.100.01.000
0 1
0
! F-3 C-3

E-3 B-3
0 D-2 A-2

0
1 .
D-2 A-2 » Symbol for A
and shift amount:
D: 0011 0000; <<2
\ / Y‘ Besides

1 0 1 we already decoded

1
A: 0000
thefirst bit of the next

|B: 1000| |c: 0100| |E: 101o| |F: 0111| symbol

Figure 5.9 Dual Bank RAM Implementation of the Huffman Decoder

placed into the storage. Thefirst and the last compressed groups will have a choice of
placement (two lines each) while the uncompressed group will be placed at rigid location. So in
thisway all the content of the WUB is transferred into the compressed (main) cache storage. No
stalls are produced by this process, so the store latency is zero cycles.

On aread from the cache (the processor executes aload), three separate |ocations within
the cache are checked in parallél: the main compressed storage, the WUB, and the Read
Uncompressed Buffer (RUB) (see Figure 5.1). The read uncompressed buffer holds the mostly

recently read cache block in uncompressed form. This once again means that up to eight

94

consecutive uncompressed cache blocks can actually reside simultaneously in the RUB. If the
read hitsin either the WUB or RUB the access could be served in asingle cycle (or whatever is
equivalent hit time for direct mapped cache in the current setup). If the read hitsin the main
compressed storage access time depends on whether the data accessed isin compressed or
uncompressed form. If the data uncompressed, the latency is the same as for conventional direct
mapped cache. If the block is compressed, the latency might vary depending on decompression
mechanism employed. The entire flow graph for this process could be found in the A ppendix
Table 3.

Now we should recall that the compression algorithm employed — the adaptive Huffman
— have periodic adjustment phases, which change the frequency distribution used. On the

catastrophic event when the compression algorithm is being adjusted, certain actions should take

Input Sequence:
’ aaacdf
| 1.1.1.001.01.000

Origina Huffman Tree: Decoder <<
111 | <
1

0

3 A-1
C3 A-1
0 D-2 AA-2
DA-3 AAA-3 » Symbol for three A
and shift amount:
0000.0000.0000; <<3

C: 1010 F 0111

Figure 5.10 Multiple Symbol Decoding Example

place in the cache storage. As was mentioned before in Section 3.1 in most cases this is a rare
event and we can dedicate a software interrupt to serve it. This interrupt will use the profile

information accumulated since the last regeneration point and produce new and improved

95

distribution to be used by the compression algorithm. From an architectural standpoint, all
previously compressed items should be discarded because new agorithm would be unable to
interpret them. But, it does not mean we should completely purge the cache storage. First, just
aportion of the datain the cache is actually compressed, so the uncompressed portion is not
affected by compression algorithm change and could remain untouched. Second, the
compressed part could be uncompressed with the old algorithm prior to its regeneration, and left
at the appropriate location (according to the direct mapping placement algorithms). Regardless
of that certain portion of resident cache blocks does get lost, but all these features allow
lessening the impact of the compression algorithm regeneration on the overall cache

performance.

5.3 Dynamic Decoding Structure

Now we have come to the most important part of the compressed cache design - the

Input Sequence:

o Decoder << ‘ cdf
Original Huffman Tree: 000 | < 1] 0001.001.0000
1

1 0 Al

\C) D3 |- AB-2

B:1011| 1 0 B2 |4 [AA2

BA3 | % |AAA3

D: 0011
N 0 T R
i oca 3 Symbol for C
4 and shift amount:
c: 1010 |F o111 341

Figure5.11 Biased Huffman Tree Example

96

decoder. Unlike the decoder for the instruction cache, this decoder needs to be reprogrammable,
because the compression/decompression algorithm changes periodically. This fact means that
no static and fast hardware structure could be built, so we need to propose away to implement
the adaptive Huffman decoder in reprogrammable form. In addition to that we cannot rely on
pipelining to reduce the overall latency of access. Unlike for the code segment and instruction
cache, the data cache reads could be spread apart in time with multiple cycles between them, so
the pipeline hardly could be kept filled. Finally, it should occupy minimal physical size because
otherwise the whole purpose of using a smaller smart cache instead of alarge unsophisticated
one might be defeated all together. Figure 5.7 presents the logical/functional organization of
such a decoder as a priority decoder.

The Huffman code fragment, needed to be interpreted, addresses the RAM. The RAM

storage entry holds the uncompressed symbol and shift amounts for each original code (Huffman

Input Sequence:
Decoder << ’ ada
Original Huffman Tree: 100 | < | 1.001.0000

1

NON
. > Symbol for A

0 Forbidd A-1 _
1 e and shift anount: 1
D-3 AB-2
B:1o11| 1 i B2 AA-2
BA-3 AAA-3
D:oo11|

A 0
" |ci1010| |Fo111

Figure5.12 Restricted Huffman Decoder Structure

0

alphabet entry). The shift register is capable of holding up to 2-°"9=¥S= hits of the input

encoded stream, which are then passed as an input to the left-to-right priority decoder. Matchis

97

detected when all |eft-side bits for the RAM contents match the left-most part of the shift

register. Once amatch isfound, asymbol is generated (based on the code location in the RAM

— simply the line number), and the shift amount is used to update the shift register (so the
decoded symbol is shifted out). The critical part here is that multiple cycles are needed to
decode one cache block and a large physical size for the RAM storage and the priority decoder
logic. With these points in mind, the following Dual Bank RAM implementation was proposed
(see Figure 5.9).

In this scheme, the RAM storage is split in two banks of equivalent size. This separation
corresponds to the splitting at the root of the Huffman tree. In Figure 5.9, the right bank
corresponds to all of the Huffman codes that begin with one and the left bank for all that begins
with zero. Obviously the storage could not be split any more, since the shortest Huffman code
could contain just a single bit.

The advantages of such a structure include multiple symbols decoding in a single cycle

Memory

Memory Bus
MissRepair | [
Traffic h

Data Cache Profiling
Point
CPU Bus
Fetch |
Traffic
CPU

Figure 5.13 Profile Point Selection

98

and the fact that the critical ‘vertical’ search range is reduced in half. Figure 5.10 gives an
example of three symbols being decoded in a single access to the dual bank RAM decoder. This
case is far from purely theoretical - virtually all benchmarks in Specint95 at some regeneration
period have a single dominating byte (usually zero), which outweighs the combined probabilities
of all other symbols and gets encoded with a single bit.

Unfortunately, the opposite situation, where a tree is strongly asymmetric due to

presence of an unlikely bit, is also possible (see Figure 5.11). In this case, we need more than

b 16KCompl6B M 16KComp32B O8KCompl6B C08KComp32B M16KRes16B M 16KRes32B M8KResl16B [8KRes32K

30%

25%

20%

15%

Compression => Memory Side Better

10%

5%

o g — P L
compress go m88ksim

-5%

Processor Side better <

ijpeg perl Vorfix| g Average

Figure5.14 Compression Dependence on Profile Point Selection. Memory sidevs.

Processor Side

256 entries, potentially up to tHE9=*S* entries in the RAM storage. For a typical
LongestCodeSze of up to 16 bits the RAM size gets unreasonable big.
Fortunately, there are several features specific to our setup that allows to optimize this

decoder size. First of all, it is important to remember that codes are produced and consumed

99

locally in the cache. Second, according to the policy of not storing excessive codes, we are

likely not to use long codes any way. From this, we are proposing the Restricted Compression

model. The key feature of this compression model is the fact that only bytes whose Huffman

codes are equal to or less then eight bits are compressed. All others are considered forbidden.

The size limitation is chosen arbitrarily and could be varied. The biggest single advantage of

using eight beet threshold is the fact that non of produced codes will exceed size of the original

block, so no hardware ‘adjustment’ is needed to deal with longer codes. If a cache block
contains a single forbidden byte, it is considered forbidden as well and is not compressed. This
Restricted Compression model allows us to use only a 256-entry decoder. We guarantee that the
encoder will not produce forbidden codes (tlmagestCodeSze is now less then or equal to

eight bit and total decoder size is fixed) (see Figure 5.12).

Just as have been outlined above, the decoder RAM is split into two banks (each one
now is 128 lines long). The leftmost bit of the shift register selects the bank. The rest of the bits
in the shift register (seven bits) serve as an address into the correspondent bank. As we showed
before, the addressed RAM line might actually contain multiple codes (see Figure 5.10). Once
the line is found, it produces onesaveral symbols and aumulative (for the several codes
being uncompressed) shift amount. With this implementation, the speed of decoding will vary
with the data being decoded, and the most likely (and shortest) symbols will be decoded the
fastest. To decode a 16-byte block we might need between two and 16 cycles. If the decoder is
sub-clocked at half the cache clock time it translates into between one and eight cycles.

The encoder is actually ‘the easy part’, when compared to the decoder. Just as we
mentioned earlier in the Section 5.2, since encoding is a rarely performed operation, it can get a

dedicated operating system (OS) interrupt. This interrupt will generate new encoding and

100

update the changing part of the hardware decoder. Thisinterrupt will have to perform all actions
outline earlier including new distribution and new optimal agorithm generation along with

selective purging of data compressed with old algorithm. It isimportant to note that no

immediate recompression with the newly generated algorithm was considered at this time, but it
isapossible option. Though the algorithm regeneration is a catastrophic event we can reduce its
occurrences by dedicating minimum amount of hardware. Thiswill have to be a small hardware
profiler that is updated in parallel with data compression and holds the degree of compression

since last regeneration point. It isimportant to notice that we still maintain minimum time

granularity in asserting this hardware (every 1000 references for example). Thiswill prevent us

from multiple ‘back to back’ algorithm regeneration. Once the measured degree of compression
falls bellow certain threshold, the interrupt to generate new encoding is generated. With the
current threshold set at 70% of the original size, only five to twenty percent of checkpoints call
for actual algorithm regeneration.

A much more important and interesting question is how to collect accurate profile
information for all bytes in the input data stream. Generally this profile should give us the
frequency of any byte appearance in the data stream since the last regeneration point and its
accuracy defines effectiveness of compression in general. The straightforward solution would
be to maintain an array of 256 counters and update them as we progress. This update is
occurring in parallel with the fetch process and does not impose any time penalty. Nevertheless,
the use of this array of counters equals an increase in the hardware budget. Let us investigate

this issue in greater details.

101

5.4 Variationson the Compressed Data Cache Design

As have been just mentioned, an important option and interesting question in regard to

4D16K00mp168 B 16KComp32B O8KCompl6B O8KComp32B M16KRes16B M 16KRes32B M8KResl6B DSKRES32KL

1.2%

0.7% =

0.2% {
= T T

e

> Memory side is better

compres: go ma88ksim li ilp perl vortex gcc an

-0.3% +—

-0.8% +—

Processor Side is better <= Miss Ratio

-1.3%

-1.8%

Figure5.15 Miss Ratio Dependence on Profile Point Selection. Memory sidevs.

Processor Side

profile accuracy is where the statistics on the data stream are being collected. First it was briefly
addressed in Section 3.1, and now it istime for the detailed discussion. Aswe remember from
the code segment, there was no such issue as profile point selection. The code segment was
statically available and optimized for static storage. Here we optimizing the dynamic stream for

dynamic storage and the question is: which part of the stream is more representative.

102

The obvious choices are whether to collect statistics at the processor or memory side of

15% 74{D 16KComp16B M 16KComp32B 0 8KComp16B O08KComp32B M 16KRes16B O 16KRes32B M 8KRes16B DBKResSZK}i

10%

5%

Compression => Memory is better

-5% Lt

Storage is better <

-10%

-15%

Figure 5.16 Compression Dependence on Profile Point Selection. Memory side vs. Storage
Contents

the cache (see Figure 5.13). The processor bus side gives us a picture of which bytes are
actually used by the processor. Theoretically, bytes more commonly used by the processor could
be narrowed down. Then, once compressed those bytes get the best size reduction opportunity.
Nevertheless, to profile the processor side stream, more references to the profiling hardware are
needed. Thisimbalance does not impose immediate performance penalty, but in along run
might turn out to be a power issue. On the other hand, the memory side monitor only seesthe
stream of bytesin response to miss repair (we do not monitor write backs for obvious reason),
which is normally less then ten percent of references of the processor side. It will give us
dightly different distribution, which is more representative for bytes being not in storage when

needed.

103

The Figure 5.14 summarizes the difference in degree of compression and the Figure

H16KComp16B M16KComp32B O 8KCompl6B O8KComp32B M16KRes16B H16KRes32B M8KRes16B O 8KRes32K

1.75%

1.25%

0.75%

0.25% - [

compress go m88ksim i ijpeg perl vortex gc Mean

Miss Ratio =>Memory is better

Storage better<:

-0.25%

-0.75%

Figure5.17 Miss Ratio Dependence on Profile Point Selection. Memory side vs.

Storage Contents

5.15shows the difference in miss ratio based on where the data were collected. Aswe can see

on average memory side is doing better in compression, and being less often accessed

(comparing to the processor side) is clearly a better choice for implementation. Thisresult in

some way is counterintuitive. Nevertheless, once we analyze which blocks are resident in cache

we will find out that blocks that are mostly accessed by the processor are also the longest

residing in the storage. In addition they are also the ones that stay the longest in the read buffer

in uncompressed form. On the other hand, blocks that are comparatively rarely accessed are

causing the most of cancellations due to conflictsin the storage. If those blocks are compressed

the most, those effects are lessened. A naive but excellent example of this phenomenon would

be pouring a cane of poppy seed infallcan of beans. It will fit almost entirely into the empty

104

space in-between the beans. And since the poppy seed is the oneto go in and out of the can al
thetime, it better be small, so beans do not have to be removed.

Nevertheless, there is yet another, and in some way, more elegant solution for the profile
collection. Generally we can generate the byte distribution based on the current contents of the
data cache. It should represent a snapshot of activity during the period since the last code
generation and it does not take any additional hardware to keep the statistics. Asthe OS
interrupt goes through the storage and selectively purges the compressed blocks it must

uncompress them first in order to leave the block that maps into the current line resident and

8 times the size of original cacheline

/\
/ ™

To and From the CPU

L0 Cache i

Up to eight Uncompressed Sequential blocks

Searched before

Up to eight Uncompressed Sequential blocks the main storage

Compressed Storage L1 Cache
Tag State New Offset P ag
CD |[Origlndex+6 Compressed block Same organi zation
for the compressed
uc 5 Uncompressed block storage
CD 10 Compressed block

To and From the Memory

Figure 5.18 Two L evel Compressed Data Cache

uncompressed (see Section 5.2). At the same time, the desired byte profile could be performed.
This distribution should be blind to frequency of byte usage by processor. It might turn out to be

either advantageous or degrading. As could be seen from the Figure 5.16 after experimenting

105

with all the three options, the assumption about low representativeness of the processor side

stream turned out to be true — for most of benchmarks storage profiling gives better

compression. Nevertheless once we look at Figure 5.19 we can see that overall miss ratio is
virtually unchanged. It might mean two things. First is the possibility that we already have near
optimal profiling with memory side monitoring. The second possibility is that it is not as much
importanthow much we compress but rathehat we compress. But for the reason of the

smaller hardware budget and lower power consumption we should recommend the storage
profiling as a better solution.

The next option needed to be described is the sizes of read and write buffers. If one

M@ 8KRes32B_LOMem M 8KRes32BPMem O8KRes32B_LOProc O 8KRes32BProc

Miss Ratio
o
o
&

Figure5.19 Miss Ratio for Two-L evel Cache compared with the Original
I mplementation
carefully analyses the structure of the original compressed data cache (Figure 5.1) it could be
seen that the read and write uncompressed buffers play significant role in the operation of this

cache. In essence, they could be viewed as a small LO cache split into two parts: read and write

branches. The question is what is going to happen if we significantly increase the size of those

106

buffers. Infact we would probably want to merge both buffers and dlightly reorganize overall
design.

The Figure 5.18 presents the revised design. Both the read and write uncompressed
buffers are merged into one LO storage array. Each linein the LO can hold up to eight sequential
memory blocks. The fact that resident blocks are sequential is rather important here. It allows

easy compressed block formation, but resultsin low hardware utilization, since one hundred

8K Rest 32B Proc

O ReadBufferHit B WriteBufferHit O CompStorageHit O UncompStorageHit

100%

80% T I —

0% T T
ijpeg perl vortex gce Average

compress go m88ksim I

Figure 5.20 Reference Hit Breakdown for the Original Compressed Data Cache

percent compression is an infrequent event. The LO filters all accesses to the compressed cache
storage — both write and read first go through it and only then access the main storage. The size
of LO is set to 32 lines. In this configuration, a byte frequency profile is collected between LO
and main storage, with additional monitoring of the processor side of LO. This is done to

guarantee the proper distribution for code regeneration — we do not want build our compression

107

solely on the storage contents or memory side. The reasons for that were described in great
detailsin 4 and includes the change in the data stream entropy filtered by a caching structure.

The first set of experiments for the two-level cache revealed its low performance and

dLo B CompStorageHit OuUncompStorageHit

100%

80% +— —

60% *<. -
.

T] I :

20% — —

0%
go ma88ksim li ijpeg perl vortex gce Average

Figure5.21 Reference Hit Breakdown for the Two-L evel Data Cache

practicality (see Figure 5.19). Inthisfigure, one of the configurations of the original
compressed data cache is compared to the two-level cache. For the bigger hardware budget we
got slight degradation of performance for most of the benchmarks. The only exception isthe
perl benchmark, which exhibits high degree of spatial locality, so as aresult, most of the used

datafit into the LO cache.

108

In order to further analyze this degradation of performance in two-level cache we need to
look at internal cycle distribution of both original and the two-level caches. In Figure 5.20 the
ReadBufferHit part of the bar corresponds to all the references that hit in the uncompressed read
buffer (the read from the same block that was read recently and still resides in the read buffer).

The WriteBufferHit part correspondsto all of the references that hit in write uncompressed

—&—8KRest32B_MissRatio —=— 8K32B_MissRatio —A— Compression_Restricted —»— Compression

1block 2block 4block 8block

//:/

0.1

e S —
— -

0.01

Figure 5.22 Two Level Cache Size Variation (L ogarithmic Scale)

buffer (awrite followed by aread from the same address before the block got a chance to be
compressed). The other two sections correspond to the main compressed storage. Since a
reference could hit in either compressed or uncompressed block we must differentiate. Aswe
can see from Figure 5.21, majority of the references hit in the compressed storage. Thisfact is
the main reason for the performance increase of compressed data cache comparing to the

uncompressed one.

109

If now we analyze similar distribution for the two-level cache, we will see completely

016K _2way 16B H16K_2way 32B O8K_2way_16B O8K_2way_32B
B 16KCompl6B Hd16KComp32B H 8KComp16B O8KComp32B
10% M 16KRes16B B 16KRes32B O8KRes16B O8KRes32B

9%

8%

7%

6% N

5% —=

Miss Ratio

4% ['

3% H |_ H o

2% | |

1% H H

compress go m88ksim li ijpeg perl vortex gcc Mean

Figure 5.23 Miss Ratio Comparison between Compressed and Uncompr essed Caches

different picture (see Figure 5.21). Now the magjority of references hit in the LO storage, which
effectively filters out references to the main storage. Asaresult small portion of data does get
compressed, and it could be seen that only a small fraction of the references that got to the main
storage actually hit in the compressed block.

The final variation in the LO experiment is varying the size of the LO cache from one to
eight lines. The results for mss ration and degree of compression are summarized in Figure
5.22. It can be clearly seen that with increase of the LO size the compression performance
degrades quickly (just asin the case with bus compression). The miss ratio drops at two-block

L0 size and then slowly improves as the LO size increases since L0 now serves majority of

110

references. It isaso should be clear that overall performance per hardware unit uniformly

degrades, since increasein L0 size equals total hardware budget increase with minimal return.

5.5 Final Configuration for the Compressed Data Cache

Once we have iterated over several design options we can come up with a proposal for

the final and optimal solution for the compressed data cache design. With everything mentioned

O16KCompl6B M16KComp32B [8KCompl6B [8KComp32B M 16KRes16B M 16KRes32B M8KRes16B DSKReSSZKL

60%

50%

40% — =

30% B = = B i

Compression

20% — = — — = — H

10% A - - - - - - H

0% A - L] L = L] L]

compress go m88ksim li ijpeg perl vortex gce Average

Figure5.24 Absolute Dynamic Compression for Storage Profile Scheme

earlier the cache that uses original configuration and storage based profile collection with a
choice of storage size between eight and 32 Kbytes and block size of 16 bytes could be

considered near optimal. It isvery important to note that it is only optimal for the current set of

111

benchmarks. For adifferent type of application this configuration should be revised. Also some
of the applications (like streaming data processors) might be better without data cache at all.

The final simulation results for the best configuration are presented in Figure 5.23 and
Figure 5.24. The compressed cache is compared against a similarly sized uncompressed two-
way set associative cache. From the results we can see that an eight Kbytes compressed cache

with restricted compression model on average performs as the traditional 16 Kbytes two-way set

0.05 74{ O2_way_uncompressed B2_way_compressed [8_way_uncompressed [O8_way_compressed_implicit }7

0.045 1] 1

0.04 —

0.035 — 1 — —

0.025 1+ — — — — — — — — —

Miss Ratio
]

0.02 — —— — — — — — — —

0.015 1 —— — — — — — — —

0.005 1 — — — — — — —

0-— T T T T T T T
16KCompl16B 16KComp32B 8KCompl6B 8KComp32B 16KResl6B 16KRes32B 8KResl6B 8KRes32B Average

Figure5.25 Entropy Miss Ratio Summary

associative cache. For more sophisticated compression model, the miss ratio difference easily
reaches a two-time reduction for the same size of storage. In order to prove the statement made
in Section 2.5.1 about entropy miss ratio the following set of experiments was performed. The
compression agorithm was limited to maximum of 2x compression rate and 2way-like
placement policy. The comparison between correspondent 2 and 8 way set associative

traditional cache vs. 2x and 8x limited compressed cache performed. The results are

112

summarized in Figure 5.25.
From everything said so far it could be conclude that even with restricted compression
model the compressed data cache can perform better then a similar uncompressed cache, and

intelligent choice should be made for every specific architecture whether it can benefit from

compression of data cache.

113

6 Conclusionsand Future Work

The main purpose of thiswork isto study the available redundancy and potential
compressibility of an embedded processor program in general and find waysto useit. Asa
result, we can reduce both static and dynamic program size, which results not only in increasing
overall performance but also in smaller code ROM size and lower power consumption. Itis
important to reemphasize that ultimate goal of higher performance and smaller program at the
same time was achieved. The system with compressed encoding and redesigned instruction
cache actually runs faster than the system with the original configuration and native code.

If was also shown that there is no single engineering solution to the problem, but rather a
combination of several different techniques aimed at the same goal. Part of this approach isto
use compiler as extensively as possible. For example we use it to extract the pipeline decoder
logic for an embedded processor in software at system development time. By doing thiswe
facilitated flexible approach to the design of this decoder, and as aresult permitted the
compression. In essence the compiler is employed not only for removing complex decisions
from run time into compilation time (VLIW approach) but also for dictating the overall system
architecture according to the implementation. This customization is performed in light and
transparent fashion and only requires modification of instruction and/or data cache while the rest
of the system remains unchanged.

Asfor the instruction fetch pipeline design, by Huffman compressing and Tailor coding

the ISA of the original program significant code segment size reduction was achieved. This

114

work also detailed the design of instruction fetch mechanisms for both this compression

schemes, and then discusses their performance and cost tradeoffs. Some interesting results were

found. In particular, the degree of compression for the ROM doesn’t necessarily translate into
an improvement in instructions delivered per cycle. Experiments found that when the
missprediction penalty of the added Huffman decoder stage was taken into account, the Tailored
instruction sat architecture approach produced a higher performance. Nevertheless, pipeline
performance is not always the central goal of embedded systems. Methods like the Full
Huffman compression scheme that operates at instruction cache hit time still achieved median
performance advantage over the baseline, while providing significant ROM size savings.

Next close attention had been paid to the data stream compressibility and system data
bus design as well. The amount of redundant data stored in expensive caches and transmitted
through tight bottleneck of instruction fetch and data path is hardly tolerable. First we address
the dynamic data stream redundancy by optimizing the system bus between CPU and memory.
The main conclusion from that study was that if there is no caching structures are present in the
system, significant gain could be achieved from coding the bus. This gain is expressed in both
higher throughoutput and lower power consumption. But if there is even a small cache used on
the CPU side, hardly any optimizations are possible.

Next we turned to the data cache design. By reducing redundancy of data stored in the
data cache we break an age-old capacity limit of cache storage and defined a new entropy
capacity limit. With the modern applications considered the effective capacity of a cache can
easily be doubled (expressed in reduction of miss ratio) by partially compressing the cache
storage. The main challenge encountered in compressed data cache design was the adaptive

decoder for compressed data. Since the data cache could hardly be pipelined (or just would not

115

benefit from it) the latency for decompression of datais critical. Two different approachesto

the reconfigurable data decompression has been advised — full and restricted compression

scheme. While the full compression scheme utilizes every opportunity for compression and
generally yields near optimal results, the restricted model is much simpler. Because of this
simplicity it is more practical to implement in real hardware, so once again, similarly to the code
segment compression we can see the tradeoff between degree of compression and complexity of
the decoder. Next some variations in the design of the compressed data cache have been
considered. The main and the most interesting conclusion was that multi-level caching where
first (zero) level is uncompressed and the next one is, would defeat the purpose of cache
compression in the first place.

Regardless of the comprehensiveness of the study, many questions remain open, and
some new perspectives are unrevealed. For the code compression, it is important to consider
different compression algorithms and variations of the ones used. It is also very important to
consider the use of different atomic fetch units like superblocks and possibly treegions. These
blocks should significantly reduce the overhead due to address translation table, since it will
require fewer entries. If these blocks will ever be used in the compressed data cache, better
branch predictors will become necessary. Otherwise the pollution of cache will become
unavoidable which will defeat the purpose of compressing it in first place.

And last but not least, after the findings in data cache decoding technology we might try to
use a restricted compression model in compressed instruction cache as well in order to simplify
decoding. It is also might be possible to collapse the extra pipeline stage needed for
decompression and shorten the instruction fetch pipeline. For a more general view creation of a

unique compression algorithms based on a uniqgue and complex cost function for each

116

application is interesting.

For data compression the future work should include different decoders construction and
compiler optimizations to aid high data entropy and reference locality. Generally speaking if
compiler technology would be perfected to the point where no low entropy data transfers were
needed the current research would become obsolete. All those issues are reserved and suggested

as afuture work.

117

References

[1] Andrew Wolfe, Alex Chanin “Executing Compressed Programs on An Embedded RISC
Architecture”,In Proceedings of 25th International Symposium on
Microarchitecture, 1992

[2] D.A. Huffman “A Method for the Construction of Minimum-Redundancy Codes”, in
Proceedings of the IRE, Vol. 4D, pp. 1098-1101, Sep. 1952

[3] Clifford Liem, “Retargetable Compilers for Embedded Core Processors”, Kluwer
Academic Publishers, 1997.

[4] William .A. Havanki “Treegion scheduling for VLIW processor” MS thesis. Dept. ECE
North Carolina State University, Raleigh NC, 1997

[5] Sanjeev Banerjia, William A. Havanki, Thomas M. Conte “Treegion scheduling for
highly parallel processoih Proceedings of Euro-Par’97 (Paris, France) 1997

[6] William A. Havanki, Sanjeev Banerjia, Thomas M. Conte “Treegion Scheduling for
Wide Issue Processorsi Proceedings of the 1997 4th International Symposium on
High-Performance Computer Architecture (HPCA-4), (Las Vegas), Feb. 1998.

[7] Thomas M. Conte, Sanjeev Banerjia, Sergei Y. Larin, Kishore N. Menezes, Sumedh W.
Sathaye, "Instruction fetch mechanisms for VLIW architectures with compressed
encodings”In Proceedings of the 29th International Symposium on
Microarchitecture (Paris, France), pp.201-211, Dec. 1996.

[8] Sanjeev Banerijia, Kishore N. Menezes, Thomas M. Conte “NextPC Computation for

Banked Instruction Cache for VLIW architecture with a Compressed Encoding”

118

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

Technical report Dept. of ECE, North Carolina State University, Raleigh, NC 27695-
7911, June 1996.

Jens Ernst, William Evans, Christopher W. Fraser, Steven Lucco Todd A. Proebsting
“Code Compression” IProc. of the * 97 International Conf. on Programming
Language Design and Implementation, (Las Vegas, NV) 1997

M. Game, A. Booker “CodePack: Code Compression for PowerPC Processors”, IBM
Microelectronics Division, RTP NC.

Thomas M. Conte, “The TINKER Machine Language Manual” North Carolina State
University, Raleigh NC 27695-7911, 1995.

K.D. Cooper, N. Mcintosh “Enhanced Code Compression for Embedded RISC
Processors” IifProc. of the * 99 International Conf. on Programming Language
Design and Implementation, (Atlanta, Ga) 1999

C.W. Fraser “Automatic Inference of models for Statistical Code Compressi&nddn
of the * 99 International Conf. on Programming Language Design and
Implementation, (Atlanta, Ga) 1999

J.E. Smith "A Study of Branch Prediction Strategic. 8th Ann. Int’l. Symp.

Computer Architecture, 1981.

Stan.Y. Liao, Srinivas Devadas, Kurt Keutzer “Code density optimization for embedded
DSP processors using data compression techniqu@&sbinof 16th Conference on
Advanced Research in VLY, (Los Alamitos, CA) 1995.

Joseph A. Fisher “Trace Scheduling: A Technique for Global Microcode Compaction”
|EEE Transactions on Computers, Vol. C-30, No. 7, July 1981.

M. Kosuch, A. Wolfe “Compression of Embedded System Prograets

119

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

International Conference on Computer Design, October 1994.

M. Benes, A. Wolfe, S.M. Nowick “A High-speed Asynchronous Decompression Circuit
for Embedded Processors”fnoc. of the 17th Conference on Advanced Research in
VLY, (Los Alamitos, CA) 1997.

M.K. Rudberg L Wanhammar “New Approaches to High Speed Huffman Decoding” in
Proc. ofl SCAS, 1996.

D. Alpert, D. Avnon “Architecture of the Pentium Microprocesd®&EE Micro, vol. 13,
pp. 11-21, June 1993.

Vinod Kathail, Michael Schlansker, Bob R. Rau “HPL PlayDoh architecture
specification” Technical Report HPL-93-80 HP Labs, Palo Alto,CA 1994.

Wen-Mei W. Hwu, Scott A. Mahlke, W.Y. Chen, Pohua P. Chang, N.J. Warter,R.A.
Bringmann, R.G. Ouellette, R.E. Hank, T. Kiyohara, G.E. Haab, J.G. Holm, D.M.
Lavery “The Superblock: An effective structure for VLIW and Superscalar
compilation”The Journal of Supercomputing, vol 7, Jan 1993

J.A. Storer, T.G. Szymanski “Data Compression via Textual Substitukionial of the
ACM, 29(4) pp. 928-951, October 1982.

J. Kin, M. Gupta, W.H. Mangione-Smith “The Filter Cache: An energy efficient memory
structure” inProc. 30th International Symposium on Microarchitecture, Raleigh NC,
Dec. 1997.

Charles Lefurgy, P. Bird, I. Chen, Trevor Mudge “Improving Code Density Using
Compression Techniques” Rroc. 30th International Symposium on
Microarchitecture, Raleigh NC, Dec. 1997.

S. Segars, K. Clarke, L. Goudge “Embedded Control Problems, Thumb, and the

120

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

ARM7TDMI” IEEE Micro, October 1995.

K. Kissell “MIPS16: High-density MIPS for the Embedded Market” Silicon Graphics
MIPS Group, 1997.

Texas Instruments “TMS320C2x User’s Guide”, January 1993

C. E. Shannon “A Mathematical Theory of Communication”, The Bell System Technical
Journal, Vol. 27, pp.374-423,623-656, July, October 1948.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery “Numerical Recipes in C
The Art of Scientific Computing”, Cambridge University Press. Second Edition 1997

J. D. Gee, M. D. Hill, D. N. Pnevmatikatos, A. J. Smith “cache Performance of the
SPEC92 Benchmark Suite” IEEE Micro 13:4, pp. 17-27, 1993

M. J. Flynn “Very high-speed computing systems” in Proc. IEEE 54:12, December 1966

Mircea R. Stan, Wayne P. Burleson “Low-Power Encodings for Global Communication
in CMOS VLSI” IEEE Transactions on VLSI Systems, Vol.5, No, 4, Dec. 1997

Mircea R. Stan, Wayne P. Burleson “Bus-Invert Coding for Low-Power I/O”, IEEE
Transactions on VLSI Systems, Vol.3, No, 1, Mar 1995

M. Pedram, “Power Minimization in IC DesignP8CM Transactions on Design
Automation of Electronic Systems VVol.1, No.1, Jan 1996

A. V. Aho, R. Sethi, J. D. Ullman “Compilers. Principles, Techniques, and Tools”
Addison-Wesley Publishing Company.

S. S. Muchnick “Advanced Compiler Design and Implementation” Morgan Kaufmann
Publishers

C. L. Su, C.Y. Tsui, A. M. Despain “Saving Power in the Control Path of Embedded

Processors”, IEEE Design Test Comput., vol 11, 1994

121

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

J. Ziv, A. Lempel, “A universal Algorithm for Sequential Data Compression,” IEEE
Transactions on Information Theory vol 23, 1977.

David W. Hammerstrom E. S. Davidson “Information Content of CPU Memory

Referencing Behaviorih Proc. 4th Annual Symposium on Computer Architecture
1977 pp.184-192.

Musoll, E.; Lang, T.; Cortadella, J. “Working-Zone Encoding for Reducing the Energy in
Microprocessor Address Buses,” IEEE Transactions on Very Large Scale Integration
Systems, vol. 6(4) 1998

IBM “CodePac PowerPC Code Compression Utility,” User's Manual Ver. 3.0 IBM 1998

Charles Lefurgy, Trevor Mudge “Fast Software-managed Code Decompression,” in
Proc. of Computer and Architecture Support for Embedded Systems pp. 139-143
October 1999

Charles Lefurgy, Eva Piccininni, and Trevor Mudge “Reducing Code Size with Run-time
Decompression,Proceedings of the 6th International Symposium on High-

Performance Computer Architecture (HPCA) January 2000

SPEC CPU 95, Technical Manual, August 1995

Haris Lekatsas, Wayne Wolf “Random Access Decompression using Binary Arithmetic
Coding” Technical Report Princeton University.

Yukihiro Yoshida, Bao-Yu Song, Hiroyuki Okuhata, Tako Onoye, Isao Shirakawa “ An
Object Code Compression Approach to Embedded Processéhsiar30th
International Symposium on Microarchitecture, Raleigh NC, Dec. 1997.

Charles Lefurgy, Eva Piccininni, Trevor Mudge “ Evaluation of a High Performance

Code Compression Method”, Rroc. 32th International Symposium on

122

[49]

[50]

[51]

[52]

[53]

[54]

[55]

Microarchitecture, Haifa lsrael, Nov. 1999

D. del Corso, H. Kirrmann, J. D. Nicoud “Microcomputer Buses and Linkkslew York

Academic, 1986

S. Y. Larinand T. M. Conte, "Compiler-driven Cached Code Compression Schemes for
Embedded ILP Processors,",Anoceedings of the 32nd Annual International
Symposium on Microar chitecture, (Haifa, Isreal), Nov. 1999.

M. H. Lipasti, C. B. Wilkerson, J. P. Shen, "Value Locality and Load Value Prediction”
in Proceed. of the 7th International Conference on Architecture Support for

Programming Languages and Operating Systems, October 1996

V. Peng "MIPS64 20K: Family of Processors and Core DesignBton of the
Embedded Processor Forum, San Jose CA 2000

P. Sandon "PowerPC 750CX: High Performance with Integrated Multilevel Caching", in
Proc. of the Embedded Processor Forum, San Jose CA 2000

R. W. Hamming, “Coding and Information Theory,” Prentice-Hall, Englewood CIiffs,
NJ, 1980

lan H. Witten, Radford M. Neal, John G. Cleary “Arithmetic coding for data
compressionCommunications of the ACM, Volume 30, Number 6, p. 520-546, June

1987

123

7 Appendix

Table 1. Cache study cycle count assumptions summary. Notethat Base and Tailored

do not employ a buffer, which iswhy Buffer Hit/Miss have no effect

Base Tailored |Compressed

Next Block [Cache Hit Buffer Hit |1cycle lcycle lcycle
prediction Buffer Miss |1cycle lcycle 1+(n-1)
Correct Cache Miss |Buffer Hit |1+(n-1) 2+(n-1) lcycle

Buffer Miss |1+(n-1) 2+(n-1) 3+(n-1)
Next Block [Cache Hit Buffer Hit |2cycles 2cycles lcycle
prediction Buffer Miss |2cycles 2cycles 2+(n-1)
Incorrect Cache Miss |Buffer Hit |8+(n-1) 9+(n-1) lcycle

Buffer Miss |8+(n-1) 9+(n-1) 10+(n-1)

124

Integer ALU Operation

Table 2.

TEPIC Instruction set Summary.

11 2 5 5 5 2 8 5 5

T[S [OPT |OPCODE Srcl Src2 BHWX Reserved Dest L1| PREDICATE
Integer Compare-to-Predicate Operation

11 2 5 | 5 5 2 3 5 5 1 5

T| S|OPT | OPCODE Srcl Src2 BHWX | D1 Reserved Dest L1 | PREDICATE
Integer L oad |mmediate Operation

11 2 5 20 5 1 5

T| S|OPT | OPCODE Srcl Dest L1 PREDICATE
Floatin Point Operation

11 2 5 5 5 1 6 3 5 1 5

T| S|OPT | OPCODE Srcl Src2 S/D Reserved tssL/U| Dest L1| PREDICATE
L oad Operation ‘

11 2 5 5 2 2 1 2 3 5 5 1 5

T| S|OPT | OPCODE Srcl BHWX |SCS| Res| TCS Reserved|Lat | Dest | Rsv| PREDICATE]
Store Operation ‘

11 2 5 5 5 2 2 11 1 5

T| S|OPT | OPCODE Srcl Src2 BHWX | TCS Reserved L1| PREDICATE]
Branch Operation ‘ ;

11 2 5 ‘ 5 5 16 5

T| S|OPT | OPCODE Srcl Counter Reserved PREDICATE|
0 ; 39

125

Hit in one of the

Buffers

Block is

Table3

Compressed Data Cache Control Flow Chart

Load

Missin both
Buffers

Block is Block is

Store
Missin Hitin
uncompressed uncompressed
buffer buffer
Block is It is not... Block is Y

uncompressed compressed compressibl uncompressible compressed Place in to
uncompressef
buffer
Y Y Y Y Y Y
Read and Uncompress Save contents of Place the Write to Uncompress it
update the block compressed buffer to | | block in to the block and place to
buffer the storage storage uncompressed buffer
Y Y Y Y
Fetch whole block Update Uncompressed buffer
and placeit to
compressed buffer *
v v v * v When Uncompre_ssed buffer is full,
try to compress it and place to the
Send the block to processor storage. If conflict found, write back

126

