

Abstract

BODINE, JILL THERESE. Exploiting Computational Locality in Global Value
Histories. (Under the direction of Thomas M. Conte.)

Value prediction is a speculative technique to break true data dependencies by using

history to predict values before they are computed. Previous research focused on

exploiting two types of value locality (computation-based and context-based) in the local

value history, which is the value sequence produced by the same instruction that is being

predicted. Besides local value history, value locality also exists in global value history,

which is the value sequence produced by all dynamic instructions according to their

execution order. In this thesis, a new type of value locality, computational locality in

global value history is studied. A prediction scheme, called gDiff, is designed to exploit

one special and most common case of this computational model, the stride-based

computation, in global value history. Experiments show that there exists very strong

stride type of locality in global value sequences and ideally the gDiff predictor can

achieve 73% prediction accuracy for all value producing instructions without any hybrid

scheme, much higher than local stride and local context prediction schemes. However,

the ability to realistically exploit locality in global value history is greatly challenged by

the value delay issue, i.e., the correlated value may not be available when the prediction

is being made. The value delay issue is studied in an out-of-order (OOO) execution

pipeline model and the gDiff predictor is improved by maintaining an order in the value

queue and utilizing local stride predictions when global values are unavailable to avoid

the value delay problem. This improved predictor, called hgDiff, demonstrates 88%

accuracy and 69% prediction coverage on average, outperforming a local stride

predictor by 2% higher accuracy and 13% higher coverage.

EXPLOITING COMPUTATIONAL LOCALITY IN GLOBAL VALUE
HISTORIES

by

JILL THERESE BODINE

A thesis submitted to the Graduate Faculty of

North Carolina State University

in partial fulfillment of the

requirements for the Degree of

Master of Science

COMPUTER ENGINEERING

Raleigh

2002

APPROVED BY:

____________________________________ ___________________________________

Chair of Advisory Committee

ii

Biography

Jill T. Bodine received a Bachelor of Science degree in Computer Science from Michigan

State University in 1992. She was employed from 1992-1998 with IBM’s Networking

Software Division and from 1998-2000 with Ericsson’s Cellular Phone Division, both in

Research Triangle Park, North Carolina. Jill’s research was performed while she was a

member of the Tinker group in the Center for Embedded Systems Research at North

Carolina State University.

iii

Acknowledgements

Special acknowledgements are given to Huiyang Zhou and Dr. Tom Conte for their input

and assistance in pursuing this research and in initial versions of this thesis submitted to

prior conferences.

iv

Table of Contents

List of Figures ... v

List of Equations .. vi

Chapter 1. Introduction ... 1

1.1. Motivation ... 1

1.2. Prior Work... 3

1.3. Organization of the Thesis .. 5

Chapter 2. Hybrid local/global value prediction mechanisms .. 6

2.1. Global Value Locality ... 6

2.2. The gDiff predictor.. 10

2.3. Value delay.. 15

2.4. Hybrid gDiff predictor (hgDiff) .. 22

2.5. Sensitivity Analysis... 27

Chapter 3. Conclusions and Future Work ... 34

3.1. Conclusions ...34

3.2. Future Work .. 35

References ... 38

v

List of Figures

Figure 1. One hard-to-predict value sequence (from one load instruction in
the benchmark parser) ... 7

Figure 2. The code example of global value locality (extracted from
benchmark parser) ... 8

Figure 3. Instruction sequence with strong global stride value locality............................ 10

Figure 4. The structure of gDiff value predictor of order n .. 10

Figure 5. A simple code example.. 12

Figure 6. How the gDiff predictor works with the example. .. 13

Figure 7. The prediction accuracy for gDiff predictor and other local
predictors... 14

Figure 8. The prediction accuracy using gDiff predictor with different
value delays ... 16

Figure 9. Gdiff predictor with speculative global value queue (SGVQ) 18

Figure 10. The distribution of pipeline latencies for all value-producing
instructions in the vortex benchmark .. 19

Figure 11. The prediction accuracy of gDiff predictor with speculative
values (queue size = 32) .. 20

Figure 12. Power of the gDiff predictor compared to local predictors. 21

Figure 13. Two code examples to show impact of execution variation due
to cache misses .. 21

Figure 14. The gDiff predictor with hybrid global value queue (hgDiff) 23

Figure 15. The performance of the hgDiff predictor... 24

Figure 16. The code example to show how hgDiff utilizes the local
prediction... 26

Figure 17: Potential of the hgDiff predictor.. 27

Figure 18. The distribution of the utilization of entries in the global value
queue selected by the hgDiff predictor for confident and correct
predictions. .. 28

Figure 19. Prediction power of hgDiff with limited queue size.. 29

Figure 20. Distribution of difference bits.. 30

Figure 21. Prediction power of hgDiff with limits on the number of
difference bits.. 31

Figure 22. Power of the hgDiff predictor with varying prediction table
sizes 32

Figure 23. Conflict in the prediction table with varying table sizes 32

vi

List of Equations

Equation 1. Global computation-based value locality .. 9

Equation 2. Stride locality.. 9

1

Chapter 1. Introduction

1.1. Motivation

Value prediction is a promising way to break true data dependencies in a program. In

ILP (instruction level parallel) processing, value prediction can be used to avoid pipeline

stalls by introducing more (speculatively) independent instructions. In TLP (thread level

parallel) processing, it can be used to support speculative multithreading. However, in

spite of its promising performance potential, the benefits of value prediction are quickly

offset by the high cost of misprediction. Therefore, a highly accurate value predictor is

required along with an accurate confidence mechanism for value prediction to reach

viability. Since value predictors are impacted by cache misses and variations in control

flow, the prediction accuracy of state-of-the-art value predictors has not been good

enough to win commercial implementation. In this thesis, a new type of value locality is

studied and two new value predictors, gDiff and hgDiff, are proposed to improve

prediction accuracy.

Similar to branch prediction techniques, value prediction methods exploit localities in

the value history to achieve high prediction accuracy. During program execution, two

types of value history, local value history and global value history, can be exploited to

predict the value of an instruction. Local value history is the value sequence produced by

prior executions of the same instruction that is being predicted. Global value history, on

the other hand, is the value sequence consisting of the values produced by all the dynamic

instructions according to the order of the completion of their execution. If the

length/order of the global value history is large enough, global value history can

encompass the local value history.

2

Value locality can be broadly classified as computation-based (i.e., the prediction is a

function of prior values) or context-based (i.e., value patterns are detected and the

prediction is based on the next value in the prior pattern).

However, there is one issue that limits the exploitation of value locality in global value

history (both computational and context-based): the value delay. Value delay is defined

as the number of values in the dynamic instruction stream that are not available for use in

predicting an instruction due to pipeline latency. Value delay affects the prediction

accuracy of the gDiff predictor significantly by forcing the predictor to generate a

prediction based on instructions that are far away in the dynamic instruction stream.

Based on profile runs, the accuracy of the gDiff predictor drops to 52% (from 73%) when

a value delay of 16 is assumed (i.e., the current prediction can not utilize the values that

are produced by the previous 16 value-producing instructions, due to pipeline latencies).

One way to reduce the value delay problem in an out-of-order (OOO) pipeline model

is to use speculative values once they are available from the execution stage, instead of

waiting for the values to be committed in program order. Utilizing the speculative values

helps to reduce but not eliminate value delay since pipeline latency still exists. Further,

the resulting global value sequence is out-of-order and may vary from one instance to the

next due to cache misses and branch mispredictions. Such variations make it difficult for

a global predictor such as gDiff to identify the previous instruction from which to base a

value prediction.

To solve the execution variation impact on the global value sequence, a new hybrid

approach, called hgDiff, is proposed based on the gDiff predictor. In this scheme, the

global value sequence is constructed in the order of instruction dispatch. Since execution

3

results of the instructions are not available when they are dispatched, the global value

sequence is constructed using the local stride predictions and is updated later with the

instruction-generated values at the write back stage. As the local stride predictor and the

gDiff predictor exploit different types of value locality, the hgDiff predictor using a

confidence mechanism produces high prediction accuracy (88%) and prediction coverage

(69%)

1.2. Prior Work

There has been significant study on the potential of value prediction as a means to

increase instruction level parallelism and avoid pipeline stalls caused by data

dependencies [1, 2, 4, 7, 17]. In addition, value prediction can be used to eliminate inter-

thread dependencies and enable efficient thread-level parallelism [8, 16, 21]. Value

prediction can be exploited in superscalar models and with compiler supported during

instruction scheduling [9, 10]. Due to the cost of re-executing speculative instructions

after misprediction, mechanisms have been designed to select highly predictable

instructions that will reduce the critical path of execution [14] and minimizes the

instances of recovery. Using control flow information to predict values has provided

increased value predictor accuracy [20]. The fact that 75% of instructions are redundant

in results produced motivates studies comparing value prediction to instruction reuse

[22].

Most previously proposed value predictors exploit locality in local value history.

These predictors include last value predictor [1], last N-value predictor [11], stride

predictor [1, 2, 4, 5], and context predictor [3, 6, 12]. Hybrid predictors combine both

4

computational and context predictors to exploit both types of localities to achieve higher

prediction accuracy [3, 6].

Compared to local value history, locality in global value history is less thoroughly

studied. The PI (previous instruction) based predictor [13] was proposed to explore the

locality between two adjacent instructions in the dynamic instruction stream (i.e., the

global value history). It may be viewed as a first-order global context-based predictor.

Previous research [3] based on local value history has shown that there are two models

of value locality existing in the value sequence: the computational model and the context-

based model. Most proposed value predictors exploit one (e.g., stride predictor and FCM

predictor) or both locality models (e.g., DFCM predictor and hybrid predictor) in local

value history. Also, the local value history can be further fine-tuned using the control-

flow (or path) information [13]. Those predictors perform well in predicting many

instructions when the value sequence produced by those instructions (i.e., local value

histories) shows strong stride-type or periodic types of value patterns [2, 3, 4, 5, 6, 11, 12,

13, 18, 19].

In this thesis, computational locality in the global value history is studied. A new

predictor scheme, the gDiff predictor, is proposed to exploit one special and common

case of this computational locality based on stride. Experiments show that there exists

very strong stride based locality in value sequences and many instructions that are hard-

to-predict using local history based predictors become highly predictable. Ideally

exploiting the global stride type value locality using the gDiff predictor can produce

average prediction accuracy as high as 73% when predicting all the value producing

5

instructions without any hybrid scheme, while the local stride predictor shows 57%

accuracy and the local DFCM [12] predictor shows 64% accuracy.

The SimpleScalar tool set provides an implementation environment that supports the

study of value prediction [15].

1.3. Organization of the Thesis

The remainder of the thesis is organized as follows. Chapter 2 discusses computational

locality in the global value history and the gDiff predictor as well as a hybrid of the gDiff

predictor, hgDiff. The existence of value delay and using speculative values to reduce

value delay is also discussed in Chapter 2 along with the sensitivity analysis of the hgDiff

predictor to variations in queue size, table size and available difference bits. Chapter 3

concludes this thesis and discusses future work.

6

Chapter 2. Hybrid local/global value prediction mechanisms

2.1. Global Value Locality

As discussed in chapter 1, there are two types of value history that can be used to make

a prediction: local value history and global value history. To define the two types of

history assume instruction I is being predicted. The local value history is the value

sequence produced by instruction I during its prior executions. In contrast, global value

history contains the values produced by all the dynamic instructions before the current

occurrence of instruction I.

For some instructions, it is very hard to achieve high prediction accuracy using local

value history based predictions. For example, the value sequence produced by one load

instruction in the benchmark parser has the following form: (xx528, xx840, 0, xx792, 0,

xx720, 0, xx816, xx768, xx744, xx696, xx624, xx672, …). Neither (simple)

computational nor context-based locality exists in this value sequence. Even dividing this

value trace into several sub-traces based on path information would reveal neither

computational pattern nor periodic pattern. This observation can also be confirmed by

plotting the value sequence as in Figure 1, where the last three digits of the value are

shown (the higher order digits are either the same or zero).

7

Value sequence

0

100

200

300

400

500

600

700

800

900

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49

Figure 1. One hard-to-predict value sequence (from one load instruction in the benchmark parser)

Figure 1 demonstrates that although the value sequence demonstrates spurious short

patterns of 2 and 3 values that appear to follow a stride pattern, the overall sequence

appears random. There exists no significant computational or context-based value

locality. The prediction accuracy of this instruction is 4% for (local) stride predictor and

2% for the DFCM predictor. However, when the code around this load instruction is

analyzed, as shown in Figure 2, it is apparent that this load is the result of register spilling

and filling (i.e., the value is stored to memory to free the architectural register and

reloaded for further uses). In this example, the reloaded value is produced by two load

instructions (marked ‘the correlated load’ in Figure 2). As a result, if the values produced

by those correlated loads can be used for prediction, the accuracy will be 100%. Such

locality is value locality in global value history or global value locality.

8

Figure 2. The code example of global value locality (extracted from benchmark parser)

To facilitate the discussion of global value locality, global value history is defined in a

more formal way: a dynamic instruction stream (D, D+1, ..., D+N) produces values

labeled x1, x2, ..., xN . For simplicity, assume every instruction produces a value. Then, the

ordered data sequence (x1, x2, ..., xN) is the global value history of order N. Note that in

the dynamic instruction stream, some static instructions can occur multiple times due to

loops. As a result, if the order N is large enough, the global value history encompasses

the local value history for one or more static instructions.

As shown in the example in Figure 2, the program exhibits value locality in the global

value history. Similar to local value locality, global value locality can be classified either

as computation-based or context-based. The global computation-based value locality can

be formalized as shown in Equation 1.

9

Equation 1. Global computation-based value locality

Equation 1 demonstrates that xN, the prediction value of the instruction (D+N), can be

made as the weighted sum of the values (xN-1, …, x0) produced by instructions (D+N-1),

(D+N-2) ,…, D.

For the example in Figure 2, the locality can be expressed (ignoring the non-value

producing stores and branches) as: 1−= NN xx and it holds for both control paths leading

to the load instruction that is being predicted.

Exploring the general form of computational locality as specified in Equation 1 is not

easy due to the mathematical nature of the problem and the required hardware

complexity. However, study can be concentrated on the special but most common sub-

cases, similar to approaches exploiting local value history. One such case is the stride

form of locality, as shown in Equation 2.

.0axx kNN += −

Equation 2. Stride locality

The prediction xN is the sum of a value in the global value history (xN-k) and a stride value

(a0).

By exploiting such a locality, instructions of the sequence as shown in Figure 3 can be

predicted, where the hard-to-predict define instruction can help to make an accurate

prediction of the subsequent use instructions, which in turn are also hard to predict based

on their local value histories.

10

Figure 3. Instruction sequence with strong global stride value locality

In the next section, a predictor scheme, called gDiff predictor, is proposed to exploit

global stride type value locality. The problem of value delay (i.e., when the prediction of

XN is being made, XN-k is not available due to the pipeline latency of instruction (N-k),

especially when k is small) will also be discussed.

2.2. The gDiff predictor

To exploit the locality in global value history, values produced by the dynamic

instruction stream need to be stored for future predictions. A structure called the global

value queue (GVQ) is designed for this purpose, as shown in Figure 4 for the overall

scheme of the gDiff predictor.

Figure 4. The structure of gDiff value predictor of order-n

11

As shown in Figure 4, GVQ maintains the values of the completed instructions

according to the program order. The PC-indexed prediction table maintains the

differences between an instruction’s result and the results of n immediately preceding

instructions (i.e., Xn – Xn-i, for i = 1 to n) and the selected distance (i.e., k for Xn – Xn-k)

used for the prediction.

The gDiff predictor works as follows.

1. Prediction phase: When a value-producing instruction is dispatched, its PC is

used to index the prediction table. Then, the value stored at entry k (specified by

the distance field of the prediction table entry) of the GVQ is read out and added

to the stride value diffx to make a prediction.

2. Update phase: When a value-producing instruction completes, the difference

between the result of the instruction and all values stored in the global value

queue is computed. Then, the calculated differences (n differences for an order-n

predictor) are compared to the differences stored in the corresponding entry of the

prediction table. If one or more matches are found, the lowest matching distance

is stored in the distance field. If there is no match, the calculated differences are

stored in the prediction table and there is no update of the distance field. At the

same time, the current result is shifted into the GVQ.

A simple example is used to show how the predictor makes use of the global value

locality. Consider the dynamic instruction stream produced from the code structure

shown in Figure 5.

12

Figure 5. A simple code example

Assume the value sequence produced by instruction a is (1, 8, 3, 2, …). Instruction b

will generate (5, 12, 7, 6, …). Also, assume there are two value producing instructions

between instructions a and b but they will not alter the value of r1 and are not relevant to

this example. For this example, the gDiff predictor will learn the stride pattern gradually

to predict instruction b correctly, as shown in Figure 6.

13

Figure 6. How the gDiff predictor works.

As shown in Figure 6(a), when instruction b completes with value 5, the difference is

calculated between 5 and the values stored in the global value queue. Then, the calculated

differences are compared with the differences stored in the prediction table indexed by

PC (assume the initial difference is 0). No match is detected and the calculated

differences are stored in prediction table. Next, when instruction b finishes with value 12

(Figure 6(b)) and the differences are calculated, there is a match between the calculated

differences and the stored differences. Then, the index of the match is stored as the

selected distance, 2 in this example. After the distance is set, when instruction b is met

again (in its dispatch stage), the gDiff predictor can make the prediction as the sum of

diff_2 and the value in queue entry number 2 (Figure 6(c)). As shown from this example,

the learning time for gDiff predictor is two values.

14

To examine the degree to which global stride-based value locality exists in programs

and how well gDiff exploits this locality, a trace-driven simulation was run for the

SPECint2000 benchmarks. (1 billion instructions are executed and the first 200 million

instructions are skipped in the analysis). In this experiment, the queue size of the gDiff

predictor (i.e., the order) is limited to 8 and the predictions are made for all value

producing integer operations or load instructions. Also, the prediction accuracy based on

stride predictor (unlimited size) and DFCM predictor (unlimited first level table and 64K

second level table) is shown in Figure 7 for comparison.

Value prediction accuracy

30%

40%

50%

60%

70%

80%

90%

bzip2 gap gcc gzip mcf parser perl twolf vortex vpr average

stride DFCM gDiff(queue size = 8)

Figure 7. The prediction accuracy of the gDiff predictor and other local predictors

From Figure 7, it can be seen that the gDiff scheme predicts values very accurately for

most benchmarks, up to 86% in the benchmark mcf and 73% on average. The exception

is the benchmark gap, whose value predictability is fairly low (~40%), whether using

local or global value locality. The reason for the low predictability is due to the hard-to-

predict redundant [22] values and the long computation chain of the hard-to-predict

values. If the global value queue capacity is increased to 32 (capturing long computation

chains), the prediction accuracy achieves 59.7% since the window of available values

15

captures the redundancy. Overall, as compared to the predictors exploiting local value

locality, the gDiff predictor performs better consistently for all the benchmarks. For

benchmarks parser and twolf, gDiff increases the accuracy up to 24%. This shows that

very strong stride-based value locality exists in the global value history and that the gDiff

predictor exploits it fairly well with a modest queue size.

2.3. Value delay

Although the experiments show that high value predictability can be achieved by

exploiting global stride-based value locality, there is one issue that cannot be ignored for

any realistic exploitation of global value locality: the value delay problem. Due to the

pipeline delay, especially the out-of-order execution pipeline delay, the correlated values

may not be available when the prediction is being made. The impact of this value delay

issue is minimal on the local value predictors except for tight loop structures. But, for

global value based predictors, as a value produced by an instruction usually is consumed

by other instructions very close to it (i.e., the dependence distance is small), the impact of

the value delay is more dramatic. In one experiment based on profile runs, the value

delay is modeled as a parameter T so that the prediction can only make use of the values

produced T values before the current instruction. Figure 8 shows the prediction accuracy

of gDiff predictor for different value delays.

16

Prediction accuracy for different value delays (queue size = 8)

30%

40%

50%

60%

70%

80%

90%

bzip2 gap gcc gzip mcf parser perl twolf vortex vpr average

T = 0 T = 2 T = 4 T = 8 T = 16

Figure 8. The prediction accuracy of the gDiff predictor with different value delays

From the simulation results in Figure 8, it can be seen that the prediction accuracy of

the gDiff predictor is susceptible to value delay for all the benchmarks. On average, the

prediction accuracy drops from 73% to 52% when value delay increases from zero to 16

values. One abnormal case is the benchmark gap, for which the highest prediction

accuracy is achieved when value delay is 4. This is a side effect of the long computation

chain in gap and the limited GVQ size, as discussed earlier. These results show that the

degree of global value locality is large between one instruction and the instructions close

to it and is reduced as value delay increases. This phenomenon is expected as the nature

of global value locality is based on data dependencies (or a spill/fill sequence). A value

produced out of the computation chain would have less locality with the values in the

chain. This fact presents a great obstacle for practically exploiting the global value

locality, both computation-based and context-based. As the OOO execution produces the

most significant value delay due to the dynamic scheduling, the value delay problem is

studied in an OOO execution context and the speculative values are used to reduce the

value delay impact.

17

Global value histories based on profile runs show very strong value locality. In an

OOO execution pipeline, this value sequence is reflected at the retire stage. However,

using the retired value sequence incurs very long value delay, at least as much as the

number of pipeline stages between dispatch and retire. For example, a 4-way issue 6-

stage pipeline (i.e., fetch, dispatch, issue, execution, write back, and retire) may incur a

value delay of as much as 16 (4 cycles x 4 values) even if there are no pipeline stalls and

no multi-cycle instructions (requiring more than 1 cycle in execution). Based on the

profile runs, such delay reduces the prediction accuracy of the gDiff predictor

significantly.

In order to reduce such value delay, one option is to use the values produced earlier

than retire stage even if the values are speculative, as shown in Figure 9. Speculative

results produced at the end of the execution stage are used to update the speculative

global value queue (SGVQ), while the prediction is made at the dispatch stage. As the

prediction and the update are made at different pipeline stages, a timestamp is maintained

in each SGVQ entry so that the differences are calculated at update only for those values

produced earlier than the prediction time.

18

Figure 9. The gDiff predictor with the speculative global value queue (SGVQ)

The out-of-order simulator provided by the SimpleScalar toolset [15] was modified to

model the gDiff predictor using speculative values. The simulation is based on a 4-way

issue OOO superscalar processor with a 16KB 4-way set-associative D-cache (12 cycle

miss latency), a 16KB direct-mapped I-cache (12 cycle miss latency), and a 2K-entry

bimodal branch predictor. For all benchmarks except vortex (run to completion), the first

200 million instructions are skipped and the next 800 million instructions are simulated.

First, using speculative values to reduce the value delay was examined. Figure 10

shows the average pipeline delay for value producing instructions from dispatch to write

back and from dispatch to retire based on the benchmark vortex. It can be seen that using

speculative values allows values to be written into the queue approximately 2 cycles

earlier than waiting for the retire stage. Using speculative values reduces value delay by

(Cycle Difference * IPC). If an IPC rate of 2 is assumed, using speculative values

reduces value delay by 4 values. Using results obtained from the profile runs, this

reduction in value delay could have a significant positive impact on gDiff prediction

accuracy.

19

Pipeline Delay in cycles: Vortex

0%

10%

20%

30%

40%

50%

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Cycles

P
ro

ba
bi

lit
y

Dispatch to writeback Dispatch to retire

Figure 10. The distribution of pipeline latencies for all value-producing instructions in the vortex

benchmark

Next, the performance of the gDiff predictor with speculative values in the value queue

is analyzed. In this experiment (and all afterwards), a 3-bit confidence counter is used to

filter the ‘weak’ predictions. The confidence mechanism is important since the

misprediction recovery is costly and may significantly offset the benefits of value

prediction [6]. The confidence mechanism works as follows: the confidence counter is

increased by 2 for a correct prediction and decreased by 1 for an incorrect prediction. A

prediction is confident if the counter is greater than or equal to 4. The ratio of resulting

number of confident predictions over the total number of value producing instruction is

the prediction coverage. Figure 11 shows the simulation results of the gDiff predictor

with SGVQ. The prediction accuracy and prediction coverage using local stride predictor

are also shown for comparison.

20

Prediction accuracy and coverage of gDiff predictor (32-element queue) compared to the
local stride predictor

30%

40%

50%

60%

70%

80%

90%

100%

bzip2 gap gcc gzip mcf parser perl twolf vortex vpr average

gDiff accuracy L_stride accuracy gDiff coverage L_stride coverage

Figure 11. The prediction accuracy of the gDiff predictor with speculative values

Based on those results, it can be seen that, even with the reduced value delay, the gDiff

prediction results are not encouraging. The average accuracy is 77% and the coverage is

55%, whereas the local stride predictor has 86% accuracy and 56% coverage.

Using a confidence mechanism increases the prediction accuracy but decreases the

coverage. To define the performance of the predictor in terms of both coverage and

accuracy, the prediction power of a predictor is defined as the accuracy of the predictor

multiplied by the instruction coverage provided. This allows predictors with varying

strengths in accuracy and coverage to be compared with one another on the basis of

power.

Figure 12 consolidates the data in Figure 11 by presenting it as the power of the

predictor. This concisely depicts that the local stride predictor outperforms gDiff.

21

Prediction Power: gDiff vs local stride

25%

30%

35%

40%

45%

50%

55%

60%

65%

70%

bzip2 gap gcc gzip mcf parser perl twolf vortex vpr average

gDiff local stride

Figure 12. Power of the gDiff predictor compared to local predictors.

The lower accuracy and coverage of the gDiff predictor can be explained by execution

variations due to cache misses. When the value sequence in the value queue assumes a

different order than prior executions, all subsequent predictions will be incorrect until the

expected order resumes or until the predictor learns the new distance. Figure 13 explains

this phenomenon.

Figure 13. Two code examples to show the impact of execution variation due to cache misses

22

In Figure 13, instruction c has strong locality with instruction a. However, due to the

load instruction b, the distance between instructions a and c may vary based on the

hit/miss pattern of the load. Also, I-cache misses and branch mispredictions may affect

the dynamic scheduling of the instructions, which accounts for another source of

variation in the speculative global value history. Note that in the gDiff implementation of

Figure 9, the value queue used by gDiff is updated based on speculative execution results

and does not squash the values in the case of a branch misprediction.

2.4. Hybrid gDiff predictor (hgDiff)

As discussed in section 2.3, using the speculative values at write back stage helps to

reduce the value delay, but introduces the problem of variations in the speculative global

value queue. In this section, a new hybrid predictor is proposed. It eliminates the impact

of pipeline execution variations caused by cache misses and enhances the performance of

the predictor by exploiting more than one type of value locality.

The pipeline execution variations are caused by dynamic events, such as cache misses.

Run-time events affect the dynamic scheduling so that the execution order of instructions

may not be the same over different iterations. As a result, to remove the variations in the

global value sequence due to cache misses, the sequence needs to be constructed before

dynamic scheduling (i.e., in the dispatch stage). However, the execution result of an

instruction is not available at dispatch time. To solve this problem, another type of

speculative value is used to construct the global value sequence at dispatch time and the

sequence is updated/refined at write back time. As gDiff explores the global stride type of

value locality, a value predictor based on a different type of locality, e.g., local stride

23

predictor, is appropriate to generate the values at the dispatch stage and temporarily fill

the entries in the ordered queue. The scheme, referred to as hgDiff, is shown in Figure 14.

Figure 14. The hybrid gDiff predictor (hgDiff)

In Figure 14, predictions based on the local stride predictor are pushed into the global

value queue at dispatch stage and updated with results at write back stage. As field is

added to each entry in the RUU to indicate which entry in the value queue the result

should update.

To evaluate the performance of the hgDiff predictor, the predictor was implemented

using the SimpleScalar toolset using the same simulation methodology as in section 15.

The simulation results are shown in Figure 15.

24

hgDiffCoverage: 32 element queue, Infinite table

25%

35%

45%

55%

65%

75%

85%

95%

bz
ip2 ga

p
gc

c
gz

ip
m

cf

pa
rs

er pe
rl

tw
olf

vo
rte

x
vp

r

av
er

ag
e

hgDiff Local Stride DFCM

hgDiff Accuracy: 32 element queue, Inf. table

75%

80%

85%

90%

95%

100%

bz
ip2 ga

p
gc

c
gz

ip
m

cf

pa
rs

er pe
rl

tw
olf

vo
rte

x
vp

r

av
er

ag
e

hgDiff Local Stride DFCM

Figure 15. The performance of the hgDiff predictor

From Figure 15, it can be seen that the prediction capability of the gDiff predictor is

greatly enhanced by the hybrid queue structure. For benchmarks bzip2, gzip, mcf, perl,

and vortex, the confident predictions achieve over 90% accuracy, while other benchmarks

show 80% to 87% accuracy. Compared with the local stride predictor with the same

25

confidence mechanism, the results show similar prediction accuracy for most benchmarks

except for gap, for which the accuracy of the hgDiff predictor reaches 87% while the

local stride predictor shows 80% accuracy. However, in terms of prediction coverage, the

hgDiff predictor always shows significantly higher coverage for all benchmarks, with the

largest increase of 70% from the benchmark vpr (from 46% to 78%), and 24% on average

(from 56% to 69%), compared with the local stride predictor. Also, as indicated by

profile runs, the benchmark gap is the most difficult to predict. The hgDiff predictor

performs fairly well on the gap benchmark with prediction accuracy of 87% and

coverage of 77%. (Surprisingly, the prediction accuracy and coverage of the hgDiff

predictor for gap is even better than the results using gDiff and profile runs).

There are several factors accounting for the promising performance of the hgDiff

predictor. First, it maximizes the exploitation of global value locality by constructing the

value sequence in instruction dispatch order and utilizing speculative values. Maintaining

the value sequence in dispatch order eliminates the variation problem due to cache misses

and speculative values help to reduce the effective value delay.

Secondly, hgDiff provides a natural way to integrate the exploitation of a different type

of value locality (the local stride in this case). For example, two instructions a and b, both

predictable using a stride predictor, are close to each other, as shown in Figure 16.

Clearly, there exists stride type locality between the two instructions. However, the

original gDiff predictor may fail to exploit such a locality since the first load must finish

before the dispatch of second load (i.e., the value delay of the instruction a). With the

local stride prediction, although instruction a is still in the execution pipeline, the correct

26

prediction (gDiff prediction) of instruction b can be made based on the prediction of a

(local stride prediction).

Figure 16. Code example demonstrating how hgDiff utilizes the local prediction

The potential of the hgDiff predictor is defined as the number of correct predictions

that are available in the global value queue without being limited by the capability of the

selection mechanism. Figure 17 shows the accuracy of the hgDiff predictor with a

“perfect” selector compared to the power of the hgDiff implementation with a 3-bit

confidence mechanism as described earlier. It is reasonable to compare the accuracy of

the perfect selector with the power using the prior confidence mechanism since the

perfect selector does not include a confidence mechanism and therefore provides 100%

coverage (i.e., an attempt is made to predict all instructions that generate a value.) The

results in Figure 18 show that an average of 75% of all value producing instructions in

the dynamic instruction stream could be accurately predicted using the hgDiff predictor if

an adequate selection mechanism could be defined that more accurately identifies locality

distances.

27

Potential of the hgDiff Predictor

45%
50%
55%
60%
65%
70%
75%
80%
85%
90%
95%

Power using 3-bit confidence Accuracy with Perfect Selector

Figure 17: Potential of the hgDiff predictor

2.5. Sensitivity Analysis

The hgDiff predictor demonstrates promising prediction capabilities with order-32 as

indicated by the previous results. In order to be feasible in a real implementation, the

complexity of the predictor would be constrained by a reduced order-N (smaller value

queue), a reduced subtractor, and a limit to the size of the prediction table

In an attempt to identify how a reduced order will impact the performance of the hgdiff

predictor, the distribution of the selected distances in the global value queue for all

confident and correct predictions was recorded. The results are shown in Figure 18 and

demonstrate that most confident and correct predictions tend to use entries close to the

head of the value queue. This phenomenon is expected since the locality is stronger when

the locality distance is small. This allows a reduction of the queue size without significant

performance penalty. From Figure 18, it is apparent that 94% of all confident and

correct predictions are predictable using one of the first 12 elements in the global value

28

queue. For this reason, limiting the hgDiff predictor to order-12 by storing only12

elements in the global value queue should be adequate to achieve desirable results with

the hgDiff predictor.

Distribution of selected distances for confident and correct
predictions

0%

20%

40%

60%

80%

100%

0 2 or
less

4 or
less

6 or
less

8 or
less

10 or
less

12 or
less

14 or
less

16 or
less

18 or
less

20 or
less

Selected queue offset

D
is

tr
ib

ut
io

n

Figure 18. The distribution of entries in the global value queue selected by the hgDiff predictor for
confident and correct predictions

Figure 18 also shows that 36% of all confident and correct predictions use offset 0 in

the global value queue. This corresponds to using the local stride prediction and

demonstrates one of the advantages of using the hybrid version of the gDiff predictor.

This result also introduces the possibility of building a global value predictor that predicts

using prior values directly without calculating a stride.

The results of running hgDiff with various limits on the queue size are presented as

prediction power in Figure 19. The prediction power results correspond to the results in

Figure 18, indicating that hgDiff performance shows a moderate consistent decline (3%)

when the queue size is reduced to 16 and 12 but a significant decline when the queue size

is reduced from 12 to 8 (10%) and from 8 to 4 (14%).

29

Sensitivity to Queue Size: Power

10%

20%

30%

40%

50%

60%

70%

80%

Q = 32 Q = 16 Q = 12 Q= 8 Q = 4

Figure 19. Prediction power of hgDiff with limited queue size

As the implementation of a subtractor in hardware is expensive, the hgDiff predictor is

feasible if the number of bits required to calculate and store differences is small. Figure

20 shows the distribution of difference bits in correct and confident predictions across all

benchmarks studied. It is apparent from these results that the majority of correct and

confident predictions result in differences that require 7 or less bits as this accounts for

81% of confident and correct predictions.

30

Distribution of difference bits for correct and confident
predictions

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Figure 20. Distribution of difference bits required for confident and correct predictions

Interestingly, the tail of the curve in Figure 20 jumps sharply at the point of 29 bits

indicating that 13% of the correct and confident predictions required 29 or greater bits.

This occurs when a striding index correlates with a striding address such as in the case of

array accesses. The hgDiff predictor selects the best distance for a prediction as soon as a

calculated difference to a specific offset in the queue occurs twice and does not change

that prediction if the prediction is confident. Therefore, in the best case, the hgDiff

predictor selects a distance after the second instruction execution and successfully

predicts the third. However, the local stride predictor would not confidently learn the

correct stride until one cycle later. This causes an index to confidently correlate with a

prior address despite the fact that the local stride prediction (closer in the queue and

requiring fewer difference bits) was available and correct.

31

The power of the hgDiff predictor with constraints on the number of difference bits is

presented in Figure 22. The results depicted in this figure correspond to the distribution

of difference bits presented in Figure 21. This further indicates that reducing the number

of difference bits has very minor impact on the prediction power since only 5.5% average

decrease in power is demonstrated when the difference bits are reduced from unlimited

(32) to 4 bits.

Sensitivity to difference bits: Power

40%

45%

50%

55%

60%

65%

70%

75%

80%

85%

Unlimited Bits 16 bits 8 bits 4 bits

Figure 21. Prediction power of hgDiff with limits on the number of difference bits

The final parameter that was varied in the hgDiff sensitivity analysis was the size of

the prediction table. Figure 23 shows the power of the hgDiff predictor when table size is

varied. The graph demonstrates that reducing the table size to 16K shows a decrease in

power of less than 1% when compared to an infinite table. Further reducing the table size

results in additional decline of 1% with 8K, 2% with 4K and an additional and 3% with

2K. Therefore, the total decline in power is just above 6% when comparing an infinite

table to a 2K table. This indicates that the hgDiff predictor is only moderately sensitive

32

to table size and a 16K prediction table can be used with negligible impact to prediction

accuracy and coverage.

Sensitivity to table size: Power

45%

50%

55%

60%

65%

70%

75%

80%

85%

Unlimited Table 64K table 32K table 16K table 8K table 4K table 2K table

Figure 22. Power of the hgDiff predictor with varying prediction table sizes

Sensitivity to table size: Conflict

0%

5%

10%

15%

20%

25%

bzip2 gap gcc gzip mcf parser perl twolf vortex vpr average

Unlimited Table 64K table 32K table 16K table 8K table 4K table 2K table

Figure 23. Conflict in the prediction table with varying table sizes

The performance of the hgDiff predictor with varying prediction table sizes

corresponds to the degree of conflict that occurs. Figure 23 demonstrates that conflict in

33

a 16K predictor table occurs in only 4 of the 10 benchmarks evaluated. As table size is

decreased further, conflict increases as the same rate as power decreases.

34

Chapter 3. Conclusions and Future Work

3.1. Conclusions

In this thesis, a new type of value locality, global computational locality, is studied and

a prediction scheme is proposed to exploit this locality to increase the value

predictability. The main contribution of this work includes:

• A new type of value locality is studied and formalized. The locality in global value

history presents new opportunities that can be explored in both the architectural and

compiler domains. A prediction scheme, the gDiff predictor, is proposed to exploit

the global stride value locality dynamically. Experiments demonstrate that there

exists very strong stride type locality in global value history and ideally, the gDiff

predictor can achieve 73% prediction accuracy when predicting all the value

producing instructions.

• The value delay issue is emphasized in this thesis and its impact on the gDiff

predictor is studied. It is shown that value delay presents a challenge for any realistic

exploitation of the global value locality, especially in out-of-order execution pipeline

models. However, by combining the global value predictor with a local value

predictor as proposed in the hybrid gDiff predictor (hgDiff), the value delay issue can

be avoided.

• To reduce the value delay impact in OOO execution environment, speculative values

are used at write back stage instead of waiting for them to be retired in-order. This

solution reduces the value delay but introduces execution variations due to cache

misses and branch mispredictions. However, ordering the values in the value queue

35

based on dispatch order prevents the variations in execution time from impacting the

success of the hgDiff predictor.

In order to reduce the impact of both value delay and pipeline execution variation, the

global value sequence is constructed at instruction dispatch time using the local stride

predictions. Then, the speculative values produced at write back stage are used to update

the value sequence. In this way, the hgDiff predictor maximizes the exploitation of global

value locality and while enabling predictions based on local value history for instructions

that are highly predictable with existing techniques.

The experiments show that the hgDiff predictor achieves an impressive 88% prediction

accuracy with 69% coverage significantly outperforming an unconstrained local stride

predictor, which demonstrates 86% accuracy and 56% coverage. Additionally, the

complexity of the hgDiff predictor can be managed by significantly reducing the order of

the predictor, the size of the subtractor, and the size of the prediction table without

seriously affecting prediction power. With the prediction accuracy and coverage

demonstrated, the hgDiff predictor moves value prediction closer to commercial

feasibility.

3.2. Future Work

There are several directions for future work in the area of exploiting global

computational value locality and in improving the gDiff and hgDiff predictors.

One item would be to convert the identified predictability into speedup numbers, either

in a single superscalar processor model or the multi-threading execution model. This

would reveal if the instructions correctly predicted by the hgDiff predictor are on the

36

critical path and are among the set of instructions that are hard to predict by existing

predictors.

Studying the variation in instruction locality is another area of further research. More

study is required to determine if the source instruction for a given correlated dependent

instruction is constant or if it varies with execution phases. If the static instruction

locality distance is found to be constant (i.e. a given instruction consistently correlates

with the same prior instruction regardless of execution order), a 2-level predictor could be

developed that may produce higher accuracy than the 1-level predictor proposed here.

With this 2-level predictor, the global value queue stores the address of a correlated

instruction and provides an index into a second level table. The second level table stores

the values produced by a single instruction. This solution would eliminate the problem of

varying locality distances caused by execution and control variations and would eliminate

the need for an ordered value queue. This solution has the potential to provide

comparable prediction power to the hgDiff predictor without the use of an additional

local stride predictor.

If the instruction locality distance were found to be constant, another interesting

direction would be to use compiler techniques to exploit the global locality among

instructions [9, 10, 20]. Using profile data, the compiler detects correlated instructions as

described in [9]. LDPRED and UDPRED operations are inserted in the instruction

stream along with compensation code to statically break the data dependencies among

correlated instructions. Dependencies are inserted between the update of the predictor for

a source instruction and the load prediction for future correlated instructions. Therefore,

both value delay and variations in execution order would not affect the capabilities of the

37

predictor. The compiler technique would also allow a value generated by a single

instruction to be used as the prediction source for multiple subsequent instructions when

a chain of global value locality is determined. This is in contrast to the superscalar

hgDiff implementation which always predicts using the nearest correlated instruction and

is therefore significantly impacted by value delay.

To minimize the impact of control flow variations on the predictor, the hgDiff

predictor could use control flow information to select a best distance for each incoming

path [13].

Lastly, the perfect selector results presented here indicate the potential of the hgDiff

predictor. Further study of a selection mechanism to more accurately identify the correct

distance in the global value queue to be used for a prediction could increase hgDiff

prediction accuracy and coverage. It may be possible to identify a pattern of distances

and select the next best distance based on the next element in the pattern. A study of the

distribution of selected distances for specific opcodes could produce a heuristic for

selecting correlation distance based on the opcode of the current and preceding

instructions.

38

References

[1] M.H. Lipasti, C. B. Wikerson and J. P. Shen, “Value locality and load value prediction,” In 7th
International Conference on Architectural Support for Programming Language and Operation Systems
(ASPLOS-7), Oct, 1996.

[2] M. H. Lipasti and J. P. Shen, “Exceeding the dataflow limit via value prediction,” In 29th International
Symposium on Microarchitecture (MICRO-29), 1996.

[3] Y. Sazeides and J. E. Smith, “The predictability of data values,” in 30th International Symposium on
Microarchitecture (MICRO-30), Nov. 1997

[4] F. Gabbay and A. Mendelson, “Speculative execution based on value prediction,” EE Department Tech
Report 1080, Tachnion - Israel Institute of Technology, Nov. 1996.

[5] F. Gabbay and A. Mendelson, “Can program profiling support value prediction?”, in 30th International
Symposium on Microarchitecture (MICRO-30), Nov. 1997.

[6] K. Wang and M. Franklin, “Highly accurate data value prediction using hybrid predictors,” in 30th
International Symposium on Microarchitecture, Nov. 1997.

[7] B. Rychlik, J. Faistl, B. Krug, and J. P. Shen, “Efficacy and performance impact of value prediction,” in
International Conference on Parallel Architectures and Compilation Techniques (PACT'98), 1998

[8] P. Marcuello, J. Tubella, and A. Gonzalez, “Value prediction for speculative multithreaded
architectures,” in 32nd International Symposium on Microarchitecture (MICRO-32), 1999

[9] C. Fu, M. D. Jennings, S. Y. Larin, and T. M. Conte, “Value speculation scheduling for high
performance processors,” In 8th International Conference on Architectural Support for Programming
Language and Operation Systems (ASPLOS-8), 1998

[10] T. Nakra, R. Gupta, and M. L. Soffa, “Value prediction in VLIW machines,” International Symposium
on Computer Architecture (ISCA-26), May 1999.

[11] M. Burtscher and B. G. Zorn, “Exploring last n value prediction,” In International Conference on
Parallel Architectures and Compilation Techniques (PACT'99), 1999

[12] B. Goeman, H. Vandierrndonck, and K. D. Bosschere, “Differential FCM: Increasing value prediction
accuracy by improving table usage efficiency,” International Symposium on High-Performance
Computer Architecture (HPCA'01), Jan 2001.

[13] T. Nakra, R. Gupta, M. L. Soffa, “Global context-based value prediction,” in 5th International
Symposium on High Performance Computer Architecture (HPCA-5), 1999.

[14] Y. Sazeides, “Modeling value prediction,” in 8th International Symposium on High Performance
Computer Architecture (HPCA-8), 2002.

[15] D. Burger and T. Austin, "The SimpleScalar tool set, v2.0," Computer Architecture News (ACM
SIGARCH newsletter), vol. 25, June 1997.

[16] S. Lee, Y. Wang, and P. Yew, “Decoupled value prediction on trace processors”, in 6th International
Symposium on High Performance Computer Architecture (HPCA-6), 2000.

[17] S. Lee and P. Yew, “On some implementation issues for value prediction on wide ILP processors”, in
International Conference on Parallel Architectures and Compilation Techniques (PACT'00), 2000.

[18] R. Sathe and M. Franklin, “Available parallelism with data value prediction”, in 5th International
Symposium on High Performance Computer Architecture (HPCA-6), 2000.

[19] E Tune, D. Liang, D. Tullsen, and B. Calder, “Dynamic prediction of critical instructions”, in 7th
International Symposium on High Performance Computer Architecture (HPCA-7), 2001.

[20] E. Larson and T. Austin, “Compiler controlled value prediction using branch predictor based
confidence”, 33rd International Symposium on Microarchitecture (MICRO-33), 2000.

[21] E. Rotenberg, Q. Jacobson, Y. Sazeides, and J. E. Smith. "Trace Processors". 30th International
Symposium on Microarchitecture, pp. 138-148, December 1997.

[22] A. Sodani and G. S. Sohi, “Understanding the Differences Between Value Prediction and Instruction
Reuse “, 31st International Symposium on Microarchitecture (MICRO-31), Nov-Dec 1998.

