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Abstract 

This paper presents a treegion-based global scheduling technique for wide issue VLIW/EPIC 

processors. A treegion is a single-entry/multiple-exit global scheduling scope that consists of basic 

blocks with control-flow forming a tree. We propose a two-phase approach to global scheduling within 

a treegion scope that enables speculative code motion in the first phase and uses predication of all 

instructions in the second phase. In the first scheduling phase, tree traversal scheduling (TTS) takes 

full advantage of speculation to speed up all possible paths in a treegion. Over-aggressive speculation 

is limited by scheduling block-ending branches as early as possible, enabled by downward code 

motion. A multiway branch transformation is also performed to reduce control dependence height. In 

the second scheduling phase, fully resolved predicates (FRPs) are used to enable branch barrier 

instructions, such as stores and subroutine calls, to move across branches. Selective if-conversion can 

also be applied to remove hard-to-predict branches in a treegion. The simulation results based on an 

8-issue EPIC style machine model show an average speedup of 21% of TTS over BB scheduling, an 

additional speedup of 6.4% from multiway branch transformation, and another 1.9% speedup from 

FRP-guarded code motion. Other code transformations such as treegion code layout and the general 

operation combining are also presented in this paper. 

1. Introduction 

Treegions and the treegion scheduling have been proposed as a scheduling technique to extract 

instruction level parallelism (ILP) at compile time [1,2]. A treegion is a single-entry/multiple-exit 
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nonlinear region that consists of basic blocks with control-flow forming a tree, as illustrated in Figure 

1a. Based on the control flow graph (CFG), three treegions are formed. Since large regions are usually 

better for ILP extraction in scheduling than small regions, tail duplication [6] is applied as a treegion 

enlarging optimization. After unconditional branches are removed, the resulting treegion is shown in 

Figure 1b. The trade-off for exposing ILP through treegion formation is the code-expansion that results 

from duplicates of BB6 and BB7. The detailed treegion formation algorithm was presented in [1]. 

 

 

 

 

 

 

                                     (a)       (b) 
Figure 1. (a). The CFG and the treegions constructed; (b) The treegion constructed after the tail duplication 

Treegion formation is based only on the programs CFG topology and is independent of profile 

information. This makes the treegion a well-suited scheduling scope for execution time optimization 

environments such as dynamic optimization or dynamic re-compilation and for cases where profile 

information is not representative of actual program behavior.  

Because treegions are a non-linear scheduling scope, they provide an excellent framework for two 

popular techniques to extract ILP: 

1. speculation as treegions provide the ability to speculate instructions from multiple execution 

paths instead of the one that is presumed to be the most frequently executed. 

2. predication as fully resolved predicates (FRPs) [20] enable code motion for branch barrier 

instructions (e.g. stores, subroutine calls, and instructions with live-range interference that 
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restricts speculation) from multiple execution paths. Also, multiple paths in a treegion can be 

combined using if-conversion. 

We propose a two-phase scheduling approach to take advantage of speculation and predication in 

separate phases. The motivation of this two-phase approach is based on the following observations: (a) 

although branch miss-prediction introduces high penalties for deep-pipelined processors, most of the 

branches are highly predictable and it is beneficial to keep those branches instead of removing them 

with if-conversion. (b) Those branches also help to reduce resource contention due to if-converted 

paths, as each path will see a full set of resources. (c) The treegion framework is ideal for utilizing 

speculative code motion (i.e., code motion across branches) to speed up multiple execution paths. If 

the predicates are introduced at the same time/before the speculation phase, the reverse if-conversion 

has to be performed to reach the same effect. As a result, the speculation is exploited in the first phase 

and the predication as well as if-conversion is exploited in the second phase. 

In the first phase, which we call the speculative scheduling phase, the tree traversal scheduling 

(TTS) algorithm [3] is used for extensive code speculation while limiting over-aggressive speculation 

by scheduling block-ending branches as early as possible. Early scheduling of branches is enabled by 

downward code motion. In TTS, profile information is used to prioritize instructions from more 

frequently executed paths and the early scheduling of branches ensures no delay for less frequently 

executed paths. 

The early scheduling of branches in TTS also results in serial branch sequences that form critical 

control dependence height. A multiway branch transformation is performed during scheduling to 

reduce such control dependence height. Treegions enable both forms of multiway branch 

transformation, condition tree of (n+1)-way branches and condition tree of 2n-way branches. As a non-
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linear scope, treegions have more opportunities for multiway branch transformations than linear 

scheduling scopes, such as traces [7] or superblocks [6]. 

In the second phase, which we call the non-speculative scheduling phase, each instruction is guarded 

by a predicate so that code motion introduces no additional speculation. After the initial speculative 

phase of scheduling, each instruction in guarded by the FRP for the block that it now resides in. The 

FRP for a block is a Boolean which is true if and only if control flow will reach that block. Non-

speculative code motion above branches is possible for branch barrier instructions when they are 

guarded by their FRP. Additionally, selective if-conversion can be applied to remove branches in a 

treegion based on their run-time predictability.  

This paper also presents work on two other important aspects of performance for treegion schedules. 

General operation combining is used to merge together two similar or identical operations in a treegion 

if they can be scheduled in the same block and location. Treegion code layout is performed to utilize 

the spatial locality in treegion-scheduled code to improve I-cache performance.  

Using an 8-issue VLIW/EPIC style machine model, we analyzed the run time based on the 

following categories: non-stall execution time (i.e., the execution time taken by continuous pipeline 

execution), I-cache stall time, D-cache stall time, branch misprediction stall time, and other stall time 

(due to necessary stalls between scheduling scopes). Simulation results show that compared to basic 

block (BB) scheduling, TTS reduces non-stall execution time significantly while keeping other stall 

time in the same range with the help of the architectural features of the pipeline model. Overall, TTS 

has up to 40% speedup and 21% average speedup over BB scheduling. The multiway branch 

transformation, which requires a multiway branch predictor [14,15] in the processor, has two effects on 

the run time. Non-stall execution time is reduced as the multiway branch transformation reduces the 

critical control dependence height exposed by TTS. Branch misprediction stalls are also reduced as the 
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multiway branch transformation reduces aliasing among different multiway branches when indexing 

the branch prediction table. In total, the multiway branch transformation results in an average of 6.4% 

speedup over TTS. When the non-speculative scheduling phase is added, another 1.9% speedup is seen 

from FRP-guarded code motion. Selective if-conversion/reverse if-conversion requires accurate run-

time predictability of branches, which make it most beneficial if the architecture has support for 

dynamic optimization [17]. 

The rest of the paper is organized as follows. Section 2 describes the TTS algorithm, our simulation 

methodology, and the results of TTS. Multiway branch transformation and its results are discussed in 

Section 3. Section 4 presents the non-speculative scheduling phase in treegion scheduling, including 

FRP-guarded code motion and selective if-conversion. General operation combining and code layout 

are introduced in Section 5. Section 6 concludes the paper. 

2. Tree Traversal Scheduling 

2.1. The Tree Traversal Scheduling algorithm 

In treegion-based global scheduling, Tree Traversal Scheduling (TTS) takes full advantage of 

speculation in the speculative scheduling phase. Treegions are well suited to speculation as they enable 

instructions from multiple paths to be speculated. The main motivation of TTS is to utilize the large 

scheduling scope provided by treegions for effective speculative code motion. Speculation needs to be 

performed carefully as over-aggressive speculation may result in a negative impact on performance, as 

shown in Figure 2 (assuming the latency for add/branch is 1 cycle and load latency is 2 cycles for a 

cache hit). 

In the example in Figure 2a, we assume registers r6, r8, and r10 are ready at the current cycle (cycle 

n). Figure 2b shows the schedule result if we apply list scheduling on a 2-way issue machine model 

with one alu/branch unit and one alu/load unit. Since instructions 1, 3, 5, and 6 are ready at cycle n, the 
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list scheduler may schedule these instructions ahead of instructions 2 and 4. The average execution 

time is computed as follows: execution time is 4 cycles if control edge 1 is taken and 3 cycles if control 

edge 2 is taken; the average is then (4*0.8 + 3*0.2) = 3.8 cycles. The speculation of instructions 5 and 

6 results a one-cycle delay for the block-ending branch (which delays both paths following it) and a 

one-cycle delay for instruction 4 as it is ready to be issued at cycle n+1. 

 

 

 

 

 

 

 
 
 
 
 
 
 
Figure 2. (a) An example for treegion scheduling, (b) the scheduling result using list scheduling, (c) the scheduling result 

using TTS  
 
TTS solves over-aggressive speculation in the above example. At each cycle, the candidate 

instruction is chosen for scheduling based on criteria in the following order:  

a) execution frequency,  

b) exit count heuristic [8] to resolve ties from (a), and  

c) data dependence height to resolve ties from (b).  

This ordering gives priority to block-ending branches as parent blocks always have higher execution 

frequency and exit count than child blocks. It also prioritizes more frequently executed instructions. 

For the example in Figure 2, the scheduling result using TTS is shown in Figure 2c, where the average 

1: add r5, r6, 1 
2: br bb2, r5 > 100 

3: add r7, r8, r6 
4: ld r11, r7, 0 

5: ld r9, r10, 5 
6: add r11, r8, r10

 Cycle n:        add r5,r6,1               add r7, r8, r6

       Cycle n+1:   add r11, r8, r10        ld r9, r10,5

       Cycle n+2:   br bb2, r5>100         ld r11, r7, 0

Sch_Time     ALU/BR                   ALU/LD

Cycle n:       add r5,r6,1                add r7, r8, r6

      Cycle n+1:   br bb2, r5>100         ld r11, r7, 0

      Cycle n+2:    (ld r9, r10,5)           (add r11, r8, r10)

Sch_Time     ALU/BR                   ALU/LD 

80 20

Average execution time: 3.8 cycles   Average execution time: < 3.2 cycles  

(a)

(b) (c)

Basic block 2 Basic block 1 Edge 1 Edge 2 
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execution time is less than 3.2 cycles since all the machine resources will be available to basic block 1 

at cycle (n+2) if it is on the actual execution path. Note that TTS moves to one of the child blocks after 

the block-ending branch of the current BB is scheduled. The schedule at cycle n+2 is parenthesized to 

show that it is the scheduled result if TTS chooses basic block 2 as the next scheduling block.  

TTS prioritizes instructions from the most frequently executed path according to profile information, 

as seen from the candidate selection heuristic (a). When profile information is inaccurate (or not 

available), the exit count heuristic (b) provides some protection against profile variation. The exit 

count heuristic is adapted from the helped count priority function of speculative hedge [8] and is the 

number of the exits that follow the instruction in the CFG. Also, the ability of treegions to allow 

speculative instructions from more than one execution path inherently makes them less sensitive to 

profile shifts. 

Figure 3 describes the TTS algorithm. The distinguishing characteristics of TTS are that branch 

instructions are scheduled as early as possible and that speculation from more than one path of 

execution is based on the priority heuristic. Step 1 forms the scheduling order of the basic blocks, 

which is determined by a depth first traversal based on execution frequencies. For the example treegion 

in Figure 4, the basic block order is: BB1, BB2, BB4, BB7, BB6, BB5, and BB3. In steps 2-4, blocks 

are scheduled in the order determined in step 1. For each basic block currently being scheduled, only 

instructions contained in the blocks that it dominates are considered for speculation. In the same 

example, when scheduling BB1, instructions from all other basic blocks are considered for speculation, 

but when scheduling BB4 only the instructions remaining in BB6 and BB7 are considered for 

speculation. In TTS, the early scheduling of branch instructions may result in downward code motion. 

A detailed discussion of TTS and implementation issues for data flow analysis is found in [3]. 
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Figure 3. The Tree Traversal Scheduling (TTS) Algorithm 

The TTS algorithm achieves high resource utilization and speeds up multiple execution paths (with 

priority given to highest frequency paths) by speculating instructions from all possible execution paths. 

This is an advantage over linear scheduling methods such as trace scheduling [7] or superblock 

scheduling [6]. The TTS algorithm reduces resource competition by the early resolution of branch 

instructions and only scheduling instructions that are dominated by the current basic block. The early 

resolution of branch instructions results in all the machine resources being available to each path out of 

a branch instruction. For example in Figure 4, when scheduling basic block 2, instructions from basic 

block 3 will not compete simultaneously for the machines execution resources. This is an advantage of 

TTS over hyperblock scheduling [12] since in hyperblock scheduling instructions from disjoint control 

flow paths may compete for resources in any given cycle. 

 

 

 

 

 

Figure 4. The tree traversal order of a treegion: BB1, BB2, BB4, BB7, BB6, BB5, BB3 (the number along the control 
edge represents the profiled execution frequency) 

 

TTS algorithm: 
1. For a treegion, sort the basic blocks according to a depth-first traversal order with the child 

block selected with highest execution frequency. 
2. Start list scheduling at the root basic block with priority given to the block-ending branch. 
3. During the scheduling of a basic block, consider speculation for instructions dominated by this 

basic block according to their execution frequency, exit count and dependence height. 
4. After scheduling the block-ending branch, traverse to the next basic block and go back to 3. 
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As the algorithm in Figure 3 implies, TTS enables chains of instructions to be speculated including 

the exception potential instructions, such as loads, divisions, etc., and their dependent instructions. The 

propagation of NaT [11] is used to catch such an exception if it happens at run time. 

2.2. Simulation Methodology 

The TTS algorithm is implemented in LEGO compiler [13], a research ILP compiler developed for 

high performance VLIW/EPIC style microprocessors, and is evaluated using the SPECint95 

benchmark suite. The compiling process is as follows. All programs are first compiled with classic 

optimizations using the IMPACT compiler from University of Illinois [21] and converted to Rebel 

textual intermediate representation using the Elcor compiler from Hewlett-Packard Laboratories [19]. 

Then, the LEGO compiler is used to profile code, form treegions and schedule the instructions using 

the TTS algorithm. After instrumentation is added for trace-based timing simulation, the scheduled 

Rebel code is converted into an inline execution simulator that is emitted as C code. Finally, a trace-

based timing simulation runs together with the execution simulation to obtain the simulation results 

while ensuring the correctness of the program. In our experiments, all benchmarks in SPEC95int suite 

run to completion demonstrating that LEGO is a functioning compiler. 

In this study, the SPEC95int benchmarks are scheduled for an 8-issue VLIW machine model based 

on the Hewlett-Packard Laboratories HPL_PD architecture [9,10].  In this machine model, all function 

units are fully pipelined and all operations have a one-cycle latency except for load (two cycles for a 

hit), floating point add (two cycles), floating point subtract (two cycles), floating point multiply (three 

cycles), and floating point division (three cycles). Also, the execution pipeline is modeled such that it 

stalls only at dispatch/register read stage when any of the source operands are not available. Then, in 

trace-based timing simulation, the same machine model is used with an I-cache, a D-cache and a 

branch predictor. The detailed specification of the processor model is shown in Table 1. 
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Table 1. The specification of the machine model used in the experiment 
 Specification 
Execution Dispatch/Issue/Retire bandwidth: 8;  

Universal function units: 8;  
Operation latency: ALU, ST, BR: 1 cycle; LD, floating-point (FP) add/subtract: 2 
cycles; FP multiply/divide: 3 cycles  

I-cache Compressed (zero-nop) and two banks with 2-way 32KB each bank [18]. 
Line size: 16 operations with 4 bytes each operation. 
Miss latency: 12 cycles 

D-cache Size/Associativity/Replacement: 64KB/4-way/LRU 
Line size: 32 bytes 
Miss Penalty: 14 cycles 

Branch Predictor: G-share style Multiway branch prediction [15] 
Branch prediction table: 214 entries; 
Branch target buffer: 214 entries/8-way/LRU 
Branch misprediction penalty: 10 cycles 

2.3. Results 

Performance results for TTS are compared to basic block (BB) scheduling for the same machine 

model. For BB scheduling, list scheduling with software renaming support to remove output- and anti-

dependences is applied. Treegion formation is skipped for BB scheduling so that I-cache effects are 

appropriately modeled. General operation combining and code layout (described in Section 5) are 

applied to both BB scheduled code and TTS scheduled code to improve execution time performance. 

Figure 5 shows the speedup of TTS scheduled code over BB scheduled code. It can be seen that the 

speedup of TTS over BB scheduling is up to 40% for benchmark vortex and the average speedup is 

21%. 

Speedup of TTS over BB scheduling

1

1.1

1.2

1.3

1.4

1.5

compress gcc go ijpeg li m88ksim perl vortex A_mean

 
Figure 5. The speedup of TTS over BB scheduling 
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A breakdown of the components of execution time helps us better understand the scheduling impacts 

on performance. For our machine model we categorize the execution time as follows:  

•= pipeline execution time (non-stall cycles) 

•= I-cache stall time 

•= D-cache stall time 

•= branch misprediction stall time 

•= other stall time (e.g. stalls between scheduling scopes)  

Inter-region/inter-procedural stalls may happen when a computation of a live variable is scheduled 

in the same multi-op as the region-exit branch/return operation. If the computation latency is more than 

1 cycle and there is an immediate use of the live variable, the execution pipeline will be stalled. 

Figure 6 shows each execution time by category for the BB scheduled result. Most of the execution 

time is spent on pipeline execution (81.6% on average). An average of 12.2% of execution time is due 

to branch mispredictions. D-cache misses and I-cache misses account for 4% and 1.2% of execution 

time, respectively.  Less than 1% is from other stalls. 

Figure 7 shows each execution time by category for the TTS results. The stall time categories (non 

pipeline execution time categories) for TTS and BB scheduling are very similar. However, the stall 

cycles represent a larger percentage of execution time for TTS as the overall execution time has 

decreased significantly.  

A detailed look at each execution time category provides insights of TTS and motivates the 

discussion in the following sections. 
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Execution time categorization of BB scheduled code
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Figure 6. Execution time categorization of the BB scheduled code 

Execution time categorization of TTS scheduled code
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Figure 7. Execution time categorization of TTS scheduled code (The stall cycles represent a larger percentage of 

execution time for TTS as the overall execution time has decreased relative to Figure 6) 
 

•= Non-stall cycles for pipeline execution 

Speculation in TTS reduces program dependence height and the early resolution of branches 

provides a full set of machine resources to each path out of the branch. Both effects reduce non-stall 

execution time as more ILP is utilized. The ratio of non-stall cycles of TTS over BB scheduling is 

shown in Figure 8. We see that TTS reduces non-stall cycles for benchmark vortex by 35% and 

reduces non-stall cycles for benchmark ijpeg by 11%, as reflected by the maximum and minimum 

speedups, respectively in Figure 5. Overall, TTS reduces non-stall cycles when compared to BB 
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scheduling by an average of 25%. Even with these reductions in non-stall execution times, Figure 7 

shows that non-stall execution time still dominates overall execution time. 

The ratio of non-stall cycles of TTS over BB schduled code
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Figure 8. The ratio of non-stall cycles of TTS scheduled code vs. BB scheduled code 

•= I-cache stalls 

Treegion formation and downward code motion results in an average code size expansion of 72% 

more than the original code size. Also, the TTS algorithm impacts I-cache performance in the 

following ways:  

1) Tail duplication increases code spatial locality. 
2) Number of I-cache accesses is reduced  (fewer multi-ops for each execution path). 
3) More operations per multi-op.  

The increased code size and the larger number of operations per multi-op results in a larger I-cache 

miss rate and TLB miss rate. This effect can be minimized by an I-cache with larger size/associativity. 

Although I-cache miss-rates increased for TTS scheduled code, the resulting miss rate was still very 

small (maximum of 1.33% for gcc and 0.27% on average). The impact on overall execution time is 

around 2%. The low miss rate is the result of the optimized I-cache structure that we used in our 

machine model. 

•= D-cache stalls 

Extensive load speculation in TTS results in an average of 30% more D-cache accesses. The 

increased D-cache accesses have the following effects: more memory traffic, more D-cache misses, 
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and decreased D-cache miss rate in most benchmarks (due to the temporal locality of the data and the 

prefetch effect of the speculative loads). Our machine model is tolerant of D-cache access penalties 

resulting from load speculation in that the pipeline will not stall at the execution/memory stage for a 

load miss. Instead, it stalls on the first use of the missing value at the dispatch/register read stage. This 

is similar to the behavior of the Intel Itanium processor [22]. The effect for this type of pipeline 

optimization on D-cache stalls is shown in Figure 9. Compared with D-cache stalls of BB scheduled 

code (obtained with optimized machine model), the TTS code shows 23% more D-cache stalls with the 

simple in-order pipeline model that stalls at each load miss. When the pipeline model is optimized, the 

D-cache penalties of TTS scheduled code is in the same range as the D-cache stalls of BB scheduled 

code. 

The ratio of D-cache stalls of TTS scheduled code over BB scheduled code

0.8
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D-cache stalls of TTS over BB (stall at first use) D-cache stalls of TTS over BB (stall at load miss)

 
Figure 9. The ratio of D-cache penalties of TTS scheduled code over BB scheduled code 

•= Branch misprediction stalls 

TTS does not significantly change the characteristics of branches in the program except by 

duplicating branches and removing some unconditional branches during tail duplication process. As a 

result, the branch misprediction penalties remain in the same range as for BB scheduled code. As seen 

from Figure 7, branch misprediction stalls account for around 15% of the total execution time, which 

suggests it is a good objective to reduce branch related stalls.  
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3. Multiway Branch Transformation in a Treegion 

As TTS extensively performs speculation and the early scheduling of block-ending branches with 

downward code motion, a treegion usually results that contains a sequence of branch-only BBs (i.e., a 

BB consists of only a branch) followed with many stores and subroutine calls (as those instruction are 

unable to be speculated due to their unknown side effects).  In such a treegion, control dependence 

becomes the critical path as it enforces the issue of one sequential branch at each cycle. Two types of 

such control structures, a condition tree of (n+1)-way branches and a condition tree of 2n-way 

branches, are shown in Figure 10a and 10b respectively. In these control structures, the sequential 

branches have to be executed in serial to ensure the correct program semantics. In order to solve this 

problem, the multiway branch transformation is used. It transforms sequential branches into one multi-

op containing several branch operations. Architectural support for multiway branch execution is 

present in several VLIW/EPIC architectures [15,22]. 

 

 

 

 

 

Figure 10. (a) A condition tree of (n+1)-way branch; (b) a condition tree of 2n-way branch 
 

With multiway branch support in the architecture, multiple branches can be executed at the same 

time so as to minimize the control dependence height. Treegions are well suited to the multiway 

branch transformation for two reasons. First, TTS maximizes the multiway branch opportunities due to 

speculation, early branch scheduling and downward code motion. Secondly, both types of condition 
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tree shown in Figure 10 can be exploited to form a multiway branch. This is an advantage of treegions 

over linear scopes as the condition tree of 2n-way branches is excluded for linear scopes.  

In treegion scheduling, the multiway branch transformation is integrated into TTS: when scheduling 

a branch instruction, TTS investigates the chances of merging it with its predecessor branch 

instruction. The branch-merging/multiway-branch formation process involves two steps: preparation of 

the correct branch targets, and condition manipulation for each branch operation in the multiway 

branch to maintain the semantics of the program. The following cases are considered according to 

whether the branch is conditional or unconditional and whether it is on the taken path or untaken path 

of its predecessor branch. Here, note that when scheduling a branch in a treegion, its predecessor 

branch cannot be an unconditional branch; otherwise it would have been removed during the treegion 

formation process. 

Case 1: The branch is unconditional and it is on either the taken or untaken path of its predecessor 

branch. The branch merging is straightforward in this case: remove the unconditional branch and 

modify the taken/untaken branch target. Figure 11 shows the branch merge process when the 

unconditional branch is along the taken path of its predecessor branch. The taken target of the 

predecessor branch is modified to the target of the unconditional branch, which is then removed after 

the merging process. 

 

 

 

 
Figure 11. The branch merging when the unconditional branch is along the taken path of its predecessor branch 
 

Case 2: The branch is conditional and it is on the taken path of its predecessor branch. The branch 

merges with the predecessor branch operation into two conditional branches with changes in both 
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branch conditions and branch targets, as shown in Figure 12. Note that as the LEGO ISA is based on 

the HP-PLD architecture, it requires the branch condition to be specified in a predicate (as shown in 

Figure 12). In previous examples, we simplified so that the branch condition is included in the branch 

instruction and the ideas still hold when the condition is separated from the branch operation. From 

Figure 12, it can be seen that the branch condition manipulation can be implemented in the 

corresponding predicate computation with no additional predicate define operation introduced for 

multiway branch transformation. 

 

 

 

 

 

Figure 12. The branch merging when the conditional branch is along the taken path of its predecessor branch 

Case 3: The branch is conditional and it is on the untaken path of its predecessor branch. The branch 

merges with the predecessor branch operation into two conditional branch operations with changes in 

condition only, as shown in Figure 13. 

 

 

 

 

 

Figure 13. The branch merging when the conditional branch is along the untaken path of its predecessor branch 

As branch merging is performed at the same time as the branch is being scheduled in TTS, all 

branches are investigated sequentially for eligibility according to their scheduling order. This is 
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desirable as it gives priority to reducing the control dependence height along the more frequently 

executed paths. Every possible merge is a subset of one of the three cases described above. Note that 

although predecessor branches appear as a single conditional branch in the description of the cases, the 

same transformation applies when a predecessor is one branch operation of a multiway branch.  

Figure 14 shows the speedup resulting from using the multiway branch transformation in TTS. 

Speedup is always positive and is up to 13.7% for benchmark go and averages 6.4%, compared to TTS 

without multiway branch transformation.  

Speedup of TTS with multiway branch  over TTS
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Figure 14. The speedup of TTS with multiway branch over TTS 

The speedup mainly comes from two execution time categories: reduced non-stall execution time 

and reduced branch misprediction stall time. Figure 15 shows the contribution of each execution time 

category to the overall speedup. Taking the benchmark compress as an example, it shows that the 

reduction in non-stall cycles accounts for 88% of its speedup and fewer branch mispredictions result in 

10% of its speedup. From Figure 15, it can be seen that the multiway branch transformation always 

produces positive reduction in non-stall execution time, which is a direct result of the reduction of 

control dependence height and it contributes 76% of the speedup on average. For branch misprediction 

stalls, however, one exception is observed for benchmark li, where the non-stall cycle reduction is 

offset by performance degradation due to increased branch mispredictions. The multiway branch 

transformation has several contrary effects on branch misprediction stalls. First, as multiple branch 
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operations combine into one multiway branch, the number of resulting multiway branches is smaller 

than the number of original branches. This reduction is beneficial as the number of branch predictor 

accesses is reduced. The smaller number of multiway branches also reduces the possibility of aliasing 

among multiway branches when indexing the branch prediction table. Aliasing among branches inside 

a multiway branch, however, results in a small increase in branch misprediction rate (maximal increase 

happens for benchmark li whose branch misprediction rate increases from 3.98% to 4.85%). Overall, 

branch misprediction stalls are reduced by 12.3% and non-stall execution time is reduced by 5.1% in 

average by the multiway branch transformation. 
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Figure 15. The speedup of the multiway branch transformation from different run-time categories 

4. Predication Support in Treegion Scheduler 

In treegion scheduling, predication support is introduced in the second phase, the non-speculative 

scheduling phase. Since TTS produces code with high resource utilization by speculation and multiway 

branch transformation, compiling for predicated execution in treegions must be performed carefully so 

as to not offset the performance gained from the speculative scheduling phase. In this paper, two types 

of predicate support are used: (1) fully resolved predicates (FRPs) to enable code motion of stores and 

subroutine calls across branches, and (2) if-conversion to remove hard-to-predicted branches. Based on 
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the scheduling results of the first phase, each instruction is guarded by the FRP for the block that it 

now resides in. (As pointed out in Section 3, LEGO ISA uses predicates to specify the branch 

condition. No additional FRP computation is required as those predicates can be used directly as 

FRPs.) Then, FRP-guarded stores, subroutine calls and their dependent operations can be moved across 

branches to fill in empty slots from the first scheduling phase. Those empty slots resulted from such 

FRP guarded code motion are then filled with rescheduling the operations that are dominated by the 

basic block containing those empty slots. One result from the FRP-guarded code motion is the 

improved static resource utilization. Static and dynamic resource utilization (i.e., the run-time resource 

utilization) needs to be distinguished in the presence of predication. FRP-guarded code motion 

improves static resource utilization but not necessarily dynamic resource utilization, which, however, 

can be improved using a multithread architecture in the treegion framework [4]. FRP-guarded code 

motions may also result in branch-only basic blocks, which create additional chances for the multiway 

branch transformation. 

The effectiveness of FRP-guarded code motion depends on available machine resources, especially 

for treegion scheduling, as many resources have already been consumed by the speculative scheduling 

phase. With our 8-way issue machine model, FRP-guarded code motion results in up to 6.1% speedup 

in benchmark vortex and an average of 1.9% speedup, as shown in Figure 16. 
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Figure 16. The speedup of FRP-guarded code motion over the TTS with multiway branch transformation 



 21

When compared to FRP-guarded code motion, selective if-conversion is more complicated as two 

critical issues are involved: what to if-convert and when to if-convert. The goal of selective if-

conversion in treegions is to remove only hard-to-predict branches. Hard-to-predict branches are not 

the same as static unbiased branches [20]. Instead, they represent the branches that have high run-time 

misprediction rates. If-conversion could cause significant performance loss from several factors such 

as resource contention, dependence height imbalance, and execution frequency imbalance of if-

converted paths [5]. Therefore, if-conversion should only be applied when the delay resulting from 

additional resource contention is smaller than the branch misprediction penalty. As branch prediction 

behavior is difficult to determine at compile time (i.e., it may vary with some patterns in run time), a 

reasonable approach is to delay if-conversion decisions until run-time software optimization [17]. 

As the control flow graph of a treegion contains no merge points, if-conversion in a treegion is 

different from hyperblock formation [11,12] and additional multiway branches can result from if-

conversion. One example is shown in Figure 17.  

In Figure 17, suppose branches 1 and 3 are chosen for if-conversion. After branch 1 is removed, 

BB1 and BB2 are merged into BB0. Then, branches 2 and 3 are transformed into a multiway branch 

containing three branch operations (two of them are created from branch 3), as shown in Figure 17b. 

The if-conversion of branch 3, shown in Figure 17c, combines those two branch operations into one 

“unconditional” branch guarded by a predicate that is true if and only if the condition of branch 1 is 

true. As a result, the “unconditional” branch operation has similar branch prediction characteristics as 

branch 1. However, such a combination helps multiway branch prediction as aliasing among branch 

operations inside the multiway branch is reduced. The whole process is also similar to partial if-

conversion [5] as the two branches to be converted are sequential (i.e., along the same execution path). 
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After the if-conversion, the rescheduling is performed on the if-converted basic block and its 

dominated basic blocks with the same methodology as TTS.  

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 

Figure 17. An example of if-conversion in a treegion (a) the CFG before if-conversion (b) the CFG after if-conversion of 
branch 1 (c) the CFG after if-conversion of branch 3 

 
5. Other Treegion Transformations  

In addition to the scheduling techniques discussed in previous sections, two other transformations 

have significant effects on the performance of treegion schedules: general operation combining and 

treegion code layout. 

General operation combining is motivated from dominator parallelism [16]. Dominator parallelism 

is exhibited by identical operations from different paths, which are speculated into a block that 

dominates each operation. In previous work on treegion scheduling [1], dominator parallelism was 
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mainly used to remove the redundant copies of operations that resulted from tail duplication. In TTS, 

the use of dominator parallelism is extended into general operation combining such that two similar or 

identical operations will be merged if they can be scheduled in the same block and location. General 

operation combining is performed during scheduling. When an operation (A) is selected for scheduling, 

it is compared with other operations that have already been scheduled in the same cycle. If another 

scheduled operation is found to have the same opcode and source operands, operation A is then merged 

into it and, if necessary, subsequent uses of A’s definitions are renamed. Treegions provide many 

opportunities for operation combining due to their large scope of instructions. In addition to duplicate 

operations resulting from tail-duplication, load address generation and load operations also are good 

candidates for operation combining. In treegion scheduling, general operation combining reduces the 

static code size by an average of 12.8%.  

As treegions are nonlinear regions containing multiple execution paths, appropriate code layout is 

important for treegion-scheduled code to obtain good I-cache performance, especially when cache 

size/associativity is limited (up to 40% difference in I-cache penalties is observed). In our treegion 

scheduling framework, the basic blocks of a treegion are laid out in the same order as block ordering 

for tree traversal scheduling: a depth first traversal with the child block selected with highest execution 

frequency. During layout, the polarity of conditional branches may be changed so that the branch is 

taken when off-trace execution happens. This transformation helps to increase the spatial locality of 

instruction traces and reduces branch misprediction rates slightly (0.5% on average) since branches are 

taken less frequently. 

6. Conclusion 

This paper presents several extensions to treegion-based global scheduling. A two-phase approach to 

utilize both speculation and predication was presented. In the first phase, the TTS algorithm speeds up 
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multiple execution paths using speculation and early scheduling of block-ending branches. The critical 

control dependence height exposed from TTS is reduced by the multiway branch transformation. In the 

second scheduling phase, fully resolved predicates are used to allow code motion of stores and 

subroutine calls across branch barriers. In addition, selective if-conversion can be applied to remove 

hard-to-predict branches. The speedups from these scheduling techniques are analyzed for different 

run-time categories using an 8-issue VLIW/EPIC style machine model. The simulation results show 

that while all those techniques reduce non-stall pipeline execution time, the multiway branch 

transformation also benefits from fewer branch misprediction stalls. Although treegion scheduling 

introduces a significant amount of load speculation, the D-cache stall times remain approximately in 

the same range as BB scheduling if a stall-on-use pipeline model is implemented. The code expansion 

introduced by treegion scheduling shows no significant impact on I-cache performance due to an 

optimized I-cache structure and careful treegion code layout. 
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Packard, Sun Microsystems and Texas Instruments.  
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