
Software-Only Value Speculation Scheduling∗

∗ Review copy. Do not distribute

Chao-ying Fu Matthew D. Jennings Sergei Y. Larin Thomas M. Conte

Department of Electrical and Computer Engineering
North Carolina State University

Raleigh, NC 27695-7911
(919) 513-2013

{cfu, mdjennin, sylarin, conte}@eos.ncsu.edu

Abstract

Recent research in value prediction, including several recent publications for

MICRO, shows a surprising amount of predictability for the values produced by register-

writing instructions. Several hardware based value predictor designs have been proposed

to exploit this predictability by eliminating flow dependencies for highly predictable

values. A hardware and software based technique, value speculation scheduling (VSS),

combines static instruction level parallelism (ILP) scheduling techniques with dynamic

value prediction hardware. This paper extends the previous work on VSS to a software-

only based scheme for VSS, which we will call software value speculation scheduling

(SVSS). The advantages of SVSS are that no instruction set architecture (ISA) extensions

and no value prediction hardware is required. Therefore, SVSS is applicable to existing

microarchitectures such as Intel’s P6, Digital’s Alpha, Sun’s UltraSparc and

IBM/Motorola’s PowerPC. As with VSS, static ILP scheduling techniques are used for

SVSS to speculate value dependent instructions by scheduling them above the

instructions whose results they are dependent on. For SVSS, compiler generated

instructions are used to produce value predictions in place of the prediction hardware of

2

VSS. These predictions allow the execution of speculated instructions to continue.

Again, in the case of miss-predicted values, control flow is redirected to patch-up code so

that execution can proceed with the correct results. In this paper, experiments for

applying SVSS to select load instructions in the SPECint95 benchmarks are performed.

Speedup of up to 8% has been shown for using SVSS. Empirical results on the software-

only value predictability of loads, based on value profiling data, are also provided.

Keywords: Value speculation, value prediction, VLIW instruction scheduling, instruction
level parallelism, ILP

1. Introduction

Modern microprocessors extract instruction level parallelism (ILP) by using

branch prediction to break control dependencies [14], dynamic memory disambiguation

to resolve memory dependencies [1] and register renaming to eliminate anti and output

data dependencies [15]. However, current techniques for extracting ILP are still

insufficient, especially for integer benchmarks. Recent research has demonstrated the

viability of value prediction as a technique for hiding flow dependencies (also called true

dependencies) [2], [3], [4], [6], [7], [8], [9] [16]. Results have shown that values

produced by many register-writing instructions can be highly predictable using various

value predictors: last-value, stride, context-based, two-level, or hybrid predictors. This

prior work illustrates that value speculation in future high performance processors will be

useful for breaking flow dependencies, thereby exposing more ILP.

There is prior work in value speculation that focuses on hardware-only schemes

[2], [3]. In these schemes, the instruction address (PC) of a register-writing instruction is

sent to a value predictor to index a prediction table at the beginning of the fetch stage.

3

The prediction is generated during the fetch and dispatch stages, then forwarded to

dependent instructions prior to their execution stages. A value speculative dependent

instruction must remain in a reservation station (even while its own execution continues),

and be prevented from retiring, until verification of its predicted value. The predicted

value is compared with the actual result at the state-update stage. If the prediction is

correct, dependent instructions can then release reservation stations, update system states,

and retire. If the predicted value is incorrect, dependent instructions need to re-execute

with the correct value. Figure 1 illustrates the pipeline stages for value speculation

utilizing a hardware scheme.

Figure 1. Pipeline Stages of Hardware Value Speculation Mechanism for Flow
Dependent Instructions. The dependent instruction executes with the predicted value in
the same cycle as the predicted instruction.

Fetch Dispatch Execute State-
Update

Value Predictor Prediction
Verification

Fetch Dispatch Execute State-
Update

Predicted Value

Actual Value

(Predicted
Instruction)
PC

(Dependent
Instruction)
PC

4

This paper extends Value Speculation Scheduling (VSS). Value Speculation

Scheduling [16] combines ISA, hardware and compiler synergies for exploiting value

predictions using static speculation of instructions dependent on predictable values. VSS

improves performance by aggressively scheduling flow dependencies that are highly

likely to be eliminated through correct value prediction. Value profiling is used to

statically select predictable values for applying VSS. Patch-up code generated by the

compiler ensures correct program execution in the event of value miss-predictions. Value

prediction hardware dynamically provides values that allow for the speculative execution

of value dependent instructions. ISA extensions are necessary, in the form of two new

instructions. A load prediction (LDPRED) instruction is required to load predictions

from the value prediction hardware to registers. An update prediction (UDPRED)

instruction is necessary to update predictor state in the case of miss-predicted values.

Hardware pipeline stages for the VSS scheme are shown in Figure 2.

Figure 2. Pipeline Stages of Value Speculation Scheduling Scheme. LDPRED and
UDPRED interface with the value predictor during the execution stage.

In this paper, the VSS approach to value speculation is extended so that it can be

used as a software-only tool for increasing ILP. The main advantage software value

Fetch Dispatch Execute State-
Update

Value
Predictor

Predicted Value

LDPRED
UDPRED

5

speculation scheduling (SVSS) is that it may be applied to existing microarchitectures

because ISA extensions and value speculation hardware are not required. Emulating

hardware branch predictors in software requires more code instrumentation than in the

original VSS approach, thereby affecting speedup performance. Due to code expansion

and overhead constraints, static stride prediction is used in SVSS because of simplicity

when compared to dynamic stride, context-based, two-level, or hybrid predictors. While

last-value predictors are the simplest to implement, they do not provide enough prediction

accuracy to provide sufficient speedup. To fully emulate the performance of hardware

value predictors in software, load and store operations are needed to allow spilling the

state for software versions of the value predictors upon procedure entry and exit. We also

look at the performance of value predictors that do not spill to memory, resulting in less

code instrumentation overhead but un-initialized value predictor state each time the

procedure containing the emulated value predictor is entered.

The remainder of this paper is organized as follows: Section 2 presents an

overview of VSS while at the same time introduces SVSS via an example. Section 3

provides more details about the SVSS scheme and compiler implementation details.

Section 4 presents experimental results for SVSS, including value profiling data and

speedup. Section 5 concludes the paper and mentions future work.

2. Value Speculation Scheduling (SVSS/VSS) example

In the original code sequence of Figure 3(a), instructions I1 to I6 form a long flow

dependence chain, which must execute sequentially. If the flow dependence from

instruction I3 to I4 is broken, via VSS or SVSS, the dependence height of the resulting

dependence chain is shortened. Furthermore, ILP is exposed by the resulting data

6

dependence graph. Figure 4 shows the data dependence graphs for the code sequence of

Figure 3 before and after breaking the flow dependence from instruction I3 to I4. Assume

that the latencies of arithmetic, logical, branch, store, LDPRED and UDPRED

instructions are 1 cycle, and that the latency of load instructions is 2 cycles. Then, the

schedule length of the original code sequence of Figure 4(a), instructions I1 to I6, is seven

cycles. By breaking the flow dependence from instruction I3 to I4, results in a schedule

length of five cycles. Figure 4(b) illustrates the schedule now possible due to reduced

overall dependence height and ILP exposed in the new data dependence graph. This

improved schedule length, from seven cycles to five cycles, does not consider the penalty

associated with miss-prediction due to the required execution of patch-up code.

(a) Original code

I1: ADD R1 Ç R2, 5
I2: SHL R3 Ç R1, 2
I3: LW R4 Ç 0(R3)
I4: ADD R5 Ç R4, 1
I5: OR R6 Ç R5, R7
I6: SW 0(R3) Ç R6
Next:

(b) Code after VSS applied

I1: ADD R1 Ç R2, 5
I2: SHL R3 Ç R1, 2
I3: LW R4 Ç 0(R3)
// load prediction from hardware
I7: LDPRED R8 Ç index
I4’: ADD R5 Ç R8, 1
I5’: OR R6 Ç R5, R7
I6’: SW 0(R3) Ç R6
// verify prediction
I8: BNE Patchup R8, R4
Next:

Patchup:
// update prediction to hardware
I9: UDPRED R4, index
I4: ADD R5 Ç R4, 1
I5: OR R6 Ç R5, R7
I6: SW 0(R3) Ç R6
I10: JMP Next

(c) Code after SVSS (static stride) applied

I1: ADD R1 Ç R2, 5
I2: SHL R3 Ç R1, 2
I3: LW R4 Ç 0(R3)
// calculate software static stride prediction
I7: ADD R8 Ç R8 + stride
I4’: ADD R5 Ç R8, 1
I5’: OR R6 Ç R5, R7
I6’: SW 0(R3) Ç R6
// verify prediction
I8: BNE Patchup R8, R4
Next:

Patchup:
// update software static stride predictor
I9: MOVE R8 Ç R4
I4: ADD R5 Ç R4, 1
I5: OR R6 Ç R5, R7
I6: SW 0(R3) Ç R6
I10: JMP Next

Figure 3: Example of Code Transformations for VSS and SVSS assuming a static
stride predictor. Instruction I3 of the original code sequence is value predicted.

For the VSS schedule in Figure 3(b), the value speculation scheduler breaks the

flow dependence from instruction I3 to I4. Instructions I4, I5 and I6 now form a separate

dependence chain, allowing their execution to be speculated during scheduling. They

become instructions I4’ I5’and I6’, respectively. A source operand of instruction I4’ is

7

modified from R4 to R8. Register R8 contains the value prediction for destination

register R4 of the predicted instruction I3.

Instruction I7, LDPRED, loads the value prediction for instruction I3 into register

R8. When the prediction is incorrect (R8≠R4), instruction I9, UDPRED, updates the

value predictor with the actual result of the predicted instruction, from register R4. Note

that the resulting UDPRED instruction is part of the patch-up code and its execution is

only required when a value is miss-predicted. To ensure correct program execution, the

compiler inserts the branch instruction, I8, after the store instruction, I6’, to branch to the

patch-up code when the predicted value does not equal the actual value. The patch-up

code contains UDPRED and the original dependent instructions, I4, I5 and I6. After

executing the patch-up code, the program jumps to the next instruction after I8 and

execution proceeds as normal.

The SVSS schedule in Figure 3(c) is analogous to the VSS schedule except that

instruction I7 adds a constant stride to register R8 (which again holds the value

prediction). The constant stride value is determined through value profiling and then is

permanently fixed by the compiler. This ADD instruction is inserted in place of the

LDPRED instruction of the original VSS scheme and emulates in software a static stride

value predictor. It is interesting to note that this I7 ADD instruction could be combined

with the I4’ ADD instruction for this example. This opportunity for instruction

combining is not true in general and we are not taking advantage of it at this time. Also,

in the SVSS schedule, a MOVE instruction updates the software prediction in the case of

an incorrect prediction. This replaces the UDPRED of the original VSS schedule. In this

example, the potential speedup due to exposed ILP and the penalty for miss-predicted

8

values are the same for both the original VSS and the new SVSS scheme for static stride.

Actual performance speedup depends on the prediction accuracy of the hardware

prediction mechanism and the accuracy of the static stride software predictor.

Figure 4. Data Dependence Graphs for Codes of Figure 3. The numbers along each
edge represent the latency of each instruction. In 4(a), the schedule length is seven cycles.
In 4(b), because of exposed ILP and dependence height reduction, the schedule length is
reduced to five cycles.

We see several possible advantages to both the VSS and SVSS schemes,

including:

1. Value speculative dependent instructions can execute as early as possible before the
predicted instruction that they depend on. This is possible because the value predictor
is no longer in the critical path, as it is in the hardware-only approaches.

2. The compiler determines good candidates for value prediction based on value
profiling. Only instructions that the compiler deems are good candidates for
predictions are then predicted, minimizing any penalty for a miss-prediction.

3. Static scheduling provides a larger scheduling scope for exploiting ILP
transformations, identifying long dependence chains suitable for value prediction and
then re-ordering code aggressively.

(a) Before breaking the dependence (b) After breaking the dependence from I3 to I4.
 Applies to both VSS and SVSS (static stride, no Mem)

I1

I2

I3

1

1

2

I8

1

I7

I4’

I5’

1

1

1

I6’

1

1

1
1

I1

I2

I3

1

1

2

I4

I5

1

1

I6

1

9

4. Patch-up code is automatically generated, reducing the need for elaborate hardware
recovery techniques.

The software-only approach, SVSS, offers the following additional advantage that

as a software-only technique, no additional hardware or extensions to existing ISAs are

required. Therefore, SVSS can be applied to existing microarchitectures.

The original hardware-software approach, VSS, uniquely provides the ability to

use more elaborate prediction schemes that can take advantage of changes in the values to

be predicted for enhanced prediction accuracy. Also in VSS, the compiler controls the

number of predicted values and assigns different indices to them for accessing the

prediction table. This reduces index table conflicts when compared to the hardware-only

schemes that index using a portion of the PC.

There is a drawback to both VSS and SVSS. Because static scheduling

techniques are employed, value speculative instructions are committed to be speculative

and therefore always require predicted values. Hardware only schemes can dynamically

decide when it is appropriate to speculatively execute instructions. The dynamic decision

is based on the value predictor’s confidence in the predicted value, avoiding miss-

prediction penalty for low confidence predictions. The SVSS technique is the most

sensitive to dynamic changes in values, as emulated software prediction schemes that are

able to adjust to changes in value profiles are more expensive to implement in terms of

code instrumentation. The sensitivity of SVSS for benchmark inputs other than training

inputs used for value profiling is shown in section 4.

For SVSS, the insertion of code that emulates a value predictor is analogous to

VSS, as indicated in the example for a static stride predictor. Otherwise, the SVSS

10

algorithm is the same as the VSS algorithm. Figure 5 summarizes the SVSS/VSS

algorithm. Due to space constraints, the reader is referred to our original VSS paper for

the details on this algorithm, a discussion of the penalty incurred for executing patch-up

code and the requirements of hardware value predictors necessary to support VSS [16].

1. Perform Value Profiling

2. Perform Region Formation

3. Build Data Dependence Graph for Region

4. Select Instruction with Prediction Accuracy (based on Value Profiling) greater than a Threshold

5. Insert software value predictor code (SVSS) or LDPRED (VSS) after Predicted Instruction (selected

instruction of step 4)

6. Change Source Operand of Dependent Instruction(s) to Destination Register of software value

predictor (SVSS) or LDPRED (VSS)

7. Insert Branch to Patch-up Code

8. Generate Patch-up Code (which also updates software value predictor (SVSS) or contains

UDPRED (VSS))

9. Repeat Steps 4 – 8 until no more Candidates Found

10. Update Data Dependence Graph for Region

11. Perform Region Scheduling

12. Repeat Steps 2 – 11 for each Region in program

Figure 5. Algorithm for Software Value Speculation Scheduling (SVSS) and Value
Speculation Scheduling (VSS).

3. Software Value Speculation Scheduling (SVSS)

For our implementation of SVSS, a static stride value predictor is emulated in

software. A static stride predictor was chosen both because of its simplicity to implement

and because of its performance on SPEC95 CINT benchmarks. Adding a constant value

to a register holding the previous value requires one ADD instruction to generate static

stride predictions. The compiler statically assigns the constant value based on profiling

data. A last-value predictor was also analyzed because of its ease of implementation: the

11

register value is assumed to be correct, requiring no instructions to be inserted for

generating predictions. Prediction accuracy for a last-value predictor was high enough to

obtain non-negligible speedup on only one CINT benchmark, speedup of up to 6% on

124.m88ksim. Dynamic stride predictors, while still relatively simple, require two

register values (current value and previous value), a subtraction for calculating the stride,

a move for updating the state of the previous value and an addition using the stride to

generate a new prediction for the current value. We have not yet analyzed dynamic stride

predictors because of this overhead. Other value prediction methods (context-based, two-

level and hybrid) incur too much overhead to implement in software effectively.

To fully emulate the performance of a hardware static stride predictor in software,

load and store operations are needed to allow spilling of the current value to memory

upon procedure exit and loading of the current value to a register upon procedure

entrance. If spill code is not inserted, prediction accuracy suffers as the static stride

predictor will be uninitialized each time control transfers to the procedure. Prediction

accuracy may still be good though for value predictions of data contained in intra-

procedure loop code. In this case, assuming that the correct static stride is predicted, only

the first uninitialized iteration of the loop results in a miss-predicted value. Therefore, we

also look at the performance of value predictors that do not spill to memory, resulting in

less code instrumentation overhead. In the experimental results section, the version that

fully emulates static stride predictor hardware is called with-memory while the version

that allows uninitialized values is called without-memory. Allowing the without-memory

version introduces an interesting issue that is generally regarded as taboo for a compiler:

12

generation of uninitialized registers. In our case, for SVSS, uninitialized references will

result in a branch to patch-up code, which will guarantee correct program semantics.

Using a register to store the current value state for a software static value predictor

will result in increased register lifetimes and increased register pressure. For the with-

memory version that uses spill code, the lifetime for the register spans the entire

procedure. For the without-memory version, the lifetime may be confined to a loop. For

each version, the additional register pressure is proportional to the number of data values

that are predicted within a procedure. Our experiments assume memory virtual registers

so that an upper-bound on performance can be provided. While our experiments assume

memory virtual registers, we will also provide statistics for the number of data value

predictions on a procedural level to provide insights into register requirements.

4. Experimental Results

The SPECint95 benchmark suite is used in the experiments. All programs are

compiled with classic optimizations by the IMPACT compiler from the University of

Illinois [11] and converted to the Rebel textual intermediate representation by the Elcor

compiler from Hewlett-Packard Laboratories [12]. Then, the LEGO compiler, a research

compiler developed at North Carolina State University, is used to insert profiling code,

form treegions, and schedule instructions [10]. After instrumentation for value profiling,

intermediate code from the LEGO compiler is converted to C code. Executing the

resultant C code generates value profiling data.

For the experiments, load instructions are filtered as targets for value speculation.

Load instructions are selected because they are usually in critical paths and have long

latencies. Value profiling for load instructions is performed on all programs. Table 1

13

shows results from these profiling runs. The number of total profiled load instructions

represents the total number of load instructions in each benchmark, as all load

instructions are instrumented (profiled). The number of static load instructions

represents the number of load instructions that are actually executed. The difference

between total profiled and static load instructions is the number of load instructions that

are not visited. The number of dynamic load instructions is the total of each load

executed multiplied by its execution frequency. The results of Table 1 are for the training

inputs for these benchmarks. The number of dynamic load instructions combined with

the prediction accuracy of each benchmark gives a strong indication of the opportunity for

speedup using SVSS.

Table 1. Statistics of Total Profiled, Static and Dynamic Load Instructions
SPECint95 Total Profiled

Load Instructions
Static Load
Instructions

Dynamic Load
Instructions

099.go 7,702 6,370 86,613,967
124.m88ksim 2,954 747 15,765,232
126.gcc 35,847 17,127 132,056,116
129.compress 96 72 4,070,431
130.li 1,202 414 24,325,835
132.ijpeg 5,104 1,543 118,560,271
134.perl 6,029 1,429 4,177,141
147.vortex 16,587 10,395 527,037,054

Profiling is also used to determine prediction accuracy for the different types of

value prediction schemes. Static stride predictors, the with-memory version and the

without-memory version, are profiled for the SVSS scheme. Both versions are simulated

during value profiling to evaluate prediction accuracy for each load instruction. During

value profiling, after every execution of a load instruction, the simulated prediction is

compared with the actual value to determine prediction accuracy. Value predictor state is

accurately maintained to prepare for the prediction of the next use.

14

Figure 6 shows the results of the value prediction profiling experiments. Results

are presented for each predictor for SPEC95 CINT training and test inputs. In the legend

descriptions, (train) indicates that the static stride constant was determined using the

training inputs and (test) indicates that this constant was determined using the test inputs.

Both results are included to give an indication if the “test” inputs can successfully work

as training inputs when determining speedup for executing with the “train” inputs.

Benchmark 130.li shows the most sensitivity to determining the static stride constant with

one set of inputs and executing the program using the other. The other benchmarks show

little prediction accuracy sensitivity to input shifts.

From the arithmetic mean of these results, the accuracy of static stride without-

memory is about one-half of the accuracy of static stride with-memory. Individually for

132.ijpeg, the accuracy of the without-memory and with-memory versions are similar.

This indicates that most of the load values of 132.ijpeg that can be predicted accurately

with stride predictors are found in intra-procedural loops. Conversely for 147.vortex, the

high prediction accuracy of static stride with-memory indicates that static stride is

appropriate for these loads, but the much lower prediction accuracy for the without-

memory version indicates that a lot of uninitialized references result from inter-

procedural loops.

The relatively low prediction accuracy for static stride without-memory indicates

limited opportunities for speedup using SVSS, with the possible exception of

124.m88ksim. The higher prediction accuracy for static stride with-memory suggests

some opportunity for speedup using SVSS although the implied presence of inter-

procedural loops for 147.vortex is worrisome.

15

Figure 6. Prediction Accuracy of Load Instructions using Software Static-Stride
with-Memory (SVSS) and Software Static-Stride without-Memory (SVSS).

Figures 7 and 8 show prediction accuracy distribution for dynamic load

instructions using the static stride without-memory and static stride with-memory

predictors. The vertical axis in this chart shows the percentage of dynamic loads that

have prediction accuracy greater than or equal to the prediction accuracy threshold of the

horizontal axis. The static stride values were determined using the training inputs and the

prediction accuracy is found by executing with test inputs. The results of hardware-

software VSS in [16], show that a prediction accuracy of about 70% is desired for peak

speedup performance. Based on these results, selecting load operations as candidates for

Value Predictor Accuracy

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

09
9.

go

12
4.

m
88

ks
im

12
6.

gc
c

12
9.

co
m

pr
es

s

13
0.

li

13
2.

ijp
eg

13
4.

pe
rl

14
7.

vo
rt

ex

A
rit

hm
et

ic
M

ea
n

SPEC95 CINT Benchmarks

P
re

d
ic

ti
o

n
 A

cc
u

ra
cy Train-input + Static Stride w /o Mem (train)

Train-input + Static Stride w / Mem (train)

Train-input + Static Stride w /o Mem (test)

Train-input + Static Stride w / Mem (test)

Test-input + Static Stride w /o Mem (test)

Test-input + Static Stride w / Mem (test)

Test-input + Static Stride w /o Mem (train)

Test-input + Static Stride w Mem (train)

16

Figure 7. . Prediction Accuracy Distribution for Dynamic Load Instructions using
Software Static Stride Predictor without-Memory (SVSS)

Figure 8. Prediction Accuracy Distribution for Dynamic Load Instructions using
Software Static Stride Predictor with-Memory (SVSS)

Software Static Stride Predictor without Memory

0

10

20

30

40

50

60

70

80

90

100

≥90% ≥80% ≥70% ≥60% ≥50% ≥40% ≥30% ≥20% ≥10% ≥0%

Prediction Accuracies

P
er

ce
n

ta
g

e
o

f
D

yn
am

ic
 L

o
ad

O

p
er

at
io

n
s

(%
)

099.go

124.m88ksim

126.gcc

129.compress

130.li

132.ijpeg

134.perl

147.vortex

Software Static Stride Predictor with Memory

0

10

20

30

40

50

60

70

80

90

100

≥90% ≥80% ≥70% ≥60% ≥50% ≥40% ≥30% ≥20% ≥10% ≥0%

Prediction Accuracies

P
er

ce
n

ta
g

e
o

f
D

yn
am

ic
 L

o
ad

O

p
er

at
io

n
s

(%
)

099.go

124.m88ksim

126.gcc

129.compress

130.li

132.ijpeg

134.perl

147.vortex

17

SVSS with a lower than 70% will likely result in to much overhead for executing patch-

up code. This will especially be the case in SVSS for static stride with-memory because

of the additional requirement of load and store operations upon procedure entrance and

exit, respectively.

For static stride without-memory, the prediction accuracy distribution indicates

limited opportunities to find SVSS candidates using a prediction accuracy of 70%. The

benchmarks 124.m88ksim and 129.compress have the highest percentage of dynamic

loads with a prediction accuracy of greater than or equal to 70%, in the range of 42%-

47%. For 129.compress the number of dynamic loads drops off dramatically above 80%

and absolute number of dynamic loads, from Table 1 is small. The absolute number of

dynamic loads for 124.m88ksim is also small relative to the other benchmark programs.

For static stride with-memory, the prediction accuracy distributions for three of

the programs are much improved. Based on these results, there may be opportunities for

using SVSS for 129.compress, 147.vortex and 124.m88ksim.

For the evaluation of speedup, a very long instruction word (VLIW) architecture

machine model based on the Hewlett-Packard Laboratories PlayDoh architecture [13] is

chosen. One cycle latencies are assumed for all operations (including LDPRED and

UDPRED) except for load (two cycles), floating-point add (two cycles), floating-point

subtract (two cycles), floating-point multiply (three cycles) and floating-point divide

(three cycles). The eight SPECint95 benchmarks are statically scheduled according to the

VSS model by the LEGO compiler. The scheduler uses treegion formation [10] to

increase the scheduling scope by including a tree-like structure of basic blocks in a single,

non-linear region. The compiler performs control speculation, which allows operations to

18

be scheduled above branches. Universal functional units that execute all operation types

are assumed. An eight universal unit (8-U) machine model is used. All functional units

are fully pipelined.

Figure 9 illustrates the speedup achieved by applying SVSS to the SPEC95 CINT

benchmarks. Training set inputs were used to select the stride for both static stride with-

memory and static stride without-memory.

A speedup of nearly 8% was achieve for 124.m88ksim using the training inputs

while no speedup was achieved using the test inputs. This is a surprising result,

considering there was little shift in predictability for 124.m88ksim from the results of

Figure 6 using both training and test inputs. We suspect that the training and test inputs

exercise orthogonal portions of the program in this case so that the test inputs do not

benefit from the speculated loads selected through profiling using the training inputs.

Limited speedup of about 4-5% was achieved for 129.compress using the test

inputs. In this case, performance with the test inputs was somewhat better than with the

training inputs. Based on the prediction accuracy distribution of dynamic loads for static

stride without-memory of Figure 7, a little bit of speedup was expected and achieved.

The prediction accuracy distribution of Figure 8 indicated that the with-memory version

may receive a little bit more speedup, but the additional load store overhead negates the

increased predictability.

Negligible speedup was obtained for 147.vortex. This result was disappointing

considering the prediction accuracy obtained in Figure 6 for the static stride with-memory

version. But, the sharp decline in predictability for the without-memory version indicates

19

that most of the speculated load are contained in inter-procedural loops. The penalty for

the additional loads and stores required for the with-memory version negates the speedup.

Based on the prediction accuracy distribution of Figures 7 and 8, not much

speedup is expected for the rest of the benchmarks. Some speedup was obtained for

134.perl when training inputs were used for the without-memory version.

Figure 9. Speedup for Applying SVSS to SPEC95 CINT

Figure 10 shows the number of data values predicted for each procedure in each

benchmark. This gives an indication of the number of additional registers needed to

support SVSS. For static stride, each data value prediction requires one register. Most

benchmarks would use a modest number of registers. 126.gcc uses the most but its

performance does not warrant applying SVSS at this time.

8-U Machine Model

0.9

0.92

0.94

0.96

0.98

1

1.02

1.04

1.06

1.08

1.1

09
9.

go

12
4.

m
88

ks
im

12
6.

gc
c

12
9.

co
m

pr
es

s

13
0.

li

13
2.

ijp
eg

13
4.

pe
rl

14
7.

vo
rt

ex

SPECint95

S
p

ee
d

u
p

Train-input SVSS

Train-input SVSS-MEM

Test-input SVSS

Test-input SVSS-MEM

20

Figure 10. Histograph for Number of Data Values that SVSS was Applied to per
Procedure (Number of Load Operations Selected per Procedure).

5. Conclusions and Future Work

Applying SVSS results in speedup of up to 8% for 124.m88ksim and modest

speedup for a few of the other benchmarks. Considering the prediction accuracy obtained

through value profiling, these results were somewhat disappointing. We still have

confidence in the technique of SVSS but belief that better heuristics are required for

selecting appropriate data values to apply speculation to. In the work the heuristic

1 2 3 4 5 6 7 8 9 10 >=11

099.go

124.m88ksim

129.compress

134.perl

130.li

147.vortex

132.ijpeg

126.gcc

0

2

4

6

8

10

12

14

16

18

20

N
u

m
b

er
 o

f
P

ro
ce

d
u

re
s

Number of Registers

SPECint95

Register Usage for SVSS-MEM

21

consisted of selecting loads using a predictability threshold of 70%. We see a lot of

opportunity for selecting data values in found in intra-procedural loops so that static stride

without-memory can be used with the least overhead. We also see many opportunities for

instruction combining to hide the overhead of emulating static stride in software. The are

several instances of strides of zero that can be predicted without any instrumentation. In

general, we need to be more selective in choosing values that are highly predictable, incur

little instrumentation overhead, and are good candidates for ILP transformations.

22

References

[1] D. M. Gallagher, W. Y. Chen, S. A. Mahlke, J. C. Gyllenhall, W. W. Hwu, “Dynamic
Memory Disambiguation Using the Memory Conflict Buffer,” Proceedings of the 6th
International Conference on Architecture Support for Programming Languages and
Operating Systems, pp. 183-195, October 1994.

[2] M. H. Lipasti, C. B. Wilkerson, J. P. Shen, “Value Locality and Load Value
Prediction,” Proceedings of the 7th International Conference on Architecture Support for
Programming Languages and Operating Systems, pp. 138-147, October 1996.

[3] M. H. Lipasti and J. P. Shen, “Exceeding the Dataflow Limit via Value Prediction,”
Proceedings of the 29th International Symposium on Microarchitecture (MICRO-29), pp.
226-237, December 1996.

[4] Y. Sazeides and J. E. Smith, “The Predictability of Data Values,” Proceedings of the
30th International Symposium on Microarchitecture (MICRO-30), pp. 248-258,
December 1997.

[5] B. Calder, P. Feller, and A. Eustace, “Value Profiling,” Proceedings of the 30th
International Symposium on Microarchitecture (MICRO-30), pp. 259-269, December
1997.

[6] F. Gabbay and A. Mendelson, “Can Program Profiling Support Value Prediction?,”
Proceedings of the 30th International Symposium on Microarchitecture (MICRO-30), pp.
270-280, December 1997.

[7] K. Wang and M. Franklin, “Highly Accurate Data Value Prediction using Hybrid
Predictors,” Proceedings of the 30th International Symposium on Microarchitecture
(MICRO-30), pp. 281-290, December 1997.

[8] F. Gabbay and A. Mendelson, “The Effect of Instruction Fetch Bandwidth on Value
Prediction,” EE Department TR #1127, Technion, November 1997.

[9] F. Gabbay, “Speculative Execution based on Value Prediction,” EE Department TR
#1080, Technion, November 1996.

[10] W. A. Havanki, S. Banerjia, and T. M. Conte, “Treegion Scheduling for Wide-Issue
Processors,” Proceedings of the 4th International Symposium on High-Performance
Computer Architecture (HPCA-4), February 1998.

[11] W. W. Hwu, S. A. Mahlke, W. Y. Chen, P. P. Chang, N. J. Warter, R. A.
Bringmann, R. G. Ouellette, R. E. Hank, T. Kiyohara, G. E. Haab, J. G. Holm, and D. M.
Lavery, “The Superblock: An Effective Technique for VLIW and Superscalar
Compilation,“ The Journal of Supercomputing, vol. 7, pp. 229-248, January 1993.

23

[12] R. Johnson and M. Schlansker, “Analysis Techniques for Predicated Code,”
Proceedings of the 29th International Symposium on Microarchitecture (MICRO-29), pp.
100-113, December 1996.

[13] V. Kathail, M. Schlansker, and B. R. Rau, “HPL PlayDoh Architecture
Specification: Version 1.0,” Hewlett-Packard Laboratories Technical Report HPL-93-80,
Computer Systems Laboratory, February 1994.

[14] T. Y. Yeh and Y. N. Patt, “Alternative Implementations of Two-Level Adaptive
Branch Prediction,” Proceedings of the 19th International Symposium on Computer
Architecture, pp. 124-134, May 1992.

[15] R. M. Tomasulo, “An Efficient Algorithm for Exploiting Multiple Arighmetic
Units,” IBM Journal of Research and Development 11, pp. 25-33, January 1967.

[16] C. Fu, M. D. Jennings, S. Y. Larin and T. M. Conte, “Value Speculation Scheduling
for High Performance Processors,“ to appear in Proceedings of the 8th International
Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS-VIII), (San Jose, CA), Oct. 4-7, 1998

