
A Lightweight Algorithm forA Lightweight Algorithm for
Dynamic IfDynamic If--ConversionConversion

During Dynamic OptimizationDuring Dynamic Optimization

Tinker Research Group
Department of Electrical & Computer Engineering
North Carolina State University

Kim Hazelwood
Thomas M. Conte

Dynamic IfDynamic If--Conversion:Conversion:
The Basic IdeaThe Basic Idea

Apply if-conversion and reverse if-conversion
dynamically (at runtime) to complement and
correct static compilation decisions

Dynamic IfDynamic If--Conversion:Conversion:
MotivationMotivation

• Static if-conversion doesn’t take into account
actual runtime behavior

• There is a need for specialized dynamic
optimizations – the problems with current
runtime optimizations are:
• High overhead • Low Coverage
• Low quality • Overspecialization

Presentation OutlinePresentation Outline

• Dynamic Optimization Overview
• Case Study: Sampling Correlation
• Dynamic If-Conversion
• Dynamic Reverse If-Conversion
• Conclusions

• Dynamic

• Any optimization performed after the initial compile
• Native optimization of a program binary

• Static

Dynamic OptimizationDynamic Optimization

HLL Static
Optimizations

Optimization
Cache

EXE

EXE Dynamic
Optimizations

Motivation for Dynamic OptimizationMotivation for Dynamic Optimization

• Consistency in optimization
• Leverage runtime information
• Personalized optimization
• Scalability
• Complementary optimization opportunity

Study: When Should We Perform DynamicStudy: When Should We Perform Dynamic
Optimizations?Optimizations?

• Timing is crucial in runtime optimizations
• Because of overhead, we must sample the

information required to make dynamic
optimization decisions

• But how representative of overall behavior is a sample
statistic?

• Two heuristics were studied:
– Sampling based on First N Occurrences
– Adaptive Warmup Exclusion

First N OccurrencesFirst N Occurrences

• Test correlation of
first n occurrences
and overall behavior

ÿ Branch predictor: PAS/Gshare hybrid

M M C M C

M M C M C M C C

= 0.60
= 0.55

0%

2%

4%

6%

8%

10%

12%

25 50 75 100 125 150

Sample Size

P
er

ce
n

tD
if

fe
re

n
ce

compress

go

ijpeg

li

m88ksim

perl

vortex

gcc

average

AdaptiveAdaptive WarmupWarmup ExclusionExclusion

• Recognize an end-of-warmup condition, then collect
statistics

0%

10%

20%

30%

40%

50%

60%

70%

Increasing Time

M
is

p
re

d
ic

ti
on

R
at

e

compress

gcc

li

perl

AdaptiveAdaptive WarmupWarmup ExclusionExclusion

| PMISS_A – PMISS_B | < T

PMISS_A = last misprediction rate PMISS_B = this misprediction rate
T = threshold

0%

1%

2%

3%

4%

5%

6%

7%

25 50 75 100 125 150

Sample Size

P
er

ce
n

tD
if

fe
re

n
ce

compress

go

ijpeg

li

m88ksim

perl

vortex

gcc

average

AdaptiveAdaptive WarmupWarmup ExclusionExclusion

Number of branch occurrences before reaching end-of-
warmup condition

0

100

200

300

400

500

co
mpre

ss gcc go

ijp
eg li

m
88

ks
im perl

vo
rte

x
ave

ra
ge

10.0%

5.0%

1.0%

0.5%

Problem with Static IfProblem with Static If--ConversionConversion

Basic Compile-time If Conversion
[ParkSchlansker91]

BEFORE: AFTER:

if (cond) Branch L1 p1, p2’ = cond

r2 = MEM[A] (p2) r2 = MEM[A]

r1 = r2 + 1 (p2) r1 = r2 + 1

r0 = MEM[r1] (p2) r0 = MEM[r1]

L1 : r9 = r3 + r4 L1 : r9 = r3 + r4

Problem: Doesn’t take into account actual runtime
behavior

Dynamic IfDynamic If--ConversionConversion

• An optimization that can be performed at runtime
• Can be implemented in the optimization pass of any

modern dynamic optimizer
• Dynamic version of static if-conversion

– Takes into account actual branch/predicate
behavior

• Complements static if-conversion

Dynamic IfDynamic If--ConversionConversion

• Some portions of code may not have been if-
converted at compile time, but would benefit
from it at runtime

• The Criteria:

PMISS ∗∗∗∗ LMISS ≥≥≥≥ PFALSE ∗∗∗∗ LFALSE ∗∗∗∗ (1+error)

PMISS = odds of mispredicting branch
LMISS = misprediction penalty

PFALSE = odds of a false predicate
LHIT = cycles to execute predicated instructions

Maximum Branch DistanceMaximum Branch Distance

• The Maximum Allowable Branch Distance

AT – AB < LMISS ∗∗∗∗ PMISS ∗∗∗∗ SINSTR

AT – AB > 0

AT = target address AB = branch address
LMISS = miss penalty PMISS = miss rate SINSTR = instr size

B

T

20 cycles

Branches Converted to PredicatesBranches Converted to Predicates

• EPIC-style execution-
driven simulator

• Scheduled using the
LEGO backend
compiler (based on
HPL PlayDoh
Architecture)

• Most modern static
optimizations
including static if-
conversion

1

215

102

5
20

9 6 14

46.17

0

50

100

150

200

250

co
mpre

ss gcc go

ijp
eg li

m
88

ksim perl

vo
rte

x
av

er
ag

e

SpeedupSpeedup –– Dynamic IfDynamic If--ConversionConversion

• Compared to statically if-converted code
• Includes overhead

1.01331.00971.0078

1.1477

1.0016 1.0016

1.02581.0179
1.0069

1

1.02

1.04

1.06

1.08

1.1

1.12

1.14

1.16

co
mpre

ss gcc go

ijp
eg li

m
88

ksim perl

vorte
x

harm
onic

m
ea

n

• Order of 10’s of
clock cycles (for a
6-wide machine)

• Dependent on
number of
instructions
converted

Mispredictions EliminatedMispredictions Eliminated

25.2%

87.7%

13.3% 11.1%
18.7%

52.2%

3.9% 7.2%7.2%

0%
10%
20%

30%
40%
50%
60%
70%

80%
90%

100%

co
mpre

ss gcc go

ijp
eg li

m
88

ksim perl

vorte
x

avera
ge

Dynamic Reverse IfDynamic Reverse If--ConversionConversion

• Sometimes it is better to branch over instructions
whose predicates are predominantly false

• Correct biased predicates by converting them back
to branches

PPRED’ ∗∗∗∗ LPRED ≥≥≥≥ PMISS ∗∗∗∗ LMISS

PPRED’ = odds of false predicate LPRED = number of predicated cycles
PMISS = odds of mispredict LMISS = misprediction penalty

p3 = false if cond
p3 = false if cond (!p3) br label

(p3) add r1=r2,r3 add r1=r2,r3

(p3) mul r2=r1,r3 � mul r2=r1,r3
(p3) ld r1, (r2) ld r1, (r2)
(p3) st (r3), r2 st (r3), r2

label:

Predicates Converted to BranchesPredicates Converted to Branches

3

121

0

18

3

28 22 27.86

0

20

40

60

80

100

120

140

co
m

pre
ss go

ijp
eg li

m
88

ksim per
l

vo
rte

x

aver
age

SpeedupSpeedup –– Reverse IfReverse If--ConversionConversion

1.0131

1.1193

1.0000

1.0553

1.0840

1.0420
1.0505

1.0401

1.00

1.02

1.04

1.06

1.08

1.10

1.12

1.14

co
m

pre
ss go

ijp
eg li

m
88

ksim per
l

vorte
x

har
monic

m
ea

n

ConclusionsConclusions

• Dynamic optimization allows for a level of
customized optimization that is not possible with
traditional compilation models

• By skipping the warmup period, we can achieve
higher sampling accuracy

• Dynamic if-conversion is a worthwhile dynamic
optimization

• More runtime algorithm research is necessary!

Contact InformationContact Information

Kim Hazelwood kim_hazelwood@ncsu.edu
Tom Conte conte@ncsu.edu

Tinker Research Group
NC State University
www.tinker.ncsu.edu

