NC STATE UNIVERSITY

A Lightweight Algorithm for
Dynamic If-Conversion
During Dynamic Optimization

Kim Hazelwood
Thomas M. Conte

Tinker Research Group
Department of Electrical & Computer Engineering
North Carolina State University

NC STATE UNIVERSITY

Dynamic If-Conversion:
The Basic ldea

Apply if-conversion and reverse if-conversion
dynamically (at runtime) to complement and
correct static compilation decisions

NC STATE UNIVERSITY

Dynamic If-Conversion:
Motivation

e Static iIf-conversion doesn’t take into account
actual runtime behavior

e There is a need for specialized dynamic
optimizations — the problems with current
runtime optimizations are:

e High overhead e Low Coverage
e Low quality * Overspecialization

NC STATE UNIVERSITY

Presentation Outline

e Dynamic Optimization Overview
e Case Study: Sampling Correlation
e Dynamic If-Conversion

e Dynamic Reverse If-Conversion

e Conclusions

NC STATE UNIVERSITY

Dynamic Optimization

Stati
Dynamic

v

Optimization
Cache

e Dynamic

= Any optimization performed after the initial compile
= [Native optimization of a program binary

NC STATE UNIVERSITY

Motivation for Dynamic Optimization

e Consistency Iin optimization

e |Leverage runtime information

e Personalized optimization

= Scalability

e Complementary optimization opportunity

NC STATE UNIVERSITY

Study: When Should We Perform Dynamic
Optimizations?

e Timing is crucial in runtime optimizations

e Because of overhead, we must sample the
Information required to make dynamic
optimization decisions

« But how representative of overall behavior is a sample
statistic?

< Two heuristics were studied:
— Sampling based on First N Occurrences
— Adaptive Warmup Exclusion

NC STATE UNIVERSITY

First N Occurrences

e Test correlation of
first n occurrences

and overall behavior

<
<
@)
<
@)
1l
O
(@)
o

<
<
@
<
@
<

12%

10%

8%

6%

4%

Percent Difference

2%

0%

0\

“\
N

—e— compress
—=—Qo

ijpeg

li
—x—m88ksim
—eo— perl
—+— vortex
——gcc

average

25 50 75 100 125 150
Sample Size

Branch predictor: PAS/Gshare hybrid

=0.55

NC STATE UNIVERSITY

Adaptive Warmup Exclusion

e Recognize an end-of-warmup condition, then collect
statistics

70%

60% -

50% -

— Ccompress

%
40% gee

30% - —i

perl

Misprediction Rate

20% -

10% -

0%

Increasing Time

NC STATE UNIVERSITY

Adaptive Warmup Exclusion

| P P | <T

MISS_ A~ ' MISS B

Puiss a = last misprediction rate Py, ¢ 5 = this misprediction rate
T = threshold

7%
- —e— compress
0
— o
8 5% .\ g
e % \\ ijpeg
£ 4% | l
[a) —%— m88ksim
g 3% : —e— perl
8 \
g 2% - ——————o | ——vortex
1% —=—gcc
average
0%
25 50 75 100 125 150
Sample Size

NC STATE UNIVERSITY

Adaptive Warmup Exclusion

Number of branch occurrences before reaching end-of-
warmup condition

500
400 i
300 @ 10.0%
m5.0%
00.5%
100 _]
0 _I:J_I_| ’_i ’_i_H ‘ el 1 | ‘ ’_'_H ‘ I_iﬂ ’_i_H
& O o S N\ & Q o 2
< Q Q - Q N\ Q (\. 'b‘q
é\Q‘\ 8 ‘8;15’ ¢ o &
& <& °

NC STATE UNIVERSITY

Problem with Static If-Conversion

Basic Compile-time If Conversion
[ParkSchlansker91]

BEFORE: AFTER:

if (cond) Branch L1 pl, p2' = cond

r2 = MEMI[A] (p2) r2 = MEM[A]
rn=r2 + 1 P2 1 =12 + 1

r0 = MEMJr1] (p2) r0 = MEM|r1]
L1 : 19 =13 + 14 L1 : 19 =13 + 14

Problem: Doesn’t take into account actual runtime
behavior

NC STATE UNIVERSITY

Dynamic If-Conversion

< An optimization that can be performed at runtime

« Can be implemented in the optimization pass of any
modern dynamic optimizer

< Dynamic version of static if-conversion

— Takes into account actual branch/predicate
behavior

e Complements static if-conversion

NC STATE UNIVERSITY

Dynamic If-Conversion

e Some portions of code may not have been if-
converted at compile time, but would benefit
from It at runtime

e The Criteria:

I:)I\/IISS |:“_I\/IISS - I:)FALSE |:“_FALSE D(1+error)

Puiss = 0dds of mispredicting branch
Liss = Misprediction penalty
P-a e = 0dds of a false predicate
L, = cycles to execute predicated instructions

NC STATE UNIVERSITY

Maximum Branch Distance

20 cycle

e The Maximum Allowable Branch Distance

AT_AB < leuss DPMISS [
A -Ag,>0

S

INSTR

A; = target address A; = branch address
Lyss = Miss penalty Py, = mMiss rate S,nsTr = INStr size

NC STATE UNIVERSITY

Branches Converted to Predicates

e EPIC-style execution-

driven simulator

e Scheduled using the
LEGO backend
compiler (based on
HPL PlayDoh
Architecture)

e Most modern static
optimizations
Including static if-
conversion

250

200

215

150

100

50

NC STATE UNIVERSITY

Speedup — Dynamic If-Conversion

e Compared to statically if-converted code

e |ncludes overhead

e Order of 10’s of
clock cycles (for a
6-wide machine)

e Dependenton
number of
Instructions
converted

1.16

1.14 A
1.12 -
11
1.08 -
1.06 -
1.04 -
1.02 -

1.1477

1.0078 1.0097 1.0133 1.0179 1.0258
1.0069
mm mE | | . | 1.0016 1.0016

g § S & e S & S

NC STATE UNIVERSITY

Mispredictions Eliminated

100%
87.7%

90%

80%

70%

60%
52.2%

50%

40%
25.2%

30%
18.7%

20% :
10% 133/ 399 111% I 72% 7.2%

0% - B N

&

& Q,(’Q S . > N

NC STATE UNIVERSITY

Dynamic Reverse If-Conversion

e Sometimes it is better to branch over instructions
whose predicates are predominantly false

= Correct biased predicates by converting them back
to branches

I:)PRED’ |:“—PRED 2 I:)I\/IISS |:“—MISS
Porep: = 0dds of false predicate Leorep = NUmMber of predicated cycles
Puiss = 0dds of mispredict L,,ss = Misprediction penalty

p3 = false if cond

p3 = false if cond ('p3) br label
(p3) add rl=r2,r3 add r1=r2,r3
(p3) mul r2=r1,r3 > mul r2=r1,r3
(p3) Id rl, (r2) ld rl, (r2)

(p3) st (r3), r2 st (r3), r2

label:

NC STATE UNIVERSITY

Predicates Converted to Branches

140

120
100 -

80

60 -

40
20

121

NC STATE UNIVERSITY

Speedup — Reverse If-Conversion

1.14

1.1193

1.12

1.10

1.0840

1.08

1.0553 1.0505

1.06

1.0420

1.04

1.02

1.00 *—-

1.0000

] I I I

NC STATE UNIVERSITY

Conclusions

e Dynamic optimization allows for a level of
customized optimization that is not possible with
traditional compilation models

e By skipping the warmup period, we can achieve
higher sampling accuracy

e Dynamic if-conversion is a worthwhile dynamic
optimization
e More runtime algorithm research i1s necessary!

NC STATE UNIVERSITY

Contact Information

Kim Hazelwood kim_hazelwood@ncsu.edu
Tom Conte conte@ncsu.edu

/’_ﬂ“‘“\w Tinker Research Group
.| | || NC State University
|| www.tinker.ncsu.edu

