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Dynamic If-Conversion:
The Basic ldea

Apply if-conversion and reverse if-conversion
dynamically (at runtime) to complement and
correct static compilation decisions
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Dynamic If-Conversion:
Motivation

e Static iIf-conversion doesn’t take into account
actual runtime behavior

e There is a need for specialized dynamic
optimizations — the problems with current
runtime optimizations are:

e High overhead e Low Coverage
e Low quality * Overspecialization
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Presentation Outline

e Dynamic Optimization Overview
e Case Study: Sampling Correlation
e Dynamic If-Conversion

e Dynamic Reverse If-Conversion

e Conclusions




NC STATE UNIVERSITY

Dynamic Optimization

Stati
Dynamic

v

Optimization
Cache

e Dynamic

= Any optimization performed after the initial compile
= [Native optimization of a program binary
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Motivation for Dynamic Optimization

e Consistency Iin optimization

e |Leverage runtime information

e Personalized optimization

= Scalability

e Complementary optimization opportunity
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Study: When Should We Perform Dynamic
Optimizations?

e Timing is crucial in runtime optimizations

e Because of overhead, we must sample the
Information required to make dynamic
optimization decisions

« But how representative of overall behavior is a sample
statistic?

< Two heuristics were studied:
— Sampling based on First N Occurrences
— Adaptive Warmup Exclusion
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First N Occurrences

e Test correlation of
first n occurrences

and overall behavior
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Adaptive Warmup Exclusion

e Recognize an end-of-warmup condition, then collect
statistics
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Adaptive Warmup Exclusion
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Adaptive Warmup Exclusion

Number of branch occurrences before reaching end-of-
warmup condition
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Problem with Static If-Conversion

Basic Compile-time If Conversion
[ParkSchlansker91]

BEFORE: AFTER:

if (cond) Branch L1 pl, p2' = cond

r2 = MEMI[A] (p2) r2 = MEM[A]
rn=r2 + 1 P2 1 =12 + 1

r0 = MEMJr1] (p2) r0 = MEM|r1]
L1 : 19 =13 + 14 L1 : 19 =13 + 14

Problem: Doesn’t take into account actual runtime
behavior
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Dynamic If-Conversion

< An optimization that can be performed at runtime

« Can be implemented in the optimization pass of any
modern dynamic optimizer

< Dynamic version of static if-conversion

— Takes into account actual branch/predicate
behavior

e Complements static if-conversion
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Dynamic If-Conversion

e Some portions of code may not have been if-
converted at compile time, but would benefit
from It at runtime

e The Criteria:

I:)I\/IISS |:“_I\/IISS - I:)FALSE |:“_FALSE D(1+error)

Puiss = 0dds of mispredicting branch
Liss = Misprediction penalty
P-a e = 0dds of a false predicate
L, = cycles to execute predicated instructions
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Maximum Branch Distance

20 cycle

e The Maximum Allowable Branch Distance

AT_AB < leuss DPMISS [
A -Ag,>0

S

INSTR

A; = target address A; = branch address
Lyss = Miss penalty Py, = mMiss rate S,nsTr = INStr size
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Branches Converted to Predicates

e EPIC-style execution-

driven simulator

e Scheduled using the
LEGO backend
compiler (based on
HPL PlayDoh
Architecture)

e Most modern static
optimizations
Including static if-
conversion
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Speedup — Dynamic If-Conversion

e Compared to statically if-converted code

e |ncludes overhead

e Order of 10’s of
clock cycles (for a
6-wide machine)

e Dependenton
number of
Instructions
converted
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Mispredictions Eliminated
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Dynamic Reverse If-Conversion

e Sometimes it is better to branch over instructions
whose predicates are predominantly false

= Correct biased predicates by converting them back
to branches

I:)PRED’ |:“—PRED 2 I:)I\/IISS |:“—MISS
Porep: = 0dds of false predicate Leorep = NUmMber of predicated cycles
Puiss = 0dds of mispredict L,,ss = Misprediction penalty

p3 = false if cond

p3 = false if cond ('p3) br label
(p3) add rl=r2,r3 add r1=r2,r3
(p3) mul r2=r1,r3 > mul r2=r1,r3
(p3) Id rl, (r2) ld rl, (r2)

(p3) st (r3), r2 st (r3), r2

label:
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Predicates Converted to Branches
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Speedup — Reverse If-Conversion
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Conclusions

e Dynamic optimization allows for a level of
customized optimization that is not possible with
traditional compilation models

e By skipping the warmup period, we can achieve
higher sampling accuracy

e Dynamic if-conversion is a worthwhile dynamic
optimization
e More runtime algorithm research i1s necessary!
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