
A Case for ExploitingA Case for Exploiting
MemoryMemory--Access Persistence Access Persistence 

TINKER Research Group
Department of Electrical & Computer Engineering
North Carolina State University

Kim Hazelwood
Mark ToburenMark Toburen

Tom Conte



MemoryMemory--Access Persistence:Access Persistence:
MotivationMotivation

• The memory gap is doubling every year

• Processor speed growth per year: 60%

• DRAM speed growth per year: 10%

• Larger caches, prefetching are not providing enough

relief

• Larger working sets

• Access patterns that are difficult to predict

• Dynamic optimization provides resources for exploiting

memory-access persistence



The Basic Idea:The Basic Idea:
Some Things Never ChangeSome Things Never Change

Common memory access patterns exist within and across 
program executions regardless of the input data

• Accessing the same addresses

• Accessing the same structures

Dynamic optimization could easily track and eliminate the 
cost of these accesses if they exist to a significant degree!!



Presentation OutlinePresentation Outline

• Introduction to Persistence
• Insight: Does Memory-Access Persistence Exist?
• Exploiting Memory-Access Persistence
• Conclusions



What is Persistence?What is Persistence?

• The repetition of a common event or access of a common 
entity within and/or across runs of a program

• Two logical forms:
– Intraprogram – persistence occurs within the current run of 

the program

– Interprogram – persistence occurs across multiple runs of 
the program regardless of the input data set

A B C D A B C CBAD DCBAD

A A A A B B B CCCB DDDDC

A A A A B B B CCCB DDDDC

Run 1: 

Run 2: 



Intraprogram PersistenceIntraprogram Persistence

• Events or sequences of events that repeat throughout a 
single program run

• Examples:
– Memory accesses
– Branch directions
– Instruction result values

• Exploiting intraprogram persistence is relatively easy 
using known techniques
– Prefetching
– Branch prediction
– Value prediction



Interprogram PersistenceInterprogram Persistence

• Events or sequences of events that repeat across multiple 
runs of a program regardless of the input data set

• Interprogram memory-access persistence exists in two 
forms
– Base – the same addresses are accessed across runs
– Constant-offset – the same structures are accessed across 

runs but were allocated to different locations
• To what degree does it exist in either or both forms?
• How can we effectively exploit it?



Interprogram Persistence:Interprogram Persistence:
Does It Exist?Does It Exist?

• Goal 1:
– Determine the invariance in data cache miss addresses and 

use as an indicator of base persistence
• Experiment 1:

– Measure base persistence across program runs by 
monitoring distinct misses (DM)

Base Persistence = (DMin2 – (DMtotal – DMin1)) / DMtotal

– L2 D-cache configuration: 256 KB, 4-way set associative
– Benchmarks: SPECint2k
– Input sets: SPECint2k test, reference, and training inputs

• Limitations:
– Does not reflect dynamic frequency of matching addresses
– Does not account for constant-offset persistence



Experiment 1:Experiment 1:
ObservationsObservations

• Based on cross-program DM measurements, benchmarks 
fall into two categories
1. DMtotal ~= Max(DMin1, DMin2)
2. DMtotal > Max(DMin1, DMin2)

• All but the Test v. Train case for bzip2 fall into category 1
• So base persistence is determined by the difference in 

DMs between input sets as well as the total number of 
DMs across input sets
– Input sets varying significantly in size will tend to 

demonstrate less base persistence



Experiment 1:Experiment 1:
ResultsResults

0

10

20

30

40

50

60

70

80

90

100

gzip vpr gcc mcf parser perlbmk vortex bzip2 twolf

P
er

ce
nt

 o
f t

ot
al

 m
em

or
y 

ac
ce

ss
es

test v. train
test v. ref
train v. ref



Experiment 1:Experiment 1:
Observations (cont.)Observations (cont.)

• Benchmarks fall into four categories based on DM 
differences between input sets
1. DMtest ~= DMtrain ~= DMref : mcf
2. DMtest << DMtrain < DMref : gzip, gcc, parser, twolf, perlbmk
3. DMtest < DMref << DMtrain : vpr
4. DMtest ~= DMtrain << DMref : bzip2, vortex

• In general benchmarks show low to moderate levels of 
base persistence among all input combinations. Why?
– Large variations in input set size

• More persistence between input sets of similar size
– constant-offset persistence is not accounted for so 

differences in DMs may not reflect true persistence levels
Things aren’t always what they seem!!



Interprogram Persistence:Interprogram Persistence:
Does It Exist?Does It Exist?

• Goal 2:
– Observe phases of distinct memory access behavior
– Establish existence of constant-offset persistence

• Dynamically-allocated data structures will not always get 
allocated to the same physical location each time the program 
is run

• Experiment 2:
– Plot memory access patterns over time for program runs 

using varying input sets
– Examine snapshots of the execution for:

• Addresses that repeat temporally between input sets
• Address shifts that occur temporally between input sets



Interprogram Persistence:Interprogram Persistence:
Experiment 2Experiment 2

197.parser

268400000

268500000

268600000

268700000

268800000

268900000

269000000

269100000

269200000

0 50000 1E+05 2E+05 2E+05 3E+05 3E+05 4E+05

test
train
ref

Overlap indicates base persistence between all three runs



Interprogram Persistence:Interprogram Persistence:
Experiment 2Experiment 2

255.vortex

268000000
268200000
268400000
268600000
268800000
269000000
269200000
269400000
269600000
269800000
270000000

0 10000 20000 30000 40000 50000 60000

test
train
ref

Address shift between test/train and ref illustrates 

constant-offset persistence



Experiment 2:Experiment 2:
ObservationsObservations

• Significant amounts of base persistence as per the results 
in Experiment 1

• Clear examples of constant-offset persistence in gzip and 
vortex which indicates that there is potentially much more 
persistence than Experiment 1 indicates



Interprogram Persistence:Interprogram Persistence:
Further AnalysisFurther Analysis

• Examine base persistence in a dynamic context to get a 
clearer picture of its extent

• Determine the contribution of constant-offset persistence 
through correlation of misses to specific instruction info

• Study the frequency of specific memory-access clusters
• Look at how persistence varies over a wider variety of 

input sets
• Study how persistence varies with cache size and 

organization



Exploiting PersistenceExploiting Persistence

• Exploiting memory-access persistence and persistence in 
general requires two primary capabilities:
– A mechanism for constantly collecting non-statistical profile 

information
– A mechanism for altering the current program in order to 

take advantage of persistence later on in its execution
• Dynamic optimization systems provide both!!



HighHigh--Level View of a Dynamic OptimizerLevel View of a Dynamic Optimizer

Optimization
Cache

exe Dynamic
Optimizations

machine

Profile
Information



Dynamic Optimization for the Memory WallDynamic Optimization for the Memory Wall

Current dynamic optimizers are:
• Transparent to the application and 

user
• Able to intercept profile information 

regarding the executing application
• Able to store information within and 

between program executions

Hardware
Dynamic Optimizer

Application

Each of these features make dynamic optimization a great candidate 
for exploiting memory-access persistence



Exploiting Persistence:Exploiting Persistence:
Open IssuesOpen Issues

• Need real mechanisms for collecting memory-access 
profiles
– General-purpose programmable hardware profiling

• Need dynamic-optimization algorithms for analyzing and 
optimizing programs to exploit memory-access 
persistence



ConclusionsConclusions

• Current latency tolerance mechanisms for data cache 
misses are not providing enough relief for the memory 
wall

• Memory-access persistence occurs in varying forms and to 
varying degrees within and across program runs 
regardless of the input data set

• Dynamic optimizers provide the type of framework 
necessary to exploit this persistence

• Need further research in the areas of detecting memory-
access persistence, algorithms for effectively leveraging
this persistence, and how to find and exploit other forms 
of persistence



Contact InformationContact Information

Kim Hazelwood kim_hazelwood@ncsu.edu

Mark Toburen mark_toburen@ncsu.edu

Tom Conte conte@ncsu.edu

TINKER Research Group
North Carolina State University
www.tinker.ncsu.edu


