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Abstract 

Memory access latencies have become a major 
bottleneck in the performance of modern computer 
systems. It has been observed that the SPECint2000 
benchmark suite suffers particularly high 
performance penalties from instruction and data 
cache misses. Current hardware-based and software-
based prefetch mechanisms cannot always learn 
access patterns early enough to avoid compulsory 
data cache misses. Memory-access persistence is 
based on the idea that long-latency memory accesses 
tend to repeat themselves over subsequent executions 
of a program, despite changing inputs. By logging 
long-latency memory accesses during execution and 
correlating those accesses and their patterns across 
multiple executions driven with varying input sets, a 
program can be dynamically optimized to 
predictively prefetch these memory locations during 
subsequent executions. In this paper, we determine 
the extent to which memory-access persistence exists 
in modern applications. 

1. Introduction 

Memory access latencies have become a major 
bottleneck in the performance of modern computer 
systems. Over the past ten years, advances in process 
technology, circuit design and architecture have 
produced an annual increase in processor speed of 
60%, whereas DRAM speed has only increased at an 
annual rate of approximately 10% [1]. Until recently, 
processor designers have been able to compensate for 
this annual doubling in the memory gap by simply 
building larger on-chip caches. However, the 
effectiveness of this solution is degrading as 
applications become larger, more complex, and 
operate on increasingly larger data sets. This places 
the burden on either predicting compulsory misses or 
improving the cache miss penalty. Therefore, outside 

of dramatic improvements in DRAM process 
technology or the use of SRAM structures for main 
memory, architectural solutions for bridging the 
memory gap must continue to be aggressively 
pursued. 

The memory wall problem [1] is exacerbated by 
streams of compulsory misses that occur when an 
executing program enters a new section of code, 
begins processing a large un-cached data structure, or 
processes a data structure with a non-uniform access 
pattern such as a dynamically allocated linked list. 
Current techniques such as software and hardware 
prefetching can eliminate a large portion of the miss 
penalty in these cases by obtaining the necessary data 
from memory in advance of the time the processor 
needs it [2], [3], [4] , [5], [6] , [7], [8]. Both hardware 
and software prefetching provide varying levels of 
success in overcoming memory access penalties 
within single executions of a given program. 
However, the problem with prefetching techniques is 
that they need predictable access patterns to be 
successful. When the access patterns are not easy to 
predict, it is often difficult to speculate the prefetches 
far enough in advance to cover the memory latency. 

Consider the case where clusters of misses are not 
isolated to a single run of the program with a specific 
input set. It is possible that a program may generate 
similar sequences of misses at the same point in 
execution regardless of the input data set driving the 
execution. We call this phenomenon memory-access 
persistence. If memory-access persistence truly 
exists, then there also exists a tremendous 
opportunity for exploiting it in a manner that will 
help bridge the memory gap by providing a 
complementary approach to current latency tolerance 
mechanisms. 

The primary goal of this paper is to demonstrate 
the degree of persistence that exists within and across 
program runs using varying input sets. Our second 
goal is to motivate the idea of exploiting memory-



access persistence through dynamic optimization to 
help alleviate the memory wall problem. The 
remainder of the paper is organized as follows. 
Section 2 discusses related work. Our simulation 
environment is described in Section 3. Section 4 
describes the ideas surrounding memory-access 
persistence and presents our analysis of the level of 
persistence that exists in the SPECint2000 
benchmarks. Section 5 provides some motivation for 
using dynamic optimization to exploit memory-
access persistence based on the nature of persistence 
and trends observed in our simulations. Finally, 
Section 6 concludes the paper and discusses future 
work. 

2. Background 

In addition to cache design techniques to increase 
hit rates, hardware and software prefetching 
mechanisms are the most widely studied and 
implemented approaches to avoiding load latencies 
from main memory. The goal of software prefetching 
is to insert explicit prefetch instructions at compile 
time in order to avoid misses of data elements that 
the compiler feels have a high miss probability based 
on static analysis and/or statistical profile data [7], 
[8]. Software prefetching is limited in a number of 
ways, however. The primary limitation is that it 
operates with no knowledge of dynamically allocated 
data structures and where they will reside in memory. 
While the software prefetching mechanism can 
accurately insert prefetch operations for statically 
allocated data structures, such structures are typically 
not as abundant as dynamically allocated data 
structures in modern non-numeric applications. The 
second limitation is that, in a feedback-directed 

optimization framework, software prefetching is 
dependent on statistical profiling and is very 
susceptible to profile drift. The problem with 
statistical profiling is that prefetch instructions may 
be inserted into the static code at places where they 
may only be useful for a relatively small proportion 
of the dynamic instances of their corresponding load. 

Hardware prefetching can complement software 
prefetching because the hardware mechanisms are 
capable of learning the access patterns of 
dynamically allocated data structures. Current 
hardware prefetching mechanisms can predict what 
addresses should be prefetched based on the miss 
address and either a stride- [2] , [3]  or a history-based 
context [4], [5], [6]. While the hardware approaches 
provide excellent speedups in some cases, there are 
disadvantages. First, they often cannot learn an 
access pattern well enough ahead of the usage to 
provide tolerance for long latencies. Thus they can be 
ineffective against the memory wall. Second, they are 
forced to relearn access patterns, due to cold starts 
and drifts in the program’s access patterns, each time 
the program is executed. As a result, they have no 
ability to track persistence across program runs. 

The concept of using dynamic optimization to 
exploit persistence is aimed at creating a more robust 
latency tolerance mechanism for data-cache misses. 
Using dynamic optimization allows us to 
complement existing prefetching mechanisms by 
providing the ability to: 1) collect non-statistical 
profile information that defines the degree of 
persistence that exists for a given program, and 2) 
speculatively prefetch well in advance of the usage 
site, thus hiding longer latencies than existing 
techniques. Correlation between program runs using 
non-statistical profiling is similar to cross-program 

 
 

test train ref 
164.gzip 3,703,576,265 63,916,996,696 95,060,008,733
175.vpr 956,521,416 11,098,847,568 84,886,064,416
176.gcc 1,913,767,146 4,828,859,973 42,735,089,367
181.mcf 203,745,510 8,769,967,776 58,711,516,379

197.parser 4,075,314,199 13,121,967,919 531,751,362,392
253.perlbmk 5,238,179 38,306,235,750 42,868,346,148

255.vortex 10,142,404,013 18,641,263,169 124,422,185,624
256.bzip2 15,809,040,703 86,708,522,798 119,414,951,303
300.twolf 296,066,299 15,968,048,185 426,999,118,281

 

Table 1 - Dynamic instruction count of benchmarks used. 



redundancy, a phenomenon exploited in Slipstream 
processors [9]. Slipstream processors use two 
versions of a program running concurrently but out of 
synchrony to obtain speedup. 

3. Simulation Environment 

Results were gathered using the Simplescalar 2.0 
sim-cache simulator on a Sun Microsystems Ultra-60 
running Solaris 7. The sim-cache simulator was 
augmented to produce a trace containing the address 
and cycle time of all L2 data-cache misses. The 
SPECint2000 benchmarks shown in Table 1 were run 
to completion using the official test, train, and 
reference inputs. 

4. Memory-access persistence 

Cache misses are a large factor in the performance 
of modern programs. For example, the cache miss 
latency of a 500 MHz Alpha 21264 microprocessor is 
currently 128 cycles [1]. Because of this long latency, 
it is important to focus research efforts on eliminating 
as many cache misses as possible. We present one 
method that uses the notion of persistence to 
predictively prefetch data from memory. If programs 
tend to access the same pattern of memory addresses 
during execution, we say that the access pattern is 
persistent. Studying the persistence of cache accesses 
throughout and between program executions can help 
us gain insight into techniques for exploiting this 
persistence such as dynamic optimization. Because 
dynamic optimizers can store profile information 
between program executions, we can leverage these 
profiles to avoid certain high-latency cache misses in 
subsequent program executions. Unlike hardware-
based prefetching methods , no warmup or training 
period needs to occur at the start of execution, 
resulting in immediate benefits. Furthermore, unlike 
static compiler inserted prefetch instructions, the 
decision to prefetch can be dynamically changed to 
adjust for a program phase shift or profile drift. 

Memory-access persistence can exist in two forms 
– interprogram persistence and intraprogram 
persistence. A program that tends to access data from 
the same memory locations (or an offset of the same 
memory locations) across multiple  executions, 
regardless of the input set, is said to exhibit 
interprogram persistence. Programs may also exhibit 
interprogram persistence resulting from accesses to 
memory locations containing dynamic data structures 

that are simply allocated to different areas of memory 
each time the program is executed. In this case, 
interprogram persistence is determined by the static 
instructions that result in the data-cache misses. 
Dynamic optimization and feedback-directed 
optimization can leverage information regarding 
interprogram persistence during the optimization 
process. Intraprogram persistence, on the other hand, 
occurs when sequences of memory accesses repeat 
themselves during the course of a single execution of 
a program. By recognizing intraprogram persistence, 
a dynamic optimizer or a hardware-based prefetch 
mechanism can avoid similar miss clusters later in 
the current execution. 

 
Table 2 – Dynamic miss coverage of the top 10% of 

miss addresses. 

 Test Train Ref 
164.gzip 37.89% 26.90% 32.28%
175.vpr 39.13% 73.44% 37.44%
176.gcc 39.46% 53.65% 52.66%
181.mcf 10.04% 10.03% 10.02%

197.parser 45.06% 31.39% 47.28%
253.perlbmk 20.39% 82.57% 67.60%

255.vortex 62.54% 59.73% 70.58%
256.bzip2 47.17% 50.48% 52.64%
300.twolf 10.01% 21.21% 23.96%

 
In order to ascertain whether intraprogram 

persistence really exists, we studied data cache 
misses to determine if a certain subset of the miss 
addresses tended to dominate the total cache misses 
for a program. We analyzed the top 10% most 
frequently missed memory addresses and determined 
the percentage of total data cache misses that were 
associated with those addresses. Our results are 
shown in Table  2. In general, Table 2 shows us that 
there does exist varying amounts of intraprogram 
persistence within common benchmarks and that 
there is an opportunity for mechanisms beyond those 
previously mentioned that can exploit this 
phenomenon to help bring down the memory wall. 
As an example, we can see from the table that for 
176.gcc using the reference input set, 10% of data 
miss addresses accounted for 52.66% of the total 
number of data cache misses. Overall, the dynamic 
miss coverage ranged from 10% in 181.mcf to 
82.57% in 253.perlbmk for the top 10% of miss 
addresses per benchmark.   



Furthermore, in order to motivate interprogram 
persistence, we studied the invariance of data cache 
misses between subsequent executions of a program 
with varying input sets. Our first test determined the 
percentage of static miss addresses that two runs of a 
program had in common. We analyzed the following 
combinations of the SPEC input sets: (1) test vs. 
training, (2) training vs. reference, and (3) test vs. 
reference. 

The results of the static address comparisons are 
shown in Table 3. Table 3 shows significant variation 
in the percentage of common static miss addresses 
across runs of the same program. Programs such as 
181.mcf and 255.vortex show promising results 
across all input set combinations. However, the 
remaining benchmarks show large variations in the 
number of common addresses as the input set 
changes, and several benchmarks, 253.perlbmk in 
particular, show extremely limited amounts of 
commonality. In these cases however, it is important 
to note that this test is a conservative indicator of the 
true amount of interprogram persistence that exists 
between program executions. 

Dynamically allocated data structures are often 
located at a constant offset to their location from a 
previous run. Consider the case of a simple program 
that allocates an array in memory, and then traverses 
that array. During one execution, that array may be 
allocated at address x in main memory. A subsequent 
execution may allocate the array at address x+n .  
While the actual data addresses are not the same, they 
are at a constant offset to one another. Therefore, 
interprogram persistence still exists in this case, but 
in a form called constant-offset persistence, which 
must be detected by a means other than a strict 
address comparison. The results in Table 3 do not 

account for constant-offset persistence, but this form 
of persistence can be clearly seen in Figure 1. 

Figure 1 shows memory access patterns over time 
for each benchmark and input set. Each individual 
graph provides a snapshot of the memory access 
patterns for each input set during an isolated time 
period. It should be noted that the graphs shown in 
Figure 1 do not reflect the memory access patterns of 
the entire execution time of each benchmark. Figure 
1 is meant to demonstrate the varying forms of 
persistence and to aid in interpreting the data in Table 
2. 

Several interesting observations can be made from 
Figure 1. First, we can plainly see the existence of 
intraprogram persistence in the graphs for 176.gcc, 
253.perlbmk, and 255.vortex. Each of these 
benchmarks shows repeated misses to the same 
addresses, especially for the training and reference 
inputs. This data helps corroborate the data from 
Table 2. Second, simple interprogram persistence is 
evident in the graphs for 175.vpr, 176.gcc, 181.mcf, 
197.parser, 253.perlbmk, and 300.twolf. 
Interprogram persistence is especially noticeable in 
these graphs between the training and reference 
inputs. This tends to agree with the data in Table 3 
with the exceptions being 175.vpr and 253.perlbmk. 
However, even in these cases the existence of 
interprogram persistence is clear. Finally, the trend 
we termed constant-offset persistence is clearly 
shown in the graphs of 164.gzip and 255.vortex. Both 
of these graphs show similar miss patterns between 
input sets but at different addresses. 

5. Motivating Dynamic Optimization 

In order to exploit memory-access persistence, we 
need a framework capable of unobtrusively collecting 

Table 3 - Percentage of static address matches across varying inputs. 

test vs. train test vs. ref train vs. ref 
164.gzip 7.30% 3.69% 50.47% 
175.vpr 17.36% 62.40% 27.03% 
176.gcc 30.27% 34.20% 81.15% 
181.mcf 98.98% 97.06% 98.04% 

197.parser 41.33% 27.48% 66.23% 
253.perlbmk 0.44% 47.32% 0.21% 

255.vortex 99.62% 73.47% 73.47% 
256.bzip2 47.32% 23.96% 25.55% 
300.twolf 14.38% 7.05% 48.47% 

 



and analyzing non-statistical profiles during 
execution and optimizing applications based on this 
analysis. Dynamic optimizers are well suited for this 
purpose. In this section we will discuss how the 
fundamental aspects of interprogram memory-access 
persistence motivate the use of a dynamic 
optimization framework to exploit it. 

In a dynamic optimization framework, there are 
two ways to trigger optimization events. One method 
involves initiating optimization at given execution 
times. Another method involves correlating 
optimizations with trigger events such as the 
processor/system state. The temporal- and event-
based nature of interprogram persistence makes the 
use of dynamic optimization very intriguing. Figure 1 
provides insight into the effectiveness of each option 
based on the trends in persistence of individual 
benchmarks. 

 From Figure 1, it can be seen that optimizations 
triggered by both time and state change events are 
applicable for reducing data cache misses in 
SPECint2000. In particular, 175.vpr and 197.parser 
are very well suited for time-based triggers because 
their misses to common address between input sets 
occur at similar points in the dynamic instruction 
stream. This is evident by the overlapping of all three 
input sets for these benchmarks. Similarly, 164.gzip 
and 255.vortex appear to be well suited for time-
based optimizations due to the constant-offset nature 
of their persistence. On the other hand, 181.mcf 
appears to be a good candidate for state-based 
optimizations because it exhibits a temporal phase 
shift in its common miss addresses between the test 
input set and the other two sets, which overlap. 

Despite the trends that are evident in Figure 1, we 
have seen that the degree and type of persistence that 
exists within and across benchmarks varies 
significantly. Therefore, a combination of time- and 
event-based optimizations will likely be needed to 
fully exploit memory-access persistence in all cases. 

6. Conclusions and Future Work 

Reducing memory access latencies has become an 
important area of research in the microarchitecture 

community. Prefetching is an effective technique for 
reducing memory access latencies, but its 
effectiveness is limited to covering low to moderate 
latencies. Current hardware- and software-based 
prefetch mechanisms cannot always learn access 
patterns early enough to avoid compulsory data cache 
misses. 

Memory-access persistence is based on the idea 
that long-latency memory accesses tend to repeat 
themselves over subsequent executions of a program, 
despite changing inputs. In this paper, we have 
demonstrated that memory-access persistence exists 
in two forms: interprogram persistence and 
intraprogram persistence. Persistence can potentially 
be exploited by dynamically optimizing programs to 
predictively prefetch these persistent memory 
locations. In this manner, we can provide a means for 
complementing software and hardware-based 
prefetch mechanisms to subsequently reduce the 
effects of the memory wall. 

Much future work exists in the area of persistence. 
While this paper points out means for recognizing 
memory-access persistence, developing a set of 
algorithms that effectively leverage this persistence 
information is an important task currently under 
development. 
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