
A Case for Exploiting Memory-Access Persistence

 Kim M. Hazelwood Mark C. Toburen Thomas M. Conte

Department of Electrical and Computer Engineering
North Carolina State University

{kim_hazelwood, mark_toburen, conte}@ncsu.edu

Abstract

Memory access latencies have become a major
bottleneck in the performance of modern computer
systems. It has been observed that the SPECint2000
benchmark suite suffers particularly high
performance penalties from instruction and data
cache misses. Current hardware-based and software-
based prefetch mechanisms cannot always learn
access patterns early enough to avoid compulsory
data cache misses. Memory-access persistence is
based on the idea that long-latency memory accesses
tend to repeat themselves over subsequent executions
of a program, despite changing inputs. By logging
long-latency memory accesses during execution and
correlating those accesses and their patterns across
multiple executions driven with varying input sets, a
program can be dynamically optimized to
predictively prefetch these memory locations during
subsequent executions. In this paper, we determine
the extent to which memory-access persistence exists
in modern applications.

1. Introduction

Memory access latencies have become a major
bottleneck in the performance of modern computer
systems. Over the past ten years, advances in process
technology, circuit design and architecture have
produced an annual increase in processor speed of
60%, whereas DRAM speed has only increased at an
annual rate of approximately 10% [1]. Until recently,
processor designers have been able to compensate for
this annual doubling in the memory gap by simply
building larger on-chip caches. However, the
effectiveness of this solution is degrading as
applications become larger, more complex, and
operate on increasingly larger data sets. This places
the burden on either predicting compulsory misses or
improving the cache miss penalty. Therefore, outside

of dramatic improvements in DRAM process
technology or the use of SRAM structures for main
memory, architectural solutions for bridging the
memory gap must continue to be aggressively
pursued.

The memory wall problem [1] is exacerbated by
streams of compulsory misses that occur when an
executing program enters a new section of code,
begins processing a large un-cached data structure, or
processes a data structure with a non-uniform access
pattern such as a dynamically allocated linked list.
Current techniques such as software and hardware
prefetching can eliminate a large portion of the miss
penalty in these cases by obtaining the necessary data
from memory in advance of the time the processor
needs it [2], [3], [4] , [5], [6] , [7], [8]. Both hardware
and software prefetching provide varying levels of
success in overcoming memory access penalties
within single executions of a given program.
However, the problem with prefetching techniques is
that they need predictable access patterns to be
successful. When the access patterns are not easy to
predict, it is often difficult to speculate the prefetches
far enough in advance to cover the memory latency.

Consider the case where clusters of misses are not
isolated to a single run of the program with a specific
input set. It is possible that a program may generate
similar sequences of misses at the same point in
execution regardless of the input data set driving the
execution. We call this phenomenon memory-access
persistence. If memory-access persistence truly
exists, then there also exists a tremendous
opportunity for exploiting it in a manner that will
help bridge the memory gap by providing a
complementary approach to current latency tolerance
mechanisms.

The primary goal of this paper is to demonstrate
the degree of persistence that exists within and across
program runs using varying input sets. Our second
goal is to motivate the idea of exploiting memory-

access persistence through dynamic optimization to
help alleviate the memory wall problem. The
remainder of the paper is organized as follows.
Section 2 discusses related work. Our simulation
environment is described in Section 3. Section 4
describes the ideas surrounding memory-access
persistence and presents our analysis of the level of
persistence that exists in the SPECint2000
benchmarks. Section 5 provides some motivation for
using dynamic optimization to exploit memory-
access persistence based on the nature of persistence
and trends observed in our simulations. Finally,
Section 6 concludes the paper and discusses future
work.

2. Background

In addition to cache design techniques to increase
hit rates, hardware and software prefetching
mechanisms are the most widely studied and
implemented approaches to avoiding load latencies
from main memory. The goal of software prefetching
is to insert explicit prefetch instructions at compile
time in order to avoid misses of data elements that
the compiler feels have a high miss probability based
on static analysis and/or statistical profile data [7],
[8]. Software prefetching is limited in a number of
ways, however. The primary limitation is that it
operates with no knowledge of dynamically allocated
data structures and where they will reside in memory.
While the software prefetching mechanism can
accurately insert prefetch operations for statically
allocated data structures, such structures are typically
not as abundant as dynamically allocated data
structures in modern non-numeric applications. The
second limitation is that, in a feedback-directed

optimization framework, software prefetching is
dependent on statistical profiling and is very
susceptible to profile drift. The problem with
statistical profiling is that prefetch instructions may
be inserted into the static code at places where they
may only be useful for a relatively small proportion
of the dynamic instances of their corresponding load.

Hardware prefetching can complement software
prefetching because the hardware mechanisms are
capable of learning the access patterns of
dynamically allocated data structures. Current
hardware prefetching mechanisms can predict what
addresses should be prefetched based on the miss
address and either a stride- [2] , [3] or a history-based
context [4], [5], [6]. While the hardware approaches
provide excellent speedups in some cases, there are
disadvantages. First, they often cannot learn an
access pattern well enough ahead of the usage to
provide tolerance for long latencies. Thus they can be
ineffective against the memory wall. Second, they are
forced to relearn access patterns, due to cold starts
and drifts in the program’s access patterns, each time
the program is executed. As a result, they have no
ability to track persistence across program runs.

The concept of using dynamic optimization to
exploit persistence is aimed at creating a more robust
latency tolerance mechanism for data-cache misses.
Using dynamic optimization allows us to
complement existing prefetching mechanisms by
providing the ability to: 1) collect non-statistical
profile information that defines the degree of
persistence that exists for a given program, and 2)
speculatively prefetch well in advance of the usage
site, thus hiding longer latencies than existing
techniques. Correlation between program runs using
non-statistical profiling is similar to cross-program

test train ref
164.gzip 3,703,576,265 63,916,996,696 95,060,008,733
175.vpr 956,521,416 11,098,847,568 84,886,064,416
176.gcc 1,913,767,146 4,828,859,973 42,735,089,367
181.mcf 203,745,510 8,769,967,776 58,711,516,379

197.parser 4,075,314,199 13,121,967,919 531,751,362,392
253.perlbmk 5,238,179 38,306,235,750 42,868,346,148

255.vortex 10,142,404,013 18,641,263,169 124,422,185,624
256.bzip2 15,809,040,703 86,708,522,798 119,414,951,303
300.twolf 296,066,299 15,968,048,185 426,999,118,281

Table 1 - Dynamic instruction count of benchmarks used.

redundancy, a phenomenon exploited in Slipstream
processors [9]. Slipstream processors use two
versions of a program running concurrently but out of
synchrony to obtain speedup.

3. Simulation Environment

Results were gathered using the Simplescalar 2.0
sim-cache simulator on a Sun Microsystems Ultra-60
running Solaris 7. The sim-cache simulator was
augmented to produce a trace containing the address
and cycle time of all L2 data-cache misses. The
SPECint2000 benchmarks shown in Table 1 were run
to completion using the official test, train, and
reference inputs.

4. Memory-access persistence

Cache misses are a large factor in the performance
of modern programs. For example, the cache miss
latency of a 500 MHz Alpha 21264 microprocessor is
currently 128 cycles [1]. Because of this long latency,
it is important to focus research efforts on eliminating
as many cache misses as possible. We present one
method that uses the notion of persistence to
predictively prefetch data from memory. If programs
tend to access the same pattern of memory addresses
during execution, we say that the access pattern is
persistent. Studying the persistence of cache accesses
throughout and between program executions can help
us gain insight into techniques for exploiting this
persistence such as dynamic optimization. Because
dynamic optimizers can store profile information
between program executions, we can leverage these
profiles to avoid certain high-latency cache misses in
subsequent program executions. Unlike hardware-
based prefetching methods , no warmup or training
period needs to occur at the start of execution,
resulting in immediate benefits. Furthermore, unlike
static compiler inserted prefetch instructions, the
decision to prefetch can be dynamically changed to
adjust for a program phase shift or profile drift.

Memory-access persistence can exist in two forms
– interprogram persistence and intraprogram
persistence. A program that tends to access data from
the same memory locations (or an offset of the same
memory locations) across multiple executions,
regardless of the input set, is said to exhibit
interprogram persistence. Programs may also exhibit
interprogram persistence resulting from accesses to
memory locations containing dynamic data structures

that are simply allocated to different areas of memory
each time the program is executed. In this case,
interprogram persistence is determined by the static
instructions that result in the data-cache misses.
Dynamic optimization and feedback-directed
optimization can leverage information regarding
interprogram persistence during the optimization
process. Intraprogram persistence, on the other hand,
occurs when sequences of memory accesses repeat
themselves during the course of a single execution of
a program. By recognizing intraprogram persistence,
a dynamic optimizer or a hardware-based prefetch
mechanism can avoid similar miss clusters later in
the current execution.

Table 2 – Dynamic miss coverage of the top 10% of

miss addresses.

 Test Train Ref
164.gzip 37.89% 26.90% 32.28%
175.vpr 39.13% 73.44% 37.44%
176.gcc 39.46% 53.65% 52.66%
181.mcf 10.04% 10.03% 10.02%

197.parser 45.06% 31.39% 47.28%
253.perlbmk 20.39% 82.57% 67.60%

255.vortex 62.54% 59.73% 70.58%
256.bzip2 47.17% 50.48% 52.64%
300.twolf 10.01% 21.21% 23.96%

In order to ascertain whether intraprogram

persistence really exists, we studied data cache
misses to determine if a certain subset of the miss
addresses tended to dominate the total cache misses
for a program. We analyzed the top 10% most
frequently missed memory addresses and determined
the percentage of total data cache misses that were
associated with those addresses. Our results are
shown in Table 2. In general, Table 2 shows us that
there does exist varying amounts of intraprogram
persistence within common benchmarks and that
there is an opportunity for mechanisms beyond those
previously mentioned that can exploit this
phenomenon to help bring down the memory wall.
As an example, we can see from the table that for
176.gcc using the reference input set, 10% of data
miss addresses accounted for 52.66% of the total
number of data cache misses. Overall, the dynamic
miss coverage ranged from 10% in 181.mcf to
82.57% in 253.perlbmk for the top 10% of miss
addresses per benchmark.

Furthermore, in order to motivate interprogram
persistence, we studied the invariance of data cache
misses between subsequent executions of a program
with varying input sets. Our first test determined the
percentage of static miss addresses that two runs of a
program had in common. We analyzed the following
combinations of the SPEC input sets: (1) test vs.
training, (2) training vs. reference, and (3) test vs.
reference.

The results of the static address comparisons are
shown in Table 3. Table 3 shows significant variation
in the percentage of common static miss addresses
across runs of the same program. Programs such as
181.mcf and 255.vortex show promising results
across all input set combinations. However, the
remaining benchmarks show large variations in the
number of common addresses as the input set
changes, and several benchmarks, 253.perlbmk in
particular, show extremely limited amounts of
commonality. In these cases however, it is important
to note that this test is a conservative indicator of the
true amount of interprogram persistence that exists
between program executions.

Dynamically allocated data structures are often
located at a constant offset to their location from a
previous run. Consider the case of a simple program
that allocates an array in memory, and then traverses
that array. During one execution, that array may be
allocated at address x in main memory. A subsequent
execution may allocate the array at address x+n .
While the actual data addresses are not the same, they
are at a constant offset to one another. Therefore,
interprogram persistence still exists in this case, but
in a form called constant-offset persistence, which
must be detected by a means other than a strict
address comparison. The results in Table 3 do not

account for constant-offset persistence, but this form
of persistence can be clearly seen in Figure 1.

Figure 1 shows memory access patterns over time
for each benchmark and input set. Each individual
graph provides a snapshot of the memory access
patterns for each input set during an isolated time
period. It should be noted that the graphs shown in
Figure 1 do not reflect the memory access patterns of
the entire execution time of each benchmark. Figure
1 is meant to demonstrate the varying forms of
persistence and to aid in interpreting the data in Table
2.

Several interesting observations can be made from
Figure 1. First, we can plainly see the existence of
intraprogram persistence in the graphs for 176.gcc,
253.perlbmk, and 255.vortex. Each of these
benchmarks shows repeated misses to the same
addresses, especially for the training and reference
inputs. This data helps corroborate the data from
Table 2. Second, simple interprogram persistence is
evident in the graphs for 175.vpr, 176.gcc, 181.mcf,
197.parser, 253.perlbmk, and 300.twolf.
Interprogram persistence is especially noticeable in
these graphs between the training and reference
inputs. This tends to agree with the data in Table 3
with the exceptions being 175.vpr and 253.perlbmk.
However, even in these cases the existence of
interprogram persistence is clear. Finally, the trend
we termed constant-offset persistence is clearly
shown in the graphs of 164.gzip and 255.vortex. Both
of these graphs show similar miss patterns between
input sets but at different addresses.

5. Motivating Dynamic Optimization

In order to exploit memory-access persistence, we
need a framework capable of unobtrusively collecting

Table 3 - Percentage of static address matches across varying inputs.

test vs. train test vs. ref train vs. ref
164.gzip 7.30% 3.69% 50.47%
175.vpr 17.36% 62.40% 27.03%
176.gcc 30.27% 34.20% 81.15%
181.mcf 98.98% 97.06% 98.04%

197.parser 41.33% 27.48% 66.23%
253.perlbmk 0.44% 47.32% 0.21%

255.vortex 99.62% 73.47% 73.47%
256.bzip2 47.32% 23.96% 25.55%
300.twolf 14.38% 7.05% 48.47%

and analyzing non-statistical profiles during
execution and optimizing applications based on this
analysis. Dynamic optimizers are well suited for this
purpose. In this section we will discuss how the
fundamental aspects of interprogram memory-access
persistence motivate the use of a dynamic
optimization framework to exploit it.

In a dynamic optimization framework, there are
two ways to trigger optimization events. One method
involves initiating optimization at given execution
times. Another method involves correlating
optimizations with trigger events such as the
processor/system state. The temporal- and event-
based nature of interprogram persistence makes the
use of dynamic optimization very intriguing. Figure 1
provides insight into the effectiveness of each option
based on the trends in persistence of individual
benchmarks.

 From Figure 1, it can be seen that optimizations
triggered by both time and state change events are
applicable for reducing data cache misses in
SPECint2000. In particular, 175.vpr and 197.parser
are very well suited for time-based triggers because
their misses to common address between input sets
occur at similar points in the dynamic instruction
stream. This is evident by the overlapping of all three
input sets for these benchmarks. Similarly, 164.gzip
and 255.vortex appear to be well suited for time-
based optimizations due to the constant-offset nature
of their persistence. On the other hand, 181.mcf
appears to be a good candidate for state-based
optimizations because it exhibits a temporal phase
shift in its common miss addresses between the test
input set and the other two sets, which overlap.

Despite the trends that are evident in Figure 1, we
have seen that the degree and type of persistence that
exists within and across benchmarks varies
significantly. Therefore, a combination of time- and
event-based optimizations will likely be needed to
fully exploit memory-access persistence in all cases.

6. Conclusions and Future Work

Reducing memory access latencies has become an
important area of research in the microarchitecture

community. Prefetching is an effective technique for
reducing memory access latencies, but its
effectiveness is limited to covering low to moderate
latencies. Current hardware- and software-based
prefetch mechanisms cannot always learn access
patterns early enough to avoid compulsory data cache
misses.

Memory-access persistence is based on the idea
that long-latency memory accesses tend to repeat
themselves over subsequent executions of a program,
despite changing inputs. In this paper, we have
demonstrated that memory-access persistence exists
in two forms: interprogram persistence and
intraprogram persistence. Persistence can potentially
be exploited by dynamically optimizing programs to
predictively prefetch these persistent memory
locations. In this manner, we can provide a means for
complementing software and hardware-based
prefetch mechanisms to subsequently reduce the
effects of the memory wall.

Much future work exists in the area of persistence.
While this paper points out means for recognizing
memory-access persistence, developing a set of
algorithms that effectively leverage this persistence
information is an important task currently under
development.

7. Acknowledgments

This research was supported through equipment
and cash donations from Hewlett-Packard Company,
Intel Corporation, Sun Microsystems, Compaq
Computer Corporation and an NSF CAREER award.
We are also grateful to the Slipstream group for their
ideas and input on this paper.

8. References

[1] Wilkes, M.V., “The Memory Gap.” Keynote address,
Workshop on Solving the Memory Wall Problem , in
conjunction with the 27th International Symposium on
Computer Architecture, June 2000.

[2] Palacharla, S. and R. Kessler, “Evaluating Stream Buffers as
Secondary Cache Replacement.” Proc. of the 21st
International Symposium on Computer Architecture, April
1994.

253.perlbmk

268300000

268500000

268700000

268900000

269100000

269300000

269500000

0 200000 400000 600000 800000

test

train

ref

255.vortex

268000000
268200000
268400000
268600000
268800000
269000000
269200000
269400000
269600000
269800000
270000000

0 10000 20000 30000 40000 50000 60000

test

train

ref

256.bzip2

250000000
260000000
270000000
280000000
290000000
300000000
310000000
320000000
330000000
340000000
350000000

0 5000 10000 15000 20000 25000 30000 35000

test

train

ref

181.mcf

268000000
268200000
268400000
268600000
268800000
269000000
269200000
269400000
269600000
269800000
270000000

0 10000 20000 30000 40000

test

train

ref

175.vpr

268460000

268465000
268470000

268475000
268480000

268485000

268490000

268495000

268500000

0 50 100 150 200 250

test

train

ref

176.gcc

268400000

268600000

268800000

269000000

269200000

269400000

269600000

269800000

0 100000 200000 300000 400000 500000 600000

test

train

ref

164.gzip

260000000

270000000
280000000

290000000
300000000

310000000

320000000

330000000

340000000

0 5000 10000 15000 20000 25000

test

train

ref

197.parser

268400000

268500000

268600000

268700000

268800000

268900000

269000000

269100000

269200000

0 50000 1E+05 2E+05 2E+05 3E+05 3E+05 4E+05

test

train

ref

Figure 1 – Memory access patterns for changing inputs of SPECint2000. The x-axis is time measured in cycles.
The y-axis shows the data cache miss addresses.

(a) (b)

(h) (g)

(e) (f)

(d) (c)

300.twolf

268400000
268420000
268440000
268460000
268480000
268500000
268520000
268540000
268560000
268580000
268600000

0 500 1000 1500 2000 2500 3000

test

train

ref

[3] Farkas, K., P. Chow, N. Jouppi and V. Vranesic,

“Memory-System Design Considerations for
Dynamically-Scheduled Processors.” Proc. of the 24th
International Symposium on Computer Architecture, June
1997.

[4] Charney, M. J. and T.R. Puzak, “Prefetching and Memory
System Behavior of the SPEC95 Benchmark Suite.” IBM
Journal of Research and Development, 41(3), May 1997.

[5] Joseph, D. and D. Grunwald, “Prefetching Using Markov
Predictors.” Proc. of the 24 th International Symposium on
Computer Architecture, June 1997.

[6] Sherwood, T., S. Sair and B. Calder, “Predictor-Directed
Stream Buffers.” Proc. of the 33rd International
Symposium on Microarchitecture, December 2000.

[7] Mowry, T.C., M.S. Lam and A. Gupta, “Design and
Evaluation of a Compiler Algorithm for Prefetching.”
Proc. of the 5 th International Conference on Architectural
Support for Programming Languages and Operating
Systems, October 1992.

[8] Ranganathan, P., V.S. Pai, H. Abdel-Shafi and S.V. Adve,
“The Interaction of Software Prefetching with ILP
Processors in Shared-Memory Systems.” Proc. of the 24th
International Symposium on Computer Architecture, June
1997.

[9] Purser, Z., K. Sundaramoorthy and E. Rotenberg, “A Study
of Slipstream Processors.” Proc. of the 33rd International
Symposium on Microarchitecture, December 2000.

Figure 1 (continued) – Memory access patterns for changing inputs of SPECint2000.

(j)

