
Tradeo�s in Processor/Memory Interfaces for Superscalar Processors

Thomas M. Conte

Department of Electrical and Computer Engineering

University of South Carolina

Columbia, South Carolina 29208

conte@ece.scarolina.edu

1 Introduction

The current scheme of dealing with data cache misses

is not well-suited for superscalar processors. In this

scheme, the processor is blocked by holding its clock

low until the missing cache block can be fetched from

memory and inserted into the cache. From the pro-

cessor's viewpoint, the miss did not occur. From the

user's viewpoint, the execution time was lengthened

in direct proportion to the number of cache misses.

This scheme has the potential of reducing the paral-

lelism of superscalar processors with high issue rate

to sub-unity values.

The above scheme can be termed blocking. Two

less-restrictive schemes are possible for interfacing

processors to the �rst level of the data memory sys-

tem:

Limited blocking: In this scheme, when a miss occurs,

any subsequent access to the cache is frozen, as in

the blocking scheme. The processor clock is not

halted. Rather, the processor is allowed to con-

tinue to execute other instructions that do not

access memory. If su�cient independent instruc-

tions are ready to execute, this scheme can e�ec-

tively hide the performance impact of the cache

miss. Limited blocking was suggested in [1].

Non-blocking: In this scheme, the cache is modi�ed to

update its contents on a cache miss while it con-

tinues to service requests for data that is present

in the cache. Such a design is termed a non-
blocking cache of degree n if it can service n out-

standing misses while continuing to service re-

quests from the processor. When greater than

n misses are outstanding, this scheme reverts

to the limited blocking scheme. Non-blocking

caches were introduced by Kroft in [2].

There have been several studies of the non-blocking
scheme besides the original work by Kroft. Sohi and

Franklin made several observations concerning the

design of non-blocking caches in a two-level hierar-

chy [3]. They also asserted that the limited block-
ing scheme was identical in performance to block-
ing. Johnson performed comparisons between the

same two schemes and concluded the opposite, that

non-blocking and limited-blocking had similar perfor-

mance [1]. What complicates these studies is the miss

rate of the data cache itself. It is di�cult to use a set

of benchmarks with varying cache needs with a �xed-

sized cache and achieve the same miss rate for each

benchmark. Yet a fair study should �x the miss rate,

not the cache size, and evaluate the three schemes on

a level playing �eld. Otherwise, the prospect of mak-

ing a false conclusion as a result of a poorly designed

cache is too great.

An additional problem with evaluating proces-

sor/memory interface schemes comes from the other

side of the interface, the processor. It is di�cult to re-

move the artifacts of the design of the processor from

the performance of the interface schemes. A crippled

processor that does not e�ciently exploit instruction-

level parallelism will not tax any of the schemes su�-

ciently. Any conclusions of the relative merits of each

scheme would be tainted by this poorly designed pro-

cessor.

This paper addresses the relative merits of the

three processor/memory interface schemes by con-

structing a fair comparison between the schemes. Six

members of the SPEC89 benchmark set are used [4].

For each benchmark (where possible) a cache size is

selected that achieves a �xed miss ratio. Miss ratios

of 5% and 10% are used for the study. This e�ectively

removes the �xed cache size problem and replaces it

with �xed cache performance.

The processor is a superscalar, full-Tomasulo out-

of-order execution engine that issues multiple instruc-

tions per cycle [5]. Issue rates of two, four, and eight

instructions per cycle are considered. The function

units are given an aggressive set of latencies, but the

number of function units are left unbounded. This de-

Page 1



cision removes the side-e�ect of at least one aspect of

processor design: function unit selection. The resul-

tant processor exploits the highest-achievable degree

of parallelism, emulating a high-quality processor de-

sign. The reservation stations are generic. They can

be used by any function unit. This forms a scheduling
window of reservation stations. Results are presented

below for a window size of 32 entries and for an un-

limited window size.

The penalty for a cache miss, TMISS , the number

of cycles it takes for a cache miss to be repaired, can

skew results if it is not varied. This study considers

two values of TMISS , 10 cycles and 20 cycles. It is

found that this parameter has a large e�ect on the

performance of the two schemes.

The following section brie
y introduces the trace

collection and simulation methods. The results are

presented in the third section of the paper and conclu-

sions are drawn concerning the relationship between

the three schemes for processor/memory interfacing.

2 Simulation Methods

The benchmarks used in this paper are six of the

10 members of the SPEC89 benchmark suite [4].

These members are: doduc, eqntott, espresso, gcc,
matrix300 and xlisp. The traces for the results pre-

sented below were collected using the Spike tracing

tool �tted into the GNU C compiler (version 1.40).

Pro�ling has shown that a large portion of the execu-

tion of several of the SPEC benchmarks occurs inside

Unix library code. These libraries were also instru-

mented and included as parts of the benchmarks. The

instruction set assumed for this work is derived from

the intermediate code of the GNU C compiler.

The primary metric of processor performance used

in this paper is parallelism, or instructions per cycle
(IPC). This is the expected number of instructions in

the execution stage of the processor for a cycle of a

benchmark's execution.

A benchmark that runs for 90 seconds on a 20 mil-

lion instructions/second machine executes 1.8 billion

instructions. The simulation time required for such a

task is too great to be tractable. Improving the per-

formance of the simulation allows larger workloads to

be used. One simulation approach that has appeared

in studies of instruction-level parallelism tradeo�s is

to use the �rst four to 10 million instructions [1]. Such

an approach has the problem that the �rst few mil-

lion instructions might only capture the initialization

phase of the benchmark and not the portion of the

benchmark that performs actual work.

Instead of the above approach, this paper advo-

cates a statistical sampling approach [5]. The results

presented herein are based on taking 40 samples of

size 10,000 instructions from the trace. The gap be-

tween samples is typically 10 million instructions, al-

though this gap is varied per benchmark to guarantee

that samples are taken from the majority of the ex-

ecution of each benchmark. It is not the purpose of
this paper to validate the sampling approach. This

sampling regimen has been shown to be accurate in

capturing the behavior of the full trace, yielding rel-
ative errors between 2% to 13% for the instructions

per cycle metric of a processor with a relatively high

issue rate of eight instructions/cycle and no cache

miss penalty (see [5]). A multiprogramming environ-

ment is assumed for the simulations to make the re-

sults more realistic. Multiprogramming assumptions

�t naturally with sampling. For these simulations,

the multiprogramming quantum is set equal to the

sample size.

Table 1: Cache sizes required to achieve �̂ =

0:05; 0:10.

To achieve:

Benchmark �̂ = 0:05 �̂ = 0:10

doduc 32KB 8KB

eqntott 8KB 2KB

espresso 32KB 4KB

gcc 64KB 8KB

matrix300 * 128KB

xlisp 8KB 4KB

(* data cache design criteria could not be met)

Cache designs are taken from a large design space

of potential caches and selected to be the smallest

cache having a miss ratio, �, such that � � �̂. The

values of 0.05 and 0.10 for �̂ are used. The caches

are direct mapped and the block size is 32 bytes.

The write policies are write back/write allocate. The

caches are designed to perform in a multiprogram-

ming environment. Note that this does not impact

the achieved miss ratio for the caches, the caches are

selected taking the multiprogramming load into ac-

count. The speci�c cache sizes for each target miss

ratio are listed in Table 1. Some benchmarks require

much higher cache sizes for the miss ratio criterion

of �̂ = 0:05. One benchmark (matrix300) accesses

a su�cient number of unique memory locations such

that �̂ = 0:05 cannot be achieved at any cost (it is

only used for simulations with �̂ = 0:10 below). This

illustrates the value of �xing the cache performance
rather than cache size in order to compare proces-

sor/memory interface schemes on a level playing �eld.

Page 2



3 Empirical Evaluation

This section uses members of the SPEC89 benchmark

set as inputs to a combined processor/data cache sim-

ulation. The IPC results for a perfect cache| a cache

that never generates a miss{ will be used for compar-

ison.

Table 2: Geometric mean of IPC (and percentage of

perfect IPC) for the three schemes.

issue rate

2 4 8

�̂ = �̂ = �̂ = �̂ = �̂ = �̂ =

Scheme 0.05 0.10 0.05 0.10 0.05 0.10

blocking, TMISS = 10

IPC 1.18 1.09 1.55 1.39 1.74 1.54

% 77% 71% 70% 63% 65% 58%

blocking, TMISS = 20

IPC 0.97 0.83 1.19 1.01 1.30 1.09

% 65% 54% 54% 45% 49% 41%

limited blocking, TMISS = 10

IPC 1.36 1.28 1.73 1.57 1.90 1.70

% 89% 84% 78% 71% 71% 64%

limited blocking, TMISS = 20

IPC 1.12 0.99 1.30 1.11 1.39 1.17

% 73% 65% 59% 50% 52% 44%

non-blocking, TMISS = 10

IPC 1.44 1.42 2.00 1.93 2.27 2.17

% 94% 93% 90% 87% 85% 81%

non-blocking, TMISS = 20

IPC 1.36 1.49 1.79 1.68 1.97 1.83

% 89% 97% 81% 76% 74% 69%

Table 2 presents the geometric mean of the IPC and

the corresponding percentage of perfect cache perfor-

mance for the three shemes with TMISS = 10 and 20

cycles.

The performance for �̂ = 0:05 and �̂ = 0:10 data

cache prototypes demonstrate the problems with the

blocking schemes. From the table, the best mean per-

formance is for TMISS = 10, issue rate two, �̂ = 0:05,

the least-demanding situation. Even in this case, the

blocking scheme's performance is 77% of the perfect
cache performance. The performance degrades con-

siderably at higher issue rates. Clearly the blocking
scheme has unacceptable performance for moderate

to high issue rates and high miss penalty (TMISS).

The impact of this observation is that although the

blocking scheme is the least-complicated of the three

schemes, its performance is only marginally accept-

able for an issue rate of two instructions per cycle.

At higher issue rates, blocking removes all the advan-

tage of designing a superscalar processor microarchi-

tecture.

The limited-blocking scheme has acceptable perfor-

mance for issue rates of two and four instructions per

cycle when TMISS = 10. In general, the performance

of limited-blocking is su�cient to warrant its use in

conservative situations where these parameters are in

e�ect.

The complexity of the non-blocking hardware is

justi�ed by the increased performance that the non-
blocking scheme provides. The table demonstrate

that the non-blocking scheme can achieve approxi-

mately 97%{69% of the perfect cache miss perfor-

mance with unlimited processor resources. This

scheme hid miss penalty well. Non-blocking cache

designs are needed when either the miss penalty is

large or the issue rate is on the order of four to eight

instructions per cycle.

The geometric mean of IPC across all benchmarks

for the three schemes and the perfect case (no cache

miss penalty) are shown in Figures 1 (TMISS = 10)

and 2 (TMISS = 20) for the �̂ = 0:10 data cache pro-

totypes. These two graphs show the relative ordering

0

0.5

1

1.5

2

2.5

3

3.5

4

2 4 8

i
n
s
t
r
u
c
t
i
o
n
s
 
p
e
r
 
c
y
c
l
e

issue rate

perfect
non-blocking

limited-blocking
blocking

Figure 1: The geometric mean of IPC and IPC for

perfect case for issue rates two, four and eight in-

structions per cycle, TMISS = 10.

between the schemes from low to high performance

as: blocking, limited-blocking, and non-blocking. Fig-
ure 2 also demonstrates that limited-blocking is only

marginally better than blocking when the cache miss

penalty is high at 20 cycles.

Some of the performance can be lost due to a lim-

ited scheduling window. To check whether schedul-

ing window size had undue e�ect on the di�erences

between the three schemes, the entire set of experi-

ments were re-run with unlimited window size. The

geometric mean IPC for unlimited window size for

the �̂ = 0:10 data cache prototypes are presented in

Figures 3 and 4. These �gures demonstrate that lim-

Page 3



0

0.5

1

1.5

2

2.5

3

3.5

4

2 4 8

i
n
s
t
r
u
c
t
i
o
n
s
 
p
e
r
 
c
y
c
l
e

issue rate

perfect
non-blocking

limited-blocking
blocking

Figure 2: The geometric mean of IPC and IPC for

perfect case for issue rates two, four and eight in-

structions per cycle, TMISS = 20.

0

0.5

1

1.5

2

2.5

3

3.5

4

2 4 8

i
n
s
t
r
u
c
t
i
o
n
s
 
p
e
r
 
c
y
c
l
e

issue rate

perfect
non-blocking

limited-blocking
blocking

Figure 3: The geometric mean of IPC and IPC for

perfect case for issue rates two, four and eight instruc-
tions per cycle, TMISS = 10 with unlimited window

size.

0

0.5

1

1.5

2

2.5

3

3.5

4

2 4 8

i
n
s
t
r
u
c
t
i
o
n
s
 
p
e
r
 
c
y
c
l
e

issue rate

perfect
non-blocking

limited-blocking
blocking

Figure 4: The geometric mean of IPC and IPC for

perfect case for issue rates two, four and eight instruc-
tions per cycle, TMISS = 20 with unlimited window

size.

ited window size attributed to the low performance of

the three schemes for issue rates of eight instructions

per cycle. In particular, the non-blocking scheme

performs acceptably even at high miss penalties of

TMISS = 20. The unlimited window size did not help

the limited-blocking scheme for TMISS = 20, it main-

tains a marginal performance increase over blocking
in these simulations. Large scheduling windows are

di�cult to design, however, suggesting that this po-

tential performance will not be tapped for some time

to come. (Complete results for unlimited window size

can be found in [5]).

4 Conclusion

This paper simulated a broad range of possible pro-

cessor/memory interfaces for superscalar processors.

In the evaluation, all e�ort was made to compare

the di�erent interface schemes on a level playing �eld

with equivalent cache performance and su�cient pro-

cessor resources. The results are uniquely unbiased

about the relative merits of the three schemes. In

general, cache designs must be �xed and processor

resources must be restricted. If the resultant cache

and processor are well designed (i.e., not the system

bottleneck), the results of this paper can be used to

make intelligent decisions about how to interface the

cache design to the processor design.

References

[1] W. M. Johnson, Super-scalar processor design.
PhD thesis, Department of Electrical Engineer-

ing, Stanford University, Stanford, California,

June 1989.

[2] D. Kroft, \Lockup-free instruction fetch/prefetch

cache organization," in Proc. 8th Ann. Int'l.
Symp. Computer Architecture, pp. 81{87, May

1981.

[3] G. S. Sohi and M. Franklin, \High-bandwidth

data memory systems for superscalar processors,"

in Proc. 4th Int'l. Conf. on Architectural Support
for Prog. Lang. and Operating Systems., (Santa
Clara, CA), pp. 53{62, Apr. 1991.

[4] \Spec newsletter," Feb. 1989. SPEC, Fremont,

CA.

[5] T. M. Conte, Systematic computer architecture
prototyping. PhD thesis, Department of Electrical

and Computer Engineering, University of Illinois,

Urbana, Illinois, 1992.

Page 4


