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Abstract

Recently, there has been a trend towards clustered
microarchitectures to reduce the cycle time for wide-
issue microprocessors. In such processors, the register
file and functional units are partitioned and grouped
into clusters. Instruction scheduling for a clustered ma-
chine requires assignment and scheduling of operations
to the clusters. In this paper, a new scheduling algo-
rithm named unified-assign-and-schedule (UAS) is pro-
posed for clustered, statically-scheduled architectures.
UAS merges the cluster assignment and instruction
scheduling phases in a natural and straightforward fash-
ion. We compared the performance of UAS with var-
ious heuristics to the well-known Bottom-up Greedy
(BUG) algorithm and to an optimal cluster schedul-
ing algorithm, measuring the schedule lengths produced
by all of the schedulers. Our results show that UAS
gives better performance than the BUG algorithm and
is quite close to optimal.

1 Introduction

Many high performance processors are designed
with wide issue widths to exploit high levels of instruc-
tion level parallelism (ILP). Wide issue machines re-
quire a large number of functional units and a large
register file. The register file should provide a suffi-
cient number of read and write ports to the functional
units. However, a large number of register file ports
can increase the cycle time of the processor [1], [2].
One way to avoid this is to partition the register file
and distribute it among disjoint sets of functional units,
preventing any decrease in cycle time. Unfortunately,
partitioning requires additional copy operations (via
hardware or software) to keep the files coherent. A
set of functional units and its associated register file
partition is term a cluster . Each cluster is connected

to an interconnection network to allow communication
with other clusters. Such a machine organization can
be termed a clustered microarchitecture, as shown in
Figure 1.
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Figure 1. A sample clustered microarchitec-
ture. Current similar microarchitectures in-
clude the Alpha 21264 and the TI TMS 320C6x.
The disjoint nature of the register files com-
plicates instruction scheduling.

Compiling for a clustered microarchitecture requires
additional steps compared to compiling for a con-
ventional microarchitecture which has a central reg-
ister file. For convenience, we term compilation for a
clustered microarchitecture cluster scheduling. Clus-
ter scheduling’s additional tasks are to coordinate and
schedule the movements of data among clusters and the
assignment of data and operations to specific clusters



(which is termed cluster assignment). Cluster schedul-
ing can be critical to the performance of a clustered
machine. A cluster scheduler should use the machine
resources effectively to exploit ILP and hide the disjoint
nature of the register file completely. Cluster schedul-
ing decisions are crucial especially for Very Long In-
struction Word (VLIW) style machines that rely al-
most entirely on compiler technology [3], [4]. Cluster-
ing is also used in dynamically scheduled processors,
such as the Digital Alpha 21264 [2].

This paper examines instruction scheduling for clus-
tered processors, focusing on the cluster assignment
problem for VLIW architectures. A novel technique
that uses a single compiler phase – Unified Assign and
Schedule (UAS) – is presented and evaluated experi-
mentally. We also present an optimal cluster scheduler
to find out how heuristic clustering techniques, such
as UAS and Bottom-up Greedy (BUG) [5], approxi-
mate optimality. Finally, the performance of UAS is
compared to BUG. The organization of the paper is
as follows. Section 2 examines related work in cluster
scheduling. Section 3 introduces the UAS algorithm
and its implementation. Section 4 introduces the opti-
mal cluster scheduler for a clustered VLIW architecture
and compares it to UAS and BUG. Section 5 presents
performance analysis of UAS and BUG. Finally, Sec-
tion 6 concludes the paper with some observations.

2 Related work

There have been several previous projects that dealt
with compile-time cluster scheduling. The Bulldog
compiler was the first attempt to examine the effects
of clustering. The compiler implements trace schedul-
ing [6] and makes cluster assignments to the opera-
tions in the trace. List scheduling is then applied to
the trace to construct a schedule of instructions. Bull-
dog uses a multi-phase approach to cluster schedul-
ing. Separate compiler phases are employed to perform
trace formation, cluster assignment, and list schedul-
ing. The cluster assignment phase uses the Bottom-up
Greedy (BUG) algorithm to assign operations and reg-
ister values to clusters. It takes the data precedence
graph (DPG) of a trace as its input and traverses it
from the roots (exit nodes) to the leaves (entry nodes)
in a bottom-up fashion. It recursively traverses the
DPG and makes estimates about functional unit and
operand availability for each operation. After BUG as-
signs the operations in a trace, the list scheduler inserts
communication operations into the schedule where nec-
essary.

BUG is an intuitive algorithm that has a complete
resource model. Since it does not produce the fi-
nal code schedule, it cannot anticipate what the ac-
tual resource usage pattern will be during scheduling,
nor does it keep track of utilization of the interclus-
ter buses. Therefore, the cluster assignments made by
the BUG algorithm are based on rough estimates, a
drawback of the algorithm. The Multiflow TRACE
compiler [7] was based on technology implemented
within Bulldog but with significant differences, includ-
ing its implementation of BUG. The Multiflow compiler
tries to place operations in a dependence chain in the

same cluster and spread the chains to clusters evenly
to increase parallelism. However, it cannot eliminate
the oversaturation of the interconnection buses since
it does not have complete knowledge of interconnect
availability.

Another work in cluster scheduling is Limited Con-
nectivity VLIW [8], [9]. The focus of the work is
code partitioning for a clustered VLIW machine which
does not have full connectivity between all registers
and functional units. The technique was implemented
within the Percolation Scheduling compiler developed
at UC-Irvine [10]. It uses a multi-phase approach sim-
ilar to Bulldog. Initially, code is scheduled assuming
that the machine is a fully connected VLIW, i.e., all
functional units can access all registers directly. Then,
the code is partitioned and cross-partition copy opera-
tions are inserted. The code is then compacted locally
to minimize the effect of inserted copy operations in
the schedule.

Desoli’s Partial Component Clustering (PCC) [11]
algorithm uses a multi-phase iterative approach to per-
form cluster assignment. The first part of the algorithm
decomposes a DAG into multiple smaller DAGs (par-
tial components) using a depth-based DAG traversal
much like BUG. The partial components are processed
in decreasing order of the number of nodes to derive
an initial set of cluster assignments. The initial assign-
ment logic uses load balancing (the number of nodes
per cluster) as a primary criterion and number of inter-
cluster copies as a secondary criterion. The set of initial
assignments is processed by a descent algorithm that
iteratively attempts to improve the assignments. The
descend phase use lightweight list scheduling-like logic
to locally modify the set of initial assignments until no
reductions in schedule length or the number of copies
can be achieved. The lightweight scheduling logic ac-
counts for register usage and the effects of copy in-
structions. After the descend phase completes, the set
of assignments is actually scheduled by a list schedul-
ing/register allocation phase. PCC differs from UAS in
several major facets: 1) separate phases are used for as-
signment and scheduling, 2) global pre-processing DAG
analysis is employed, and 3) an iterative algorithm is
used.

The RAW project uses static instruction assignment
and scheduling for its highly parallel distributed ar-
chitecture [12]. A RAW machine is very similar to a
VLIW with the major point of departure being that
a RAW machine can exploit multiple flows of control
in parallel. The RAW compiler, RAWCC, uses mul-
tiple phases for cluster assignment. Leveraging work
from multiprocessor scheduling, it uses the Dominant
Sequent Clustering (DSC) algorithm [13] to delineate a
DAG into multiple instruction streams called clusters.
As described in a recent work, their implementation
of DSC behaves very similarly to BUG: a topological
traversal of the dependence graph attempts to place
each instruction near one of its data-dependent pre-
decessors, assuming zero communication costs. Next
comes a merging phase that combines the multiple in-
struction streams (clusters) so that the resulting num-
ber of clusters does not exceed the number of execu-
tion elements in the machine. Merging uses the amount
of inter-cluster communication as a primary criterion



and load balancing as a secondary criterion. The final
binding of clusters to machine elements is performed by
first assigning clusters to elements randomly and then
employing a swapping phase to attempt to reduce the
amount of communication.

There has been related work in compiler support for
clustering in the context of superscalar processors. As
these works are not focused on statically-scheduled ar-
chitectures, we discuss them briefly. Farkas proposed
the MultiCluster architecture as a design that uses clus-
ters to reduce cycle time slowdowns [14]. Compile-time
analysis is used to assign register operands to clusters
with a primary goal of achieving balance in the number
of instructions assigned per cluster at any point in time.
Hardware support is used to detect when data move-
ments are required and then coordinate them. Sastry
et al. [15] explored instruction assignment by viewing a
superscalar processor as a microarchitecture composed
of two clusters, one of integer units and the other of
floating point (FP) units. Their objective was to use
idle FP resources to execute integer instructions by as-
signing some instructions that normally execute on the
integer cluster to the FP cluster. Two instruction par-
titioning schemes were introduced, both of which per-
formed instruction assignment as pre-pass. A notable
trait of the more sophisticated scheme is that it per-
mits the insertion of explicit copy operations and code
duplication. A cost/benefit analysis is applied to every
instruction that could be assigned to the FP cluster
by examining its predecessors to compute the number
of extra instructions created by either copying or du-
plication. both the basic and advanced schemes. The
cost/benefit scheme used could be applied or modified
for use with VLIW architectures as well.

There are also novel cluster-based architectures that
are less heavily focused on compile-time cluster assign-
ment, such as Multiscalar [16] and the M-Machine [17].
Since our focuses on compile-time assignment, these
works are not discussed further. Future work is
planned for adapting UAS to dynamically scheduled
microarchitectures.

3 Unified Assign and Schedule

Schedule-time resource availability is not checked in
BUG or Limited Connectivity VLIW since cluster as-
signment is performed in a different compiler phase
than scheduling. This leads to clustering decisions that
either constrain scheduling (in case of BUG) or are
needlessly constrained by prior scheduling choices (in
case of Limited Connectivity VLIW), as shown in Fig-
ure 2.

An algorithm that performs assignment and schedul-
ing within one, unified phase could avoid these draw-
backs. We term an algorithm that performs clus-
ter assignment and scheduling as Unified-Assign-and-
Schedule or UAS [18]. UAS essentially integrates clus-
ter assignment into a list scheduler. List scheduling is
the most common technique for instruction scheduling
in production compilers. A list scheduler schedules as
many operations as possible for the current cycle be-
fore processing the next cycle. A list of operations and
a DPG of the list are passed to the scheduler. The list
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Figure 2. The three approaches to cluster
scheduling: (a) BUG, (b) Limited Connectivity
VLIW, and (c) the proposed UAS approach.

is ordered based on some known priority function. The
algorithm consists of two main loops. The outer loop
ensures that all operations are scheduled. The inner
loop schedules as many operations as possible into the
current cycle. Once a cycle is scheduled, it is never re-
visited. Cluster assignment is integrated into the inner
loop of the list scheduler. Intercluster buses are con-
sidered to be machine resources and checked within the
list scheduler when the other resources are checked.

1. While (Unscheduled OPs exist)

2. Form a list of Data-Ready OPs and
       While (Ready OPs exist)

 3. Pick Highest Priority OP, X  and 
Create Priority List of Clusters on which X 

can potentially be scheduled.

No Yes

Yes

 4. While ( All Clusters in the list not Checked and
 X is unscheduled)  

5. Can X be scheduled on the current cluster in the 
list?

No

6. If any copy operations are required, can they be
scheduled on their clusters?No

7. Schedule X all copy OPs.

Yes

Yes

Yes

No

Next Cycle

Next Cycle

Figure 3. A framework for implementing uni-
fied assign and schedule(UAS).

A detailed explanation of UAS algorithm is given
in Figure 3. First, a list of data-ready operations is
formed for each cycle (Step 1). Formation of such a
list is slightly different from a list scheduler in that
inter-cluster copy latencies are also taken into consid-
eration. For instance, if there are at least two flow-



dependent predecessors assigned to different clusters,
then at least one inter-cluster copy is required to place
all of the source operands of the operation under con-
sideration onto a single cluster. So the effective weight
of a flow-dependency edge is the predecessor operation
latency plus the inter-cluster communication latency.
In Step 3, a prioritized list of clusters is formed, and
the highest priority operation is picked as a candidate
for scheduling. Each cluster in the prioritized list of
clusters is examined in Step 5 to determine whether
the current operation can be scheduled on it. When
an available cluster is found, a check is made to see
if any copy operations are required. If the copies can
be scheduled on their respective clusters, i.e., there are
enough available intercluster buses in the current cy-
cle) in Step 6, the current operation and associated
copies are scheduled (Step 7). If not, the next cluster
is examined for the current operation. This continues
until the cluster list is exhausted or the operation is
successfully scheduled.

The priority function for ordering the list of cluster
ids can have a strong effect on the schedule. There
are many different priority functions that can be used.
Five are investigated in this paper:

• None: The cluster list is not ordered.

• Random Ordering: The cluster list is ordered
randomly.

• Magnitude-weighted Predecessor (MWP):
The number of flow-dependent predecessors as-
signed to each cluster for the operation under con-
sideration is computed. Based on the counts, an
operation can be placed into a cluster where the
majority of its input operands reside.

• Completion-weighted Predecessor(CWP):
Each flow-dependent predecessor has a ready time
associated with it, which is the cycle when it pro-
duces its result. Each cluster id can be weighted by
the latest ready time value for the operation under
consideration. The cluster list is sorted in descend-
ing order of the ready times. This gives priority to
the clusters that will be producing source operands
for the operation late in the schedule.

• Critical-Path in Single Cluster using CWP
Heuristics (CPSC): The CWP heuristic is used
but operations on the critical path are forced to
be assigned to the same cluster.

Certainly additional priority functions can be de-
rived. The five listed are are simple to compute in
terms of space and time. The UAS algorithm uses these
priority functions for cluster ordering in the experimen-
tal evaluation.

UAS has complete information about the machine
resources’ status so that assignments can be performed
and copies can be scheduled effectively. Although BUG
has complete knowledge of all machine resources, in-
terconnect availability is not and cannot be checked,
which can lead to oversaturation of the buses during list
scheduling. Hence, intuitively UAS should outperform
BUG. This is substantiated empirically in Section 5.

4 Comparing UAS and BUG to opti-
mal cluster scheduling

We implemented simultaneous optimal partitioning,
assignment and scheduling of a given DPG for clustered
VLIW architectures to seek the best cluster assignment
and schedule. Optimal partitioning and scheduling of
a DPG is an NP complete problem [19]. Thus, opti-
mal cluster assignment (partitioning) and scheduling
is also NP complete. It is impractical to implement
optimal cluster scheduling within compilers because of
the exponential time complexity. The intent here be-
hind seeking optimality is to find an upper bound for a
heuristic-based scheme. Our objective is to find a best
possible cluster assignment of all operations in a DPG
that minimizes the schedule length.

The optimal cluster scheduler is designed as a
resource-constrained scheduler that attempts to find
the shortest schedule possible. Given a DPG of opera-
tions, the optimal cluster scheduler finds optimal clus-
ter assignments and operation scheduling based on ma-
chine resource and data dependence constraints, such
as the number of functional units per cluster, the num-
ber of intercluster buses, and the partial order be-
tween operations. We formulate resource constraints
and the objective function (schedule length) as lin-
ear equations. The equations are solved by 0-1 inte-
ger programming (IP) using a branch and bound tech-
nique. Simultaneous assignment and scheduling has
also been studied in the VLSI synthesis field [20], [21].
The framework used for this study is shown in Figure 4.

 Program

DPG Builder

Linear
Optimizer

  Machine 
Description

Optimal Cluster Schedule 

Branch and
Bound

Figure 4. General framework for optimal clus-
ter scheduling.

The compiler takes a block of operations, forms a
DPG, annotates extra information such as the early
and late times of operations, and then dispatches the
DPG to the Linear Optimizer. The Linear Optimizer
reads the machine description and generates linear
equations of all resource constraints and the objec-
tive function, and then solves the equations. Linear
equations are solved by the LINDO Linear Optimizer
program [22]. Finally, optimal cluster schedule is com-
pared with the schedules generated by UAS and BUG.

Resource constraints for a clustered VLIW machine
consist of the operations, functional units, cluster as-
signment and partial order of operations, and interclus-
ter bus constraints. The operation constraint ensures



that each operation is given a schedule time and is as-
signed to a functional unit within a cluster. Functional
unit constraints ensure that no more than the total
number of a functional unit type is allocated for oper-
ations for a certain cycle. For example, if there is only
one ALU unit per cluster in a two cluster machine, at
most two integer operations at a time can be sched-
uled on those ALUs. Cluster assignment constraints
assign operations to clusters and schedules them by
honoring the dependence order and inter-cluster la-
tency. If two operations with a flow dependence edge
between them are assigned to the same cluster, no copy
is needed. However, if they are assigned to different
clusters, inter-cluster communication is necessary Bus
constraints guarantee that no more than total number
of buses are used for intercluster communication during
a certain cycle. We assume that all functional units are
fully pipelined and that any operation can be assigned
to any cluster. The objective function attempts to min-
imize the schedule length for the DPG while honoring
these constraints. Details about the linear equations
can be found in companion technical report [23].

We selected programs from the SPECint95 [24] and
MediaBench [25] suites as listed in Table 1. Pro-
grams from SPECint95 represents general-purpose in-
teger programs. Programs from MediaBench focus on
media and signal processing. Reference inputs were
used for all runs.

Table 1. Benchmarks programs used for eval-
uation.

SPECint95 MediaBench

132.ijpeg g721decode
147.vortex g721encode
129.compress rawcaudio
130.li rawdaudio
124.m88ksim
099.go
134.perl

The machine models used in the experiments are 2
cluster 4 issue VLIWs with one bus and two buses.
Each cluster has four functional units (ALU, FP, BR
and LD/ST units). All clusters are assumed to have an
identical configuration. The inter-cluster communica-
tion latency is one cycle. The functional unit latencies
are shown in Table 2.

The UAS algorithm with heuristics CPSC, CWP,
MWP, Random, and NONE and the BUG algorithm
are compared to the optimal cluster scheduler (OPT).
A large number of possible cluster schedules are nor-
mally evaluated to find the optimal schedule. It takes
a considerable time to find the optimal solution for full
benchmark runs. Instead, we selected the most fre-
quently executed basic block with a reasonable number
of operations from each benchmark and measured its
static schedule length.

Table 2. Instruction types and latencies

Instruction Type Latency

Integer/Branch, Store, FP Add 1
Load 2
FP Multiply 3
FP Divide 9

Results are presented in Figure 5. The optimal clus-
ter schedule is our theoretical upper bound, so speedup
values are expected to be less than 1. The results show
that UAS generates more compact schedules than BUG
for all benchmarks. Also, in Figure 6 we present code
increases for OPT, UAS and BUG. Code increase is
measured as the percentage increase in code size due
to the number of copy operations for the scheduled
set of basic blocks. One observation is that the op-
timal cluster scheduler attempts to distribute opera-
tions across clusters to utilize resources and extracts
more parallelism. Therefore the number of inter-cluster
bus communications is high. UAS also spreads opera-
tions among clusters and has a good cluster utilization
without compromising much performance, except for
the Random heuristic. Another observation is that the
BUG algorithm does not utilize clusters effectively. It
uses only one cluster for all operations in most of the
selected blocks. Thus, it cannot extract as much ILP
parallelism as UAS.

5 Full benchmark comparison of UAS
and BUG

This section presents the results of experiments to
evaluate the performance of UAS and its comparison to
BUG algorithm for entire benchmark runs. Instead of
basic blocks, treegions [26] are used for full benchmark
runs. The scheduling algorithms were implemented
within the framework of the LEGO compiler [26], [27].
A static estimate based on schedule length is used to
measure the performance of code scheduled by LEGO.
We measured speedups of UAS and BUG on a clus-
tered machine with respect to code scheduled for a base
model that is 1-cluster machine with the same number
of functional units. Perfect instruction and data caches
and perfect branch prediction are assumed throughout
the experiments. We used three different machine mod-
els: 2 cluster 4 issue (ALU, FP, BR, LD/ST), 2 cluster
2 issue (2 UNIVERSAL Functional Units) and 3 cluster
2 issue (2 UNIVERSAL Functional Units). All three
models have one inter-cluster bus (little performance
increase is observed with two buses).

The results are shown in Figure 7. The figure shows
speedups of UAS and BUG with respect to the base
machine model. The base machine model is one clus-
ter with the same type and number functional units
for each machine model. As seen from the graphs,
UAS outperforms BUG across the entire set of bench-
marks. All UAS heuristics have better performance



than BUG except for Random, since a random order-
ing of clusters is more likely to allow an operation’s
flow-dependent operations to be assigned to different
clusters. This could increase the number of copies and
the schedule length unnecessarily. On average, UAS
with the CWP heuristic yields the best performance
results, even better than CPSC heuristic. This is be-
cause blindly assigning critical-path operations to the
same cluster may cause bad cluster assignments for op-
erations in the other paths.

6 Conclusion

In this paper, we have introduced unified-assign-
and-schedule (UAS), a new approach to scheduling for
clustered microarchitectures. UAS is a single- pass
scheduler that integrates cluster assignment into a list
scheduling phase. Our evaluations show that the UAS
technique creates efficient schedules by using a full and
complete knowledge of resources and interconnection
availability among the clusters. Hence, the generated
schedule is compact, efficient and also relatively close
to optimal. As microarchitecture designers continue
to design processors with disjoint register files the ef-
fectiveness of UAS over other approaches will become
critical.
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Figure 5. UAS with different heuristics and
BUG performance comparison to optimal
cluster scheduler for a 8-wide 2 cluster VLIW
machine with 1 and 2 bus models.
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Figure 6. Comparison of code increase in UAS
with its heuristics,BUG and optimal cluster
scheduler(OPT).
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a) 2-cluster 4-issue (ALU,FP,BR,LD/ST) with 1 bus
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c) 3 cluster 2-issue (UNIVERSAL FUs) with 1 bus

Figure 7. Speedup graphs of UAS with differ-
ent heuristics and BUG for 2-cluster 4-issue
(ALU,FP,BR,LD/ST),2 cluster 2-issue (2 UNI-
VERSAL FUs),3 cluster 2-issue (2 UNIVER-
SAL FUs) with 1 Bus Machine Models.


