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Abstract 

Object-code compatibility between processor generations is 
an open issuefor VLIW architectures. A potentialsolution is 
a technique termed dynamic rescheduling, which performs 
run-time software rescheduling at the$rst-time page faults. 
The time required for rescheduling the pages constitutes a 
large portion of the overhead of this method. A disk caching 
scheme that uses a persistent rescheduled-page cache (PRC) 
is presented. The scheme reduces the overhead associated 
with dynamic rescheduling by saving rescheduled pages on 
disk, across program executions. Operating system sup- 
port is required for dynamic rescheduling and management 
of the PRC. The implementation details for the PRC are 
discussed. Results of simulations used to gauge the effec- 
tiveness of PRC indicate that (I) the PRC is effective in 
reducing the overhead of dynamic rescheduling, and (2) due 
to different overhead requirements ofprograms, a split PRC 
organization performs better than a unified PRC. 

The unified PRC was studied for two different page re- 
placement policies: LRU and overhead-based replacement. 
It was found that with LRU replacement, all the programs 

consistently perform better with increasing PRC sizes, but 
the high-overhead programs take a consistent performance 
hit compared to the low-overhead programs. With overhead- 
based replacement, the per$ormance of high-overhead pro- 
grams improves substantially, while the low-overhead pro- 
grams perform only slightly worse than in the case of the 
LRU replacement. 

1 Introduction 

Unlike contemporary superscalar processors [I] [2] [3] 
which employ dynamic scheduling, VLIW processors de- 
pend on a schedule of code generated by the compiler. The 
compiler has full knowledge of the machine model, de- 

scribed in terms of the hardware resources available, and 
the latencies related to execution on each resource. Correct 
execution of a program scheduled under one machine model 
assumptions is guaranteed only on processors that have ex- 
actly the same machine model or, its supersets where the 
assumptions are strictly held. Thus, a program scheduled 
for a particular generation in a VLIW family cannot be 
guaranteed to be binary compatible with other generations. 
This is known as the object+ode compatibility problem in 
VLIW architectures [4]. Lack of object-code compatibility 
is a commonly cited reason why VLIWs may not become 
a general-purpose computing paradigm [5]. Solutions to 
the problem have been suggested and can be classified as 
hardware or software approaches. Hardware techniques typ- 
ically employ scheduling hardware [6], [7], [4], [8], [9], 
which could substantially increase the hardware complexity 
of the machine. A common software approach is that of 
off-line recompilation of source programs, which yields ex- 
cellent performance because the compiler has access to all 
the necessary information to expose the ILP in the program. 
The drawback of this technique is that it is cumbersome to 
use, because access to source code may not always be pos- 
sible. A variant of this is off-line object-code translation, 
which is more practical when the source code is unavail- 
able or a large set of programs for the older architecture 
exists [lo]. Alternatively, an interpreter could be used to 
translate between the architectures at run-time [ 1 l] but this 
approach usually suffers from poor performance. 

Another approach is dynamic rescheduling [ 121. In this 
technique, a program binary scheduled for the target ma- 
chine model of a VLIW generation is allowed to directly 
execute on any other generation of the VLIW. As the exe- 
cution proceeds, each page-fault generated in the program 
instruction space results into a special action: the page being 
fetched is rescheduled for the machine model of the target 
generation. Per-page rescheduling is performed only at the 
first instance the page-fault occurs (i.e., only at first-time 
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pagefaults). A page of code is considered as an atomic unit 
for rescheduling. Implementation of this technique requires 
support from the operating system, specifically in the page 
fault service routine. The extra time incurred for reschedul- 
ing constitutes the overhead of this technique. 

This paper presents a scheme that reduces the overhead 
associated with dynamic rescheduling by caching on-disk 
rescheduled code on a per-page basis. It employs a struc- 
ture called a persistent rescheduled-page cache (PRC) that 
holds rescheduled pages across multiple executions of a pro- 
gram. The organization of this paper is as follows. Section 2 
reviews previous work on object-code compatibility and 
explains dynamic rescheduling and presents performance 
measurements of code subjected to dynamic rescheduling. 
Section 3 introduces the PRC as part of an operating system- 
managed disk caching scheme that reduces the overhead of 
dynamic rescheduling. The architecture and management 
of the PRC is detailed, and experimental results that mea- 
sure its performance are presented. Section 4 presents the 
conclusions of the study and avenues for future work. 

2 Object-Code Compatibility and Dynamic 
Rescheduling 

Several hardware approaches have been reported previ- 
ously to address the VLIW compatibility problem. Rau pre- 
sented a technique called split-issue to perform superscalar- 
style dynamic scheduling of code in hardware [4]. The$fill- 
unit, originally proposed by Melvin, Shebanow, and Patt [6], 
and later extended by Franklin and Smotherman [8] can be 
adapted to achieve a limited level of compatibility in VLIWs. 
These approaches are counter to the principle of hardware 
simplicity, one of the tenets of the VLIW philosophy. An ob- 
vious alternative is off-line recompilation and rescheduling. 
This technique has an advantage in terms of the performance 
but is extremely cumbersome to use, owing to its off-line na- 
ture. Similar to this is off-line binary translation, which was 
used to migrate VAX software to the Alpha platform [lo]. 
Run-time software emulation can also be used, as imple- 
mented in Insignia Solution’s SoftWindows product [ 131. 
An approach employing both the emulation and transla- 
tion techniques has been utilized in the FX!32 product from 
DEC [ 141. May investigated using an interpreter to execute 
IBM System/370 binaries on an IBM RT PC [ 111. These 
solutions attempt to achieve compatibility between widely 
varying architectures. Although such large differences will 
probably not exist between generations of a VLIW family, 
the techniques used are still of interest. 

Interpreters can use caching of translated sections of code 
across executions as a means of reducing the amount of 
translation needed; disk storage is used as a cache for the 
translated code. Caching is an intuitive and effective tech- 
nique for reducing run-time translation overhead. However, 

a majority of the literature on translation does not contain 
details on management of cached code segments. 

Figure 1. The sequence of events in Dynamic 
Rescheduling. 

Events l-3 are the detection of thepagefaultandgeneration 
mismatch, the context switch of the process, and the retrieval 
of thepagefrom disk, respectively; these events are standard. 
The overhead of dynamic rescheduling is event 4, where the 
page is dynamically rescheduled. 

Another technique for compatibility is Dynamic 
Rescheduling (DR) [12]. At all first-time page-faults, the 
OS invokes a module called the dynamic rescheduler to 
reschedule the page being accessed, for the host machine 
model. The sequence of events in dynamic rescheduling is 
illustrated in Figure 1. The detection of a first-time page 
fault is shown as Event 1. Events 1, 2, and 3 always take 
place at a page fault. In the case of dynamic rescheduling, 
however, this is treated as a special page fault; this is indi- 
cated as Event 4. The program binary contains a complete 
description of the machine for which it was originally com- 
piled. If the page fault handler detects a generation mismatch 
between the host machine and the program, the rescheduler 
module is invoked. After the page is rescheduled, program 
execution resumes. If the rescheduled page is selected for 
replacement from physical memory before the program ter- 
minates, it is written to the text swap space [ 1.51, [ 161; this 
eliminates the need to reschedule if the page is re-accessed. 
The net overhead of the dynamic rescheduling technique can 
be quantitatively expressed in terms of the following three 
factors: (1) the time spent in rescheduling pages at run-time, 
(2) the time to write rescheduled pages to text swap when 
pages are replaced, and (3) the amount of disk space used 
to save the rescheduled pages. The time for disk I/O during 
page replacement is negligibleas writing to swap can be per- 
formed asynchronously [ 151. The true overhead is reduced 
to the time for rescheduling and the disk space required to 
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save rescheduled pages. 
If dynamic rescheduling performed code motion, it would 

give rise to code size changes due to the compensation code 
it may have to insert and/or delete. Since it is not straight- 
forward to handle any changes in code size dynamically, 
the DR framework avoids the size changes altogether, via 
a special binary encoding which eliminates explicit use of 
NOPs from the code. More discussion of the issues involved 
therein can be found in [ 121, and are beyond the scope of this 
paper. The PlayDoh [ 171 VLIW architecture from Hewlett- 
Packard Laboratories is used as a testbed in this paper. Also, 
it is assumed that no modifications other than the DR frame- 
work itself are made in the instruction space of the programs 
(such as those by self-modifying code). 

2.1 Performance of Dynamic Rescheduling 

The effectiveness of dynamic rescheduling was mea- 
sured using programs from the SPECint92 suite’ and several 
UNIX utility programs in [ 121, and is expanded here. In or- 
der to construct an interactive load, the benchmarks were di- 
vided into two categories: tools (cccp, compress, gee, grep, 
and tbl) and applications (espresso, eqntott, li, lex, SC, and 
yacc). It was assumed that tools would be invoked twice 
as often as applications, but that there would be no other 
pattern in the workload. Two sets of inputs were used for 
each benchmark, and were alternated between invocations 
of the benchmark. Using these assumptions, several work- 
loads were created and used to measure the performance 
of the benchmarks with and without dynamic rescheduling. 
Three machine models were used for the evaluation of the 
performance of the benchmarks in situations that required 
dynamic rescheduling: Generations 1, 2, and 3 (their orga- 
nizations are shown in Figure 2). The types of functional 
units are shown horizontally, while the execution latency 
assumptions are shown vertically. The unit pred is used 
to perform predicate computation in integer compare oper- 
ations. Predicate computation in FP compare operations is 
done in the FPAdd unit. A three part method was used to 
evaluate the dynamic rescheduling technique. In the first 
part, intermediate code for a benchmark was scheduled for 
a given machine model, using a VLIW scheduler; hyper- 
block scheduling was used for the initial compilation [ 181. 
The intermediate code was then profiled in order to find the 
worst-case estimate of execution time in terms of the num- 
ber of cycles. The number of times each page of code is 
accessed is also recorded, which also indicates each unique 
code page that is accessed. This was called the Native mode 
experiment. In the second part, the code scheduled for Na- 
tive mode execution was rescheduled for the other machine 

’ Performance characteristics of none of the FP programs in the pres- 
ence of the PRC are presented because rescheduling of softwarr pipelined 
loops has not yet been implemented in the current dynamic rescheduling 
framework. 

models. Execution time estimates for the rescheduled code 
were also generated as described before. This time estimate 
indicates the performance of the rescheduled code without 
taking into account the rescheduling overhead incurred by 
the rescheduler. Hence this part was termed the no overhead 
experiment. 

Generation-2 Fu 
t- i 

Figure 2. Simulated machine models. 

In the third part, the rescheduler itself was compiled, 
scheduled for the machine model used in the first part, and 
then used as a benchmark. The input to the the resched- 
uler benchmark was pages taken from each of the other 
benchmarks. The performance of the rescheduler bench- 
mark was used to find the average time to reschedule a single 
4K page for each of the three machine models. This was 
found to be 54,272 cycles for Generation-l, 5 1,200 cycles 
for Generation-2, and 48,108 cycles for Generation-3. This 
was then combined with the number of unique page accesses 
from the first part of the experiment to estimate the total 
number of execution cycles for the rescheduling overhead. 
The rescheduling overhead was added to the execution times 
from the no-overhead experiment to derive execution times 
for the w/overhead experiment. Finally, to compare the per- 
formance achieved in the above three parts, the speedup with 
respect to a single-unit, single-issue processor model (the 
base model) was calculated. Speedup is: (number of cycles 
of execution estimated in the expen’ment)l(number of cycles 
of execution estimated for the base model). All three parts 
assumed a page size of 4K bytes, as is used in many contem- 
porary operating systems [19] [20] and processors [21] [3]. 
Results from all three parts are shown in Figure 3. It can 
be observed that the no-overhead speedup of rescheduled 

Gn-m 
benchmark code (marked no ) has comparable per- 
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Figure 3. Speedups for programs under dy- 
namic rescheduling framework. 

Each bar is the harmonic mean of speedups of benchmarks 
for a specific generation-to-generation rescheduling. Each 
set of bars is identified on the x-axis by a Gn-m label, which 
indicates that code originally scheduled for Generation-n 
was rescheduled for Generation-m. The first bar in each 
set is native pelformance on Generation-m, the remaining 
bars show rescheduled performance, both with and without 
the overhead due to dynamic rescheduling. 

formance as the native compiled code ( yz ), but there 
is a prominent performance degradation when rescheduling 
overhead is taken into account ( ““,i m ). 

The dominant time in page fault handling is the time spent 
reading the page from disk if the executable is stored on the 
local machine. If the page is being accessed over a LAN, 
as is common in a client-server environment, the network 
latency is the most dominant factor, and is at least an order of 
magnitude more than the local disk access. The time spent 
rescheduling a page adds to this page access latency. To get 
an estimate of how much overhead DR would add to page 
fault handling in a local paging environment, an experiment 
was conducted to measure the page-fault service time when 
paging from a set of contiguous blocks on a local disk. The 
SAR performance analysis tool [22] was used to measure 
average page fault service time on two hardware platforms 

and was found to be about 2500 ps 2, when averaged over 
a total of 50 page-faults. Based on average execution times 
on a 100 MHz machine, dynamic rescheduling increases the 
page fault service time by about 20%, a significant increase 
(rescheduling a 4 kilobyte page, with 64-bit operations, from 
the Generation-2 code to Generation-l code, for example, 
would take 54,272 cycles times 10 ns, which is approx- 
imately 543ps, more than 20% of the average page-fault 
service time measured here). It is apparent that in the case 
of paging over a LAN, the relative overhead of DR will be 
lower, but probably not small enough to completely neglect 
it. 

There are two approaches that can be used to reduce 
overhead of DR: (1) improve the performance of the DR 
algorithm, or (2) reduce the number of pages that require 
rescheduling over multiple invocations of the program. The 
second component is the focus of the investigation in this 
paper. The OS saves rescheduled pages in the text swap if 
a program is swapped out during execution. These resched- 
uled pages are effectively cached on disk during a program’s 
current execution. Extending this concept, the OS can aid in 
caching rescheduled pages not only during a single program 
execution but across multiple program executions as well. 
The following section introduces an OS-supported caching 
scheme that achieves this. 

3 Disk caching and the Persistent 
Rescheduled-Page Cache 

The significant overhead introduced by dynamic 
rescheduling can be largely alleviated through the use of 
a caching scheme that employs a persistent rescheduled- 
page cache (PRC). A PRC is an OS-managed disk cache 
that holds binary images of rescheduled pages; if resched- 
uled pages are cached, they will not need to be rescheduled 
when re-accessed across program runs. A PRC is defined 
by its behavior during a program execution and at program 
termination. During execution, rescheduled pages are stored 
in text swap space. When a program terminates, its resched- 
uled pages are written to the PRC. Page placement and 
replacement policies are implemented within the OS. 

The concept behind the persistent rescheduled-page 
cache originated from software-managed disk caching, a 
proven method for reducing I/O traffic [ 151, [ 161. The idea 
is to cache the most recently accessed disk blocks in memory 
in the hope that they will be accessed again in the near future. 
Typical Unix systems implement a file system buffer cache 
to hold the most recently accessed disk blocks in memory us- 
ing a LRU algorithm for replacement [ 151, [ 161. The buffer 
cache effectively operates as a fragmented page cache also 

‘SAR was run on a I33 Mhz Pentium-based Data General computer 
running DG-UX, and a 99 MHz Hewlett-Packard 9OOOi715 computer 
running HP-UX. 
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and reduces the amount of I/O during page faults 3. Variants 
of this have been used in distributed file systems such as 
Sprite [23] and Andrew (241, for the purposes of remote file 
caching. Disk caching has also been used to reduce transla- 
tion overhead in architectural interpreters [ 1 I], and can be 
used effectively with dynamic rescheduling. 

3.1 Persistent Rescheduled-Page Caches 

A PRC can be organized as a system-wide cache: a por- 
tion of the file system that holds only rescheduled pages 
and managed by the OS. Pages from different programs can 
displace each other in this case. The primary configuration 
parameters for the PRC are the size, placement and replace- 
ment policies, and are discussed below. 

During initial program execution on a non-native host, 
text pages are rescheduled at first-time page faults, as de- 
scribed in Section 2. If a rescheduled page is displaced from 
physical memory during program execution, it is written to 
the text swap space on disk; this prevents rescheduling a 
page multiple times during program execution. At the end 
of the initial execution, all of the rescheduled pages are writ- 
ten to the PRC (the page placement policy will be explained 
shortly). During subsequent executions, when a page fault 
occurs for a text page with a generation mismatch, the PRC 
is probed to check for the presence of a rescheduled version 
of the page. If a rescheduled version is present, it is re- 
trieved and loaded into physical memory, and the overhead 
of rescheduling is not incurred. If a rescheduled version is 
not available, the page is retrieved from the binary image 
of the program, rescheduled, and then loaded into physical 
memory. If this page is replaced during program execution, 
it is written to the text swap space. At program termination, 
all rescheduled pages of a program are written to the PRC. A 
rescheduled page can be placed into any entry in the cache, 
which implies that the cache is effectively fully associative 
with a replacement policy such as LRU. An outline of the 
algorithm used for PRC management is shown in Figure 4. 

Probing the PRC on disk for the presence of a page is an 
expensive operation. This can be eliminated by modifying a 
program’s disk block pointers during execution and program 
exit. When a page is rescheduled and subsequently written 
to the PRC at program termination, a separate set of disk 
block pointers (PRC pointers) for the program are set to 
point to the rescheduled versions of pages in the cache. A 
PRC pointer is annotated to indicate which original page the 
rescheduled page replaces. This scheme implements a PRC 
probe as an examination of a program’s disk block pointers 
in one central location rather than multiple locations in the 
PRC on disk. Disk block pointers can be cached by the OS, 
which can further reduce the number of disk probes. The 

3The term “fragmented” is used because all of the disk blocks that 
comprise a page might not be in the buffer cache at the same time. 

- Load program: if rescheduled 
pages exist, set page table entries 
to disk addresses in PRC. 

- Run program. 

l At program termination, write 
all rescheduled pages into PRC. 
If needed, displace LRU pages 

from PRC. 

- Update program PRC disk block 
pointers to point to PRC. Update 
PRC pointers to point to 
program file data structure. 

Figure 4. Persistent Rescheduled-Page Cache 
(PRC) management algorithm. 

rescheduled version of a page is accessed without probing 
the PRC on disk and perhaps without any disk accesses at all, 
if the program’s disk block pointers are in the in-memory 
cache. Rescheduled pages that are stored in swap during 
program execution are managed by the OS using known 
methods for managing text swap space [ 151. 

The probing of multiple PRC pointers during page faults 
can also be eliminated. At program load time, the disk block 
and PRC pointers for the program are examined to determine 
if rescheduled versions of pages exist in the PRC. If a page 
has a rescheduled version, the loader modifies the page table 
entry (PTE) for that page to point to the rescheduled version. 
When a page fault occurs for a page that has a rescheduled 
version, the rescheduled version is accessed directly, using 
the updated P’IE. No disk accesses or in-memory searches 
are required to implement a PRC probe: if the PTE for a 
page points into the PRC, a rescheduled version exists. The 
re-mapping of the PTE entries can be done at program load 
time [ 151, [ 161. As rescheduled pages are displaced from 
the use of a PRC due to replacement, the PRC pointers to 
the displaced pages must be nullified. This can be accom- 
plished with OS support. A table can be maintained by the 
PRC manager that lists the locations of the PRC pointers 
associated with each page in the cache. When a page is 
replaced, its PRC pointer is set to null. 

3.2 PRC performance 

Figure 5 presents the performance of PRCs of different 
sizes for rescheduling across four generation-to-generation 
combinations. The metric used is speedup over a single 
universal-unit, single-issue processor. Each set of bars 
shows the harmonic mean of speedups for a rescheduling 
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Figure 5. Speedups of benchmarks for PRC 
performance, unified PRC, LRU replacement 

Each bar is a harmonic mean of speedups of the benchmarks 
for a particular generation-to-generation rescheduling and 
PRC size. Each set of bars is identified on the x-axis by a 
Gn-m label, which indicates that code originally scheduled 
for Generation-n was rescheduled for Generation-m. The 
first bar in each set of bars is the no-overheadperformance, 
the second bar is the worst-case overhead (no PRC), and 
subsequent bars are performance with the indicated PRC 
size; PRC size is the maximum number of pages the cache 
holds. 

combination, for various PRC sizes. As indicated here, 
PRC-n means a PRC of size n pages. PRC-infinite in- 
dicates the performance when rescheduling of the unique 
page accesses was performed only at the initial invocations. 
This is essentially a PRC without an upper bound on its 
size. PRC-infinite speedups are the same as the no-overhead 
case speedups mentioned in Section 2.1. PRC-0 indicates 
the performance when no PRC is used, and all the pages 
uniquely accessed by the program are rescheduled at each 
invocation. This provides a measure of the worst-case over- 
head of rescheduling. A page can displace any other page 
in the PRC, based on the LRU replacement policy. This 
organization is called a unified PRC. 

Performance of all of the rescheduling combinations ben- 
efits from the use of a PRC. The trend is that a larger PRC 
provides greater speedup. Note that for PRC- 1024, perfect 
speedup (equal to the PRC-infinite) case is achieved. This 
happens because the total number of pages in the workload 

Figure 6. Generation-l to Generation-3 
rescheduling, unified PRC, LRU replacement 

Each bar is the speedupfora Generation-l to Generation-3 
rescheduling for the specified PRC size. Each set of bars 
corresponds to an individual benchmark, as indicated by 
the labels on x-axis. The first bar in each set of bars is the 
nooverheadpelformance, the second bar is the worst-case 
overhead (no PRC), and subsequent bars are pegormance 
with the indicated PRC size; PRC size is the maximum num- 
ber of pages the cache holds. 

is less than the size of the PRC and all the programs com- 
pletely reside in a PRC of that size without any requirement 
to reschedule once the PRC is populated. 

All of the benchmarks do not benefit equally from the 
presence of a PRC. To illustrate this, Figure 6 presents 
speedups for individual benchmarks for Generation-l to 
Generation-3 rescheduling. Some benchmarks - such as 
008.espresso, 023.eqntott, 026compress - show only a 
small improvement with even a large PRC. Others, such 
as cccp, tbl, grep show substantial improvement with the 
increasing PRC size. Moderate improvement is shown by 
022.li, 072.sc, 085.gcc, lex, and yacc. The reason behind this 
behavior can be explained using the overhead ratio metric 
for a program. The overhead ratio is defined as: 

0= R/(E+R) 

where E is the execution time of the program, and R, the 
total rescheduling overhead = (the Unique Page Count of 

9 



Table 1. Unique page counts of the bench- 
marks. 

[ 1 BENCHMARK 
008.espresso 

022.h 
023.eqntott 

026.compress 
072,s~ 

085.gcc 
cccp 

tbl 
grep 

lex 
yacc 

UNIQUE 
‘AGE COUNT 

137 
47 
2.5 
8 
60 
323 
34 
50 
4 
45 
56 

Table 2. Overhead Ratio (0): Generation-l to 
Generation-3 rescheduling. 

1 OVERHEAD RATIO 
SENCHMARK 1 (percentage) 

OOS.esuresso I 4.35 
10.52 
0.64 
1.25 
6.29 
17.50 
50.09 
64.15 
29.10 
16.51 
12.19 

OVERHEAC 
CATEGORY 
low 
moderate 
low 
low 
moderate 
moderate 
high 
high 
high 
moderate 
moderate 

the program * avg. time required to reschedule a page). The 
unique page count of a program is defined as the number of 
first-time page faults that occur during the execution of the 
program. Values of the unique page counts are shown in Ta- 
ble 1. Table 2 shows the percentage values of the overhead 
ratio for Generation-l to Generation-3 rescheduling. A high 
overhead ratio (20% and above in this case) indicates that the 
amount of time taken to reschedule is relatively high. Such 
programs benefit the most from the use of a PRC - cccp, tbl, 
and grep as shown here - and are termed high-overhead pro- 
grams. For programs which showed the least performance 
improvement, the overhead ratio is relatively small (less 
than 5%). These programs are termed low-overhead pro- 
grams (OOXespresso, 023.eqntott, and 026.compress). All 
the others (022.li, 072.sc, 085.gcc, lex, and yacc - they all 
have a value of 0 between 5% and 20%) are referred to as 
moderate-overhead programs. 

In the unified PRC, the low- or moderate-overhead pro- 
grams can evict the high-overhead programs completely if 
their unique page count is large. Thus, for example, even if 

the unique page count of a high-overhead program such as 
cccp is small (35 in this case), a moderate-overhead program 
such as 085.gcc can replace all the pages allocated to cccp 
because it’s unique page count is relatively high (323 in this 
case). If these two programs are run in an alternate fashion 
(which one would expect, because one is a C preprocessor, 
and the other is a C compiler), the number of pages for cccp 
that will have to be rescheduled could be sizable, thus in- 
creasing its overhead, especially for smaller PRC sizes. A 
better organization of the PRC which reduces this effect is 
presented next. 

3.3 Split PRC 

Because program behavior in the presence of a PRC 
varies directly with a program’s overhead ratio, one ap- 
proach is to partition the cache to hold pages for different 
classes of programs, based on the program overhead ra- 
tio. This should prevent cache pollution: a benchmark that 
benefits very little from a PRC displacing the pages of a 
program whose performance is substantially enhanced by 
a PRC. OS-gathered statistics can be dynamically used to 
compute the overhead ratios of the programs, and to deter- 
mine which PRC partition a program should use. The OS 
needs to record the unique page counts, the program execu- 
tion time, along with the average time take to reschedule a 
page, for this purpose. 

01-2 013 

Figure 7. Speedups for PRC performance: 2- 
way split PRC, LRU replacement. 

A PRC with two partitions can be labeled a 2-way split 
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PRC: one partition to hold the low- and moderate-overhead 
programs, and the other for the exclusive use of the high- 
overhead programs. Figure 7 presents results for such a 
PRC across various generation-togeneration reschedul- 
ings and PRC sizes. (Here, both the partitions are of the 
same size, though this is not a requirement - the parti- 
tion sizes can be varied depending on the program unique 
page counts.) Performance for practically all generation-to- 
generation rescheduling combinations improved using the 
2-way split PRC over a unified PRC. In particular, for the 
Generation-l to Generation-3 rescheduling using a PRC- 
5 12, the speedup was 91% of the speedup when using an 
infinite PRC (infinite PRC corresponds to the no-overhead 
experiment as described in Section 2.1). The Generation- 
1 to Generation-2 rescheduling also showed improvement 
with a split cache, particularly for PRC-256 and PRC-5 12. 
The general trend was that larger PRCs performed better, 
as was expected. The speedups of individual benchmarks 
with a 2-way split PRC, for Generation- 1 to Generation-3 
translation is shown in Figure 8. All of the high-overhead 
benchmarks fared well, compared to their performance un- 
der a unified PRC (Figure 6). Their low performance for the 
smaller PRC sizes is because they compete with each others 
in the same partition. It can also be observed that the cache 
pollutioneffect still persists, but is substantially reduced (for 
example, observe the improvement in performance for cccp 
and tbl as compared to the unified PRC, for all PRC sizes). 
Based on these experiments, an N-way split cache with M 
pages per partition would do better than a unified cache with 
M * N entries. In an actual implementation, a PRC can be 
partitioned with as much granularity as the OS allows. 

3.4 Unified PRC with overhead-based replace- 
ment 

Another technique to reduce the cache pollution effect 
observed in the unified PRC is the use of an overhead-based 
PRC page replacement policy instead of LRU. This works 
as follows. With each page in the PRC is associated the 
overhead ratio for the program to which the page belongs. 
A page is not allowed to replace another page from the PRC 
unless its overhead ratio is higher than the overhead ratio 
of that page. This replacement policy ensures that more of 
the high-overhead programs stay PRC-resident, once placed 
in the PRC. The priority of use of the PRC is governed by 
the overhead ratio: the higher the overhead ratio, the higher 
the priority. Consequently, the low- and moderate- over- 
head programs incur higher rescheduling overhead, since a 
relatively less number of their pages get cached between in- 
vocations. Intuitively, this scheme is similar to the multiple 
dynamically resizable partitions within a PRC. 

Figure 9 shows the performance of individual bench- 
marks for Generation-l to Generation-3 translation for this 

Figure 8. Generation-l to Generation-3 
rescheduling: 2-way split PRC, LRU replace- 
ment. 

scheme. It can be observed that the top three high-overhead 
programs - cccp, tbl, grep - perform much better for this 
replacement policy than for LRU (Figure 6). They show 
a perfect speedup for PRC sizes 128 and above. (The low 
speedups for small PRC sizes are due to a large number of 
capacity misses.) On the other hand, the rest of the programs 
show a decrease, albeit small, in the performance for smaller 
PRC sizes compared to LRU. For the larger PRCs, their per- 
formance has, however, improved 4. This is based on the 
fact that for smaller PRC sizes, they too encounter a large 
number of capacity misses, effectively displacing each other 
from the PRC and incurring a larger rescheduling overhead. 

In the case of 008.espresso, 022.li, 023.eqntott, 026.com- 
press, 072.sc, and lex, however, there is little or no perfor- 
mance gain for any of the PRC sizes. This is explained 
by considering the case of lex. Lex has a relatively small 
unique page count of 45 (refer to Table l), compared to the 
323 of 085.gcc. It’s overhead ratio (16.51) however, is only 
slightly lower than that of 085.gcc (17.50) (refer to Table 2). 
Lex gets displaced from the PRC after every invocation of 
085.gcc, and incurs the overhead of rescheduling all of it’s 
pages at each subsequent invocation. It is speculated that 

4As mentioned earlier, all the programs have a perfect speedup for PRC- 
1024 because it is large enough to hold the entire workload throughout the 
experiment. 
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Figure 9. Generation-l to Generation-3 
rescheduling, Unified PRC, overhead-based 
replacement. 

the impact of this phenomenon may be reduced if OH.gcc 
was allowed to displace these programs only if they were 
invoked in the relatively remote past. A combination of the 
LRU and the overhead-based schemes may prove effective 
in such cases, and is a topic of future research. 

Nonetheless, all of these programs (OO&e.spresso, 022.li, 
023.eqntott, 026..compress, 072.sc, and lex) being low- or 
moderate-overhead, the overall performance across all pro- 
grams is better than the previous two schemes. This is 
apparent from Figure 10. When compared with the perfor- 
mance of the unified PRC with LRU replacement (Figure 5), 
and the 2-way split PRC with LRU replacement (Figure 7), 
the overhead-based replacement performs better across all 
the PRC sizes. The general performance trend observed for 
the overhead-based replacement policy confirms the intu- 
ition that the priority of use of the PRC is dictated by the 
overhead ratio. 

4 Conclusion 

The object-code compatibility problem for VLIWs can 
be approached by either software or hardware methods. A 
technique called dynamic rescheduling which uses operating 
system support to reschedule a program on a page-by-page 

f 

GZ-1 03-l 01-2 Gl-3 

Figure 10. Speedups for PRC performance: 
Unified PRC, overhead-based replacement. 

basis during first-time page faults has been reviewed. The 
overhead of this technique is the time required to reschedule 
and the space required to save the rescheduled pages. The 
number of times a page has to be rescheduled can be reduced 
by saving the rescheduled version on disk, across program 
executions. 

The persistent rescheduled-page cache was introduced 
as part of a scheme that saves rescheduled pages by using 
disk caching. The PRC reduces the number of times a page 
is rescheduled across multiple program executions. The 
architecture and management of the PRC was described. 
Specifically, the use and implementation of a system-wide, 
shared PRC was investigated. Unified caches were simu- 
lated to measure performance. The conclusion was drawn 
that PRCs in general are effective at reducing the overhead 
associated with dynamic rescheduling, but the effectiveness 
varies across programs and is dependent on the overhead 
ratio associated with a program. It was identified that the 
high-overhead programs are effectively displaced by the low 
overhead program from the PRC dependent on the invoca- 
tion pattern in the workload. A partitioned cache organi- 
zation was then introduced that classified programs based 
on their overhead ratios. A bi-partitioned scheme called 
a Split PRC was simulated and found to have improved 
performance over a unified PRC. In the third scheme, an 
overhead-based page replacement policy was implemented 
in aunified PRC, and it was found that the performance of the 
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high-overhead programs improved substantially compared 
with the two previous schemes, while the low-overhead pro- 
grams fared only slightly worse than the previous schemes. 

Future research dealing with PRCs will investigate the 
use of other cache organizations. For example, determina- 
tion of the number of partitions ideal for a split PRC and an 
investigation of a per-program PRC structure are underway. 
Also, a study of a combination algorithm for page replace- 
ment, based on the LRU and the overhead-based schemes is 
being conducted. 
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