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Abstract

Lack of object code compatibility in VLIW architec-
tures is a severe limit to their adoption as a general-
purpose computing paradigm. Previous approaches
include hardware and software techniques, both of
which have drawbacks. Hardware techniques add to
the complexity of the architecture, whereas software
techniques require multiple executables. This paper
presents a technique called Dynamic Rescheduling
that applies software techniques dynamically, using
intervention by the operating system. Results are
presented to demonstrate the viability of the tech-
nique using the Illinois IMPACT compiler and the
TINKER architectural framework.

1 Introduction

Lack of object-code compatibility across generations
of a VLIW architecture is an often raised objection to
its use as a general-purpose computing paradigm [1].
A program binary compiled for VLIW generation x

cannot be guaranteed to execute correctly on gen-
erations x + n or x � n, for a reasonable value of
n. This means that an installed software base of
binaries cannot be built around a family of VLIW
generations. The economic implications of this prob-
lem are enormous, and an e�cient solution is nec-
essary if VLIW architectures are to succeed. Two
classes of approaches to this problem have been re-
ported in the literature: hardware approaches and
software approaches. The hardware approaches in-
clude split-issue proposed by Rau [2], and the �ll-unit
proposed by Melvin, Shebenow, and Patt [3] and ex-
tended by Franklin and Smotherman [4]. Although
these techniques provide compatibility, they do so at
the expense of hardware complexity that can poten-
tially impact cycle time. A typical software approach
is to statically recompile the VLIW program from
the object �le. This approach requires generation of

multiple executables, which poses di�culties for com-
mercial copy protection and system administration.
This paper proposes a new scheme called Dynamic
Rescheduling to achieve object-code compatibility be-
tween VLIW generations. Dynamic rescheduling ap-
plies a limited version of software scheduling during
�rst-time page faults, requiring no additional hard-
ware support. Making this practical requires support
from the compiler, the ISA, the operating system, and
a fast algorithm for rescheduling. These topics are
discussed in detail below. Results are presented that
suggest dynamic rescheduling has the potential to ef-
fectively solve the compatibility problem in VLIW
architectures.

1.1 The VLIW compatibility problem
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Figure 1: Scheduled code for original VLIW machine.

The compatibility problem is illustrated in the fol-
lowing example. Figure 1 shows an example VLIW
schedule for a machine with two integer ALUs, and

Page 1



one unit each of Multiply, Load, and Store. The la-
tencies of the units are as shown. Assume that this
represents �rst generation of the machine. Figure 2
shows the next-generation VLIW where the Multiply
and Load latencies have changed to 4 and 3 cycles
respectively. The old schedule cannot be guaranteed
to execute correctly on this machine due to the 
ow
dependence between operations B and C, between D
and H, and between E and F.
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Figure 2: Next generaton VLIW machine: Incom-
patibility due to changes in functional unit latencies
(shown by arrows). The old latencies are shown in
parentheses. Operations C, H, and, F are now pro-
duce incorrect results because of the new latencies for
operations B, D, and E.

Figure 3 shows the schedule for the next-next-
generation machine that includes an additional mul-
tiplier. The latencies of all FUs remain as shown in
Figure 1. Code scheduled for this new machine would
not execute correctly on the older machines because
the scheduler has moved operations in order to take
advantage of the additional multiplier. (In particu-
lar, operations E and F have been moved.) There
is no trivial way to adapt this schedule to the older
machines. This is the case of downward incompatibil-
ity between generations. In this situation, if di�erent
generations of machines share binaries (e.g., via a �le
server), compatibility requires either a mechanism to
adjust the schedule or a di�erent set of binaries for
each generation.
A scheme which would guarantee correct execu-

tion of a VLIW binary on any generation of the ma-
chine would su�ce to solve the compatibility prob-
lem. Such a solution must be e�cient in order to be
viable. Also, it must be implemented from the very
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Figure 3: Downward incompatibility due to change
in the VLIW machine organization: no trivial way to
translate new schedule to older machine.

�rst generation to ensure upward compatibility with
future generations.
Organization of the remainder of this paper is as

follows. Section 2 describes some relevant terminol-
ogy and the previous work done in this area. Dynamic
rescheduling technique is described in detail in Sec-
tion 3. Section 4 presents the experimental evaluation
of this technique. The paper ends with concluding re-
marks in Section 5.

2 Related Work

2.1 Terminology

The terminology used in this paper is originally from
Rau [2], and is introduced here for the discussion that
follows. VLIW architectures are horizontal machines,
with each wide instruction-word, orMultiOp, consist-
ing of several operations, or Ops. All Ops in a Mul-
tiOp are issued in the same execution cycle. VLIW
programs are latency-cognizant, meaning that they
are scheduled with knowledge of the functional unit
latencies. A VLIW architecture which runs latency-
cognizant programs is termed a Non-Unit Assumed

Latency (NUAL) architecture. A Unit Assumed La-

tency (UAL) architecture assumes unit latencies for
all functional units. Many superscalar architectures
are UAL.
There are two scheduling models for latency-

cognizant programs: the Equals model and the Less-
Than-or-Equals (LTE) model [2]. An Equals model
schedules for a VLIW architecture on which each op-
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eration takes exactly its speci�ed execution latency.
In contrast, an LTE model schedules assuming any
operation may take less than or equal to its speci�ed
latency. The Equals model produces slightly shorter
schedules than the LTE model, mainly due to register
reuse. However, the LTE model simpli�es the imple-
mentation of precise interrupts and provides binary
compatibility when latencies are reduced. The sched-
uler in the back-end of the compiler and the dynamic
rescheduler presented in this paper follow the LTE
scheduling model.

2.2 Previous work

The working principle behind hardware techniques
used to support object-code compatibility in VLIW
machines is shown in Figure 4. It is similar to su-
perscalars in that both perform run-time scheduling
in hardware. The di�erence, however, is that the
schedule presented to superscalar dynamic schedul-
ing hardware is UAL, whereas the scheduling hard-
ware in a dynamically scheduled VLIW processor is
presented with a NUAL schedule.

scheduled code
(old architecture)

parallel execution

before run time at run time

dynamically
reschedule in

hardware

Figure 4: Hardware approach to compatibility.

Rau [2] presented a hardware technique, called
Split-Issue, for dynamic scheduling in VLIW proces-
sors. In order to handle NUAL programs, it pro-
vides hardware capable of splitting each Op into an
Op-pair: (read and execute; destination writeback).
Read and execute uses an anonymous (i.e. a non-
architected) register as its destination, whereas
destination writeback copies the destination of
read and execute to the destination speci�ed in the
original Op. Read and execute operation is is-
sued in the next available cycle, provided there

are no dependence or resource constraints. The
destination writeback operation is scheduled to
be issued in the latest cycle after (issue cycle

(read and execute) + original operation latency �

1). To ensure that the destination writeback opera-
tion is not issued before the read and execute com-
pletes, support in the form of hardware 
ags is pro-
vided. The splitting of operations and issuing them in
the correct time order preserves the program seman-
tics, and correct program execution is guaranteed.

The concept of �ll-unit was originally proposed by
Melvin, Shebanow, and Patt in [3], and was extended
in [4]. Although it was originally not aimed at achiev-
ing compatibility in VLIWs, it can be adapted to ful-
�ll this goal. Special hardware consisting of the �ll-
unit and a shadow cache is used in this technique. It
works as follows: the processor routinely executes a
UAL program operation stream. Concurrent to the
execution, the �ll-unit compacts these operations into
VLIW-like MultiOps. These newly formed MultiOps
are stored in the shadow cache. When an operation
requested by the fetch unit is available in the shadow
cache, all the operations in the MultiOp containing
this operation are issued. The formation of a new
MultiOp by the �ll-unit is terminated when a branch
instruction is encountered.

A limitation of the hardware approaches is that
the scope for scheduling is limited to the window of
Ops seen at run-time, hence available ILP is rela-
tively less than what can be exploited by a compiler.
These schemes also may result in cycle time stretch, a
phenomenon due to which many are considering the
VLIW paradigm over superscalar for future genera-
tion machines.

Static recompilation is the most prevalent software
technique (illustrated in Figure 5). It recompiles the
entire program o�-line, and hence can take advantage
of sophisticated compiler optimizations to attain su-
perior performance. Alternatively, complete recom-
pilation of the program may be avoided by maintain-
ing multiple copies of the program for various target
architectures in a partitioned object �le. An appro-
priate module can be scheduled at installation time.
The main drawback of these methods is that they
involve an extra step to achieve code compatibility.
This introduces a deviation from the normal devel-
opment process for the developer, and from the rou-
tine installation process for the user. Also related
is the issue of potential copy protection violations.
Software licensing is done on a per-copy basis; hav-
ing multiple specialized copies of the same program,
even though the user plans to use only the one for his
machine, may well become an expensive proposition.
Another problem is that the storage space require-
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Figure 5: Rescheduling the program o�-line for com-
patibility.

ments of multiple copies may be excessive. These
problems suggest that compatibility via o�-line re-
compilation may not be easy to commercialize.

Of related interest are the techniques used to mi-
grate the software across to a new machine architec-
ture. Silberman and Ebcioglu [5] describe in detail
an e�ort to gain performance advantage by translat-
ing and running old CISC object code on RISC, Su-
perscalar and VLIW machines. Binary Translation

used by Digital Equipment Corp. to migrate from
the VAX/VMS environment to its newer Alpha ar-
chitecture is documented in [6]. Apple Computers
used the technique of emulation to migrate the soft-
ware compiled for Motorola 680x0 to the PowerPC.
Insignia Solutions has presented the e�ort of emulat-
ing Intel x86 architectures on modern RISC machines
in [8]. A short survey of related techniques and issues
can be found in [9].

3 Dynamic Rescheduling

Dynamic rescheduling is illustrated in Figure 6.
When a program is executed on a machine generation
other than what it was scheduled for, the dynamic
rescheduler is invoked. The exact sequence of events
is as follows: The OS loader reads the program binary
header and detects the generation mismatch.1 After
the �rst page of the program is loaded for execution,
the page fault handler invokes the dynamic resched-
uler module. The rescheduler reschedules the page

1The version information is retained as part of the process

table entry for the process.

parallel execution

before run time at run time

dynamically
reschedule in

software

first-time
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Figure 6: Dynamic Rescheduling.

for execution on the current host. This process is re-
peated each time a new page fault occurs. Translated
pages are saved to swap space on replacement. Only
the pages which are executed during the life-span of
the program are rescheduled. The knowledge of archi-
tectural details of the executable's VLIW generation
is necessary for the dynamic rescheduler to operate,
and is retained in the executable image.

Dynamic rescheduling poses some interesting prob-
lems which can reduce its e�ectiveness as a run-time
technique. The rest of this section discusses these
problems in detail and presents solutions. This pa-
per assumes that the code scheduled for a VLIW
machine is logically organized as a sequence of
scheduling structures called Superblocks or Hyper-
blocks [10], [11]. Construction of Superblocks and
Hyperblocks is shown in Figures 7 and 8, respectively.
The implementation of the dynamic rescheduling al-
gorithm uses the TINKER architecture [12]. TIN-
KER is based on the parametric PlayDoh VLIW ar-
chitecture from Hewlett-Packard Laboratories [13].
Some of the features in TINKER have been de-
signed speci�cally to solve the problems faced in dy-
namic rescheduling. For example, the TINKER bit-
encoding for MultiOps provides a Block-Bit in an Op
to mark a entry point (merge point) of a Hyperblock
or a Superblock. This information is used by the
rescheduler to de�ne the scope of rescheduling. More
examples are presented later in this section.

In the discussions that follow, only acyclic sched-
uled code is considered. Software pipelining is not
incompatible with the techniques presented, but a de-
tailed discussion of dynamic rescheduling for software
pipelined loops is beyond the scope of this paper.
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Figure 7: Example of Superblock formation. Note
that both Superblocks and Hyperblocks have a single
entry, multiple exits and no side entrances. In gen-
eral, Hyperblocks provide larger scope for ILP than
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Figure 8: Example of Hyperblock formation.

3.1 Problems and their solutions

3.1.1 Changes in Code size

The dynamic rescheduling algorithm constructs a new
schedule from the old schedule, using the knowledge
of the old and new machine organizations and the
execution latencies of the functional units. The new
schedule may grow larger in size due to the inser-
tion of empty cycles, or may shrink in size due to the
deletion of empty cycles from the old schedule. This
insertion or deletion of empty cycles introduces vari-
ation in code size. This phenomenon is illustrated in

Figure 9, which assumes two simple machines each
having integer ALU (IALU), FP add, FP multiply
(FPMul), load, store, branch, and predicate compar-
ison (Cmpp) units. Further, each Op is assumed to
be 8-bytes wide. The number of nops in the upper left

IALU IALU FPAdd FPMul Load Store Cmpp Br

A nop B C D nop nop

nop nop nop nop nop nop nop nop

E F nop nop nop nop nop nop

G nop nop nop nop nop nop H

nop

Load latency increases,
one less IALU

E, F dependent on C,   C takes 2 cycles

256 bytes total FPAdd FPMul Load Store Cmpp Br

B C D nop

nop nop nop nop nop nop

nop nop nop nop nop nop

nop nop nop nop nop

nop nop

IALU

A

nop

E

F

nop nop nop nop nop nopnop

G nop nop nop nop nop H

nop

336 bytes total (10 extra nop s)

Figure 9: Page size change due to no-ops.

sample schedule of Figure 9 is 24. After the code is
rescheduled for a machine having one less IALU and
increased Load latency, the number of nops in the
rescheduled code becomes 34, resulting in a code size
increase of (34�24)�8 = 80 bytes. As this example il-
lustrates, any change in the size of the program would
cause an over
ow or under
ow at the page boundary.
It is neither easy nor practical to handle such changes
in the page boundaries at run time. Hence, changes
in code size due to rescheduling must be avoided.
This problem is solved via e�cient encoding pro-

vided in TINKER (see Figure 10). The �rst three
�elds of a TINKER Op are: Header bit, Optype,
and the Pause. An Op with Header Bit = 1 signi-
�es the beginning of a new MultiOp, and it is called
a Header Op. Optype indicates the type of the func-
tional unit in which the Op will execute, thus bypass-
ing the need for nops within a MultiOp. The pause

�eld in each Header Op encodes the number of empty
cycles, if any, that would follow the current MultiOp.
(No meaning is attached to the value of pause in a
non-Header Op). The Op encoding in TINKER thus
hides the nops, and ensures that code rescheduling
within a basic block does not trigger any code size
changes. Figure 10 shows the rescheduled code pre-
viously shown in Figure 9, as it would be encoded in
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Rescheduled code

Figure 10: An example of TINKER Encoding scheme.
Each Op is a �xed-format 64-bit word. The format
includes the Header Bit , optype, and the pause �elds,
which together eliminate the need for nops in code.

TINKER. It can be noted that the size of code has
not changed, the nops in each MultiOp have been
squeezed out using the optype �eld, and empty cy-
cles have been squeezed out using the pause �eld.
The code size remains 64 bytes in total for both the
machines.

3.1.2 Speculative code motion

Two problems are introduced by speculative code mo-
tion, if any, during rescheduling, and are illustrated
with an example in Figure 11. The �rst problem is
caused by incorrect execution of code due to target
invalidation. In the example, Op A is the target of
a branch from elsewhere in the code. If all Ops A,
B, C, D are speculatively moved above the branch
(beq) which was originally before Op A, then this
motion invalidates the target of the incoming branch.
The second problem is caused by patchup code which
may be necessary to undo e�ects of code motion. For
example, if the outgoing branch (beq) is taken, the
e�ects of speculating Ops A, B, C, and D, may need
to be undone by inserting patchup code at the target
of this branch. This target which may very well lie
in another page, which in turn may not be memory
resident. Even if the target lies in the current page,
code insertion will cause over
ow of code at the page
boundary. For these reasons, generation of patchup

beq

beq

A
B
C
D

A
B
C
D

(1) branch target
invalid

from another page

to another page

(2) may need patchup code
to undo effects of A/B/C/D

Problems:

Figure 11: Problems introduced by speculative code
motion.

code must be avoided during rescheduling.
To solve the �rst problem, the dynamic reschedul-

ing algorithm takes advantage of the property of Su-
perblocks/Hyperblocks that they have a unique entry
point at the top of the block, and no side-entrances
(i.e. merge-points). Each Superblock/Hyperblock in
a page is rescheduled individually. The compiler is
page-size cognizant when it forms Hyperblocks or Su-
perblocks, guaranteeing that they do not span page
boundaries. Since speculation does not happen out-
side a Superblock/Hyperblock, branch target invali-
dation is eliminated.

The second problem could be solved by performing
speculation only during the initial compilation and
con�ning rescheduling to basic blocks (i.e. no specu-
lation during rescheduling). But this would limit the
opportunity to expose more ILP in a more parallel
VLIW architecture. Instead, dynamic rescheduling
performs limited speculation, but only if it requires
no patchup code. To support this, the compiler saves
the live-out set info for each branch in the program
in the object �le (see Section 3.2). During reschedul-
ing, if the rescheduler detects that a speculatable Op
modi�es a register in the live-out set of the Branch,
it cancels the move. Any other Op not modifying a
member of live-out set can be moved, since it does
not require generation of patchup code.

3.1.3 Register �le changes

Better hardware implementation techniques some-
times allow for more registers in an advanced gen-
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eration, thus providing more opportunity to reduce
register pressure. Although it is not traditional to
allow a change in the register �le size in the ISA, it
is interesting to consider this possibility. From the
perspective of dynamic rescheduling technique, such
a change poses additional problems. When code is
rescheduled for a machine with a di�erent register
�le architecture, the rescheduler must perform regis-
ter re-allocation. It is likely that spill code will be
generated during this process, causing an increase in
code size. This will violate the requirement that the
page-size cannot change at run-time. The dynamic
rescheduling algorithm presented in this paper cur-
rently assumes that the register �le architecture does
not change across generations.2

3.2 Additional object-�le information

The following is a review of the information included
in the object �le to support dynamic rescheduling.
The version of the VLIW architecture for which the
code is scheduled is encoded in the header of the
object �le, along with information about the archi-
tecture (i.e., the number and latency of each func-
tional unit type). Also, the block boundaries (for
Hyperblocks and Superblocks) are marked using the
Hyperblock Bit in Ops. The live-out register sets for
each branch in the code are included if the rescheduler
is allowed to perform speculative code motion with-
out the patchup code hazard. The live-out sets are
organized in a non-loadable segment of the object-�le,
and hence do not interfere with layout of the code or
data segments. The live-out segment is read and used
by the rescheduler only when needed.

The increase in the size of the object �le due to the
live-out sets could be of concern, especially if the pro-
gram is known to contain a large number of branch in-
structions. To address this concern, Table 1 presents
live-out set sizes measured for the branch instructions
in the benchmarks. For each benchmark, the mini-
mum and maximum of live-out set sizes are shown.
A clever encoding can be used to e�ciently store this
information in the object �le. If the live-out set is
small, a byte-encoded register list is constructed. If
the set is large, a bit vector encoding is used.

2The dynamic rescheduling algorithm can withstand the

changes in register �le architecture in a limited way. An in-

crease in the number of registers with no change in compiler's

subroutine calling conventions, can be handled by the algo-

rithm without generation of spill-code. This is true only for the

programs originally scheduled for the machine with a smaller

register �le, being rescheduled for the machine with a larger

register �le, and not vice versa.

Table 1: Live-out set sizes for branches in various
benchmarks.

Liveout set size

Benchmark #Branches min max average

cccp 103,405 1.00 116.00 25.00

compress 162,004 1.00 98.00 38.80
eqn 162,801 5.00 117.00 19.53

eqntott 9,261 1.00 53.00 21.58

espresso 22,257 1.00 73.00 14.76
lex 55,320 1.00 58.00 18.89

tbl 19,487 1.00 139.00 34.00

wc 3,616 2.00 86.00 19.38
yacc 139,166 1.00 142.00 39.60

Average 75,257 1.56 98.00 25.73

3.3 Operating system support

The pieces of the mechanism which invokes the dy-
namic scheduling algorithm constitute the OS sup-
port for this technique. Some of these were men-
tioned earlier in this section, for example, (1) the de-
tection of the machine generation mismatch by the
OS loader (2) invocation of the dynamic rescheduler
by page fault handler at �rst time page faults, and
(3) the machine architecture database maintained in
the OS tables. Yet another part of the OS that plays
crucial role is the �le system bu�er cache. The bu�er
cache routinely holds the pages that were used in the
recent past. This is a standard mechanism available
in modern operating systems, which directly helps
amortize the cost of rescheduling over the �rst-time
page accesses. The penalty of rescheduling is there-
fore not incurred for every page access made during
the life-span of the program.

3.4 Dynamic rescheduling algorithm

This section brie
y describes the core of the dynamic
rescheduling algorithm. It is adapted from a sim-
ulation algorithm for out-of-order execution proces-
sors, described in [14]. It is assumed that the VLIW
program is latency-cognizant. The algorithm has
full knowledge of the functional unit latencies of the
original machine (called the old machine), and the
machine for which the program will be rescheduled
(called the new machine). Both old machine and
new machine are assumed LTE (less-than-or-equals)
machines. Two main data structures keep track of
data dependencies between Ops: A scoreboard of
registers helps determine the 
ow and output depen-
dencies, and a register usage matrix keeps track
of anti-dependencies. The resource constraints are
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handled using a resource usage matrix. Memory
accesses are modeled as accesses to single pseudo-
register, and all LOADs and STOREs source and sink
this register, respectively. This ensures that their rel-
ative ordering is not altered while rescheduling.
A two-pass implementation of rescheduling would

work as follows. In the �rst step, build a dependence
graph for the hyperblock under consideration. In the
second step, perform list scheduling. This approach
is slow, and hence is more suitable for an o�-line to
compatibility. Dynamic rescheduling, instead takes
a single-pass approach: it implicitly builds the de-
pendence information on the scoreboard and in the
register usage matrix, and schedules Ops with
the knowledge of FU latencies. The main control
structure of the algorithm is shown in the Appendix.

4 Experimental Evaluation

4.1 Methodology

The set of benchmarks used for evaluation of dy-
namic rescheduling is shown in Table 2. Three
benchmarks are from SPECint92 suite (026.compress,
008.espresso, 023.eqntott), while the others are Unix
text-processing utilities (tbl, eqn), development tools
(lex, yacc) and a language processor (cccp). This
set of benchmarks was chosen because it represents
the typical non-numeric workloads in various user-
environments. The three benchmarks from SPEC
represent the workloads commonly used today in in-
dustry to characterize and compare performance of
machines.3

Table 2: Benchmarks used for evaluation.

Benchmark Description

cccp C pre-processor
eqn Equation formatter
lex Scanner generator
yacc Parser generator
tbl Table formatter
026.compress compression/decompression utility
023.eqntott Truth Table generator for logic circuits
008.espresso PLA Optimization

Two TINKER machine models, termed TINKER-
A and TINKER-B, were used in the evaluation. The

3No results have been presented for the 
oating-point

benchmarks, because the rescheduler does not yet implement

rescheduling for software pipelined loops. Comparing dynamic

rescheduling results would be unfair in their case as such com-

parison would be based on their performance with scheduling

of acyclic code only.

TINKER-A model has eight functional units and rep-
resents a hypothetical �rst-generation VLIW archi-
tecture. Its organization and FU latencies are as
shown in Table 3. Table 4 shows the organization and
FU latencies for TINKER-B. Although it is di�cult
to draw direct comparisons, TINKER-A is roughly
equivalent to a two-issue out-of-order execution su-
perscalar (due to the two IAlu units). Similarly,
TINKER-B is roughly equivalent to a four-issue su-
perscalar.

Table 3: TINKER-A Machine Model.

FU Number of Units FU Latency

Integer ALU 2 1
Load 1 2
Store 1 1
Branch 1 1
FP Add 1 1
FP Mul 1 3
Predicate Unit 1 1

Table 4: TINKER-B Machine Model.

FU Number of Units FU Latency

Integer ALU 4 1
Load 4 2
Store 2 1
Branch 1 1
FP Add 1 1
FP Mul 1 3
Predicate Unit 3 1

The dynamic rescheduling algorithm has been im-
plemented in a tool called October. October is de-
signed to interact with the IMPACT [15] framework
from University of Illinois. The IMPACT front-
end compiles the benchmarks, pro�les, optimizes, if-
converts the code to do hyperblock formation, and
presents the code to October in a suitable intermedi-
ate format. A three part method was used in order
to evaluate the dynamic rescheduling technique, and
is described as follows. In the �rst part, intermedi-
ate code for a benchmark was scheduled for a given
machine model (either TINKER-A or TINKER-B),
using the TINKER scheduler. It was then pro�led
in order to �nd the worst case estimate of execution
time of the benchmark, in terms of the number of
cycles. This was called the Native mode execution
of the program. This experiment also measured the
number of unique page accesses for the benchmark,
as well as the frequency of access for each page of
code. In the second part, the code scheduled for Na-
tive mode execution was rescheduled by October for
the other machine model. Execution time estimate
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for this rescheduled code was also generated as de-
scribed before. This time estimate indicates the per-
formance of the rescheduled code without taking into
account the rescheduling overhead incurred by Octo-
ber. Hence this part is termed as no overhead exper-
iment.

In the third part, October itself was compiled,
scheduled for the machine model used in the �rst
part, and then used as a benchmark. The input to the
Octber benchmark were pages taken at random from
each of the other benchmarks. The performance of
the October benchmark was used to �nd the average
time to reschedule a page on each of TINKER-A and
TINKER-B. This was found to be 54,272 cycles for
the rescheduler executing on TINKER-A, and 51,200
cycles for TINKER-B. This was then combined with
the number of unique page accesses from the �rst step
to estimate the total number of execution cycles for
the rescheduling overhead. The execution time of the
no-overhead experiments are stretched by this �gure
and termed the w/overhead experiment. Finally, in
order to compare the performance achieved in the
above three parts, the speedup w.r.t a single-unit,
single-issue processor model (called the base model)
was calculated. It is de�ned as: speedup = (number
of cycles of execution estimated in the experiment) /
(number of cycles of execution estimated for the base
model). All three parts assumed a page size of 4K
bytes.

4.2 Results

Table 5: Measurements of Unique Page Accesses.

Benchmark Tinker-16 Native Tinker-8 Native

cccp 33 32
compress 8 8

eqn 39 41
eqntott 21 19
espresso 132 129

lex 39 39
tbl 45 44
wc 2 2
yacc 50 49

Avg.(rounded) 41 41

The experiments described above were run for each
benchmark, and are presented in Figures 12 and 13.
Figure 12 shows the speedups for rescheduling
TINKER-A code to TINKER-B, with rescheduling
overhead (w/overhead) and without the rescheduling
overhead (no overhead), and compares them with the
speedup achieved by the Native mode execution on
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Figure 12: Performance of dynamic rescheduling:
TINKER-A to TINKER-B.

TINKER-B (Native). Figure 13 presents the cor-
responding numbers for rescheduling of TINKER-B
code to TINKER-A.

It can be seen that the no overhead speedup com-
pares quite well with that of Native. The only excep-
tion to that is compress in TINKER-A to TINKER-B
(Figure 12), where the limitations placed on specula-
tion during rescheduling are too restrictive.

The performance of rescheduled code when over-
head is included (w/overhead in Figures 12 and 13)
is less than the no overhead results, as should be
expected. This re
ects the e�ectiveness of dynamic
rescheduling as a run-time technique. The perfor-
mance compares well, suggesting the technique is ef-
fective in most cases. The notable exceptions are
cccp, and tbl : in their case the penalty due to over-
head is quite high. This phenomenon can be ex-
plained by observing the unique page access counts
presented in Table 5, which is identical to the num-
ber of �rst time page faults. Cccp and tbl are rela-
tively short-running benchmarks, and the �rst time
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Figure 13: Performance of dynamic rescheduling:
TINKER-B to TINKER-A.

page faults are higher compared to their overall ex-
ecution time than for the other benchmarks. This
implies that dynamic rescheduling may not execute
short-running programs e�ciently.

Overhead can be reduced for both long-running
programs and short-running programs by providing
a segment in the executable �le to cache translated
pages between runs. The operating system can be
used to maintain this segment, updating it on pro-
gram exit. Table 5 suggests a size between 32 to
64 pages for this table, although smaller sized tables
may perform acceptably depending on the placement
and replacement policies used for page cache updates.
Such a caching scheme could improve the perfor-
mance of dynamic rescheduling from the w/overhead
performance to the no overhead performance. This
topic is currently being studied by the authors.

5 Concluding Remarks

This paper has presented a technique to guaran-
tee VLIW-to-VLIW object code compatibility across
generations without the need for hardware or multiple
executables. It relies on a a limited version of soft-
ware scheduling applied during �rst-time page faults.
The technique requires support from the compiler,
the ISA, the operating system, and a fast algorithm
for rescheduling. Results were presented that suggest
dynamic rescheduling has the potential to e�ectively
solve the compatibility problem in VLIW architec-
tures. Future work in this area includes the use of
dynamic rescheduling for cyclic code schedules such
as modulo scheduled loops, and a further develop-
ment of the translated page cache described above.
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Appendix: the algorithm

Dynamic_Reschedule (input: old_schedule)

{

for (each cycle of execution

in the old_schedule) {

/* Step 1:

* resolve the resource constraints.

*/

for (each Op from old_schedule that

writes back in this cycle) {

/* Tdelta is stored in the Op:

* see Step 3

*/

Get the Tdelta for the Op;

Look up resource usage matrix to

Determine Trc for the Op;

Update Resource_Usage_Matrix;

Update Register_Usage_Matrix;

Set cycle of the Op in new_schedule

= Trc;
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}

/* Step2: Update the Scoreboard:

* reserve destination registers

* through the latencies of execution

* according to the old schedule.

*/

for (each Op from old_schedule that

initiates in this cycle) {

Reserve the dest operand

of Ops on the Scoreboard through

the latency of the old_machine;

Set most recent writer of the

destination operand = this op;

}

/* Step 3: Dependence checking. */

initialize Tdelta = 0;

Tdelta

= anti_dependence_check (Op, Tdelta);

Tdelta

= pure_dependence_check (Op, Tdelta);

Tdelta

= output_dependence_check (Op, Tdelta);

Store Tdelta into the Op;

}

}

References

[1] J. S. O'Donell, \Superscalar vs. VLIW,"
Comp. Arch. News, vol. 23, pp. 26{28, Mar.
1995.

[2] B. R. Rau, \Dynamically scheduled VLIW
processors," in Proc. 26th Ann. International

Symposium on Microarchitecture, (Austin, TX),
pp. 80{90, Dec. 1993.

[3] S. Melvin, M. Shebanow, and Y. Patt, \Hard-
ware support for large atomic units in dynam-
ically scheduled machines," in Proc. 21th Ann.

International Symposium on Microarchitecture,
(San Diego, CA), pp. 60{66, Dec. 1988.

[4] M. Franklin and M. Smotherman, \A �ll-unit
approach to multiple instruction issue," in Proc.

27th Ann. International Symposium on Microar-

chitecture, (San Jose, CA), pp. 162{171, Dec.
1994.

[5] G. Silberman and K. Ebcioglu, \An archi-
tectural framework for supperting heteroge-
neous instruction-set architectures," Computer,
vol. 26, pp. 39{56, June 1993.

[6] R. L. Sites, A. Cherno�, M. B. Kerk, M. P.
Marks, and S. G. Robinson, \Binary transla-
tion," Comm. ACM, vol. 36, pp. 69{81, Feb.
1993.

[7] P. Koch, \Emulating the 68040 in the Pow-
erPC Macintosh," in Proc. Microprocessor Fo-

rum, Oct. 1994.

[8] P. Stears, \Emulating the x86
and DOS/Windows in RISC environments," in
Proc. Microprocessor Forum, Oct. 1994.

[9] R. Cmelik and D. Keppel, \SHADE: A fast
instruction-set simulator for execution pro�l-
ing," in Fast Simulation of Computer Architec-

tures (T. M. Conte and C. E. Gimarc, eds.),
Boston, MA: Kluwer Academic Publishers, 1994.

[10] W. W. Hwu, S. A. Mahlke, W. Y. Chen, P. P.
Chang, N. J. Warter, R. A. Bringmann, R. G.
Ouellette, R. E. Hank, T. Kiyohara, G. E. Haab,
J. G. Holm, and D. M. Lavery, \The superblock:
An e�ective structure for VLIW and superscalar
compilation," The Journal of Supercomputing,
vol. 7, pp. 229{248, Jan. 1993.

[11] S. A. Mahlke, D. C. Lin, W. Y. Chen, R. E.
Hank, and R. A. Bringmann, \E�ective compiler
support for predicated execution using the Hy-
perblock," in Proc. 25th Ann. Int'l. Symp. on

Microarchitecture, (Portland, OR), pp. 45{54,
Dec. 1992.

[12] \TINKERmachine language manual," 1995. De-
partment of Electrical and Computer Engineer-
ing, North Carolina State University, Raleigh
NC 27695-7911.

[13] V. Kathail, M. Schlansker, and B. R. Rau, \HPL
PlayDoh architecture speci�cation: version 1.0,"
Tech. Rep. HPL-93-80, Hewlett-Packard Labora-
tories, Technical Publications Department, 1501
Page Mill Road, Palo Alto, CA 94304, Feb. 1994.

[14] T. M. Conte, Systematic computer architecture

prototyping. PhD thesis, Department of Elec-
trical and Computer Engineering, University of
Illinois, Urbana, Illinois, 1992.

[15] P. P. Chang, S. A. Mahlke, W. Y. Chen, N. J.
Warter, and W. W. Hwu, \IMPACT: An archi-
tectural framework for multiple-instruction-issue
processors," in Proc. 18th Ann. International

Symposium Computer Architecture, (Toronto,
Canada), pp. 266{275, May 1991.

Page 11


