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Abstract 

Value prediction exploits localities in value streams. 
Previous research focused on exploiting two types of 
value localities, computational and context-based, in the 
local value history, which is the value sequence produced 
by the same instruction that is being predicted. Besides 
the local value history, value locality also exists in the 
global value history, which is the value sequence 
produced by all dynamic instructions according to their 
execution order. In this paper, a new type value locality, 
the computational locality in the global value history is 
studied. A novel prediction scheme, called the gDiff 
predictor, is designed to exploit one special and most 
common case of this computational model, the stride-
based computation, in the global value history. Such a 
scheme provides a general framework to exploit global 
stride locality in any value stream. Experiments show that 
there exists very strong stride type of locality in global 
value sequences. Ideally, the gDiff predictor can achieve 
73% prediction accuracy for all value producing 
instructions without any hybrid scheme, much higher than 
local stride and local context prediction schemes. 
However, the capability of realistically exploiting locality 
in global value history is greatly challenged by the value 
delay issue, i.e., the correlated value may not be available 
when the prediction is being made. We study the value 
delay issue in an out-of-order (OOO) execution pipeline 
model and propose a new hybrid scheme to maximize the 
exploitation of the global stride locality. This new hybrid 
scheme shows 91% prediction accuracy and 64% 
coverage for all value producing instructions. We also 
show that the global stride locality detected by gDiff in 
load address streams provides strong capabilities in 
predicting load addresses (coverage 63% and accuracy 
86%) and in predicting addresses of missing loads (33% 
coverage and 53% accuracy). 

1. Introduction 

Prediction is a powerful technique for accelerating 
instruction processing. Successful prediction schemes 

generally predict a single bit of information. For example, 
predicting a branch direction enables the speculation of 
control dependencies. Speculating pure data dependencies 
however requires predicting more than one bit of 
information. Skepticism regarding these techniques is 
often centered on the difficulty of predicting 32 (or 64) 
bits of information. Locality in the value history of a 
program indicates that the information content is 
significantly less than 32 bits worth [6, 8, 17, 18, 25].  
Exploiting this locality requires a significant investment in 
hardware for modest prediction accuracy [7, 18, 25, 30]. 
But if the hardware cost can be tolerated and high 
accuracy can be reached, value prediction can reduce 
pipeline stalls by introducing more (speculatively) 
independent instructions [7, 16, 17, 18, 22, 23], 
introducing helper instructions such as prefetches [1], 
enhancing branch prediction [11], and enabling 
speculative multithreading [15, 19, 31]. 

This paper introduces novel value prediction schemes 
that leverage a new kind of value locality based on global 
stride information. The resulting scheme, called the gDiff 
predictor, is easily combined with past schemes for very 
potent value prediction strategies. The accuracy achieved 
by these schemes is 91% and the confidence-gated 
prediction coverage is 64% for all value producing 
instructions. Compared to a previously published local 
stride predictor (accuracy 89% and coverage 55%) and 
local context predictor (accuracy 87% and coverage 45%), 
the improved accuracy and coverage result in up to a 53% 
(19% in average) speedup over a baseline 4-way issue, 
64-entry issue queue machine and up to a 17% (4% in 
average) speedup over the baseline model with a local 
stride predictor. We also demonstrate the use of the gDiff 
predictor in exploring the global stride locality in the load 
address stream. The results show that the gDiff predictor 
achieves much higher coverage and accuracy in predicting 
load addresses (accuracy 86% and coverage 63%) as well 
as predicting addresses of missing loads only (accuracy 
52.9% and coverage 32.5%) when compared with local 
predictors or a Markov predictor with a much larger 
prediction table. 



Value prediction methods exploit the locality in the 
program’s execution history to achieve high prediction 
accuracy. During program execution, two types of value 
histories, local value history and global value history, can 
be used to predict the value of an instruction. Local value 
history is a value sequence produced by prior executions 
of the same instruction, whereas global value history is 
produced by all dynamic instructions. If the length (order) 
of the global value history sequence is made sufficiently 
long, it will encompass the local value history sequence as 
well. 

In previous research on value predictability, value 
locality was broadly classified into two categories: 
computational and context-based [25]. Most of the 
proposed value predictors exploit these localities in the 
local value history. Those predictors include the last value 
predictor [18], the last N-value predictor [4], the stride 
predictor [7, 8, 17, 18], and context predictors [9, 25, 30]. 
The hybrid predictors can combine both computational 
and context-based predictors to exploit both types of 
localities to achieve higher prediction capability [21, 22, 
25, 30]. 

Compared to local value history, using global value 
history for prediction is less thoroughly studied in the 
literature. The previous instruction (PI) based predictor 
[20] was proposed to explore the correlation between two 
immediately close instructions in the dynamic instruction 
stream (i.e., the global value history). It may be viewed as 
the first-order global context-based predictor. In the 
dynamic dataflow-inherited speculative context (DDISC) 
predictor [28], higher order of context is used and derived 
from the closest predictable values in the instruction’s 
dataflow path. 

In this paper, a new type of the value locality, 
computational locality in the global value history, is 
studied. A novel predictor scheme, the gDiff predictor, is 
proposed to exploit one special and common case of this 
computational locality, stride-based global locality. 
Experiments show that there exists very strong stride-
based locality in global value histories; and, many 
instructions that are hard-to-predict using local history-
based predictors become highly predictable using global 
history-based predictors. Ideally exploiting global stride 
value locality using the gDiff predictor can produce 
average prediction accuracy as high as 73% when 
predicting all the value producing instructions without any 
hybrid scheme, while the local stride predictor shows 57% 
accuracy and the local DFCM [9] predictor shows 64% 
accuracy. 

Value delay limits the performance of any value 
prediction schemes, similar to branch outcome delay [10]. 
Value delay occurs when the required past value is not 
available for use by the predictor due to pipeline latency. 
Based on profile runs, the prediction accuracy of the gDiff 
predictor drops to 52% with a value delay of 16 (i.e., the 

current prediction cannot use the values that are produced 
by 16 immediately close value-producing instructions due 
to delays in the pipeline). 

One way to reduce value delay in an out-of-order 
(OOO) pipeline is to use speculative values at the 
execution stage instead of waiting for values to be 
committed in the program order. However, the resulting 
global value sequence is out of order and is susceptible to 
execution variations due to cache misses and branch 
mispredictions, which in turn obscures its value locality. 
To reduce the execution variation impact, a novel gDiff-
based hybrid approach is proposed which achieves a 
significantly higher prediction capability (91% accuracy 
and 64% coverage) than a value-delayed gDiff predictor. 

The remainder of the paper is organized as follows. 
Section 2 discusses computational locality in the global 
value history. Section 3 introduces the gDiff predictor and 
discusses impact of value delay. Section 4 presents an 
approach to reduce the value delay by using speculative 
values. The gDiff-based hybrid predictor is proposed in 
Section 5.  Section 6 uses the gDiff predictor to predict 
the load address stream and comments on its potential to 
drive prefetching. Section 7 presents the superscalar 
performance for gDiff-based value speculation. Finally, 
Section 8 concludes and discusses future work. 

2. Computational locality in global value 
history 

As discussed in Section 1, two types of value histories 
can be used to make a prediction. If the goal is to predict 
instruction I’s value, the local value history is defined as 
the value sequence produced by the same instruction I 
during its prior executions. In contrast, the global value 
history contains the values produced by all the dynamic 
instructions before the current dynamic occurrence of the 
instruction I.  Two models of value locality exist in value 
sequences: the computational and the context-based 
models. Most proposed value predictors exploit one (e.g., 
stride predictor and FCM predictor) or both (e.g., DFCM 
predictor and hybrid predictor) locality models in the local 
value history. The local value predictability can be further 
fine-tuned using the control-flow (or path) information 
[20]. Local predictors perform well when the value 
sequence produced by an instruction (i.e., its local value 
history) exhibits strong periodic or stride-type of value 
patterns. 

For some instructions in a program, it is difficult to 
achieve high prediction accuracy using the local value 
history alone. For example, the value sequence produced 
by one load instruction in the benchmark parser has the 
following form: (xx528, xx840, 0, xx792, 0, xx720, 0, 
xx816, xx768, xx744, xx696, xx624, xx672, …). 
Apparently, neither computational nor context-based 
locality exists in this value sequence. Even dividing this 



value trace into several sub-traces based on path 
information reveals neither a computational nor a periodic 
pattern. This observation can also be confirmed by 
plotting the value sequence as in Figure 1, where the last 
three digits of the values are shown (the higher order 
digits are either the same or zero). 
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Figure 1. One hard-to-predict value sequence (from 
one load instruction in the benchmark parser). 

From Figure 1, we can see that although the dynamic 
range of the values decreases monotonically, the value 
sequence looks like random ‘noise’ and there exists little 
computational or context-based value locality. The 
prediction accuracy of this instruction is 4% for the (local) 
stride predictor and 2% for the DFCM predictor. 
However, when the code around this load instruction is 
analyzed as shown in Figure 2, it can be seen that the load 
is the result of register spilling and filling (i.e., the value is 
stored to memory to free the physical register and 
reloaded for further use). In this example, the reloaded 
value is produced by two load instructions (marked ‘the 
correlated load’ in Figure 2). If the values produced by 
those correlated loads can be used for prediction, the 
accuracy will be 100%. Such locality is termed value 
locality in global value history, or global value locality. 

Figure 2. The code example of global value locality 
(extracted from the benchmark parser). 

We can define global value history in a more formal 
way: the values produced by dynamic instruction stream 
(D, D+1, ..., D+N) are labeled x0, x1, x2, ..., xN . For 
simplicity, assume every instruction produces a value. 
Then, the ordered data sequence (x0, x1, x2, ..., xN) is the 
global value history of order (i.e., length) N+1.  

As shown in the example in Figure 2, programs exhibit 
value locality in the global value history. Similar to local 
value locality, we can classify global value locality as 
either computational or context-based. The PI value 
predictor proposed in [20] can be viewed as an example of 
exploiting order-1 global context-based locality and the 
DDISC predictor explores higher order context-based 
locality with the help of the data flow information [28]. A 
general form of the global computational value locality 
can be formalized using linear combination in the 
following way, 

.0112211 axaxaxax NNNNN ++++= −−−− L    (1) 
where xN, the prediction value of the instruction (D+N) 
can be made as the weighted sum of the values (xN-1, …, 
x1) produced by instructions (D+N-1), (D+N-2) ,…, 
(D+1). There is no prior work on global computational 
value locality. (However, the locality of similar form in 
global branch history was recently studied and the 
resulting “perceptron” branch predictor was presented in 
[12].)  For example, the locality in Figure 2 can be 
expressed as (ignoring the non value-producing stores and 

branches): 1−= NN xx , and this holds for both control 
paths leading to the load instruction that is being 
predicted. 

Exploring the general form of computational locality as 
specified in Equation 1 is not easy due to the 
mathematical nature of the problem and the hardware 
complexity that a general treatment would require. We 
found that concentrating on the special but most common 
cases produces powerful predictors. One such case is the 
variable stride form of locality, as shown in Equation 2. 

.0axx kNN += −        (2) 

where the prediction xN  is the sum of a value in the global 
value history (xN-k) and a stride value (a0). Global stride 
locality can help in two situations. The first is when the 
stride locality is embedded in code sequences explicitly or 
implicitly. Some examples are shown in Figure 3. 

 
 
 
 
 
 
 
 
 
 

Figure 3. Instruction sequence with strong global 
stride value locality. 

In the figure, the hard-to-predict define instruction can 
help to make an accurate prediction of the subsequent use 
instructions, which are also hard to predict based on their 
local value histories alone. The second is when the stride 

.... 
00400740  lw $v0[2],0($v1[3])    //the correlated load 
00400748  sw $v0[2],0($s8[30]) 
00400750  lw $v0[2],0($s8[30])   // the instruction that we are  

// predicting 
00400758  bne $v0[2],$zero[0],00400768  
.... 
.... 
00400798  lw $v0[2],0($s8[30]) 
004007a0  lw $v1[3],12($v0[2])   //the correlated load 
004007a8  sw $v1[3],0($s8[30]) 
004007b0  j 00400750  
.... 

… 
Define (e.g., load ra, rb, rc)    // load value is hard to predict 
… 
Explicit Use (e.g., add rx, ra, #constant) // the dest of add can be  

//predicted well using equation 2 
… 
Explicit Use (e.g., sub rx, ra, rd)   //  the dest of sub can be predicted  

//if rd has strong repeating patterns 
… 
Implicit Use (e.g., load rx, ry, rz)    //Implicit use through the  

//memory (eg., spilling and filling; reloading) 



locality is embedded in a data structure. Figure 4 shows 
such an example. As pointed out in [26], if the link 
elements (i.e., the ‘next’ field) and the strings are 
allocated in the same order as they are referenced, there is 
a near constant stride between the two load addresses 
when the two fields are referenced. 

 
 
 
 
 

Figure 4. Global stride locality embedded in a data 
structure if ‘->next’ and ‘->string’ are accessed 
sequentially (from the benchmark parser). 

3. Exploring the global computational value 
locality using the GDiff predictor 

Values produced by the dynamic instruction stream 
need to be stored for future predictions in order to exploit 
locality in global value history. A structure called the 
global value queue (GVQ) is introduced for this purpose 
(as shown in Figure 5 for the overall scheme of the gDiff 
predictor). The GVQ maintains the values of the 
completed instructions according to their execution order. 
The PC-indexed prediction table maintains the selected 
distance (i.e., k for xN – xN-k ) used for the prediction and 
the differences between the instruction’s result and the 
results of n instructions that finished immediately before it 
(i.e., xN – xN-i, for i = 1 to n). 

The gDiff predictor operates as follows: 
1. Prediction phase: when a value producing 

instruction with address PC is dispatched, PC is 
used to index into the prediction table. Then, the 
value stored at entry k (specified by the distance 
field of the prediction table entry) of the GVQ is 
read out and added with the stride value (diff_k) to 

make a prediction.  This is potentially a two-cycle 
operation, but is hidden in the front part of the 
pipeline (i.e., during decode/dispatch). 

2. Update phase: when the value producing 
instruction with address PC is completed, the result 
of the instruction is used to calculate the difference 
between it and the values stored in the global value 
queue. This is done in parallel. Then, the calculated 
differences (n differences for an order n predictor) 
are compared against the differences stored in the 
corresponding entry of the prediction table. If there 
is a match, the matching distance is stored in the 
distance field. If there is no match, the calculated 
differences are stored in the prediction table and 
there is no update of the distance field. At the same 
time, the current result is shifted into the GVQ.  
This work occurs after execution and bypass and so 
is not highly time-critical. 

A simple example is used to show how the predictor 
makes use of the global value locality. Consider the 
dynamic instruction stream produced from the code 
structure shown in Figure 6. 

 
 
 
 
 
 

Figure 6. A simple code example. 

Assume the value sequence produced by instruction a 
is (1, 8, 3, 2, …) and instruction b generates (5, 12, 7, 6, 
…). Also, assume that between the instructions a and b, 
there are two value producing instructions but they will 
not alter the value of r1 and their values have no 
correlation with the value sequence produced by 
instruction a. For this example, the gDiff predictor will 
learn the stride pattern gradually to predict instruction b 
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Figure 5. The structure of the gDiff value predictor of order n. 

struct  string_list { 
struct  string_list * next; 
char * string; 

} 

… 
a:  load r1, r2, #20 
… 
b:  add r3, r1, #4 
… 

loop 



correctly, as shown in Figure 7. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7. How the gDiff predictor works with the 
example: (a) the ‘snapshot’ of gDiff predictor when 
value ‘5’ of instruction b comes; (b) the ‘snapshot’ of 
gDiff predictor when value ‘12’ of instruction b comes; 
(c) the prediction made for next occurrence of 
instruction b. 

As shown in Figure 7(a), when instruction b completes 
with value 5, the difference is calculated between 5 and 
the values inside the global value queue. Then, the 
calculated differences are compared with the differences 
stored in prediction table indexed by PC (assuming the 
initial difference is 0). Since there is no match, the 
calculated differences are stored in prediction table. Next, 
when instruction b finishes with value 12 (Figure 7(b)) 
and the differences are calculated, there is a match 
between the calculated differences and the stored 
differences. Then, the index of the match is stored as the 
selected distance (2 in this example). After the distance is 
set, when instruction b is seen again (in its dispatch stage), 
and the gDiff predictor can make the prediction as the 
sum of selected stride (diff_2) and the value in queue 
entry number 2 (Figure 7(c)). As shown from this 
example, the learning time for gDiff predictor is two 
dynamic value productions. 

To examine the degree to which the global stride-based 
value locality exists in program and how well gDiff 
exploits this locality, a profile-based simulation was run 
for SPECint2000 benchmarks with reference input sets 
(the first 200 million instructions are skipped and the next 
1 billion instructions are executed). In this experiment, the 
queue size of the gDiff predictor (i.e., the order) was 
limited to 8 and the predictions were made for all value 
producing integer operations or load instructions. The 
prediction accuracies observed based on stride predictor 
(unlimited size) and DFCM predictor (unlimited first level 
table and 64K second level table) are shown in Figure 8 
for comparison. 

From Figure 8, it can be seen that the gDiff scheme 
predicts values very accurately for most benchmarks, up 
to 86% in the benchmark mcf and 73% on average. The 

exception is the benchmark gap, whose value 
predictability is fairly low (~40%), whether using the 
local value locality or global value locality. The reason for 
the low predictability is due to the hard-to-predict 
generational values and the long computation chain of 
these hard-to-predict values. If the global value queue is 
increased in size to 32 (thus capturing long computation 
chains), the prediction accuracy for gap increases to 
59.7%. Overall, when compared with the predictors that 
exploit local value localities, the gDiff predictor performs 
better consistently for all the benchmarks. For 
benchmarks parser and twolf, gDiff increases the 
accuracy up to 34%. This shows that very strong stride-
based value locality exists in the global value history and 
that the gDiff predictor has the potential to exploit it well. 
A detailed classification of dependencies between 
correlated instructions and a distribution of correlation 
distance are discussed in [2]. 
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Figure 8. The prediction accuracy for gDiff predictor 
and local predictors. 

The results in Figure 8 are obtained with unlimited 
prediction table size. Limiting the table size results in 
aliasing effect as different instructions may index to the 
same entry. Figure 9 shows this aliasing effect for 
different table sizes. 

Aliasing effect for different table sizes
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Figure 9. Aliasing effect for different table sizes. 

From Figure 9, it can be seen that a table of 8K entries 
provides a good balance between table size and aliasing. 
Compared to the infinite table, the prediction accuracy of 
an 8K-entry table reduces by less than 1%. In the rest of 
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the paper, a tagless prediction table of 8K entries is used 
for the gDiff predictor, the local stride predictor, and the 
first level of DFCM predictor (second level table size 
remains as 64K), unless stated otherwise. 

3.1. Value delay 

Although the profile experiments above show that high 
value predictability can be achieved by exploiting the 
global stride-based value locality, those experiments did 
not take any delay in value history into account. Due to 
pipeline delay, especially in out-of-order (OOO) 
execution pipelines, the correlated values may not be 
available when the prediction is being made. Although 
this issue exists for local value predictors [16, 22] (the 
local prediction results in Figure 16 confirm this 
problem), the impact for those predictors is small except 
for cases such as tight loop code, which calls for the 
speculative update based on the prediction (the 
importance of speculative updating branch history is 
observed earlier in [10]). The impact of the value delay is 
more dramatic for global value predictors because a value 
produced by one instruction usually is consumed by other 
instructions very close to it (i.e., the dependence distance 
is small). To demonstrate this effect, the value delay was 
modeled as a parameter T, where the prediction can only 
use the values produced T values before the current 
instruction. Figure 10 shows the prediction accuracy of 
the gDiff predictor for various value delays.  

Prediction accuracy for different value delays 
(queue size = 8)
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Figure 10. The prediction accuracy using the gDiff 
predictor with different value delays. 

It can be seen that the prediction accuracy of the gDiff 
predictor is susceptible to value delays for all benchmarks. 
On average, the prediction accuracy drops from 73% to 
52% when the value delay increases from zero to 16 
values. (One exceptional case is the benchmark gap, for 
which the highest prediction accuracy is achieved when 
the value delay is 4— this is a side effect of the long 
computation chain in gap and the limited GVQ size, as 
discussed above.) These results show that the global value 
locality is strong between instructions close in time that it 
becomes weak when the value delay increases. This 

phenomenon is to be expected as the nature of global 
value locality is mainly based on computation chain or 
spill/fill sequences. A value produced out of the 
computation chain would have less correlation with the 
values in the chain. This presents a challenge to 
practically exploiting global value locality, be it either 
computational or context-based. 

4. Reducing the value delay using 
speculative values 

As discussed in Section 3, global value history based 
on profile runs shows very strong value locality. In an 
OOO execution pipeline, this value sequence is identical 
to what is generated at the retire/commit stage. However, 
using the retiring value sequence incurs very long value 
delay at least as much as the number of pipeline stages 
from dispatch to retire. For example, a 4-issue 7-stage 
pipeline (i.e., fetch, dispatch, issue, register read, 
execution, write back, and retire) may incur as many as 20 
(5x4) cycles of value delay even if there are no pipeline 
stalls and no complex instructions (i.e., those requiring 
more than 1 cycle in execution). Based on the profile 
results above, such delays reduce the prediction accuracy 
of the gDiff predictor significantly. 

In order to reduce value delay, one approach is to use 
the values produced earlier than the retire stage, even if 
the values are speculative (see Figure 11). In this scheme, 
the speculative results produced at the end of execution 
stage are used to update the (speculative) global value 
queue (SGVQ), while the prediction is made at the 
dispatch stage. 

 
 
 
 
 
 
 
 

Figure 11. The gDiff predictor with speculative global 
value queue (SGVQ). 

We used a modified out-of-order simulator from the 
Simplescalar toolset [3] to model the gDiff predictor using 
speculative values. The underlying processor organization 
is based on the MIPS R10000 processor, configured as 
indicated in Table 1. For all benchmarks, the reference 
input data sets are used and we fast-forward the first 500 
million instructions and simulate the next 500 million 
instructions. 

First, we examined how well using speculative values 
helps to reduce value delays. In the simulations, the value 
delay is counted as the number of values produced 
between an instruction’s dispatch stage and its write-back 
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stage. Figure 12 shows a typical distribution of value 
delays, in this case based on the benchmark vortex. It can 
be seen that in most cases the value delay is not 
prohibitively large and the average value delay is 
approximately 5. This suggests using the speculative 
values would be successful in reducing value delay 
effects. 
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Figure 12. The distribution of value delays based on 
the vortex benchmark. 

Next, we analyzed the performance of the gDiff 
predictor with SGVQ. In this experiment (and all that 
follow below), a 3-bit confidence mechanism is used to 
filter the ‘weak’ predictions. The confidence mechanism 
works as follows: when a correct prediction is made, 
confidence is increased by 2; and, it is decreased by 1 if 
an incorrect prediction is found [28, 30]. A confident 
prediction is made when the confidence is larger or equal 
to 4. The ratio of resulting number of confident 
predictions over the total number of value producing 

instruction is the prediction coverage. Figure 13 shows 
the simulation results of the gDiff predictor with SGVQ. 

In Figure 13, the prediction accuracy and the prediction 
coverage using a local stride predictor are also shown for 
comparison. Based on these results, it can be seen that 
even with reduced value delays, the gDiff prediction 
results are not as encouraging as the previous profile run 
results: the average accuracy is 74% and the coverage is 
49%, whereas the local stride predictor has 89% accuracy 
and 55% coverage. The reason behind this is that there are 
significant execution variations due to cache misses. The 
impact of execution variations on the gDiff predictor can 
be explained using the examples shown in Figure 14. 

 
 
 
 
 
 
 
 

Figure 14. Two code examples to show impact of 
execution variation due to cache misses: (a) load 
misses, (b) no load miss occurs. 

In Figure 14 (a) and (b), instruction c has a strong 
correlation with the instruction a. However, due to the 
load instruction b, the distance between the instructions a 
and c may vary based on the hit/miss pattern of the load. 
Also, I-cache misses and branch mispredictions affect the 
dynamic scheduling of the instructions, which in turn 

Prediction accuracy and coverage of the gDiff predictor with SGVQ and the local stride predictor
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Figure 13. The prediction accuracy of the gDiff predictor with speculative values (queue size = 32) . 

Table 1. Processor configuration. 

Instruction 
Cache 

Size = 64 kB; Associativity = 4-way; Replacement = LRU; Line size = 16 instructions (64 bytes); Miss penalty = 
12 cycles 

Data Cache Size = 64 kB; Associativity = 4-way; Replacement = LRU; Line size = 64 bytes; Miss penalty = 14 cycles 

Superscalar 
Core 

Reorder buffer: 64 entries; Dispatch/issue/retire bandwidth: 4-way superscalar; 4 fully-symmetric function units; 
Data cache ports: 4 

Execution 
Latencies 

Address generation: 1 cycle; Memory access: 2 cycles (hit in data cache); Integer ALU ops = 1 cycle; Complex 
ops = MIPS R10000 latencies 

… 
a: add r3, r4, r5 
… 
b: load r5, r6, 28 
… 
c: sub r2, r3, 4      
… 

… 
b: load r5, r6, 28 
… 
a: add r3, r4, r5 
… 
c: sub r2, r3, 4      
… 

(a) (b) 



accounts for another source of variation in the speculative 
global value history. Finally, note that in the gDiff 
implementation of Figure 11, the SGVQ is updated based 
on speculative execution results and does not squash the 
values in the case of a branch misprediction. 

5. The gDiff predictor with hybrid global 
value queue 

As discussed in Section 4, using the speculative values 
at execution stage helps to reduce value delay but 
introduces the problem of variations in the speculative 
global value queue. In this section, a new gDiff-based 
hybrid predictor is proposed. This predictor can 
significantly reduce the impact of pipeline execution 
variations from cache misses and enhance the 
performance of the predictor by exploiting more than one 
type of value locality. 

Pipeline execution variations are caused by dynamic 
run-time events, such as cache misses and mispredictions.  
Those run-time events affect the dynamic scheduling so 
that the execution order of instructions may not be the 
same over different iterations. To remove the variations in 
the global value queue, the global value sequence needs to 
be constructed before dynamic scheduling (i.e., in the 
dispatch stage). However, the execution result of an 
instruction is not available at dispatch time. To solve the 
problem, we propose to use another type of speculative 
value to construct the global value sequence at dispatch 
time and then update the sequence at write-back time. As 
gDiff explores global stride-based value locality, a value 
predictor based on a different type of locality, e.g., a local 
stride predictor or a local context predictor, is appropriate 
to generate the values at dispatch stage and temporarily 
fill the entries in the ordered queue. The scheme is shown 
in Figure 15. 

 
 
 
 
 
 
 
 
 
 
 

Figure 15. The gDiff predictor with hybrid global 
value queue (HGVQ). 

In Figure 15, the predictions based on the local stride 
predictor are pushed into the global value queue (GVQ) at 
dispatch time and updated with the execution results at 
write-back time. As GVQ contains a hybrid of values 
from local stride prediction and speculative global 

execution results, it is called hybrid global value queue 
(HGVQ). A field is associated with each instruction in the 
issue queue (or RUU) to direct which entry in the HGVQ 
the result should update. The performance of the gDiff 
predictor with HGVQ was evaluated and the simulation 
results (using the same simulation methodology as in 
Section 4) are shown in Figure 16. 

From Figure 16, it can be seen that the prediction 
capability of the gDiff predictor is greatly enhanced by the 
hybrid queue structure. For benchmarks bzip2, gap, gzip, 
mcf, parser, and perl, the confident predictions achieve 
over 90% accuracy, while other benchmarks show 86% to 
89% accuracy. Compared with the local stride predictor 
with the same confidence mechanism, the results show 
better average prediction accuracies (91% vs. 89%) and 
higher coverage (64% vs. 55%). This demonstrates that 
the gDiff predictor captures global stride locality over and 
above local stride locality. For the local context predictor 
(DFCM), the confidence gating results smaller prediction 
coverage compared to local stride or gDiff predictors 
while the accuracy is in the similar range. Note that in this 
experiment, all predictors make predictions at dispatch 
stage and are updated at write-back stage (i.e., speculative 
update based on prediction is not performed for local 
stride and local context predictors). 

There are several factors accounting for the strong 
performance of the HGVQ-based gDiff predictor. First, it 
maximizes opportunities to find global stride-based value 
locality by constructing the value sequence in instruction 
dispatch order and by using speculative values to fill in 
holes in the history. Assembling the value sequence in 
dispatch order eliminates the execution variation problem 
due to cache misses; and, the speculative values help to 
reduce the effective value delay. Secondly, the HGVQ 
provides an efficient way to exploit two types of value 
localities (local stride and global stride). For example, if 
two instructions, a and b, are both predictable using a 
local stride predictor and are close to each other (see 
Figure 17), then clearly there is a global stride-type 
correlation between the two instructions. However, the 
ordinary GVQ-based gDiff predictor would fail to exploit 
this locality since the first load must finish before the 
dispatch of second load (i.e., due to the value delay of the 
instruction a). With the local stride prediction, although 
instruction a is still in the execution pipeline, the correct 
prediction (a gDiff-based prediction) of instruction b can 
be made based on the prediction of a (a local stride-based 
prediction). In general, the HGVQ does more than make 
predictions of a few dependent instructions based on a 
local prediction possible. Due to the nature of the stride 
type locality, dependent instructions (e.g., instruction b in 
Figure 17) should be locally predictable as well if the 
local stride prediction is correct (i.e., those predictions do 
not account for the highly improved coverage shown in 
Figure 16). The increased coverage comes from the 

prediction 

GDiff 
Prediction 
Table 

Global value queue 

GDiff predictor 

PC 

update 

Fetch   Dispatch   Issue  Reg Read   Execution   Write Back    Retire 

Local stride predictor local stride prediction 

Execution pipeline 



instructions with low local value locality but high global 
locality, and this added predictive power is one of the 
most important contributions of the gDiff predictor. 

 
 
 
 
 
 
 

Figure 17. The code example to show how the gDiff 
predictor with HGVQ uses the local prediction. 

6. Using gDiff to predict load addresses 

The gDiff predictor provides a general framework for 
exploiting global stride locality for any value stream. By 

allowing only load addresses to pass into the GVQ, gDiff 
detects global stride locality in the load address stream. In 
this experiment, the address prediction is made at the 
dispatch stage and updated at the address generation stage 
for all load instructions. The gDiff and local stride 
predictors use a tagless, 4K-entry prediction table, while 
the first-order Markov predictor [13] uses a 4-way, 256K-
entry prediction table. For local and gDiff predictors, the 
prediction coverage is computed as the ratio of confident 
predictions over total predictions. For the Markov 
predictor, there is no confidence counter and the 
confidence gating is achieved with tag matching. Figure 
18 shows the prediction capability achieved by each 
predictor for all load addresses and for addresses of 
missing loads. 
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Figure 16. The performance of the gDiff predictor with HGVQ (queue size = 32). 
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(a) 

Predictability of addresses of missing loads
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(b) 

Figure 18. (a) Load address predictability. (b) Predictability of missing loads. (ls: local stride; gs: gDiff; accu: 
accuracy; cov: coverage; m: missing load). 

… 
a: load r2, r28, #constant  //producing values 1, 1, …, 1  

      //(local stride predictable) 
… 
b: load r3, r30, #constant  //producing values 3, 3, …, 3  

      //(local stride predictable) 
… 



Two important observations can be made from Figure 
18. First, gDiff achieves much higher combination of 
prediction accuracy (86%) and coverage (63%) for load 
address prediction compared to either local stride 
(accuracy 86% but coverage 55%) or Markov predictors 
(accuracy 33% although coverage 87%). The global stride 
locality detected by gDiff can be used to facilitate the 
reduction of load-use latency [1]. Secondly, gDiff also 
performs the best (accuracy 53% and coverage 33%) in 
predicting addresses of missing loads, while the local 
stride predictor provides a prediction accuracy of 55% but 
coverage of only 25%. The Markov predictor has a much 
higher coverage 69% but a fairly low accuracy of 20%. 
The Markov predictor usually requires a large prediction 
table as it is indexed with load addresses. When its size 
increases from 256K-entry to 2M-entry, the Markov 
predictor achieves decent average coverage (92%) and 
accuracy (33%) but still shows much lower prediction 
capability than gDiff for benchmarks including bzip2, 
gap, gzip and perl. GDiff, on the other hand, provides a 
relatively cost-effective way in predicting addresses of 
missing loads when compared with these other schemes. 
This motivates us to extend gDiff for memory prefetch. 
These extensions are out of the scope of this paper and left 
as future work. 

7. The performance potential of value 
prediction using the gDiff predictor 

Since the gDiff predictor presents promising prediction 
results as seen in Figure 16, we investigated the 
performance impact of using it to break data 
dependencies. The purpose here is to show the 
performance potential of the proposed prediction scheme.  
As such, an aggressive machine model is used, similar to 
the ‘great’ latency model described in [24]. The machine 
can issue branch instructions speculatively and to perform 

selective reissuing in the case of mispredictions. The 
performance results based on a 4-wide, 64-entry issue 
queue machine model (same as what was used in Section 
4) are shown in Figure 19 and the baseline IPC results 
(IPC without value speculation) are shown in Table 2. In 
the experiment, the local stride and context predictions are 
made at dispatch stage and they are updated at write-back 
stage. From the results, we can see that the local context 
predictor does not perform as well as the local stride 
predictor. The main reason is due to the small prediction 
coverage of the local context predictor, as shown in 
Figure 16. So, we focus on the comparison between the 
gDiff and the local stride predictor. 

From Figure 19, it can be seen that the improved 
prediction accuracy and coverage of the gDiff predictor 
show significant performance potential. Taking the 
benchmark mcf as an example, the increased coverage 
(from 65% to 75% of all the value producing integer 
instructions) results in a speedup of 17% over the baseline 
machine with a local value predictor and a speedup of 
53% over the baseline model without value speculation. 
The main reason for the significant speedup is that gDiff 
can predict many missing load values (71.65% coverage 
and 88.63% accuracy for all missing loads) correctly to 
enable more dependent instructions to execute compared 
to local stride predictor (63.61% coverage and 87.64% 
accuracy for all missing loads). As mcf is highly memory 
intensive (L1 D-cache miss rate 44.08%), a large window 
size of 64 enables more missing loads to be predicted 
leading to higher speedups. Another important reason is 
that gDiff can accurately capture the stride type of locality 
(single stride or phased multi-stride) between two load 
addresses if those two address-generating instructions 
exist in the HGVQ at the same time. As pointed out in 
[26], many important loads (i.e., loads that tend to miss) 
have strong stride relationship between their addresses as 
an artifact of dynamic memory allocation. The correct 
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Figure 19. The speedups of value prediction using the local stride and gDiff predictors. 

Table 2. Baseline IPC results (for a 4-way machine model with a 64-entry issue window). 

Benchmarks bzip2 gap gcc gzip mcf parser perl twolf vortex vpr 
Baseline IPC 2.02 1.23 1.96 1.77 0.66 1.27 1.50 0.99 2.26 1.30 



prediction of the load address enables the dependent load 
to be issued much earlier to overlap the miss latency. 
However, not all the coverage increase has the same 
impact on performance for different benchmarks. For 
example, the gDiff predictor provides 15% prediction 
coverage increase (from 62% to 71%) for the benchmark 
bzip2 compared to the local value predictor, while the 
resulting speedup increase is just 1%. This implies 
additional value predictions based on the gDiff predictor 
does not help in reducing the critical path of the 
benchmark bzip2. On average, the gDiff predictor results 
in a 19.2% speedup over the baseline machine and a 4% 
(from 15% to 19%) speedup over the baseline machine 
with a local stride predictor1. 

8. Conclusion 

In this paper, a new type of value locality, global 
computational locality, is studied and a set of prediction 
schemes are proposed to exploit this locality and to 
increase overall value predictability. The main 
contributions of this work include: 
• A new type of value locality is formalized and 

studied. The localities in global value history present 
new opportunities to be explored. A novel prediction 
scheme, the gDiff predictor, is proposed to exploit the 
global stride value locality dynamically. Experiments 
demonstrate that there exists very strong stride-type 
locality in global value history and ideally the gDiff 
predictor can achieve 73% prediction accuracy when 
predicting all the value producing instructions. 

• The value delay issue is addressed in this paper and 
its impact on gDiff predictor is studied. It is shown 
that value delay is a challenge for any scheme that 
seeks to exploit global value locality, especially in 
out-of-order execution pipeline models.  

• To reduce the value delay impact in OOO pipelines, 
this paper proposes using the speculative values at the 
execution stage instead of waiting for them to be 
retired in-order. This approach reduces value delay 
but introduces the execution variation problem. Those 
variations make it difficult for the gDiff predictor to 
find global stride locality. 

• In order to reduce both value delay and pipeline 
variation impact, this paper proposes construction of 
a partially speculative global value sequence at 
instruction dispatch time using another type of value 
predictor (e.g., the local stride predictor). The correct 
values produced after execution are used to update 
the value sequence. In this way, the gDiff predictor 
maximizes exploiting global value locality and 

                                                
1 (This suggests that a further enhancement to gDiff would combine it 
with a critical path predictor [5, 29], but such an extension is beyond the 
scope of this paper.) 

enables an efficient integration of a different type of 
value locality. The experiments show that the gDiff 
predictor achieves an impressive 91% prediction 
accuracy with 64% coverage. We then demonstrate 
the usage of gDiff prediction scheme to predict load 
address stream. The results show that global stride 
locality detected by gDiff leads to strong capabilities 
in predicting all load addresses and in predicting 
addresses of missing loads. The gDiff predictor can 
also be used to break true data dependencies; and, it 
shows impressive performance potentials in a 4-wide 
OOO machine with a 64-entry issue window. 

There are several directions for the future work. One 
interesting work is to extend gDiff to further explore 
global stride locality in load address stream for memory 
prefetch and for reducing load-use latency. Another 
direction would be to study in detail how to interact with 
the deeper pipeline [27] to convert the newly discovered 
predictability into higher speedups. 
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