

Detecting Global Stride Locality in Value Streams

Huiyang Zhou, Jill Flanagan, Thomas M. Conte
Department of Electrical and Computer Engineering

North Carolina State University
{hzhou,jtbodine,conte}@eos.ncsu.edu

Abstract

Value prediction exploits localities in value streams.
Previous research focused on exploiting two types of
value localities, computational and context-based, in the
local value history, which is the value sequence produced
by the same instruction that is being predicted. Besides
the local value history, value locality also exists in the
global value history, which is the value sequence
produced by all dynamic instructions according to their
execution order. In this paper, a new type value locality,
the computational locality in the global value history is
studied. A novel prediction scheme, called the gDiff
predictor, is designed to exploit one special and most
common case of this computational model, the stride-
based computation, in the global value history. Such a
scheme provides a general framework to exploit global
stride locality in any value stream. Experiments show that
there exists very strong stride type of locality in global
value sequences. Ideally, the gDiff predictor can achieve
73% prediction accuracy for all value producing
instructions without any hybrid scheme, much higher than
local stride and local context prediction schemes.
However, the capability of realistically exploiting locality
in global value history is greatly challenged by the value
delay issue, i.e., the correlated value may not be available
when the prediction is being made. We study the value
delay issue in an out-of-order (OOO) execution pipeline
model and propose a new hybrid scheme to maximize the
exploitation of the global stride locality. This new hybrid
scheme shows 91% prediction accuracy and 64%
coverage for all value producing instructions. We also
show that the global stride locality detected by gDiff in
load address streams provides strong capabilities in
predicting load addresses (coverage 63% and accuracy
86%) and in predicting addresses of missing loads (33%
coverage and 53% accuracy).

1. Introduction

Prediction is a powerful technique for accelerating
instruction processing. Successful prediction schemes

generally predict a single bit of information. For example,
predicting a branch direction enables the speculation of
control dependencies. Speculating pure data dependencies
however requires predicting more than one bit of
information. Skepticism regarding these techniques is
often centered on the difficulty of predicting 32 (or 64)
bits of information. Locality in the value history of a
program indicates that the information content is
significantly less than 32 bits worth [6, 8, 17, 18, 25].
Exploiting this locality requires a significant investment in
hardware for modest prediction accuracy [7, 18, 25, 30].
But if the hardware cost can be tolerated and high
accuracy can be reached, value prediction can reduce
pipeline stalls by introducing more (speculatively)
independent instructions [7, 16, 17, 18, 22, 23],
introducing helper instructions such as prefetches [1],
enhancing branch prediction [11], and enabling
speculative multithreading [15, 19, 31].

This paper introduces novel value prediction schemes
that leverage a new kind of value locality based on global
stride information. The resulting scheme, called the gDiff
predictor, is easily combined with past schemes for very
potent value prediction strategies. The accuracy achieved
by these schemes is 91% and the confidence-gated
prediction coverage is 64% for all value producing
instructions. Compared to a previously published local
stride predictor (accuracy 89% and coverage 55%) and
local context predictor (accuracy 87% and coverage 45%),
the improved accuracy and coverage result in up to a 53%
(19% in average) speedup over a baseline 4-way issue,
64-entry issue queue machine and up to a 17% (4% in
average) speedup over the baseline model with a local
stride predictor. We also demonstrate the use of the gDiff
predictor in exploring the global stride locality in the load
address stream. The results show that the gDiff predictor
achieves much higher coverage and accuracy in predicting
load addresses (accuracy 86% and coverage 63%) as well
as predicting addresses of missing loads only (accuracy
52.9% and coverage 32.5%) when compared with local
predictors or a Markov predictor with a much larger
prediction table.

Value prediction methods exploit the locality in the
program’s execution history to achieve high prediction
accuracy. During program execution, two types of value
histories, local value history and global value history, can
be used to predict the value of an instruction. Local value
history is a value sequence produced by prior executions
of the same instruction, whereas global value history is
produced by all dynamic instructions. If the length (order)
of the global value history sequence is made sufficiently
long, it will encompass the local value history sequence as
well.

In previous research on value predictability, value
locality was broadly classified into two categories:
computational and context-based [25]. Most of the
proposed value predictors exploit these localities in the
local value history. Those predictors include the last value
predictor [18], the last N-value predictor [4], the stride
predictor [7, 8, 17, 18], and context predictors [9, 25, 30].
The hybrid predictors can combine both computational
and context-based predictors to exploit both types of
localities to achieve higher prediction capability [21, 22,
25, 30].

Compared to local value history, using global value
history for prediction is less thoroughly studied in the
literature. The previous instruction (PI) based predictor
[20] was proposed to explore the correlation between two
immediately close instructions in the dynamic instruction
stream (i.e., the global value history). It may be viewed as
the first-order global context-based predictor. In the
dynamic dataflow-inherited speculative context (DDISC)
predictor [28], higher order of context is used and derived
from the closest predictable values in the instruction’s
dataflow path.

In this paper, a new type of the value locality,
computational locality in the global value history, is
studied. A novel predictor scheme, the gDiff predictor, is
proposed to exploit one special and common case of this
computational locality, stride-based global locality.
Experiments show that there exists very strong stride-
based locality in global value histories; and, many
instructions that are hard-to-predict using local history-
based predictors become highly predictable using global
history-based predictors. Ideally exploiting global stride
value locality using the gDiff predictor can produce
average prediction accuracy as high as 73% when
predicting all the value producing instructions without any
hybrid scheme, while the local stride predictor shows 57%
accuracy and the local DFCM [9] predictor shows 64%
accuracy.

Value delay limits the performance of any value
prediction schemes, similar to branch outcome delay [10].
Value delay occurs when the required past value is not
available for use by the predictor due to pipeline latency.
Based on profile runs, the prediction accuracy of the gDiff
predictor drops to 52% with a value delay of 16 (i.e., the

current prediction cannot use the values that are produced
by 16 immediately close value-producing instructions due
to delays in the pipeline).

One way to reduce value delay in an out-of-order
(OOO) pipeline is to use speculative values at the
execution stage instead of waiting for values to be
committed in the program order. However, the resulting
global value sequence is out of order and is susceptible to
execution variations due to cache misses and branch
mispredictions, which in turn obscures its value locality.
To reduce the execution variation impact, a novel gDiff-
based hybrid approach is proposed which achieves a
significantly higher prediction capability (91% accuracy
and 64% coverage) than a value-delayed gDiff predictor.

The remainder of the paper is organized as follows.
Section 2 discusses computational locality in the global
value history. Section 3 introduces the gDiff predictor and
discusses impact of value delay. Section 4 presents an
approach to reduce the value delay by using speculative
values. The gDiff-based hybrid predictor is proposed in
Section 5. Section 6 uses the gDiff predictor to predict
the load address stream and comments on its potential to
drive prefetching. Section 7 presents the superscalar
performance for gDiff-based value speculation. Finally,
Section 8 concludes and discusses future work.

2. Computational locality in global value
history

As discussed in Section 1, two types of value histories
can be used to make a prediction. If the goal is to predict
instruction I’s value, the local value history is defined as
the value sequence produced by the same instruction I
during its prior executions. In contrast, the global value
history contains the values produced by all the dynamic
instructions before the current dynamic occurrence of the
instruction I. Two models of value locality exist in value
sequences: the computational and the context-based
models. Most proposed value predictors exploit one (e.g.,
stride predictor and FCM predictor) or both (e.g., DFCM
predictor and hybrid predictor) locality models in the local
value history. The local value predictability can be further
fine-tuned using the control-flow (or path) information
[20]. Local predictors perform well when the value
sequence produced by an instruction (i.e., its local value
history) exhibits strong periodic or stride-type of value
patterns.

For some instructions in a program, it is difficult to
achieve high prediction accuracy using the local value
history alone. For example, the value sequence produced
by one load instruction in the benchmark parser has the
following form: (xx528, xx840, 0, xx792, 0, xx720, 0,
xx816, xx768, xx744, xx696, xx624, xx672, …).
Apparently, neither computational nor context-based
locality exists in this value sequence. Even dividing this

value trace into several sub-traces based on path
information reveals neither a computational nor a periodic
pattern. This observation can also be confirmed by
plotting the value sequence as in Figure 1, where the last
three digits of the values are shown (the higher order
digits are either the same or zero).

Value sequence

0

100

200

300

400

500

600

700

800

900

0 5 10 15 20 25 30 35 40 45 50

Figure 1. One hard-to-predict value sequence (from
one load instruction in the benchmark parser).

From Figure 1, we can see that although the dynamic
range of the values decreases monotonically, the value
sequence looks like random ‘noise’ and there exists little
computational or context-based value locality. The
prediction accuracy of this instruction is 4% for the (local)
stride predictor and 2% for the DFCM predictor.
However, when the code around this load instruction is
analyzed as shown in Figure 2, it can be seen that the load
is the result of register spilling and filling (i.e., the value is
stored to memory to free the physical register and
reloaded for further use). In this example, the reloaded
value is produced by two load instructions (marked ‘the
correlated load’ in Figure 2). If the values produced by
those correlated loads can be used for prediction, the
accuracy will be 100%. Such locality is termed value
locality in global value history, or global value locality.

Figure 2. The code example of global value locality
(extracted from the benchmark parser).

We can define global value history in a more formal
way: the values produced by dynamic instruction stream
(D, D+1, ..., D+N) are labeled x0, x1, x2, ..., xN . For
simplicity, assume every instruction produces a value.
Then, the ordered data sequence (x0, x1, x2, ..., xN) is the
global value history of order (i.e., length) N+1.

As shown in the example in Figure 2, programs exhibit
value locality in the global value history. Similar to local
value locality, we can classify global value locality as
either computational or context-based. The PI value
predictor proposed in [20] can be viewed as an example of
exploiting order-1 global context-based locality and the
DDISC predictor explores higher order context-based
locality with the help of the data flow information [28]. A
general form of the global computational value locality
can be formalized using linear combination in the
following way,

.0112211 axaxaxax NNNNN ++++= −−−− L (1)
where xN, the prediction value of the instruction (D+N)
can be made as the weighted sum of the values (xN-1, …,
x1) produced by instructions (D+N-1), (D+N-2) ,…,
(D+1). There is no prior work on global computational
value locality. (However, the locality of similar form in
global branch history was recently studied and the
resulting “perceptron” branch predictor was presented in
[12].) For example, the locality in Figure 2 can be
expressed as (ignoring the non value-producing stores and

branches): 1−= NN xx , and this holds for both control
paths leading to the load instruction that is being
predicted.

Exploring the general form of computational locality as
specified in Equation 1 is not easy due to the
mathematical nature of the problem and the hardware
complexity that a general treatment would require. We
found that concentrating on the special but most common
cases produces powerful predictors. One such case is the
variable stride form of locality, as shown in Equation 2.

.0axx kNN += − (2)

where the prediction xN is the sum of a value in the global
value history (xN-k) and a stride value (a0). Global stride
locality can help in two situations. The first is when the
stride locality is embedded in code sequences explicitly or
implicitly. Some examples are shown in Figure 3.

Figure 3. Instruction sequence with strong global
stride value locality.

In the figure, the hard-to-predict define instruction can
help to make an accurate prediction of the subsequent use
instructions, which are also hard to predict based on their
local value histories alone. The second is when the stride

....
00400740 lw $v0[2],0($v1[3]) //the correlated load
00400748 sw $v0[2],0($s8[30])
00400750 lw $v0[2],0($s8[30]) // the instruction that we are

// predicting
00400758 bne $v0[2],$zero[0],00400768
....
....
00400798 lw $v0[2],0($s8[30])
004007a0 lw $v1[3],12($v0[2]) //the correlated load
004007a8 sw $v1[3],0($s8[30])
004007b0 j 00400750
....

…
Define (e.g., load ra, rb, rc) // load value is hard to predict
…
Explicit Use (e.g., add rx, ra, #constant) // the dest of add can be

//predicted well using equation 2
…
Explicit Use (e.g., sub rx, ra, rd) // the dest of sub can be predicted

//if rd has strong repeating patterns
…
Implicit Use (e.g., load rx, ry, rz) //Implicit use through the

//memory (eg., spilling and filling; reloading)

locality is embedded in a data structure. Figure 4 shows
such an example. As pointed out in [26], if the link
elements (i.e., the ‘next’ field) and the strings are
allocated in the same order as they are referenced, there is
a near constant stride between the two load addresses
when the two fields are referenced.

Figure 4. Global stride locality embedded in a data
structure if ‘->next’ and ‘->string’ are accessed
sequentially (from the benchmark parser).

3. Exploring the global computational value
locality using the GDiff predictor

Values produced by the dynamic instruction stream
need to be stored for future predictions in order to exploit
locality in global value history. A structure called the
global value queue (GVQ) is introduced for this purpose
(as shown in Figure 5 for the overall scheme of the gDiff
predictor). The GVQ maintains the values of the
completed instructions according to their execution order.
The PC-indexed prediction table maintains the selected
distance (i.e., k for xN – xN-k) used for the prediction and
the differences between the instruction’s result and the
results of n instructions that finished immediately before it
(i.e., xN – xN-i, for i = 1 to n).

The gDiff predictor operates as follows:
1. Prediction phase: when a value producing

instruction with address PC is dispatched, PC is
used to index into the prediction table. Then, the
value stored at entry k (specified by the distance
field of the prediction table entry) of the GVQ is
read out and added with the stride value (diff_k) to

make a prediction. This is potentially a two-cycle
operation, but is hidden in the front part of the
pipeline (i.e., during decode/dispatch).

2. Update phase: when the value producing
instruction with address PC is completed, the result
of the instruction is used to calculate the difference
between it and the values stored in the global value
queue. This is done in parallel. Then, the calculated
differences (n differences for an order n predictor)
are compared against the differences stored in the
corresponding entry of the prediction table. If there
is a match, the matching distance is stored in the
distance field. If there is no match, the calculated
differences are stored in the prediction table and
there is no update of the distance field. At the same
time, the current result is shifted into the GVQ.
This work occurs after execution and bypass and so
is not highly time-critical.

A simple example is used to show how the predictor
makes use of the global value locality. Consider the
dynamic instruction stream produced from the code
structure shown in Figure 6.

Figure 6. A simple code example.

Assume the value sequence produced by instruction a
is (1, 8, 3, 2, …) and instruction b generates (5, 12, 7, 6,
…). Also, assume that between the instructions a and b,
there are two value producing instructions but they will
not alter the value of r1 and their values have no
correlation with the value sequence produced by
instruction a. For this example, the gDiff predictor will
learn the stride pattern gradually to predict instruction b

distance

PC

… completing instructions’ results

mux

prediction

=? =? =? =?
detect match

global value queue

prediction update

diff1 … diff k diff2

- - - - -

=?

+

distance
… completing instructions’ results

mux

prediction

=? =? =? =?
detect match

global value queue

prediction update

diff1 … diff n diff2

- - - - -

=?

+ mux
Prediction table

Figure 5. The structure of the gDiff value predictor of order n.

struct string_list {
struct string_list * next;
char * string;

}

…
a: load r1, r2, #20
…
b: add r3, r1, #4
…

loop

correctly, as shown in Figure 7.

Figure 7. How the gDiff predictor works with the
example: (a) the ‘snapshot’ of gDiff predictor when
value ‘5’ of instruction b comes; (b) the ‘snapshot’ of
gDiff predictor when value ‘12’ of instruction b comes;
(c) the prediction made for next occurrence of
instruction b.

As shown in Figure 7(a), when instruction b completes
with value 5, the difference is calculated between 5 and
the values inside the global value queue. Then, the
calculated differences are compared with the differences
stored in prediction table indexed by PC (assuming the
initial difference is 0). Since there is no match, the
calculated differences are stored in prediction table. Next,
when instruction b finishes with value 12 (Figure 7(b))
and the differences are calculated, there is a match
between the calculated differences and the stored
differences. Then, the index of the match is stored as the
selected distance (2 in this example). After the distance is
set, when instruction b is seen again (in its dispatch stage),
and the gDiff predictor can make the prediction as the
sum of selected stride (diff_2) and the value in queue
entry number 2 (Figure 7(c)). As shown from this
example, the learning time for gDiff predictor is two
dynamic value productions.

To examine the degree to which the global stride-based
value locality exists in program and how well gDiff
exploits this locality, a profile-based simulation was run
for SPECint2000 benchmarks with reference input sets
(the first 200 million instructions are skipped and the next
1 billion instructions are executed). In this experiment, the
queue size of the gDiff predictor (i.e., the order) was
limited to 8 and the predictions were made for all value
producing integer operations or load instructions. The
prediction accuracies observed based on stride predictor
(unlimited size) and DFCM predictor (unlimited first level
table and 64K second level table) are shown in Figure 8
for comparison.

From Figure 8, it can be seen that the gDiff scheme
predicts values very accurately for most benchmarks, up
to 86% in the benchmark mcf and 73% on average. The

exception is the benchmark gap, whose value
predictability is fairly low (~40%), whether using the
local value locality or global value locality. The reason for
the low predictability is due to the hard-to-predict
generational values and the long computation chain of
these hard-to-predict values. If the global value queue is
increased in size to 32 (thus capturing long computation
chains), the prediction accuracy for gap increases to
59.7%. Overall, when compared with the predictors that
exploit local value localities, the gDiff predictor performs
better consistently for all the benchmarks. For
benchmarks parser and twolf, gDiff increases the
accuracy up to 34%. This shows that very strong stride-
based value locality exists in the global value history and
that the gDiff predictor has the potential to exploit it well.
A detailed classification of dependencies between
correlated instructions and a distribution of correlation
distance are discussed in [2].

Value prediction accuracy

30%
40%
50%
60%
70%
80%
90%

bz
ip2 ga

p
gc

c
gz

ip
m

cf

pa
rs

er pe
rl

tw
olf

vo
rte

x
vp

r

av
er

ag
e

P
re

d
ic

ti
o

n
 a

cc
u

ra
cy

stride DFCM gDiff(queue size = 8)

Figure 8. The prediction accuracy for gDiff predictor
and local predictors.

The results in Figure 8 are obtained with unlimited
prediction table size. Limiting the table size results in
aliasing effect as different instructions may index to the
same entry. Figure 9 shows this aliasing effect for
different table sizes.

Aliasing effect for different table sizes

0%

5%

10%

15%

20%

25%

bz
ip2 ga

p
gc

c
gz

ip
m

cf

pa
rs

er pe
rl

tw
olf

vo
rte

x
vp

r

av
er

ag
e

co
n

fl
ic

t
m

is
s

ra
te

Unlimited Table 64K table 32K table 16K table

8K table 4K table 2K table

Figure 9. Aliasing effect for different table sizes.

From Figure 9, it can be seen that a table of 8K entries
provides a good balance between table size and aliasing.
Compared to the infinite table, the prediction accuracy of
an 8K-entry table reduces by less than 1%. In the rest of

Distance = 2

x x 1
5

Global value queue
x x 4

Calculated Differences

x x 8
12

Global value

x x 4
Calculated differences

match

x x 3
Global value

0 0 0

Stored differences

x x 4

Stored differences

Prediction is 3+4 = 7

x x 4

Stored differences

(a)

(b)

(c)

the paper, a tagless prediction table of 8K entries is used
for the gDiff predictor, the local stride predictor, and the
first level of DFCM predictor (second level table size
remains as 64K), unless stated otherwise.

3.1. Value delay

Although the profile experiments above show that high
value predictability can be achieved by exploiting the
global stride-based value locality, those experiments did
not take any delay in value history into account. Due to
pipeline delay, especially in out-of-order (OOO)
execution pipelines, the correlated values may not be
available when the prediction is being made. Although
this issue exists for local value predictors [16, 22] (the
local prediction results in Figure 16 confirm this
problem), the impact for those predictors is small except
for cases such as tight loop code, which calls for the
speculative update based on the prediction (the
importance of speculative updating branch history is
observed earlier in [10]). The impact of the value delay is
more dramatic for global value predictors because a value
produced by one instruction usually is consumed by other
instructions very close to it (i.e., the dependence distance
is small). To demonstrate this effect, the value delay was
modeled as a parameter T, where the prediction can only
use the values produced T values before the current
instruction. Figure 10 shows the prediction accuracy of
the gDiff predictor for various value delays.

Prediction accuracy for different value delays
(queue size = 8)

30%
40%

50%
60%

70%
80%

90%

bz
ip2 ga

p
gc

c
gz

ip
m

cf

pa
rs

er pe
rl

tw
olf

vo
rte

x
vp

r

av
er

ag
e

p
re

d
ic

ti
o

n
 a

cc
u

ra
cy

T = 0 T = 2 T = 4 T = 8 T = 16

Figure 10. The prediction accuracy using the gDiff
predictor with different value delays.

It can be seen that the prediction accuracy of the gDiff
predictor is susceptible to value delays for all benchmarks.
On average, the prediction accuracy drops from 73% to
52% when the value delay increases from zero to 16
values. (One exceptional case is the benchmark gap, for
which the highest prediction accuracy is achieved when
the value delay is 4— this is a side effect of the long
computation chain in gap and the limited GVQ size, as
discussed above.) These results show that the global value
locality is strong between instructions close in time that it
becomes weak when the value delay increases. This

phenomenon is to be expected as the nature of global
value locality is mainly based on computation chain or
spill/fill sequences. A value produced out of the
computation chain would have less correlation with the
values in the chain. This presents a challenge to
practically exploiting global value locality, be it either
computational or context-based.

4. Reducing the value delay using
speculative values

As discussed in Section 3, global value history based
on profile runs shows very strong value locality. In an
OOO execution pipeline, this value sequence is identical
to what is generated at the retire/commit stage. However,
using the retiring value sequence incurs very long value
delay at least as much as the number of pipeline stages
from dispatch to retire. For example, a 4-issue 7-stage
pipeline (i.e., fetch, dispatch, issue, register read,
execution, write back, and retire) may incur as many as 20
(5x4) cycles of value delay even if there are no pipeline
stalls and no complex instructions (i.e., those requiring
more than 1 cycle in execution). Based on the profile
results above, such delays reduce the prediction accuracy
of the gDiff predictor significantly.

In order to reduce value delay, one approach is to use
the values produced earlier than the retire stage, even if
the values are speculative (see Figure 11). In this scheme,
the speculative results produced at the end of execution
stage are used to update the (speculative) global value
queue (SGVQ), while the prediction is made at the
dispatch stage.

Figure 11. The gDiff predictor with speculative global
value queue (SGVQ).

We used a modified out-of-order simulator from the
Simplescalar toolset [3] to model the gDiff predictor using
speculative values. The underlying processor organization
is based on the MIPS R10000 processor, configured as
indicated in Table 1. For all benchmarks, the reference
input data sets are used and we fast-forward the first 500
million instructions and simulate the next 500 million
instructions.

First, we examined how well using speculative values
helps to reduce value delays. In the simulations, the value
delay is counted as the number of values produced
between an instruction’s dispatch stage and its write-back

prediction

GDiff
Prediction
Table

Global value queue

GDiff predictor

PC

update

Fetch Dispatch Issue Reg Read Execution Write Back Retire

Execution pipeline

stage. Figure 12 shows a typical distribution of value
delays, in this case based on the benchmark vortex. It can
be seen that in most cases the value delay is not
prohibitively large and the average value delay is
approximately 5. This suggests using the speculative
values would be successful in reducing value delay
effects.

Value delay distribution

0%

2%

4%

6%

8%

10%

12%

14%

1 4 7 10 13 16 19 22 25 28 31

Value delay

%

Figure 12. The distribution of value delays based on
the vortex benchmark.

Next, we analyzed the performance of the gDiff
predictor with SGVQ. In this experiment (and all that
follow below), a 3-bit confidence mechanism is used to
filter the ‘weak’ predictions. The confidence mechanism
works as follows: when a correct prediction is made,
confidence is increased by 2; and, it is decreased by 1 if
an incorrect prediction is found [28, 30]. A confident
prediction is made when the confidence is larger or equal
to 4. The ratio of resulting number of confident
predictions over the total number of value producing

instruction is the prediction coverage. Figure 13 shows
the simulation results of the gDiff predictor with SGVQ.

In Figure 13, the prediction accuracy and the prediction
coverage using a local stride predictor are also shown for
comparison. Based on these results, it can be seen that
even with reduced value delays, the gDiff prediction
results are not as encouraging as the previous profile run
results: the average accuracy is 74% and the coverage is
49%, whereas the local stride predictor has 89% accuracy
and 55% coverage. The reason behind this is that there are
significant execution variations due to cache misses. The
impact of execution variations on the gDiff predictor can
be explained using the examples shown in Figure 14.

Figure 14. Two code examples to show impact of
execution variation due to cache misses: (a) load
misses, (b) no load miss occurs.

In Figure 14 (a) and (b), instruction c has a strong
correlation with the instruction a. However, due to the
load instruction b, the distance between the instructions a
and c may vary based on the hit/miss pattern of the load.
Also, I-cache misses and branch mispredictions affect the
dynamic scheduling of the instructions, which in turn

Prediction accuracy and coverage of the gDiff predictor with SGVQ and the local stride predictor

30%
40%
50%
60%
70%
80%
90%

100%

bzip2 gap gcc gzip mcf parser perl twolf vortex vpr average

gDiff accuracy L_stride accuracy gDiff coverage L_stride coverage

Figure 13. The prediction accuracy of the gDiff predictor with speculative values (queue size = 32) .

Table 1. Processor configuration.

Instruction
Cache

Size = 64 kB; Associativity = 4-way; Replacement = LRU; Line size = 16 instructions (64 bytes); Miss penalty =
12 cycles

Data Cache Size = 64 kB; Associativity = 4-way; Replacement = LRU; Line size = 64 bytes; Miss penalty = 14 cycles

Superscalar
Core

Reorder buffer: 64 entries; Dispatch/issue/retire bandwidth: 4-way superscalar; 4 fully-symmetric function units;
Data cache ports: 4

Execution
Latencies

Address generation: 1 cycle; Memory access: 2 cycles (hit in data cache); Integer ALU ops = 1 cycle; Complex
ops = MIPS R10000 latencies

…
a: add r3, r4, r5
…
b: load r5, r6, 28
…
c: sub r2, r3, 4
…

…
b: load r5, r6, 28
…
a: add r3, r4, r5
…
c: sub r2, r3, 4
…

(a) (b)

accounts for another source of variation in the speculative
global value history. Finally, note that in the gDiff
implementation of Figure 11, the SGVQ is updated based
on speculative execution results and does not squash the
values in the case of a branch misprediction.

5. The gDiff predictor with hybrid global
value queue

As discussed in Section 4, using the speculative values
at execution stage helps to reduce value delay but
introduces the problem of variations in the speculative
global value queue. In this section, a new gDiff-based
hybrid predictor is proposed. This predictor can
significantly reduce the impact of pipeline execution
variations from cache misses and enhance the
performance of the predictor by exploiting more than one
type of value locality.

Pipeline execution variations are caused by dynamic
run-time events, such as cache misses and mispredictions.
Those run-time events affect the dynamic scheduling so
that the execution order of instructions may not be the
same over different iterations. To remove the variations in
the global value queue, the global value sequence needs to
be constructed before dynamic scheduling (i.e., in the
dispatch stage). However, the execution result of an
instruction is not available at dispatch time. To solve the
problem, we propose to use another type of speculative
value to construct the global value sequence at dispatch
time and then update the sequence at write-back time. As
gDiff explores global stride-based value locality, a value
predictor based on a different type of locality, e.g., a local
stride predictor or a local context predictor, is appropriate
to generate the values at dispatch stage and temporarily
fill the entries in the ordered queue. The scheme is shown
in Figure 15.

Figure 15. The gDiff predictor with hybrid global
value queue (HGVQ).

In Figure 15, the predictions based on the local stride
predictor are pushed into the global value queue (GVQ) at
dispatch time and updated with the execution results at
write-back time. As GVQ contains a hybrid of values
from local stride prediction and speculative global

execution results, it is called hybrid global value queue
(HGVQ). A field is associated with each instruction in the
issue queue (or RUU) to direct which entry in the HGVQ
the result should update. The performance of the gDiff
predictor with HGVQ was evaluated and the simulation
results (using the same simulation methodology as in
Section 4) are shown in Figure 16.

From Figure 16, it can be seen that the prediction
capability of the gDiff predictor is greatly enhanced by the
hybrid queue structure. For benchmarks bzip2, gap, gzip,
mcf, parser, and perl, the confident predictions achieve
over 90% accuracy, while other benchmarks show 86% to
89% accuracy. Compared with the local stride predictor
with the same confidence mechanism, the results show
better average prediction accuracies (91% vs. 89%) and
higher coverage (64% vs. 55%). This demonstrates that
the gDiff predictor captures global stride locality over and
above local stride locality. For the local context predictor
(DFCM), the confidence gating results smaller prediction
coverage compared to local stride or gDiff predictors
while the accuracy is in the similar range. Note that in this
experiment, all predictors make predictions at dispatch
stage and are updated at write-back stage (i.e., speculative
update based on prediction is not performed for local
stride and local context predictors).

There are several factors accounting for the strong
performance of the HGVQ-based gDiff predictor. First, it
maximizes opportunities to find global stride-based value
locality by constructing the value sequence in instruction
dispatch order and by using speculative values to fill in
holes in the history. Assembling the value sequence in
dispatch order eliminates the execution variation problem
due to cache misses; and, the speculative values help to
reduce the effective value delay. Secondly, the HGVQ
provides an efficient way to exploit two types of value
localities (local stride and global stride). For example, if
two instructions, a and b, are both predictable using a
local stride predictor and are close to each other (see
Figure 17), then clearly there is a global stride-type
correlation between the two instructions. However, the
ordinary GVQ-based gDiff predictor would fail to exploit
this locality since the first load must finish before the
dispatch of second load (i.e., due to the value delay of the
instruction a). With the local stride prediction, although
instruction a is still in the execution pipeline, the correct
prediction (a gDiff-based prediction) of instruction b can
be made based on the prediction of a (a local stride-based
prediction). In general, the HGVQ does more than make
predictions of a few dependent instructions based on a
local prediction possible. Due to the nature of the stride
type locality, dependent instructions (e.g., instruction b in
Figure 17) should be locally predictable as well if the
local stride prediction is correct (i.e., those predictions do
not account for the highly improved coverage shown in
Figure 16). The increased coverage comes from the

prediction

GDiff
Prediction
Table

Global value queue

GDiff predictor

PC

update

Fetch Dispatch Issue Reg Read Execution Write Back Retire

Local stride predictor local stride prediction

Execution pipeline

instructions with low local value locality but high global
locality, and this added predictive power is one of the
most important contributions of the gDiff predictor.

Figure 17. The code example to show how the gDiff
predictor with HGVQ uses the local prediction.

6. Using gDiff to predict load addresses

The gDiff predictor provides a general framework for
exploiting global stride locality for any value stream. By

allowing only load addresses to pass into the GVQ, gDiff
detects global stride locality in the load address stream. In
this experiment, the address prediction is made at the
dispatch stage and updated at the address generation stage
for all load instructions. The gDiff and local stride
predictors use a tagless, 4K-entry prediction table, while
the first-order Markov predictor [13] uses a 4-way, 256K-
entry prediction table. For local and gDiff predictors, the
prediction coverage is computed as the ratio of confident
predictions over total predictions. For the Markov
predictor, there is no confidence counter and the
confidence gating is achieved with tag matching. Figure
18 shows the prediction capability achieved by each
predictor for all load addresses and for addresses of
missing loads.

Prediction accuracy and coverage of gDiff and local predictors

30%
40%
50%
60%
70%
80%
90%

100%

bzip2 gap gcc gzip mcf parser perl twolf vortex vpr average

gDiff accuracy L_stride accuracy L_context accuracy gDiff coverage L_stride coverage L_context coverage

Figure 16. The performance of the gDiff predictor with HGVQ (queue size = 32).

Predictability of load address stream

0%

20%

40%

60%

80%

100%

bzip2 gap gcc gzip mcf parser perl twolf vortex vpr average

ls_cov ls_accu gs_cov gs_accu markov_cov markov_accu

(a)

Predictability of addresses of missing loads

0%

20%

40%

60%

80%

100%

bzip2 gap gcc gzip mcf parser perl twolf vortex vpr average

ls_m_cov ls_m_accu gs_m_cov gs_m_accu markov_m_cov markov_m_accu

(b)

Figure 18. (a) Load address predictability. (b) Predictability of missing loads. (ls: local stride; gs: gDiff; accu:
accuracy; cov: coverage; m: missing load).

…
a: load r2, r28, #constant //producing values 1, 1, …, 1

 //(local stride predictable)
…
b: load r3, r30, #constant //producing values 3, 3, …, 3

 //(local stride predictable)
…

Two important observations can be made from Figure
18. First, gDiff achieves much higher combination of
prediction accuracy (86%) and coverage (63%) for load
address prediction compared to either local stride
(accuracy 86% but coverage 55%) or Markov predictors
(accuracy 33% although coverage 87%). The global stride
locality detected by gDiff can be used to facilitate the
reduction of load-use latency [1]. Secondly, gDiff also
performs the best (accuracy 53% and coverage 33%) in
predicting addresses of missing loads, while the local
stride predictor provides a prediction accuracy of 55% but
coverage of only 25%. The Markov predictor has a much
higher coverage 69% but a fairly low accuracy of 20%.
The Markov predictor usually requires a large prediction
table as it is indexed with load addresses. When its size
increases from 256K-entry to 2M-entry, the Markov
predictor achieves decent average coverage (92%) and
accuracy (33%) but still shows much lower prediction
capability than gDiff for benchmarks including bzip2,
gap, gzip and perl. GDiff, on the other hand, provides a
relatively cost-effective way in predicting addresses of
missing loads when compared with these other schemes.
This motivates us to extend gDiff for memory prefetch.
These extensions are out of the scope of this paper and left
as future work.

7. The performance potential of value
prediction using the gDiff predictor

Since the gDiff predictor presents promising prediction
results as seen in Figure 16, we investigated the
performance impact of using it to break data
dependencies. The purpose here is to show the
performance potential of the proposed prediction scheme.
As such, an aggressive machine model is used, similar to
the ‘great’ latency model described in [24]. The machine
can issue branch instructions speculatively and to perform

selective reissuing in the case of mispredictions. The
performance results based on a 4-wide, 64-entry issue
queue machine model (same as what was used in Section
4) are shown in Figure 19 and the baseline IPC results
(IPC without value speculation) are shown in Table 2. In
the experiment, the local stride and context predictions are
made at dispatch stage and they are updated at write-back
stage. From the results, we can see that the local context
predictor does not perform as well as the local stride
predictor. The main reason is due to the small prediction
coverage of the local context predictor, as shown in
Figure 16. So, we focus on the comparison between the
gDiff and the local stride predictor.

From Figure 19, it can be seen that the improved
prediction accuracy and coverage of the gDiff predictor
show significant performance potential. Taking the
benchmark mcf as an example, the increased coverage
(from 65% to 75% of all the value producing integer
instructions) results in a speedup of 17% over the baseline
machine with a local value predictor and a speedup of
53% over the baseline model without value speculation.
The main reason for the significant speedup is that gDiff
can predict many missing load values (71.65% coverage
and 88.63% accuracy for all missing loads) correctly to
enable more dependent instructions to execute compared
to local stride predictor (63.61% coverage and 87.64%
accuracy for all missing loads). As mcf is highly memory
intensive (L1 D-cache miss rate 44.08%), a large window
size of 64 enables more missing loads to be predicted
leading to higher speedups. Another important reason is
that gDiff can accurately capture the stride type of locality
(single stride or phased multi-stride) between two load
addresses if those two address-generating instructions
exist in the HGVQ at the same time. As pointed out in
[26], many important loads (i.e., loads that tend to miss)
have strong stride relationship between their addresses as
an artifact of dynamic memory allocation. The correct

Speedups of gDiff and local value prediction

0%

10%

20%

30%

40%

50%

60%

bzip2 gap gcc gzip mcf parser perl twolf vortex vpr H_mean

%

local_stride local_context gDiff(HGVQ)

Figure 19. The speedups of value prediction using the local stride and gDiff predictors.

Table 2. Baseline IPC results (for a 4-way machine model with a 64-entry issue window).

Benchmarks bzip2 gap gcc gzip mcf parser perl twolf vortex vpr
Baseline IPC 2.02 1.23 1.96 1.77 0.66 1.27 1.50 0.99 2.26 1.30

prediction of the load address enables the dependent load
to be issued much earlier to overlap the miss latency.
However, not all the coverage increase has the same
impact on performance for different benchmarks. For
example, the gDiff predictor provides 15% prediction
coverage increase (from 62% to 71%) for the benchmark
bzip2 compared to the local value predictor, while the
resulting speedup increase is just 1%. This implies
additional value predictions based on the gDiff predictor
does not help in reducing the critical path of the
benchmark bzip2. On average, the gDiff predictor results
in a 19.2% speedup over the baseline machine and a 4%
(from 15% to 19%) speedup over the baseline machine
with a local stride predictor1.

8. Conclusion

In this paper, a new type of value locality, global
computational locality, is studied and a set of prediction
schemes are proposed to exploit this locality and to
increase overall value predictability. The main
contributions of this work include:
• A new type of value locality is formalized and

studied. The localities in global value history present
new opportunities to be explored. A novel prediction
scheme, the gDiff predictor, is proposed to exploit the
global stride value locality dynamically. Experiments
demonstrate that there exists very strong stride-type
locality in global value history and ideally the gDiff
predictor can achieve 73% prediction accuracy when
predicting all the value producing instructions.

• The value delay issue is addressed in this paper and
its impact on gDiff predictor is studied. It is shown
that value delay is a challenge for any scheme that
seeks to exploit global value locality, especially in
out-of-order execution pipeline models.

• To reduce the value delay impact in OOO pipelines,
this paper proposes using the speculative values at the
execution stage instead of waiting for them to be
retired in-order. This approach reduces value delay
but introduces the execution variation problem. Those
variations make it difficult for the gDiff predictor to
find global stride locality.

• In order to reduce both value delay and pipeline
variation impact, this paper proposes construction of
a partially speculative global value sequence at
instruction dispatch time using another type of value
predictor (e.g., the local stride predictor). The correct
values produced after execution are used to update
the value sequence. In this way, the gDiff predictor
maximizes exploiting global value locality and

1 (This suggests that a further enhancement to gDiff would combine it
with a critical path predictor [5, 29], but such an extension is beyond the
scope of this paper.)

enables an efficient integration of a different type of
value locality. The experiments show that the gDiff
predictor achieves an impressive 91% prediction
accuracy with 64% coverage. We then demonstrate
the usage of gDiff prediction scheme to predict load
address stream. The results show that global stride
locality detected by gDiff leads to strong capabilities
in predicting all load addresses and in predicting
addresses of missing loads. The gDiff predictor can
also be used to break true data dependencies; and, it
shows impressive performance potentials in a 4-wide
OOO machine with a 64-entry issue window.

There are several directions for the future work. One
interesting work is to extend gDiff to further explore
global stride locality in load address stream for memory
prefetch and for reducing load-use latency. Another
direction would be to study in detail how to interact with
the deeper pipeline [27] to convert the newly discovered
predictability into higher speedups.

9. Acknowledgement

This work was supported by NSF awards CCR-
0208596 and CCR-0072926 and a hardware donation
from Hewlett-Packard.

10. References

[1] M. Bekerman, S. Jourdan, R. Ronen, G Kirshenboim, L.
Pappoport, A. Yoaz, and U. Weiser, “Correlated Load-
Address Predictors”, in International Symposium on
Computer Architecture (ISCA-26), 1999.

[2] J. T. Bodine, “Exploiting computational locality in global
value histories”, MS. Thesis, ECE Department, N. C. State
University, 2002.

[3] D. Burger and T. Austin, "The SimpleScalar tool set, v2.0,"
Computer Architecture News (ACM SIGARCH
newsletter), vol. 25, June 1997.

[4] M. Burtscher and B. G. Zorn, “Exploring last n value
prediction,” In International Conference on Parallel
Architectures and Compilation Techniques (PACT'99),
1999.

[5] B. Fields, S. Rubin, and R. Bodik, “Focusing processor
policies via critical-path prediction”, in International
Symposium on Computer Architecture (ISCA-28), 2001.

[6] C. Fu, M. D. Jennings, S. Y. Larin, and T. M. Conte,
“Value speculation scheduling for high performance
processors,” In 8th International Conference on
Architectural Support for Programming Language and
Operation Systems (ASPLOS-8), 1998.

[7] F. Gabbay and A. Mendelson, “Speculative execution based
on value prediction,” EE Department Tech Report 1080,
Tachnion - Israel Institute of Technology, Nov. 1996.

[8] F. Gabbay and A. Mendelson, “Can program profiling
support value prediction?”, in 30th International Symposium
on Microarchitecture (MICRO-30), Nov. 1997.

[9] B. Goeman, H. Vandierrndonck, and K. D. Bosschere,
“Differential FCM: Increasing value prediction accuracy by
improving table usage efficiency,” in 7th International
Symposium on High-Performance Computer Architecture
(HPCA'01), Jan 2001.

[10] E. Hao, P-Y Chang, and Y. Patt, “The effect of
speculatively updating branch history on branch prediction
accuracy, revisited”, in 27th International Symposium on
Microarchitecture (MICRO-27), 1994.

[11] T. Heil, Z. Smith, and J. E. Smith, “Improving branch
predictors by correlating on data values”, in 32nd
International Symposium on Microarchitecture (MICRO-
32), 1999.

[12] D. Jimenez and C. Lin, “Dynamic branch prediction with
perceptrons”, in 7th International Symposium on High
Performance Computer Architecture (HPCA-7), 2001.

[13] D. Joseph and D. Grunwald, “Prefetching using Markov
Predictors”, IEEE Transactions on Computers. Vol. 48, Feb
1999.

[14] E. Larson and T. Austin, “Compiler controlled value
prediction using branch predictor based confidence”, in 33rd
International Symposium on Microarchitecture (MICRO-
33), 2000.

[15] S. Lee, Y. Wang, and P. Yew, “Decoupled value prediction
on trace processors”, in 6th International Symposium on
High Performance Computer Architecture (HPCA-6),
2000.

[16] S. Lee and P. Yew, “On some implementation issues for
value prediction on wide ILP processors”, in International
Conference on Parallel Architectures and Compilation
Techniques (PACT'00), 2000.

[17] M. H. Lipasti and J. P. Shen, “Exceeding the dataflow limit
via value prediction,” in 29th International Symposium on
Microarchitecture (MICRO-29), 1996.

[18] M.H. Lipasti, C. B. Wikerson, and J. P. Shen, “Value
locality and load value prediction,” in 7th International
Conference on Architectural Support for Programming
Language and Operation Systems (ASPLOS-7), Oct, 1996.

[19] P. Marcuello, J. Tubella, and A. Gonzalez, “Value
prediction for speculative multithreaded architectures,” in
32nd International Symposium on Microarchitecture
(MICRO-32), 1999.

[20] T. Nakra, R. Gupta, and M. L. Soffa, “Global context-based
value prediction,” in 5th International Symposium on High
Performance Computer Architecture (HPCA-5), 1999.

[21] G. Reinman and B. Calder, “Predictive Techniques for
aggressive local speculation”, in 31st International
Symposium on Microarchitecture (MICRO-31), 2000.

[22] B. Rychlik, J. Faistl, B. Krug, and J. P. Shen, “Efficacy and
performance impact of value prediction,” in International
Conference on Parallel Architectures and Compilation
Techniques (PACT'98), 1998.

[23] R. Sathe and M. Franklin, “Available parallelism with data
value prediction”, in High Performance Computing HiPC-
5, 1998.

[24] Y. Sazeides, “Modeling value prediction,” in 8th
International Symposium on High Performance Computer
Architecture (HPCA-8), 2002.

[25] Y. Sazeides and J. E. Smith, “The predictability of data
values,” in 30th International Symposium on
Microarchitecture (MICRO-30), Nov. 1997

[26] M. J. Serrano and Y. Wu, “Memory performance analysis
of SPEC2000 for the Intel Itanium Processor”, in 4th
Workshop on Workload Characterization, 2001.

[27] E. Sprangle and D. Carmean, “Increasing processor
performance by implementing deeper pipelines”, in 29th
International Symposium on Computer Architecture (ISCA-
29), 2002.

[28] R. Thomas and M. Franklin, “Using dataflow based context
for accurate value prediction”, in International Conference
on Parallel Architectures and Compilation Techniques
(PACT'01), 2001.

[29] E Tune, D. Liang, D. Tullsen, and B. Calder, “Dynamic
prediction of critical instructions”, in 7th International
Symposium on High Performance Computer Architecture
(HPCA-7), 2001.

[30] K. Wang and M. Franklin, “Highly accurate data value
prediction using hybrid predictors,” in 30th International
Symposium on Microarchitecture (MICRO-30), Nov. 1997.

[31] Y. Wu, D. Chen, and J. Fang, “Better exploration of region-
level value locality with integrated computation reuse and
value prediction”, in International Symposium on Computer
Architecture (ISCA-28), 2001.

