

Code Size Efficiency in Global Scheduling for ILP Processors

 Huiyang Zhou Thomas M. Conte

Center for Embedded Systems Research

Department of Electrical and Computer Engineering

North Carolina State University

{hzhou,conte}@eos.ncsu.edu

Abstract

In global scheduling for ILP processors, region-
enlarging optimizations, especially tail duplication, are
commonly used. The code size increase due to such
optimizations, however, raises serious concerns about
the affected I-cache and TLB performance. In this paper,
we propose a quantitative measure of the code size
efficiency at compile time for any code size related
optimization. Then, based on the efficiency of tail
duplication, we propose the solutions to two related
problems: (1) how to achieve the best performance for a
given code size increase, (2) how to get the optimal code
size efficiency for any program. Our study shows that
code size increase has a significant but varying impact
on IPC, e.g., the first 2% code size increase results in
18.5% increase in static IPC, but less than 1% when the
given code size further increases from 20% to 30%. We
then use this feature to define the optimal code size
efficiency and to derive a simple, yet robust threshold
scheme finding it. The experimental results using
SPECint95 benchmarks show that this threshold scheme
finds the optimal efficiency accurately. While the optimal
efficiency results show an average increase of 2% in
code size, the improved I-cache performance is observed
and a speedup of 17% over the natural treegion results is
achieved.

1. Introduction

The I-cache performance for an application is
determined by its working set size. If the program size is
exceedingly large compared to the I-cache or TLB size,
it may result in high miss rates, which in turn degrades
the performance of the processor. On the other hand, in
the scheduling phase of an ILP (instruction-level-
parallelism) compiler, there is a lot of effort placed on
enhancing the performance by exploiting the available
ILP. As larger scheduling regions tend to provide more

ILP, region-enlarging optimizations are commonly used
in or before the instruction scheduler. However, those
optimizations often cause an increase in static code size.
Loop unrolling and loop peeling are examples of such
optimizations in cyclic scheduling. In acyclic global
scheduling, tail duplication (or code replication) is the
most commonly used region enlarging / ILP enhancing
optimization. Even with its evident impact on code size
increase, it is applied due to its capability to remove the
side entries of a trace [5], [13] and to avoid the
conditional / unconditional branches [12]. Our
experience is that other code size related optimizations in
acyclic scheduling, such as code downward motion
through branches and recovery code for speculations
[15], have less impacts on both ILP and code size than
tail duplication.

In the paper, we study the code size efficiency of
code-size-related optimizations in acyclic scheduling,
especially the tail duplication. We then present a very
efficient way of regulating tail duplication for global
instruction scheduling. To do this, we first define a
quantitative measure of the code size efficiency that is
for any code size related optimization. The measure is
calculated as the ratio of ILP improvement (in terms of
static IPC) to code size increase. The static IPC is the
instruction-per-cycle measured at compile time to show
the ILP exploitation based on instruction scheduling.
Based on this general description, two more specific
definitions are formulated: average code size efficiency
and instantaneous code size efficiency. The average code
size efficiency measures the ILP improvement at the cost
of code size for overall applications of code size related
optimizations. The instantaneous code size efficiency is
used for an individual application of an optimization
based on the current code size.

As the static IPC is hard to calculate before the
schedule time, we propose a heuristic to estimate the
expected execution time of a multi-path region using a
dependence bound and a resource bound. The
experimental results show that the treegion scheduler

produces schedules very close to the expected execution
time (92% to 97% accuracy). Then, two related problems
are investigated based on the instantaneous code size
efficiency of different tail duplication candidates: (1)
how to achieve the best speedup for a given size code
increase, i.e., how to get the best average code size
efficiency for a given code size; and, (2) how to get the
optimal code size efficiency for any program. To find the
solution to the first problem, all the possible tail
duplication candidates in the program scope are ordered
based on their instantaneous code size efficiency. The
candidates are then chosen based on this order until the
estimated code size limit is reached. The simulation
results using SPECint95 show that for a modest pre-
scheduling code size increase of 2% over the original
size, the scheduled code gains 18.5% speedup and a
1.6% code size decrease1. Another observation from the
simulation results is that for any benchmark, the initial
code size increase over the original has a much larger
impact on static IPC than the same increase over an
already bloated program— e.g., the initial 2% code size
increase result in IPC change of 18.5%, while the IPC
change is less than 1% when pre-scheduling code size
limit varying from 20% to 30%.

Based on above observations, we define the optimal
code size efficiency for a program and propose a simple,
yet robust threshold scheme to find the optimal solution.
This threshold is derived mathematically to be the code
size efficiency measure that we proposed before. The
robustness of the scheme (i.e., the effective range of the
threshold) is determined by the rate of static IPC change
over code-size increase around the optimal solution. The
simulation results show that this simple threshold scheme
finds the optimal solution for every benchmark with
average post-scheduling 2% code size increase over the
original size. When taking the cache effects and branch
prediction impact into account, it results in a 4%
decrease on I-cache miss penalties (for a 32KB I-cache),
due to the increased sequential locality and more
compact schedule, and a 17% speedup overall over the
natural treegion results (treegion without any tail
duplication). The experiment with different I-cache sizes
shows that the speedup also holds for both small I-caches
of 16KB and large I-caches of 64KB [21].

The remainder of the paper is organized as follows.
Section 2 briefly introduces the treegion-based global
scheduling, and the simulation methodology of the
experiments. The quantitative measures of the code size
efficiency are discussed in Section 3. The optimal tail
duplication for scheduling under a given code size
constraint is contained in Section 4.1 and the solution to

1 This decrease is due to the general operation combining [4] exploited
by our global scheduler.

the optimal code size efficiency is discussed in Section
4.2. Finally, Section 5 concludes the paper.

2. Treegion-based global scheduling and
simulation methodology

2.1. Treegions and treegion-based global
scheduling

In this paper, treegion-based global scheduling [1],[2]
is used as the acyclic scheduling framework. However, it
needs to be pointed out that although the experimental
results are obtained using treegion scheduling, the same
methodology of this code size efficiency study is
applicable to other global scheduling approaches, such as
superblock scheduling [5] and hyperblock scheduling
[7].

Treegion-based global scheduling aims for high
performance for wide issue VLIW / EPIC processors
although it can be applied to superscalar processors as
well. It has two steps: treegion formation [1] and tree
traversal scheduling (TTS) [2]. A treegion is a single-
entry / multiple-exit nonlinear region that consists of
basic blocks (BBs) with control-flow forming a tree, as
illustrated in Figure 1a. Based on the control flow graph
(CFG) in the Figure, two treegions are formed. The
treegions that are formed without any tail duplication are
referred to as natural treegions. When the tail
duplication is applied, a larger treegion can be formed.
For the example CFG in Figure 1a, after the BB7, BB8,
and BB9 are duplicated and the corresponding
unconditional branches are removed, one treegion is
formed containing all the BBs in the CFG, as shown in
Figure 1b. The trade-off for exposing ILP through
treegion formation is the code-expansion that results
from duplicates of BB7, BB8 and BB9. Note that in this
paper, the tail duplication is performed on the unit of
natural treegion (i.e., merge points), e.g., in the example
of Figure 1, the entire treegion 2 is duplicated instead of
the BB7. In the previous treegion scheduling works, the
tail duplication is performed based on a heuristic
discussed in [1], which we refer to as Havanki’s heuristic
and briefly describe it as follows. Havanki’s tail
duplication heuristic is based on several factors: code
expansion limit, path count (the number of paths in a
treegion) and the number of the incoming edges to a
merge point. The code expansion limit is a global control
parameter, while the other two are based on the topology
of the CFG. When any of those limits is reached, the tail
duplication will stop and a new treegion will be formed.
The advantage of this heuristic is that it solely depends
on the topology of the CFG and it is not susceptible with
the profiling errors.

(a)

(b)
Figure 1. (a) The CFG and the treegions constructed;
(b) The treegion constructed after the tail duplication

During the tree traversal scheduling (TTS), the BBs
are scheduled in a predetermined traversal order based
on treegion topology and profile information. When a
BB is currently being scheduled, those instructions that
are dominated by the BB will be considered as
scheduling candidates until the block-ending branch is
scheduled. Those candidate operations are scheduled
based on an order determined by a heuristic that includes
their execution frequency, exit count, and data
dependence height. The details of tree traversal
scheduling can be found in [2],[4].

2.2. The code size increase in treegion
scheduling

In treegion based scheduling, most code size increase
is from tail duplication during treegion formation2. In
TTS, downward code motion and general operation
combining also contribute to code size changes.
Downward code motion happens when the block-ending
branch is scheduled earlier than some instructions in the
same BB. To maintain the semantics of the program,

2 A small additional code size increase is caused by copy operations to
preserve liveness beyond the treegion scope.

those instructions need to be placed at every possible exit
path of the branch, which may introduce some code
replication. In TTS, this downward code motion is
combined with partial dead code removal so that only
instructions producing a variable live at both exit paths
will be replicated. The general operation combining is
used at scheduling time to remove redundant operations.
When one operation is selected for scheduling, it is
compared to other operations that have already been
scheduled in the same cycle. If a scheduled operation is
found to have the same opcode and source operands, the
candidate operation is then merged into the scheduled
operation with necessary renaming. Since a treegion
contains multiple execution paths, it exploits more
opportunities for general operation combining than those
of linear regions. As a result, the scheduled code will
have a reduced code size. When both downward code
motion and general operation combining are used, the
benchmarks in SPECint95 show an average of 3.5% code
size decrease for treegions formed without any tail
duplication (i.e., using natural treegions). When tail
duplication is performed, there are more chances for
general operation combining. For the treegions formed
using Havanki’s heuristic, 12.8% code size decrease is
observed at scheduling time while the effective overall
code size increase is about 70% (i.e., the code size
increase would be 82.8% without general operation
combining).

2.3. Simulation methodology

The algorithms for the code size efficiency study in
this paper and for treegion based global scheduling are
implemented in LEGO compiler [11], a research ILP
compiler developed for high performance VLIW / EPIC
[9] style microprocessors at North Carolina State
University. The compiling process of LEGO compiler is
as follows. All programs are first compiled with classic
optimizations using either (1) the IMPACT compiler
from University of Illinois [10] and converted to Rebel
textual intermediate representation using the Elcor
compiler from Hewlett-Packard Laboratories [8], or (2)
read directly from IA-64 assembly generated from the
Intel or GCC compilers. Then, the LEGO compiler is
used to profile code, form treegions and schedule the
instructions. After instrumentation is added for trace-
based timing simulation, the scheduled intermediate code
is either converted into an inline execution simulator that
is emitted as C code (the technique used in this paper) or
emitted as IA-64 assembly. Finally, a trace-based timing
simulation runs together with an execution simulation to
obtain the simulation results while ensuring the
correctness of the program. In our experiments, all
benchmarks in SPEC95int suite run to completion.

BB1 Treegion 1

Treegion 2

BB2 BB3

BB4 BB5

BB6 BB7

BB8 BB9

Treegion 1 BB1

BB2 BB3

BB4 BB5

BB7’
BB6 BB7

BB8’ BB9’
BB8 BB9

For the simplicity, an 8-way universal issue machine
model is used in this study. The specification of the
model is show in Table 1.

Table 1. The specification of the machine model used
in the experiment

 Specification
Execution Dispatch/Issue/Retire bandwidth: 8;

Universal function units: 8; Operation
latency: ALU, ST, BR: 1 cycle; LD,
floating-point (FP) add/subtract: 2 cycles.

I-cache Compressed (zero-nop) and two banks with
2-way 16KB each bank [19].
Line size: 16 operations with 4 bytes each
operation. Miss latency: 12 cycles

D-cache Size/Associativity/Replacement: 64KB/4-
way/LRU Line size: 32 bytes Miss Penalty:
14 cycles

Branch

Predictor

G-share style Multiway branch prediction
[20] Branch prediction table: 214 entries;
Branch target buffer: 214 entries/8-
way/LRU. Branch misprediction penalty:
10 cycles

3. The quantitative measure of code size
efficiency

3.1. Code size efficiency for code size related
optimizations in global scheduling

The motivation of a region enlarging optimization in
global scheduling is based on the premise that larger
scheduling regions can exploit more ILP. With tail
duplication as an example optimization, Figure 2 shows
the relationship between static code size and
performance for the benchmark compress. Note that
although the working size of compress is small, it
exemplifies the relationship between the code size and
ILP exploitation that are shared by other larger
benchmarks. The experimental results in Figure 2 show
code sizes vs. ILP for BB scheduling and treegion
scheduling. For treegion scheduling, three possible tail
duplication strategies are presented: natural treegions,
tail duplication based on Havanki’s heuristics, and tail
duplication for all the possible merge points that have
execution frequency larger than zero (‘All_Possible’). In
the experiment, the ILP is measured using static IPC,
which is the instruction-per-cycle estimated at compile
time to show the ILP exploitation based on instruction
scheduling. Also, when calculating this static IPC, the
dynamic instruction count (IC) based on BB scheduling
code is used for treegion-scheduling results to show the
effective IPC. The code size is measured using the

relative ratio, i.e., the ratio of resulted code size over the
original code size.

129.compress

1.9

2

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

0.95 1.05 1.15 1.25 1.35 1.45 1.55 1.65 1.75 1.85
relative code size

St
at

ic
 I

P
C

All_Possible

Havanki’s heuristic

BB

Natural_tree

Figure 2. The relationship between performance and
static code size for benchmark compress

As shown in Figure 2, natural treegion scheduling
shows a 3% code size decrease over the original code
size (the decrease is due to the general operation
combining of TTS) and 20% speedup over BB
scheduling. If tail duplication is applied, more ILP will
be exploited (up to another 21% speedup) in the global
scheduling phase with the cost of an increase in code size
(up to 76%). Base on these observations, it seems that
the natural treegion is a good starting point for code size
related optimization, and that the ratio of the change in
static IPC over the change in code size provide a
reasonable measure of the efficiency of the code size
expanding optimizations at compile time. It is noted here
that although the dynamic IPC is more representative of
the real performance, it depends on many factors
including the branch prediction accuracy, cache
performance, code layout and other optimizations, which
are hard to quantify at compile time. The static IPC, on
the other hand, indicates the ILP exploitation at compile
time and is the goal to maximize with compile-time
optimizations. So, the static IPC is used as the
performance indicator in our measure of the tradeoff
between ILP exploitation and the code size increase and
the dynamic IPC effects are examined in Section 4.2.

Here, we define two different types of code size
efficiency based on different forms of the ratio of IPC
changes over relative code size changes.

Average code size efficiency: This type of efficiency
provides a measure of the average ILP provided by code
size related optimizations at the cost of a unit code size
increase and it is defined as follows:

treegionnaturalcandidate

treegionnaturalcandidate
ave sizecodesizecode

IPCIPC
Efficiency

_

_

__ −
−

=

 (1)
In Equation (1), the term

(
treegionnaturalcandidate IPCIPC _−) represents the ILP

Table 2. The accuracy of the heuristic to compute the expected execution time
Benchmark compress gcc go ijpeg li m88ksim perl vortex
Ratio of execution time based
on scheduled code over
expected execution time

1.036 1.075 1.078 1.047 1.071 1.067 1.081 1.063

improvement of the candidate optimizations and the term
(

treegionnaturalcandidate sizecodesizecode ___ −) represents the

cost of such optimizations in terms of static code size.
Graphically in Figure 2, the average code size efficiency
represents the slope of a line connecting the natural
treegion result and the one under consideration (i.e.,
‘candidate’). With this quantitative measure, the
comparison can be made for different code size related
optimizations and for the different applications of the
same optimization. For example, based on tail
duplication results in Figure 2, it can be seen that the
Havanki’s heuristic produces a slightly better code size
efficiency than duplicating all the possible candidates.
Note that if the efficiency of an optimization is
calculated as negative, it represents one of two extreme
cases: (a) the optimization increases the IPC and
decreases the code size— this optimization should
always be applied, or (b) the optimization decreases the
IPC at the cost of more code size— this optimization
usually needs to be avoided.

Instantaneous code size efficiency: this type of
efficiency measures the ILP improvement of an
individual application of an optimization based on the
current code size, and it is defined as follows:

napplicatioindivialbeforenapplicatioindivialafter

napplicatioindivialbeforenapplicatioindivialafter

inst

sizecodesizecode

IPCIPC

Efficiency

__ −
−

=

 (2)
Using the tail duplication as an example optimization,

there could be many merge points in a program as
candidates for this optimization. Then, for each possible
tail duplication (i.e., an individual application), there is
an instantaneous efficiency associated with it.

For the tail duplication example in Figure 2, if we
imagine that there is a curve representing the relationship
between IPC and code size of tail duplication
optimization, the instantaneous efficiency is the tangent
slope of the curve (i.e., the derivative of the curve) at the
point corresponding to the current code size. The average
code size efficiency can then be viewed as the effect of
averaging the instantaneous efficiency of all the tail
duplications that occurred in global scheduling.

3.2. A heuristic to compute efficiency using
expected execution time

Since the code size efficiency calculation requires the

(static) IPC measurement, which is not known before the
schedule time, we propose a heuristic to compute the
expected execution time so that the IPC changes can be
approximated by the changes in expected execution time.
This heuristic is based on the data dependence bound
and resource bound and is defined as Equation 3 for a
multi-path region, e.g., a treegion.

()[]∑ ∗

=

ipath
ipathipathipath

Expected

FreqboundresourcebounddependencedataMax

TimeExe

_
___ _,__

_

(3)
In Equation 3, the expected execution time of a region

is computed as the sum of the expected execution time of
each path, which is in turn computed as maximum of the
data dependence bound and the resource bound of the
path. Similar to the performance bounds proposed in
[14], [17], we use the true data dependence height of
Data Dependence Graph (DDG) as the dependence
bound. The resource bound is calculated using a
technique similar to the ResMII calculation from
iterative modulo scheduling [16]. The execution
frequency for each path,

ipathFreq _
, is obtained from

profiling information.
The effectiveness of this heuristic is verified by

comparing the expected execution time to the treegion
scheduled results, as shown in Table 2. Here, the
execution time of the scheduled code is measured using a
scoreboard-based simulation, which enforces the data
dependence and resource dependence. In the benchmark
gcc, for example, the overall execution time based on
scheduled result is 7.5% larger than the expected
execution time using this heuristic. The mismatch is
because the data dependence bound is calculated
assuming all the false register dependencies can be
removed by software renaming, and that the control
dependencies can be minimized by treegion multiway
branch transformations [4]. This assumption is too
optimistic as liveness beyond the BB scope may require
a copy instruction to be inserted. Also, the renaming may
not be applicable to some special purpose registers, such
as parameter passing registers.

3.3. The code size efficiency for tail duplication
optimization

When we consider tail duplication as the optimization
of interest, for each control edge entering a merge point,
we can calculate its instantaneous code size efficiency

using Equation 2 so that we can selectively apply the tail
duplications based on their efficiencies. In treegion-
formed code, four types of tail duplication candidate can
be encountered based on the dominance relationship and
number of edges entering the merge point, as shown in
Figure 3.

Figure 3. Four types of possible tail duplication in
treegions (the edge marked with ‘o’ representing the
edge to be removed by the candidate tail duplication,
the shaded treegion represents the duplicated region):
(a) Type-1: The parent tree dominates the candidate
tree and there are 2 edges entering the candidate tree;
(b) Type-2: The parent tree dominates the candidate
tree and there are more than 2 edges entering the
candidate tree; (c) Type-3: The parent tree does not
dominate the candidate tree and there are 2 edges
entering the candidate tree; and (d) Type-4: The
parent tree does not dominate the candidate tree and
there are more than 2 edges entering the candidate
tree.

As shown in Figure 3, after the type-1 tail duplication,
the resulted treegion (the parent_tree’ in the dashed line)
will absorb both the original and the duplicate copy of
the candidate tree. For type-3 tail duplication, the
original candidate tree will be absorbed into parent tree 2
and the duplicate will be included in the parent tree 1.
For the other two types, only the duplicate of the
candidate tree will be absorbed.

4. Optimal code size efficiency in global
scheduling

Based on the quantitative measures of the code size
efficiency of code size related optimizations such as tail
duplication, one useful goal is to find the optimal code
size efficiency achievable for the optimization. The term
‘optimal’ here has two different meanings: (a) if there
exists a limit on code size, the optimal solution is
maximizing the IPC while satisfying the code size
constraint (i.e., find the best average code size efficiency
for a given code size). Although code size constraints are
more common in embedded processors [18] than high
performance EPIC processors, it is useful when we want
to limit the whole or working program size (i.e., the part
of the code with execution frequency larger than zero)
below the level-1 I-cache size. The solution to it can be
represented using a curve showing the best possible IPC
for any code size. The second ‘optimal’ meaning is (b) if
there is no such a code size limit, the optimal solution is
a good trade-off between ILP and code size so that the
IPC is maximized at the minimal cost of code size
increase. The meaning of this best trade-off will be clear
once we obtain the curve of best IPC vs. code size based
the solution to (a). Using the tail duplication as an
example code-size-related optimization, Section 4.1
provides an algorithm to find the best efficiency for a
given code size, and Section 4.2 defines the optimal
efficiency problem without code size constraints and
derives a simple, yet robust threshold scheme.

4.1. Optimal code size efficiency for a given code
size limit

In order to find best code size efficiency of a given
code size for global scheduling using tail duplication, we
first compute the instantaneous code size efficiency for
all possible tail duplication candidates. Then, the
candidates are selected based on their efficiencies until
the size constraint is reached. The detailed algorithm is
shown in Figure 4. As shown in Figure 4, we use an
iterative approach for tail duplication. In each iteration of
steps 2 and 3, the candidate with best instantaneous code
size efficiency will be chosen and performed if such a
tail duplication will not exceed the code size constraint.
Although it may be possible to find the ‘real’ optimal
solution (i.e., tail duplications with best IPC) with an
exhaustive search algorithm, like what used in
determining best function inlining under a code size limit
[18], the complexity of such a search approach is further
increased by the fact that one tail-duplication may
change the efficiency of other candidates and increase
the number of the possible tail duplications.

(a) (b)

(c) (d)

Parent_tree Parent_tree

Parent_tree1 Parent_tree1

Parent_tree2
Parent_tree2

Parent_tree’ Parent_tree’

Parent_tree1’ Parent_tree1’

Parent_tree2’

Candidate
tree Candidate

tree
Candidate

tree

Candidate tree
Candidate

tree

Candidate
tree

Parent_tree2’

Algorithm for optimal tail duplications under code
size constraints

0. Mark the loop edges so that the tail duplication
will not overlap with cyclic optimization such
as loop unrolling.

1. Calculate the instantaneous code size
efficiency for all possible tail duplication
candidates in the program scope.

2. Find the one with best code size efficiency.
3. If the selected candidate satisfies the code size

constraint, perform the tail duplication and
update the code size efficiencies of the
candidates that are affected by the tail
duplication process.

4. Repeat steps 2-3 until the code size limit is
reached.

Table 3. The base code size and IPC for each benchmark

Benchmark compress gcc go ijpeg li m88ksim perl vortex

Static Operation Count 1439 368960 59853 40835 14487 33629 76026 149751

Static IPC 2.395 2.24 1.86 2.49 2.0 2.03 2.19 2.51

The algorithm described in Figure 4 was implemented
in LEGO compiler and experimented on SPECint95
benchmarks. Table 3 shows the base static IPC (using
natural treegion scheduling) and the original static code
size in terms of operation count for each benchmark.
Figure 5 shows the experimental results of benchmark
compress where the target code size increases are 0%
(i.e., natural treegion), 2%, 5%, 10%, 15%, 20%, 30%,
and 80%. The results for tail duplication based on
Havanki’s heuristics are also included. Note that due to
the effect of the general operation combining in TTS, the
scheduled code size is actually less than the target size.

Figure 4. The algorithm for best tail duplication for
global scheduling under code size constraints

129.compress

2

2.2

2.4

2.6

2.8

3

0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6

Relative code size

S
ta

ti
c

IP
C

best ILP for a given code size

tail duplication using Havanki’s heuristic

Figure 5. The relationship of ILP vs. code size of
benchmark compress

Several important observations can be made from
Figure 5. First, the code size increase due to tail
duplication has significant impact on ILP, e.g.,
performing tail duplication up to 5% of its original size
will results in 10.6% speedup and 2.4% increase in
scheduled code size over the original code size.
Comparing to the tail duplication based on Havanki’s
heuristics in traditional treegion formation, the code size
efficiency is greatly improved by the increased IPC and
decreased code size. There are two main reasons for
relatively low efficiency of Havanki’s heuristic. First, the
heuristic is mainly based on local features and does not
account for the profile information. When the treegion
formation starts, the treegion expands by tail duplication
until the path count limit / code size limit is reached or
there are too many incoming edges at the next merge
point. As a result, it duplicates many codes that have low
execution frequency and fail to do so for some basic
blocks or small treegions with high execution frequency.
For example, in Figure 3b, if the number of the incoming
edges to the candidate tree is beyond the predetermined
limit, the candidate tree will not be duplicated even it has
a high execution frequency. Secondly, Harvanki’s
heuristic does not take account of the potential speedup
when making a decision of whether a candidate should
be duplicated. As a result, it may choose to duplicate and
combine treegions that do not have reduced schedule
length.

Another important observation based on Figure 5 is
that the impact on ILP of code size decreases rapidly as
given code size increases, e.g., the first 2% code size
results in 7% IPC changes, while code size increase from
20% to 30% only results less than 0.5% IPC changes.
This phenomenon is expected because it is a known fact
that most (e.g., 90%) of the execution time is spent on a
small amount (e.g., 10%) of the static code for many
programs. As a result, once we finish duplicating tail
treegions in that small amount (10%) of the code, further
duplications will have relatively small effects on
execution time, (i.e., those tail duplications will have low
instantaneous code size efficiencies). This feature are
also verified with other benchmarks in our experiments,
e.g., the relation between ILP and code size of the
benchmark vortex (the notorious benchmark gcc has a
very similar curve), as shown in Figure 6, where the
target code size increases are 0%, 2%, 5%, 10%, 20 %,
30%, and 80%.

0%
2%

5%

80%

Table 4. The statistics of operations with different execution frequencies

Benchmark Maximal
Execution

Frequency (MEF)

Percentage of ops with
execution frequency <

0.01%*MEF

Percentage of ops with
execution frequency <

0.1%*MEF

Percentage of ops with
execution frequency <

1%*MEF
compress 0.4 Million 55.04% 64.07% 64.26%

vortex 12 Million 84.32% 92.37% 98.45%

147.vortex

2.5

2.7

2.9

3.1

3.3

3.5

0.8 1 1.2 1.4 1.6 1.8 2 2.2
Relative code size

S
ta

tic
 IP

C

best ILP for a given code size

tail duplication using Havanki’s heuristic

Figure 6. The relationship of ILP vs. code size of
benchmark vortex

Figure 6 shows the dramatic IPC change (around 34%)
for the first 2% code size increase, which also shows
14% speedup and 60% less code size over the traditional
treegion formation approach. Two interesting
observations can be made from Figure 5 and 6. First, the
initial code size increase show much more IPC
improvements in benchmark vortex than in benchmark
compress, which means the tail duplications resulting in
the initial code size increase in vortex have much higher
efficiency than those in compress. The high efficiency of
those tail duplications in vortex, based on our analysis of
the program, is mainly due to high execution frequency
of those codes (i.e., in the heavily executed portion of
vortex, many control edges are worthwhile to be
removed by tail duplication). Secondly, the ‘diminishing
returns’ happen quickly for benchmark vortex, after the
code size increase beyond 2%, comparing to benchmark
compress, which suggests that for benchmark vortex a
smaller percentage of code is frequently executed than
benchmark compress. This can be verified with the
statistical characteristics of the program, as shown in
Table 4. From Table 4, it can be seen that higher
percentage of the code of benchmark vortex are
infrequently executed than benchmark compress. Given
2% code size increase for vortex, the portion of the
program with high execution frequency has been
explored for possible tail duplications while for
compress, such code size increase is just not enough for
the possible candidates in frequently executed portions.

In terms of the average of all benchmarks, the initial
2% code size increase results in 18.5% speedup over
natural treegion and 1.6% code size decrease over the
original code size.

4.2. Finding the best code size efficiency for
global scheduling using tail duplication

Based on the characteristics of the curve representing
the relationship between best IPC and code size,
especially the ‘diminishing returns’ phenomenon, we can
define the ‘best code size efficiency’ as the point where
the diminishing returns starts, as point A (i.e., the knee of
the curve) shown in the exemplary ILP vs. code size
curve in Figure 7.

Figure 7. The solution to optimal code size efficiency

In consideration of how to find this optimal point
along the curve, we can first simplify the curve as two
straight lines (as the two dashed lines in Figure 7) and
the optimal solution then becomes point A’. In order to
find A’, we can use a threshold on the first derivative of
the curve, which will have a shape of bold solid lines
shown in Figure 8.

Figure 8. The derivative of the IPC vs. code size curve

From Figure 8, it can be seen that point A’ can be
found with a threshold on the first derivative of the IPC

Relative code size

IPC

A

l

A’

relativeSizedCode

dIPC

_

0

K

K2

0%

2%
5%

80%

Table 5. The experimental results for threshold k = 0.577

Benchmark compress gcc go ijpeg li m88ksim perl vortex

Efficiency threshold 3354 467 1543 3657 2436 625 3417 1820

Resulting Relative
Code Size

1.09 1.024 1.06 0.998 1.0 1.0 0.969 1.027

Resulting IPC 2.76 2.71 2.165 2.734 2.487 2.278 2.895 3.416

IPC (20% code size
increase)

2.79 2.73 2.206 2.745 2.492 2.300 2.910 3.444

Algorithm for finding the best code efficiency based
on tail duplications

0. Mark the loop edges so that the tail duplication
will not overlap with cyclic optimization such as
loop unrolling and calculate the threshold using
Equation 4 with k setting to anywhere between
tan(π/6) to tan(π/12).

1. Calculate the instantaneous code size efficiency
for all possible tail duplication candidates in the
program scope.

2. If there is a candidate whose instantaneous code
size efficiency is above the threshold, duplicate
the candidate and update the efficiency of
affected candidates, repeat until there are no
more candidates.

over code size and the threshold can be anywhere
between zero and K, where K is the slope of the line l in
Figure 7. In other words, the slope K determines the
robustness of the threshold scheme. Since the real IPC
vs. code size curve is not linear, its derivative will take a
shape similar to the curve in dashed lines in Figure 8.
Although the effective threshold range (i.e., the
robustness) is decreased, say to from K2 to K1, it is still
a relative large range due to the large slope of the IPC vs.
code size curve around the ‘knee’ point. Thus, a large
variation in the threshold on the first derivative from K1
to K2 will only result in relatively small variations from
optimal point A.

As mentioned in Section 3.1, the instantaneous code
size efficiency is actually the first derivative of the IPC
vs. code size curve. So, this scheme becomes simply a
threshold on the instantaneous code size efficiency and
this threshold can be any value between K1 and K2. The
meaning of K1 and K2 can be described in Figure 9,
which is the zoomed area around the optimal point A in
Figure 7. In Figure 9, points B and C are close to optimal
solution, point A, and they represents the region of
acceptable solutions. Then, the instantaneous code size
efficiencies of point B and C (i.e., the slopes of the
dashed lines l1 and l2 in Figure 9) determines the
robustness of the threshold scheme.

Figure 9. The robustness of the threshold scheme
(determined by the slope of the tangent lines at points
B and C)

As the expected execution time is used to
approximate the static IPC, the threshold scheme on

instantaneous code size efficiency can be further derived
as a threshold on the ratio of changes in execution time
over changes in code size (the derivation details are in
the companion technical report [21]):

staticstaticabsolute ICIPC

timeExek

dSize

timeExed

∗
∗≥− _)_((4)

In Equation 4, ICstatic represents the static operation
count of the program (i.e., the static code size), k is the
threshold on instantaneous code size efficiency and the
term d(-Exe_time) represents the decrease in the
execution time. The terms Exe_time and IPCstatic
represent the global features of the program. In this
paper, the execution time and IPC based on natural
treegion scheduling shown in Table 3 are used. Now, the
algorithm to find the best code size efficiency is a simple
threshold approach, as shown in Figure 10.

Figure 10. Algorithm for finding the best code size
efficiency based on tail duplication

As the threshold k represents the slope of tangent line
around the best solution point, one reasonable range for k
is from tan(π/6) to tan(π/12) as the corresponding
tangent lines will hit the points close to the knee of the
curve. For example, if we choose k as 0.577
(corresponding to the case that the tangent line at optimal
point has the angle of π/6) for benchmark vortex, the
threshold becomes 1820, which means that if the tail

Relative code size

IPC

A B

C

l1

l2

Table 6. The experimental results for threshold k = 0.268

Benchmark compress gcc go ijpeg li m88ksim perl vortex

Efficiency threshold 1561 217 716 1698 1131 290 1587 846

Resulting Relative
Code Size

1.13 1.05 1.11 1.006 1.003 1.01 0.972 1.045

Resulting IPC 2.78 2.72 2.192 2.739 2.489 2.285 2.898 3.427

duplication candidate can result in more than 1820 cycles
speedup at cost of 1 additional operation, then this tail
treegion should be duplicated. The thresholds calculated
for all the benchmarks and the resulting (static) IPC and
code size combinations after treegion scheduling are
shown in Table 5. The IPC resulting from 20% code size
increase is also included in the table.

From the results in Table 5, it can be seen that the
benchmarks can be grouped into three categories. The
first category has the feature that the code size efficiency
reaches the ‘diminishing returns’ very soon (i.e., the
resulted code size is same or less than the original code
size while the static IPC almost reaches the maximum).
Benchmarks ijpeg, li, m88ksim and perl belong to this
category. For the second category benchmarks including
gcc and vortex, such diminishing returns happen with a
relatively small increase from the original code size
(2.4% and 2.7% respectively for gcc and vortex). The
other two benchmarks compress and go are in the third
category, which require more code size increase to reach
the maximal IPC.

If we change the threshold on instantaneous code size
efficiency to 0.268 (corresponding to the case that the
tangent line at optimal point has the angle of π/12), the
calculated thresholds, the resulting IPC and code size
combinations after treegion scheduling are shown in
Table 6. As expected, for benchmarks in first and second
category, the variation in k results in very small change
in the results. For benchmarks in the third category, such
variation results in around 5% change in code size and
1% in performance, which, in our opinion, are still valid
solutions for optimal code efficiency.

Here, we pick one benchmark in each category to
show graphically where the points are found with the
threshold scheme. The benchmark m88ksim is picked
from the first category and its IPC vs. code size curve is
shown in Figure 11 using the best IPC results for given
code size increase for 0%, 2%, 5%, 10% and 20%. From
Figure 11, it can be seen that the threshold scheme
locates the optimal point accurately. Benchmarks vortex
and compress are chosen from the second category and
the third category respectively and their IPC vs. code
size curve can be seen in Figure 5 and 6. From those
figures, we can conclude that this simple threshold
scheme finds the best efficiency solutions accurately.

124.m88ksim

2
2.05
2.1

2.15
2.2

2.25
2.3

2.35
2.4

0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8
relative code size

S
ta

ti
c

IP
C

best IPC for given code sizes

threshold is 0.577

threshold is 0.268

Figure 11. The best code size efficiency found using
different thresholds for benchmark m88ksim

To investigate the associated I-cache performance due
to the code size increase, a medium-sized I-cache (32KB
as specified in Table 1) is used in the detailed timing
simulation. In this experiment, we compare the I-cache
performance of natural treegion results to the optimal
efficiency results obtained with threshold as 0.577.
Figure 12 shows the I-cache miss rates of each
benchmark for these two cases.

Miss Rates for a 32K 2-bank 2-way I-Cache

0.0%

0.5%

1.0%

1.5%

2.0%

2.5%

3.0%

3.5%

4.0%

co
mpr

es
s

gc
c go

ijp
eg li

m88
ks

im pe
rl

vo
rte

x

M
is

s
R

at
e

I-cache miss rate of Td_Opt
I-cache miss rate of natural tree

Figure 12. I-cache miss rates for natural treegion and
the optimal efficiency results obtained with threshold
as 0.577

In Figure 12, benchmarks gcc and go show significant
increases in I-cache miss rate due to the code size
increase of the optimal efficiency results while other
benchmarks exhibit similar or smaller I-cache miss rates.
The reason for the decreases in I-cache miss rates is
mainly due to the effect that the tail duplication in
optimal efficiency results increases the sequential
locality of the frequently executed regions, as observed

Ideal and Realistic Performance for Different Treegion Formations

0

0.5

1

1.5

2

2.5

3

3.5

4

129.compress 126.gcc 099.go 132.ijpeg 130.li 124.m88ksim 134.perl 147.vortex H_mean

IP
C

Real_IPC (Td_Opt) Real_IPC (Havanki’s heuristic) Real_IPC (Natural tree)

Static_IPC (Td_Opt) Static_IPC (Havanki’s heuristic) Static_IPC (Natural tree)

Figure 14. The ideal and realistic performance for different treegion formations

in [3]. Another fact that improves the I-cache
performance is that the tail duplication enables the
treegion scheduler to produce a denser schedule of the
operations (i.e., more operations in each multi-op). As a
result, the number of I-cache accesses is reduced and so
is the number of I-cache misses. Figure 13 shows the
ratio of I-cache misses of the optimal efficiency results to
the natural treegion results. It can be seen from Figure 12
and 13 that although the optimal efficiency results of the
benchmark gcc has a higher miss rate than natural
treegion results, it has smaller I-cache miss penalties due
to the reduced number of accesses. In average, the I-
cache miss penalties of optimal efficiency results have a
4% decrease comparing to the natural treegion results for
a 32KB I-cache.

The ratio of I-cache misses of Td_opt over
natual treegion

0%

50%

100%

150%

200%

250%

co
mpr

es
s

gc
c go

ijp
eg li

m88
ks

im pe
rl

vo
rte

x

av
er

ag
e

Figure 13. The ratio of I-cache misses of optimal
efficiency results over natural treegion results

Overall, in Figure 14, we show the performance with
realistic I-cache, D-cache, and branch prediction (the
parameters are in Table 1) and the ideal performance
assuming ideal cache and branch prediction (i.e., the
static IPC) for treegions formed using optimal code size
efficiency, Harvanki’s heuristic, and natural trees. From
Figure 14, it can be seen that the optimal efficiency
results show an average of 22% speedup based on static
IPC and 17% speedup based on dynamic IPC over

natural treegion results. In terms of the code size
increase, natural treegion results, Havanki’s results and
optimal efficiency results show an increase of –3%,
70%, and 2% over the original code size respectively.

5. Conclusion

This paper presents a code size efficiency study for
global scheduling for ILP processors. The main
contributions include:

• A quantitative measure of the code size
efficiency is proposed for any code size related
optimization. Based on the general idea of
expressing the code size efficiency as the ratio of
IPC changes over the code size changes, two
formal definitions are formulated, the average
code size efficiency and the instantaneous code
size efficiency, and they are used to measure the
average impact of code size related optimizations
and the effect of an individual application of an
optimization respectively.

• A heuristic based on performance bound is
proposed to estimate the execution time of a
multi-path region so that we can convert the static
IPC computation in code size efficiency into the
estimated execution time.

• We proposed an iterative approach to find
the best code size efficiency for a given code size
constraint. Using the tail duplication as an
exemplary code size related optimization, it is
shown that code size increase resulting from tail
duplication has a significant but varying impact
on IPC, e.g., the first 2% code size increase
results in 18.5% increase in IPC while the IPC
changes less than 1% when given code size
increase ranging from 20% to 30%.

• Based on the observations made above, we
define the term of optimal code size efficiency for
any program and a simple, yet robust threshold

scheme is derived to find this optimal solution.
Our experimental results verified that this scheme
finds the optimal code size efficiency accurately
and for SPEC95int benchmarks, it shows average
of 2% code size increase of scheduled code over
the original code and improved I-cache
performance (4%) for a medium size cache (32K)
comparing to the natural treegion scheduled
results. In terms of performance, the optimal
efficiency results show an average of 22% based
on static IPC and 17% speedup based on dynamic
IPC over natural treegion results. So, with a small
code size increase, significant ILP can be better
exploited during the global scheduling phase
while the I-cache performance is improved at the
same time.

The code size efficiency enables us to find the best
trade-off between static ILP exploitation and code size
increase. We can extend this approach for different code
size related optimizations. For example, we may use the
efficiency to decide whether to unroll a loop for a certain
times or to tail duplicate one candidate region.

6. Acknowledgments

This research was funded by Intel Corporation and
Sun Microsystems, Inc.

7. References

[1] W.A. Havanki, S. Banerjia, and T. M. Conte. “Treegion
scheduling for wide-issue processors.” Proceedings of the
4th International Symposium on High-Performance
Computer Architecture (HPCA-4), February 1998.

[2] H. Zhou, M. Jennings, and T. M. Conte. “Tree Traversal
Scheduling: A Global Scheduling Technique for
VLIW/EPIC Processors”. Proceedings of the 14th Annual
Workshop on Languages and Compilers for Parallel
Computing (LCPC’01), LNCS, Springer Verlag, August
2001.

[3] W. Y. Chen, P. P. Chang, T. M. Conte, and W. W. Hwu,
“The Effect of Code Expanding Optimizations on
Instruction Cache Design”, Technical Report CRHC-91-
17, University of Illinois, Urbana, May 1991

[4] M. Jennings, H. Zhou, and T. M. Conte. “A Treegion-
based Unified Approach to Speculation and Predication in
Global Instruction Scheduling”. Technical Report, ECE
Department, NC State University, August 2001.

[5] W.W. Hwu, S.A. Mahlke, W. Y. Chen, P. P. Chang, N. J.
Warter, R. A. Bringmann, R. G. Ouellette, R. E. Hank, T.
Kiyohara, G. E. Haab, J. G. Holm, and D. M. Lavery.
“The Superblock: An effective way for VLIW and
superblock compilation.” The Journal of Supercomputing,
vol. 7, pp. 229-248, January 1993.

[6] V. Kathail, M. S. Schlansker, and B. R. Rau, “HPL-PD
architecture specification: version 1.1.” Tech. Rep. HPL-

93-80 (R.1), Hewlett--Packard Laboratories, February
2000.

[7] S. A. Mahlke, D. C. Lin, W. Y. Chen, R. E. Hank, and R.
A. Bringmann “Effective compiler support for predicated
execution using the Hyperblock” Proc. 25th Ann. Int’l
Symp. Microarchitecture (MICRO25), December 1992.

[8] S. Aditya, V. Kathail, and B. R. Rau, “Elcor’s machine
description system: version 3.0.” Tech. Rep. HPL-98-128
(R.1), Hewlett--Packard Laboratories, October 1998.

[9] M. S. Schlansker and B. R. Rau. “EPIC: An architecture
for instruction-level parallel processors” Tech. Rep. HPL-
99-111, Hewlett--Packard Laboratories, February 2000.

[10] P. P. Chang, S. A. Mahlke, W. Y. Chen, N. J. Water, and
W. W. Hwu, “IMPACT: An architectural framework for
multiple-instruction-issue processors”, Proc. 18th Int’l
Symp. On Computer Architecture (ISCA18), 1991.

[11] The LEGO Compiler. Available for download at
http://www.tinker.ncsu.edu/LEGO.

[12] F. Mueller and D. B. Whalley, "Avoiding Conditional
Branches via Code Replication", ACM SIGPLAN
Conference on Programming Language Design and
Implementation, Jun 1995.

[13] D. Bernstein, D. Cohen, and H. Krawczyk, "Code
Duplication: An Assist for Global Instruction Scheduling",
Proc. 24th Ann. Int’l Symp. Microarchitecture
(MICRO24), 1991.

[14] Bill Mangione-Smith, “Performance Bounds for Rapid
Computer System Evaluation”, in Fast Simulation of
Computer Architectures, edited by Thomas M. Conte and
Charles E. Gimarc, Kluwer Academic Publishers, 1995.

[15] Intel Corp, IA-64 Application Developer’s Architecture
Guide, 2000.

[16] B. R. Rau, “Iterative Module Scheduling”, Tech. Rep.
HPL-94-115, Hewlett--Packard Laboratories, 1995.

[17] A. E. Eichenberger and W. M. Meleis, “Balance
Scheduling: Weighting Branch Tradeoffs in Superblocks”,
Proc. 32nd Ann. Int’l Symp. Microarchitecture
(MICRO32), 1999.

[18] Rainer Leupers, “Code Optimization Techniques for
Embedded Processors”, Kluwer Academic Publishers,
2000.

[19] T. M. Conte, S. Banerjia, S. Y. Larin, K. N. Menezes, and
S. W. Sathaye, “Instruction fetch mechanisms for VLIW
architectures with compressed encodings.” Proc. 29th Ann.
Int’l Symp. Microarchitecture (MICRO29), December,
1996

[20] J. Hoogerbrugge. “Dynamic branch prediction for a VLIW
processor.” Proc. Of the 2000 Conf. On Parallel
Architectures and Compilation Techniques (PACT’00),
October 1997.

[21] H. Zhou and T. Conte. “Code Size Efficiency in Global
Scheduling”. Technical Report, ECE Department, NC
State University, January 2002.

