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Abstract 

In global scheduling for ILP processors, region-
enlarging optimizations, especially tail duplication, are 
commonly used. The code size increase due to such 
optimizations, however, raises serious concerns about 
the affected I-cache and TLB performance. In this paper, 
we propose a quantitative measure of the code size 
efficiency at compile time for any code size related 
optimization. Then, based on the efficiency of tail 
duplication, we propose the solutions to two related 
problems: (1) how to achieve the best performance for a 
given code size increase, (2) how to get the optimal code 
size efficiency for any program. Our study shows that 
code size increase has a significant but varying impact 
on IPC, e.g., the first 2% code size increase results in 
18.5% increase in static IPC, but less than 1% when the 
given code size further increases from 20% to 30%. We 
then use this feature to define the optimal code size 
efficiency and to derive a simple, yet robust threshold 
scheme finding it. The experimental results using 
SPECint95 benchmarks show that this threshold scheme 
finds the optimal efficiency accurately. While the optimal 
efficiency results show an average increase of 2% in 
code size, the improved I-cache performance is observed 
and a speedup of 17% over the natural treegion results is 
achieved. 

1. Introduction 

The I-cache performance for an application is 
determined by its working set size. If the program size is 
exceedingly large compared to the I-cache or TLB size, 
it may result in high miss rates, which in turn degrades 
the performance of the processor. On the other hand, in 
the scheduling phase of an ILP (instruction-level-
parallelism) compiler, there is a lot of effort placed on 
enhancing the performance by exploiting the available 
ILP. As larger scheduling regions tend to provide more 

ILP, region-enlarging optimizations are commonly used 
in or before the instruction scheduler. However, those 
optimizations often cause an increase in static code size. 
Loop unrolling and loop peeling are examples of such 
optimizations in cyclic scheduling. In acyclic global 
scheduling, tail duplication (or code replication) is the 
most commonly used region enlarging / ILP enhancing 
optimization. Even with its evident impact on code size 
increase, it is applied due to its capability to remove the 
side entries of a trace [5], [13] and to avoid the 
conditional / unconditional branches [12]. Our 
experience is that other code size related optimizations in 
acyclic scheduling, such as code downward motion 
through branches and recovery code for speculations 
[15], have less impacts on both ILP and code size than 
tail duplication. 

In the paper, we study the code size efficiency of 
code-size-related optimizations in acyclic scheduling, 
especially the tail duplication. We then present a very 
efficient way of regulating tail duplication for global 
instruction scheduling.  To do this, we first define a 
quantitative measure of the code size efficiency that is 
for any code size related optimization. The measure is 
calculated as the ratio of ILP improvement (in terms of 
static IPC) to code size increase. The static IPC is the 
instruction-per-cycle measured at compile time to show 
the ILP exploitation based on instruction scheduling. 
Based on this general description, two more specific 
definitions are formulated: average code size efficiency 
and instantaneous code size efficiency. The average code 
size efficiency measures the ILP improvement at the cost 
of code size for overall applications of code size related 
optimizations. The instantaneous code size efficiency is 
used for an individual application of an optimization 
based on the current code size. 

As the static IPC is hard to calculate before the 
schedule time, we propose a heuristic to estimate the 
expected execution time of a multi-path region using a 
dependence bound and a resource bound. The 
experimental results show that the treegion scheduler 



produces schedules very close to the expected execution 
time (92% to 97% accuracy). Then, two related problems 
are investigated based on the instantaneous code size 
efficiency of different tail duplication candidates: (1) 
how to achieve the best speedup for a given size code 
increase, i.e., how to get the best average code size 
efficiency for a given code size; and, (2) how to get the 
optimal code size efficiency for any program. To find the 
solution to the first problem, all the possible tail 
duplication candidates in the program scope are ordered 
based on their instantaneous code size efficiency. The 
candidates are then chosen based on this order until the 
estimated code size limit is reached. The simulation 
results using SPECint95 show that for a modest pre-
scheduling code size increase of 2% over the original 
size, the scheduled code gains 18.5% speedup and a 
1.6% code size decrease1. Another observation from the 
simulation results is that for any benchmark, the initial 
code size increase over the original has a much larger 
impact on static IPC than the same increase over an 
already bloated program— e.g., the initial 2% code size 
increase result in IPC change of 18.5%, while the IPC 
change is less than 1% when pre-scheduling code size 
limit varying from 20% to 30%. 

Based on above observations, we define the optimal 
code size efficiency for a program and propose a simple, 
yet robust threshold scheme to find the optimal solution. 
This threshold is derived mathematically to be the code 
size efficiency measure that we proposed before. The 
robustness of the scheme (i.e., the effective range of the 
threshold) is determined by the rate of static IPC change 
over code-size increase around the optimal solution. The 
simulation results show that this simple threshold scheme 
finds the optimal solution for every benchmark with 
average post-scheduling 2% code size increase over the 
original size. When taking the cache effects and branch 
prediction impact into account, it results in a 4% 
decrease on I-cache miss penalties (for a 32KB I-cache), 
due to the increased sequential locality and more 
compact schedule, and a 17% speedup overall over the 
natural treegion results (treegion without any tail 
duplication). The experiment with different I-cache sizes 
shows that the speedup also holds for both small I-caches 
of 16KB and large I-caches of 64KB [21]. 

The remainder of the paper is organized as follows. 
Section 2 briefly introduces the treegion-based global 
scheduling, and the simulation methodology of the 
experiments. The quantitative measures of the code size 
efficiency are discussed in Section 3.  The optimal tail 
duplication for scheduling under a given code size 
constraint is contained in Section 4.1 and the solution to 

                                                
1 This decrease is due to the general operation combining [4] exploited 
by our global scheduler. 

the optimal code size efficiency is discussed in Section 
4.2. Finally, Section 5 concludes the paper. 

2. Treegion-based global scheduling and 
simulation methodology  

2.1. Treegions and treegion-based global 
scheduling 

In this paper, treegion-based global scheduling [1],[2] 
is used as the acyclic scheduling framework. However, it 
needs to be pointed out that although the experimental 
results are obtained using treegion scheduling, the same 
methodology of this code size efficiency study is 
applicable to other global scheduling approaches, such as 
superblock scheduling [5] and hyperblock scheduling 
[7]. 

Treegion-based global scheduling aims for high 
performance for wide issue VLIW / EPIC processors 
although it can be applied to superscalar processors as 
well. It has two steps: treegion formation [1] and tree 
traversal scheduling (TTS) [2]. A treegion is a single-
entry / multiple-exit nonlinear region that consists of 
basic blocks (BBs) with control-flow forming a tree, as 
illustrated in Figure 1a. Based on the control flow graph 
(CFG) in the Figure, two treegions are formed. The 
treegions that are formed without any tail duplication are 
referred to as natural treegions. When the tail 
duplication is applied, a larger treegion can be formed. 
For the example CFG in Figure 1a, after the BB7, BB8, 
and BB9 are duplicated and the corresponding 
unconditional branches are removed, one treegion is 
formed containing all the BBs in the CFG, as shown in 
Figure 1b. The trade-off for exposing ILP through 
treegion formation is the code-expansion that results 
from duplicates of BB7, BB8 and BB9. Note that in this 
paper, the tail duplication is performed on the unit of 
natural treegion (i.e., merge points), e.g., in the example 
of Figure 1, the entire treegion 2 is duplicated instead of 
the BB7. In the previous treegion scheduling works, the 
tail duplication is performed based on a heuristic 
discussed in [1], which we refer to as Havanki’s heuristic 
and briefly describe it as follows. Havanki’s tail 
duplication heuristic is based on several factors: code 
expansion limit, path count (the number of paths in a 
treegion) and the number of the incoming edges to a 
merge point. The code expansion limit is a global control 
parameter, while the other two are based on the topology 
of the CFG. When any of those limits is reached, the tail 
duplication will stop and a new treegion will be formed. 
The advantage of this heuristic is that it solely depends 
on the topology of the CFG and it is not susceptible with 
the profiling errors. 
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(b) 
Figure 1. (a) The CFG and the treegions constructed; 
(b) The treegion constructed after the tail duplication 

During the tree traversal scheduling (TTS), the BBs 
are scheduled in a predetermined traversal order based 
on treegion topology and profile information. When a 
BB is currently being scheduled, those instructions that 
are dominated by the BB will be considered as 
scheduling candidates until the block-ending branch is 
scheduled. Those candidate operations are scheduled 
based on an order determined by a heuristic that includes 
their execution frequency, exit count, and data 
dependence height. The details of tree traversal 
scheduling can be found in [2],[4]. 

2.2. The code size increase in treegion 
scheduling 

In treegion based scheduling, most code size increase 
is from tail duplication during treegion formation2. In 
TTS, downward code motion and general operation 
combining also contribute to code size changes. 
Downward code motion happens when the block-ending 
branch is scheduled earlier than some instructions in the 
same BB. To maintain the semantics of the program, 

                                                
2 A small additional code size increase is caused by copy operations to 
preserve liveness beyond the treegion scope. 

those instructions need to be placed at every possible exit 
path of the branch, which may introduce some code 
replication. In TTS, this downward code motion is 
combined with partial dead code removal so that only 
instructions producing a variable live at both exit paths 
will be replicated. The general operation combining is 
used at scheduling time to remove redundant operations. 
When one operation is selected for scheduling, it is 
compared to other operations that have already been 
scheduled in the same cycle. If a scheduled operation is 
found to have the same opcode and source operands, the 
candidate operation is then merged into the scheduled 
operation with necessary renaming. Since a treegion 
contains multiple execution paths, it exploits more 
opportunities for general operation combining than those 
of linear regions. As a result, the scheduled code will 
have a reduced code size. When both downward code 
motion and general operation combining are used, the 
benchmarks in SPECint95 show an average of 3.5% code 
size decrease for treegions formed without any tail 
duplication (i.e., using natural treegions). When tail 
duplication is performed, there are more chances for 
general operation combining. For the treegions formed 
using Havanki’s heuristic, 12.8% code size decrease is 
observed at scheduling time while the effective overall 
code size increase is about 70% (i.e., the code size 
increase would be 82.8% without general operation 
combining). 

2.3. Simulation methodology 

The algorithms for the code size efficiency study in 
this paper and for treegion based global scheduling are 
implemented in LEGO compiler [11], a research ILP 
compiler developed for high performance VLIW / EPIC 
[9] style microprocessors at North Carolina State 
University. The compiling process of LEGO compiler is 
as follows. All programs are first compiled with classic 
optimizations using either (1) the IMPACT compiler 
from University of Illinois [10] and converted to Rebel 
textual intermediate representation using the Elcor 
compiler from Hewlett-Packard Laboratories [8], or (2) 
read directly from IA-64 assembly generated from the 
Intel or GCC compilers. Then, the LEGO compiler is 
used to profile code, form treegions and schedule the 
instructions. After instrumentation is added for trace-
based timing simulation, the scheduled intermediate code 
is either converted into an inline execution simulator that 
is emitted as C code (the technique used in this paper) or 
emitted as IA-64 assembly. Finally, a trace-based timing 
simulation runs together with an execution simulation to 
obtain the simulation results while ensuring the 
correctness of the program. In our experiments, all 
benchmarks in SPEC95int suite run to completion. 

BB1 Treegion 1 

Treegion 2 

BB2 BB3 

BB4 BB5 

BB6 BB7 

BB8 BB9 

Treegion 1 BB1 

BB2 BB3 

BB4 BB5 

BB7’ 
BB6 BB7 

BB8’ BB9’ 
BB8 BB9 



For the simplicity, an 8-way universal issue machine 
model is used in this study. The specification of the 
model is show in Table 1. 

 
Table 1. The specification of the machine model used 
in the experiment 

 Specification 
Execution Dispatch/Issue/Retire bandwidth: 8;  

Universal function units: 8; Operation 
latency: ALU, ST, BR: 1 cycle; LD, 
floating-point (FP) add/subtract: 2 cycles.  

I-cache Compressed (zero-nop) and two banks with 
2-way 16KB each bank [19]. 
Line size: 16 operations with 4 bytes each 
operation.  Miss latency: 12 cycles 

D-cache Size/Associativity/Replacement: 64KB/4-
way/LRU Line size: 32 bytes Miss Penalty: 
14 cycles 

Branch 

Predictor 

G-share style Multiway branch prediction 
[20] Branch prediction table: 214 entries; 
Branch target buffer: 214 entries/8-
way/LRU. Branch misprediction penalty: 
10 cycles 

3. The quantitative measure of code size 
efficiency 

3.1. Code size efficiency for code size related 
optimizations in global scheduling 

The motivation of a region enlarging optimization in 
global scheduling is based on the premise that larger 
scheduling regions can exploit more ILP. With tail 
duplication as an example optimization, Figure 2 shows 
the relationship between static code size and 
performance for the benchmark compress. Note that 
although the working size of compress is small, it 
exemplifies the relationship between the code size and 
ILP exploitation that are shared by other larger 
benchmarks. The experimental results in Figure 2 show 
code sizes vs. ILP for BB scheduling and treegion 
scheduling. For treegion scheduling, three possible tail 
duplication strategies are presented: natural treegions, 
tail duplication based on Havanki’s heuristics, and tail 
duplication for all the possible merge points that have 
execution frequency larger than zero (‘All_Possible’). In 
the experiment, the ILP is measured using static IPC, 
which is the instruction-per-cycle estimated at compile 
time to show the ILP exploitation based on instruction 
scheduling. Also, when calculating this static IPC, the 
dynamic instruction count (IC) based on BB scheduling 
code is used for treegion-scheduling results to show the 
effective IPC. The code size is measured using the 

relative ratio, i.e., the ratio of resulted code size over the 
original code size. 
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Figure 2. The relationship between performance and 
static code size for benchmark compress 

As shown in Figure 2, natural treegion scheduling 
shows a 3% code size decrease over the original code 
size (the decrease is due to the general operation 
combining of TTS) and 20% speedup over BB 
scheduling. If tail duplication is applied, more ILP will 
be exploited (up to another 21% speedup) in the global 
scheduling phase with the cost of an increase in code size 
(up to 76%). Base on these observations, it seems that 
the natural treegion is a good starting point for code size 
related optimization, and that the ratio of the change in 
static IPC over the change in code size provide a 
reasonable measure of the efficiency of the code size 
expanding optimizations at compile time. It is noted here 
that although the dynamic IPC is more representative of 
the real performance, it depends on many factors 
including the branch prediction accuracy, cache 
performance, code layout and other optimizations, which 
are hard to quantify at compile time. The static IPC, on 
the other hand, indicates the ILP exploitation at compile 
time and is the goal to maximize with compile-time 
optimizations. So, the static IPC is used as the 
performance indicator in our measure of the tradeoff 
between ILP exploitation and the code size increase and 
the dynamic IPC effects are examined in Section 4.2. 

Here, we define two different types of code size 
efficiency based on different forms of the ratio of IPC 
changes over relative code size changes. 

Average code size efficiency: This type of efficiency 
provides a measure of the average ILP provided by code 
size related optimizations at the cost of a unit code size 
increase and it is defined as follows: 

treegionnaturalcandidate

treegionnaturalcandidate
ave sizecodesizecode

IPCIPC
Efficiency

_

_

__ −
−

=

      (1) 
In Equation (1), the term 

(
treegionnaturalcandidate IPCIPC _− ) represents the ILP 



Table 2. The accuracy of the heuristic to compute the expected execution time 
Benchmark compress gcc go ijpeg li m88ksim perl vortex 
Ratio of execution time based 
on scheduled code over 
expected execution time  

1.036 1.075 1.078 1.047 1.071 1.067 1.081 1.063 

improvement of the candidate optimizations and the term 
(

treegionnaturalcandidate sizecodesizecode ___ − ) represents the 

cost of such optimizations in terms of static code size. 
Graphically in Figure 2, the average code size efficiency 
represents the slope of a line connecting the natural 
treegion result and the one under consideration (i.e., 
‘candidate’). With this quantitative measure, the 
comparison can be made for different code size related 
optimizations and for the different applications of the 
same optimization. For example, based on tail 
duplication results in Figure 2, it can be seen that the 
Havanki’s heuristic produces a slightly better code size 
efficiency than duplicating all the possible candidates. 
Note that if the efficiency of an optimization is 
calculated as negative, it represents one of two extreme 
cases: (a) the optimization increases the IPC and 
decreases the code size— this optimization should 
always be applied, or (b) the optimization decreases the 
IPC at the cost of more code size— this optimization 
usually needs to be avoided. 

Instantaneous code size efficiency: this type of 
efficiency measures the ILP improvement of an 
individual application of an optimization based on the 
current code size, and it is defined as follows: 

napplicatioindivialbeforenapplicatioindivialafter

napplicatioindivialbeforenapplicatioindivialafter

inst

sizecodesizecode

IPCIPC

Efficiency

____

____

__ −
−

=

      (2) 
Using the tail duplication as an example optimization, 

there could be many merge points in a program as 
candidates for this optimization. Then, for each possible 
tail duplication (i.e., an individual application), there is 
an instantaneous efficiency associated with it. 

For the tail duplication example in Figure 2, if we 
imagine that there is a curve representing the relationship 
between IPC and code size of tail duplication 
optimization, the instantaneous efficiency is the tangent 
slope of the curve (i.e., the derivative of the curve) at the 
point corresponding to the current code size. The average 
code size efficiency can then be viewed as the effect of 
averaging the instantaneous efficiency of all the tail 
duplications that occurred in global scheduling. 

3.2. A heuristic to compute efficiency using 
expected execution time 

Since the code size efficiency calculation requires the 

(static) IPC measurement, which is not known before the 
schedule time, we propose a heuristic to compute the 
expected execution time so that the IPC changes can be 
approximated by the changes in expected execution time. 
This heuristic is based on the data dependence bound 
and resource bound and is defined as Equation 3 for a 
multi-path region, e.g., a treegion. 

( )[ ]∑ ∗

=

ipath
ipathipathipath

Expected

FreqboundresourcebounddependencedataMax

TimeExe

_
___ _,__

_  

(3) 
In Equation 3, the expected execution time of a region 

is computed as the sum of the expected execution time of 
each path, which is in turn computed as maximum of the 
data dependence bound and the resource bound of the 
path. Similar to the performance bounds proposed in 
[14], [17], we use the true data dependence height of 
Data Dependence Graph (DDG) as the dependence 
bound. The resource bound is calculated using a 
technique similar to the ResMII calculation from 
iterative modulo scheduling [16]. The execution 
frequency for each path, 

ipathFreq _
, is obtained from 

profiling information. 
The effectiveness of this heuristic is verified by 

comparing the expected execution time to the treegion 
scheduled results, as shown in Table 2. Here, the 
execution time of the scheduled code is measured using a 
scoreboard-based simulation, which enforces the data 
dependence and resource dependence. In the benchmark 
gcc, for example, the overall execution time based on 
scheduled result is 7.5% larger than the expected 
execution time using this heuristic. The mismatch is 
because the data dependence bound is calculated 
assuming all the false register dependencies can be 
removed by software renaming, and that the control 
dependencies can be minimized by treegion multiway 
branch transformations [4]. This assumption is too 
optimistic as liveness beyond the BB scope may require 
a copy instruction to be inserted. Also, the renaming may 
not be applicable to some special purpose registers, such 
as parameter passing registers. 

3.3. The code size efficiency for tail duplication 
optimization 

When we consider tail duplication as the optimization 
of interest, for each control edge entering a merge point, 
we can calculate its instantaneous code size efficiency 



using Equation 2 so that we can selectively apply the tail 
duplications based on their efficiencies. In treegion-
formed code, four types of tail duplication candidate can 
be encountered based on the dominance relationship and 
number of edges entering the merge point, as shown in 
Figure 3. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. Four types of possible tail duplication in 
treegions (the edge marked with ‘o’ representing the 
edge to be removed by the candidate tail duplication, 
the shaded treegion represents the duplicated region): 
(a) Type-1: The parent tree dominates the candidate 
tree and there are 2 edges entering the candidate tree; 
(b) Type-2: The parent tree dominates the candidate 
tree and there are more than 2 edges entering the 
candidate tree; (c) Type-3: The parent tree does not 
dominate the candidate tree and there are 2 edges 
entering the candidate tree; and (d) Type-4: The 
parent tree does not dominate the candidate tree and 
there are more than 2 edges entering the candidate 
tree. 

As shown in Figure 3, after the type-1 tail duplication, 
the resulted treegion (the parent_tree’ in the dashed line) 
will absorb both the original and the duplicate copy of 
the candidate tree. For type-3 tail duplication, the 
original candidate tree will be absorbed into parent tree 2 
and the duplicate will be included in the parent tree 1. 
For the other two types, only the duplicate of the 
candidate tree will be absorbed. 

4. Optimal code size efficiency in global 
scheduling 

Based on the quantitative measures of the code size 
efficiency of code size related optimizations such as tail 
duplication, one useful goal is to find the optimal code 
size efficiency achievable for the optimization. The term 
‘optimal’ here has two different meanings: (a) if there 
exists a limit on code size, the optimal solution is 
maximizing the IPC while satisfying the code size 
constraint (i.e., find the best average code size efficiency 
for a given code size). Although code size constraints are 
more common in embedded processors [18] than high 
performance EPIC processors, it is useful when we want 
to limit the whole or working program size (i.e., the part 
of the code with execution frequency larger than zero) 
below the level-1 I-cache size. The solution to it can be 
represented using a curve showing the best possible IPC 
for any code size. The second ‘optimal’ meaning is (b) if 
there is no such a code size limit, the optimal solution is 
a good trade-off between ILP and code size so that the 
IPC is maximized at the minimal cost of code size 
increase. The meaning of this best trade-off will be clear 
once we obtain the curve of best IPC vs. code size based 
the solution to (a). Using the tail duplication as an 
example code-size-related optimization, Section 4.1 
provides an algorithm to find the best efficiency for a 
given code size, and Section 4.2 defines the optimal 
efficiency problem without code size constraints and 
derives a simple, yet robust threshold scheme. 

4.1. Optimal code size efficiency for a given code 
size limit 

In order to find best code size efficiency of a given 
code size for global scheduling using tail duplication, we 
first compute the instantaneous code size efficiency for 
all possible tail duplication candidates. Then, the 
candidates are selected based on their efficiencies until 
the size constraint is reached. The detailed algorithm is 
shown in Figure 4. As shown in Figure 4, we use an 
iterative approach for tail duplication. In each iteration of 
steps 2 and 3, the candidate with best instantaneous code 
size efficiency will be chosen and performed if such a 
tail duplication will not exceed the code size constraint. 
Although it may be possible to find the ‘real’ optimal 
solution (i.e., tail duplications with best IPC) with an 
exhaustive search algorithm, like what used in 
determining best function inlining under a code size limit 
[18], the complexity of such a search approach is further 
increased by the fact that one tail-duplication may 
change the efficiency of other candidates and increase 
the number of the possible tail duplications. 

(a) (b) 

(c) (d) 

Parent_tree Parent_tree 

Parent_tree1 Parent_tree1 

Parent_tree2 
Parent_tree2 

Parent_tree’ Parent_tree’ 

Parent_tree1’ Parent_tree1’ 

Parent_tree2’ 

Candidate 
tree Candidate 

tree 
Candidate 

tree 

Candidate tree 
Candidate 

tree 

Candidate 
tree 

Parent_tree2’ 



Algorithm for optimal tail duplications under code 
size constraints 

0. Mark the loop edges so that the tail duplication 
will not overlap with cyclic optimization such 
as loop unrolling. 

1. Calculate the instantaneous code size 
efficiency for all possible tail duplication 
candidates in the program scope. 

2. Find the one with best code size efficiency. 
3. If the selected candidate satisfies the code size 

constraint, perform the tail duplication and 
update the code size efficiencies of the 
candidates that are affected by the tail 
duplication process. 

4. Repeat steps 2-3 until the code size limit is 
reached. 

Table 3. The base code size and IPC for each benchmark 

Benchmark compress gcc go ijpeg li m88ksim perl vortex 

Static Operation Count 1439 368960 59853 40835 14487 33629 76026 149751 

Static IPC 2.395 2.24 1.86 2.49 2.0 2.03 2.19 2.51 

The algorithm described in Figure 4 was implemented 
in LEGO compiler and experimented on SPECint95 
benchmarks. Table 3 shows the base static IPC (using 
natural treegion scheduling) and the original static code 
size in terms of operation count for each benchmark. 
Figure 5 shows the experimental results of benchmark 
compress where the target code size increases are 0% 
(i.e., natural treegion), 2%, 5%, 10%, 15%, 20%, 30%, 
and 80%. The results for tail duplication based on 
Havanki’s heuristics are also included. Note that due to 
the effect of the general operation combining in TTS, the 
scheduled code size is actually less than the target size. 

Figure 4. The algorithm for best tail duplication for 
global scheduling under code size constraints 
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Figure 5. The relationship of ILP vs. code size of 
benchmark compress 

Several important observations can be made from 
Figure 5. First, the code size increase due to tail 
duplication has significant impact on ILP, e.g., 
performing tail duplication up to 5% of its original size 
will results in 10.6% speedup and 2.4% increase in 
scheduled code size over the original code size. 
Comparing to the tail duplication based on Havanki’s 
heuristics in traditional treegion formation, the code size 
efficiency is greatly improved by the increased IPC and 
decreased code size. There are two main reasons for 
relatively low efficiency of Havanki’s heuristic. First, the 
heuristic is mainly based on local features and does not 
account for the profile information. When the treegion 
formation starts, the treegion expands by tail duplication 
until the path count limit / code size limit is reached or 
there are too many incoming edges at the next merge 
point. As a result, it duplicates many codes that have low 
execution frequency and fail to do so for some basic 
blocks or small treegions with high execution frequency. 
For example, in Figure 3b, if the number of the incoming 
edges to the candidate tree is beyond the predetermined 
limit, the candidate tree will not be duplicated even it has 
a high execution frequency. Secondly, Harvanki’s 
heuristic does not take account of the potential speedup 
when making a decision of whether a candidate should 
be duplicated. As a result, it may choose to duplicate and 
combine treegions that do not have reduced schedule 
length. 

Another important observation based on Figure 5 is 
that the impact on ILP of code size decreases rapidly as 
given code size increases, e.g., the first 2% code size 
results in 7% IPC changes, while code size increase from 
20% to 30% only results less than 0.5% IPC changes. 
This phenomenon is expected because it is a known fact 
that most (e.g., 90%) of the execution time is spent on a 
small amount (e.g., 10%) of the static code for many 
programs. As a result, once we finish duplicating tail 
treegions in that small amount (10%) of the code, further 
duplications will have relatively small effects on 
execution time, (i.e., those tail duplications will have low 
instantaneous code size efficiencies). This feature are 
also verified with other benchmarks in our experiments, 
e.g., the relation between ILP and code size of the 
benchmark vortex (the notorious benchmark gcc has a 
very similar curve), as shown in Figure 6, where the 
target code size increases are 0%, 2%, 5%, 10%, 20 %, 
30%, and 80%. 
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Table 4. The statistics of operations with different execution frequencies 

Benchmark Maximal 
Execution 

Frequency (MEF) 

Percentage of ops with 
execution frequency < 

0.01%*MEF 

Percentage of ops with 
execution frequency < 

0.1%*MEF 

Percentage of ops with 
execution frequency < 

1%*MEF 
compress 0.4 Million 55.04% 64.07% 64.26% 

vortex 12 Million 84.32% 92.37% 98.45% 
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Figure 6. The relationship of ILP vs. code size of 
benchmark vortex 

Figure 6 shows the dramatic IPC change (around 34%) 
for the first 2% code size increase, which also shows 
14% speedup and 60% less code size over the traditional 
treegion formation approach. Two interesting 
observations can be made from Figure 5 and 6. First, the 
initial code size increase show much more IPC 
improvements in benchmark vortex than in benchmark 
compress, which means the tail duplications resulting in 
the initial code size increase in vortex have much higher 
efficiency than those in compress. The high efficiency of 
those tail duplications in vortex, based on our analysis of 
the program, is mainly due to high execution frequency 
of those codes (i.e., in the heavily executed portion of 
vortex, many control edges are worthwhile to be 
removed by tail duplication). Secondly, the ‘diminishing 
returns’ happen quickly for benchmark vortex, after the 
code size increase beyond 2%, comparing to benchmark 
compress, which suggests that for benchmark vortex a 
smaller percentage of code is frequently executed than 
benchmark compress. This can be verified with the 
statistical characteristics of the program, as shown in 
Table 4. From Table 4, it can be seen that higher 
percentage of the code of benchmark vortex are 
infrequently executed than benchmark compress. Given 
2% code size increase for vortex, the portion of the 
program with high execution frequency has been 
explored for possible tail duplications while for 
compress, such code size increase is just not enough for 
the possible candidates in frequently executed portions. 

In terms of the average of all benchmarks, the initial 
2% code size increase results in 18.5% speedup over 
natural treegion and 1.6% code size decrease over the 
original code size. 

4.2. Finding the best code size efficiency for 
global scheduling using tail duplication  

Based on the characteristics of the curve representing 
the relationship between best IPC and code size, 
especially the ‘diminishing returns’ phenomenon, we can 
define the ‘best code size efficiency’ as the point where 
the diminishing returns starts, as point A (i.e., the knee of 
the curve) shown in the exemplary ILP vs. code size 
curve in Figure 7. 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 7. The solution to optimal code size efficiency 

In consideration of how to find this optimal point 
along the curve, we can first simplify the curve as two 
straight lines (as the two dashed lines in Figure 7) and 
the optimal solution then becomes point A’. In order to 
find A’, we can use a threshold on the first derivative of 
the curve, which will have a shape of bold solid lines 
shown in Figure 8. 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 8. The derivative of the IPC vs. code size curve 

From Figure 8, it can be seen that point A’ can be 
found with a threshold on the first derivative of the IPC 
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Table 5. The experimental results for threshold k = 0.577 

Benchmark compress gcc go ijpeg li m88ksim perl vortex 

Efficiency threshold 3354 467 1543 3657 2436 625 3417 1820 

Resulting Relative 
Code Size  

1.09 1.024 1.06 0.998 1.0 1.0 0.969 1.027 

Resulting IPC 2.76 2.71 2.165 2.734 2.487 2.278 2.895 3.416 

IPC (20% code size 
increase) 

2.79 2.73 2.206 2.745 2.492 2.300 2.910 3.444 

Algorithm for finding the best code efficiency based
on tail duplications  

0. Mark the loop edges so that the tail duplication
will not overlap with cyclic optimization such as
loop unrolling and calculate the threshold using
Equation 4 with k setting to anywhere between
tan(π/6) to tan(π/12). 

1. Calculate the instantaneous code size efficiency
for all possible tail duplication candidates in the
program scope. 

2. If there is a candidate whose instantaneous code
size efficiency is above the threshold, duplicate
the candidate and update the efficiency of
affected candidates, repeat until there are no
more candidates. 

over code size and the threshold can be anywhere 
between zero and K, where K is the slope of the line l in 
Figure 7. In other words, the slope K determines the 
robustness of the threshold scheme. Since the real IPC 
vs. code size curve is not linear, its derivative will take a 
shape similar to the curve in dashed lines in Figure 8. 
Although the effective threshold range (i.e., the 
robustness) is decreased, say to from K2 to K1, it is still 
a relative large range due to the large slope of the IPC vs. 
code size curve around the ‘knee’ point. Thus, a large 
variation in the threshold on the first derivative from K1 
to K2 will only result in relatively small variations from 
optimal point A. 

As mentioned in Section 3.1, the instantaneous code 
size efficiency is actually the first derivative of the IPC 
vs. code size curve. So, this scheme becomes simply a 
threshold on the instantaneous code size efficiency and 
this threshold can be any value between K1 and K2. The 
meaning of K1 and K2 can be described in Figure 9, 
which is the zoomed area around the optimal point A in 
Figure 7. In Figure 9, points B and C are close to optimal 
solution, point A, and they represents the region of 
acceptable solutions. Then, the instantaneous code size 
efficiencies of point B and C (i.e., the slopes of the 
dashed lines l1 and l2 in Figure 9) determines the 
robustness of the threshold scheme. 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 9. The robustness of the threshold scheme 
(determined by the slope of the tangent lines at points 
B and C) 

As the expected execution time is used to 
approximate the static IPC, the threshold scheme on 

instantaneous code size efficiency can be further derived 
as a threshold on the ratio of changes in execution time 
over changes in code size (the derivation details are in 
the companion technical report [21]): 

staticstaticabsolute ICIPC

timeExek

dSize

timeExed

∗
∗≥− _)_(       (4) 

In Equation 4, ICstatic represents the static operation 
count of the program (i.e., the static code size), k is the 
threshold on instantaneous code size efficiency and the 
term d(-Exe_time) represents the decrease in the 
execution time. The terms Exe_time and IPCstatic 
represent the global features of the program. In this 
paper, the execution time and IPC based on natural 
treegion scheduling shown in Table 3 are used. Now, the 
algorithm to find the best code size efficiency is a simple 
threshold approach, as shown in Figure 10.  

Figure 10. Algorithm for finding the best code size 
efficiency based on tail duplication 

As the threshold k represents the slope of tangent line 
around the best solution point, one reasonable range for k 
is from tan(π/6) to tan(π/12) as the corresponding 
tangent lines will hit the points close to the knee of the 
curve. For example, if we choose k as 0.577 
(corresponding to the case that the tangent line at optimal 
point has the angle of π/6) for benchmark vortex, the 
threshold becomes 1820, which means that if the tail 
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Table 6. The experimental results for threshold k = 0.268 

Benchmark compress gcc go ijpeg li m88ksim perl vortex 

Efficiency threshold 1561 217 716 1698 1131 290 1587 846 

Resulting Relative 
Code Size 

1.13 1.05 1.11 1.006 1.003 1.01 0.972 1.045 

Resulting IPC 2.78 2.72 2.192 2.739 2.489 2.285 2.898 3.427 

duplication candidate can result in more than 1820 cycles 
speedup at cost of 1 additional operation, then this tail 
treegion should be duplicated. The thresholds calculated 
for all the benchmarks and the resulting (static) IPC and 
code size combinations after treegion scheduling are 
shown in Table 5. The IPC resulting from 20% code size 
increase is also included in the table. 

From the results in Table 5, it can be seen that the 
benchmarks can be grouped into three categories. The 
first category has the feature that the code size efficiency 
reaches the ‘diminishing returns’ very soon (i.e., the 
resulted code size is same or less than the original code 
size while the static IPC almost reaches the maximum). 
Benchmarks ijpeg, li, m88ksim and perl belong to this 
category. For the second category benchmarks including 
gcc and vortex, such diminishing returns happen with a 
relatively small increase from the original code size 
(2.4% and 2.7% respectively for gcc and vortex). The 
other two benchmarks compress and go are in the third 
category, which require more code size increase to reach 
the maximal IPC. 

If we change the threshold on instantaneous code size 
efficiency to 0.268 (corresponding to the case that the 
tangent line at optimal point has the angle of π/12), the 
calculated thresholds, the resulting IPC and code size 
combinations after treegion scheduling are shown in 
Table 6. As expected, for benchmarks in first and second 
category, the variation in k results in very small change 
in the results. For benchmarks in the third category, such 
variation results in around 5% change in code size and 
1% in performance, which, in our opinion, are still valid 
solutions for optimal code efficiency. 

Here, we pick one benchmark in each category to 
show graphically where the points are found with the 
threshold scheme. The benchmark m88ksim is picked 
from the first category and its IPC vs. code size curve is 
shown in Figure 11 using the best IPC results for given 
code size increase for 0%, 2%, 5%, 10% and 20%. From 
Figure 11, it can be seen that the threshold scheme 
locates the optimal point accurately. Benchmarks vortex 
and compress are chosen from the second category and 
the third category respectively and their IPC vs. code 
size curve can be seen in Figure 5 and 6. From those 
figures, we can conclude that this simple threshold 
scheme finds the best efficiency solutions accurately. 
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Figure 11. The best code size efficiency found using 
different thresholds for benchmark m88ksim 

To investigate the associated I-cache performance due 
to the code size increase, a medium-sized I-cache (32KB 
as specified in Table 1) is used in the detailed timing 
simulation. In this experiment, we compare the I-cache 
performance of natural treegion results to the optimal 
efficiency results obtained with threshold as 0.577. 
Figure 12 shows the I-cache miss rates of each 
benchmark for these two cases. 
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Figure 12. I-cache miss rates for natural treegion and 
the optimal efficiency results obtained with threshold 
as 0.577 

In Figure 12, benchmarks gcc and go show significant 
increases in I-cache miss rate due to the code size 
increase of the optimal efficiency results while other 
benchmarks exhibit similar or smaller I-cache miss rates. 
The reason for the decreases in I-cache miss rates is 
mainly due to the effect that the tail duplication in 
optimal efficiency results increases the sequential 
locality of the frequently executed regions, as observed 
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Figure 14. The ideal and realistic performance for different treegion formations 

in [3]. Another fact that improves the I-cache 
performance is that the tail duplication enables the 
treegion scheduler to produce a denser schedule of the 
operations (i.e., more operations in each multi-op). As a 
result, the number of I-cache accesses is reduced and so 
is the number of I-cache misses. Figure 13 shows the 
ratio of I-cache misses of the optimal efficiency results to 
the natural treegion results. It can be seen from Figure 12 
and 13 that although the optimal efficiency results of the 
benchmark gcc has a higher miss rate than natural 
treegion results, it has smaller I-cache miss penalties due 
to the reduced number of accesses. In average, the I-
cache miss penalties of optimal efficiency results have a 
4% decrease comparing to the natural treegion results for 
a 32KB I-cache. 
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Figure 13. The ratio of I-cache misses of optimal 
efficiency results over natural treegion results 

Overall, in Figure 14, we show the performance with 
realistic I-cache, D-cache, and branch prediction (the 
parameters are in Table 1) and the ideal performance 
assuming ideal cache and branch prediction (i.e., the 
static IPC) for treegions formed using optimal code size 
efficiency, Harvanki’s heuristic, and natural trees. From 
Figure 14, it can be seen that the optimal efficiency 
results show an average of 22% speedup based on static 
IPC and 17% speedup based on dynamic IPC over 

natural treegion results. In terms of the code size 
increase, natural treegion results, Havanki’s results and 
optimal efficiency results show an increase of  –3%, 
70%, and 2% over the original code size respectively. 

5. Conclusion 

This paper presents a code size efficiency study for 
global scheduling for ILP processors. The main 
contributions include: 

• A quantitative measure of the code size 
efficiency is proposed for any code size related 
optimization. Based on the general idea of 
expressing the code size efficiency as the ratio of 
IPC changes over the code size changes, two 
formal definitions are formulated, the average 
code size efficiency and the instantaneous code 
size efficiency, and they are used to measure the 
average impact of code size related optimizations 
and the effect of an individual application of an 
optimization respectively. 

• A heuristic based on performance bound is 
proposed to estimate the execution time of a 
multi-path region so that we can convert the static 
IPC computation in code size efficiency into the 
estimated execution time. 

• We proposed an iterative approach to find 
the best code size efficiency for a given code size 
constraint. Using the tail duplication as an 
exemplary code size related optimization, it is 
shown that code size increase resulting from tail 
duplication has a significant but varying impact 
on IPC, e.g., the first 2% code size increase 
results in 18.5% increase in IPC while the IPC 
changes less than 1% when given code size 
increase ranging from 20% to 30%. 

• Based on the observations made above, we 
define the term of optimal code size efficiency for 
any program and a simple, yet robust threshold 



scheme is derived to find this optimal solution. 
Our experimental results verified that this scheme 
finds the optimal code size efficiency accurately 
and for SPEC95int benchmarks, it shows average 
of 2% code size increase of scheduled code over 
the original code and improved I-cache 
performance (4%) for a medium size cache (32K) 
comparing to the natural treegion scheduled 
results. In terms of performance, the optimal 
efficiency results show an average of 22% based 
on static IPC and 17% speedup based on dynamic 
IPC over natural treegion results. So, with a small 
code size increase, significant ILP can be better 
exploited during the global scheduling phase 
while the I-cache performance is improved at the 
same time. 

The code size efficiency enables us to find the best 
trade-off between static ILP exploitation and code size 
increase. We can extend this approach for different code 
size related optimizations. For example, we may use the 
efficiency to decide whether to unroll a loop for a certain 
times or to tail duplicate one candidate region. 
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