
Treegion Scheduling for Wide Issue Processors

William A. Havanki Sanjeev Banerjia� Thomas M. Conte

Department of Electrical and Computer Engineering
North Carolina State University

Raleigh, North Carolina 27695-7911
(919) 515-5067, conte@ncsu.edu

Abstract

Instruction scheduling is one of the most important
phases of compilation for high-performance proces-
sors. A compiler typically divides a program into
multiple regions of code and then schedules each re-
gion. Many past e�orts have focused on linear re-
gions such as traces and superblocks. The linearity of
these regions can limit speculation, leading to under-
utilization of processor resources, especially on wide-
issue machines. A type of non-linear region called
a treegion is presented in this paper. The formation
and scheduling of treegions takes into account multi-
ple execution paths, and the larger scope of treegions
allows more speculation, leading to higher utilization
and better performance. Multiple scheduling heuris-
tics for treegions are compared against scheduling for
several types of linear regions. Empirical results il-
lustrate that instruction scheduling using treegions|
treegion scheduling | holds promise. Treegion sched-
uling using the global weight heuristic outperforms
the next highest performing region | superblocks |
by up to 20%.

1 Introduction

Contemporary high performance microprocessors de-
tect and extract instruction-level parallelism (ILP) by
using a combination of hardware and compiler tech-
niques. Within the compiler, instruction scheduling
is a phase that can play a key role in exploiting ILP.
A compiler typically divides a program into multiple
regions , areas of code that tend to execute together,
and then schedules each region.

Many past e�orts have focused on linear regions,
that is, regions which contain one control path. Trace
scheduling [1] forms regions in which the basic blocks
of each region, called a trace, may execute in order

�The author is now with Hewlett-Packard Laboratories,

Cambridge, MA.

from top to bottom. Superblock scheduling [2] forms
superblocks, regions with a single entrance and (pos-
sibly) multiple exits. Both of these techniques use
pro�le information to guide the region formation pro-
cess [3], so that the most often executed paths reap
the greatest bene�t.

The linearity of these regions and their dependence
on pro�le information can be detriments to perfor-
mance under some conditions. The actual execution
patterns of a program may vary from the predictions
inferred from pro�le information, which can cause
a reduction in program performance [4], [5]. Also,
restricting regions to linear sets of basic blocks in-
trinsically limits speculation and can lead to under-
utilization of processor resources, especially on wide-
issue machines. An additional complexity of traces
is the presence of merge points , basic blocks which
have multiple incoming control ow edges. The use of
speculative execution in this case requires special care
such as bookkeeping code, which consumes machine
resources and adds more complexity to the compiler.

This study presents an analysis of a non-linear re-
gion called a treegion. A treegion encompasses a
decision-tree subgraph of a program's control ow
graph (CFG). Treegion formation is performed with-
out pro�le information, and instruction scheduling
across a treegion { a process that is termed treegion

scheduling { can use or ignore this information. Both
processes take into account multiple execution paths,
not just a single one. The larger scope of treegions
gives the scheduler more chances to speculate opera-
tions, leaving less idle resources. Since they are tree
structures, the complexity of merge points is avoided
as well. This study builds upon our earlier work in
treegion scheduling [6], [7].

This paper is organized as follows. Section 2 de-
�nes a treegion and describes the treegion formation
process. Section 3 introduces treegion scheduling and
several heuristics that can be applied to the process.
Section 4 shows how tail duplication during treegion

1

formation and the use of dominator parallelism dur-
ing scheduling can improve the performance of tree-
gion schedules. Section 5 reviews related work in non-
linear regions, and Section 6 concludes the paper.

2 Treegion Formation

The treegion is named for the fact that it is a region
containing a tree of basic blocks which is a subgraph
of the CFG of a program. Therefore, formation of
a treegion is dependent only on the CFG topology.
A treegion can contain multiple, independent control
paths that diverge from the root (block) of the tree.
Since it is a tree, a treegion is acyclic and contains
no merge points except possibly the root itself.

r1 = ld[A]
r2 = ld[B]
if (r1 > r2)
 goto bb2

r3 = r1 + r2
if (r3 < 100)
 goto bb3

r4 = 1
r5 = 2

r4 = 3
r5 = 4

r6 = 0
if (r5 == r2)
 goto bb6

r6 = 5

r6 = r3

r6 = r6 + r1

r8 = r4 + r5
r9 = r2 + r3

bb1
(100)

bb2
(60)

bb8
(40)

bb3
(35)

bb4
(25)

bb5

bb6

bb7

bb9

Figure 1: A CFG divided into treegions.

Figure 1 shows a CFG after treegion formation,
where each treegion is surrounded by dotted lines.
Note that some treegions contain only one basic
block, while others contain several. The treegion for-
mation algorithm is shown in Figure 2. Treegions are
grown across a CFG starting from the entry points,
each of which roots a new treegion. From a given
root, the CFG is traversed, and basic blocks are ab-
sorbed into the root's treegion if they are not merge
points. Eventually, only merge points remain follow-
ing a treegion's leaf blocks. These are called saplings

of the treegion and become the roots of new tree-
gions. The process continues until the entire CFG
has been consumed, at which time each basic block
is in exactly one treegion.
The programs of the SPECint95 benchmark suite

were run through the treegion formation process. The
programs had classic optimizations and a pro�ling

1 treeform (CFG)
2 {
3 Add top node(s) of CFG to unprocessed queue
4 while unprocessed queue is not empty {
5 Get first node in unprocessed list
6 if node is already in a treegion continue
7
8 Make a new empty treegion
9 absorb-into-tree (treegion, node)
10
11 for each sapling of current treegion
12 if sapling is not in a treegion
13 add sapling node to unprocessed queue
14 }
15 }

16 absorb-into-tree (treegion, node)
17 {
18 Add node to candidate queue
19 while candidate queue is not empty {
20 Get first node in candidate queue
21 if node is already in treegion continue
22 if node is a merge point and not the root
23 continue
24
25 Move node into treegion
26 Add each successor of node to (front of)
27 candidate queue
28 }
29 }

Figure 2: Treegion formation algorithm. The �rst
algorithm, treeform, builds treegions over an entire
CFG. The second, absorb-into-tree, adds nodes
starting from the one given into the treegion.

run using training inputs applied to them using the
IMPACT compiler [2]. The benchmarks were then
converted to the Rebel textual intermediate represen-
tation by the Elcor compiler from Hewlett-Packard
Laboratories [8]. Region formation was performed
using the LEGO compiler, a research compiler devel-
oped at N.C. State University [6]. The results are tab-
ulated in Table 1. The average treegion in SPECint95
contains two to four basic blocks and between 20 and

25 instructions. Treegions clearly contain more op-
erations than basic blocks and thus can enable the
extraction of high levels of ILP.

3 Treegion Scheduling

The motivation for building treegions is the ability
to schedule multiple execution paths simultaneously.
This provides more opportunity for speculation and
also allows the scheduler to better balance the needs
of the di�erent paths.
The speculative hedge heuristic [4] inspired many

of the particulars of treegion scheduling. This tech-
nique provides various ways to prioritize instructions
in superblocks, based on the weights of the exits they
precede, the number of exits they precede, and other
factors. The goal of speculative hedge is to avoid de-
laying execution paths even if they do not execute fre-

2

Program avg # bb max # bb avg # instrs

compress 2.43 8 17.63

gcc 2.85 384 21.54

go 2.75 89 20.95

ijpeg 2.39 69 20.87

li 2.56 44 18.29

m88ksim 3.38 146 25.68

perl 3.14 774 23.45

vortex 3.30 39 33.53

Table 1: Treegion statistics. The data presented,
from left to right, are average basic block count per
treegion, maximum basic block count in a treegion,
and average number of operations per treegion.

quently; the ideas presented in this technique adapt
nicely to treegion scheduling.

First, treegion scheduling will be described, and
an example will be presented which shows how tree-
gion scheduling can produce a more e�cient sched-
ule than superblock scheduling. Then, the results of
experiments using four di�erent treegion scheduling
heuristics will be presented.

Basic treegion scheduling algorithm

1 scheduleTreegion (treegion)

2 {

3 Form DDG for treegion

4 sortDDGNodesBy*** (DDG)

5 listSchedule (DDG)

6 }

Figure 3: Treegion scheduling algorithm. The
sort function can be replaced with various sorting
schemes, each representing a di�erent heuristic.

Figure 3 shows the basic treegion scheduling algo-
rithm. The �rst step of the three-step process is the
construction of a data dependence graph (DDG) for
the treegion being scheduled. The second step is the
sorting of the nodes in the DDG into a list for the
third step, list scheduling. The sort function directly
a�ects the quality of the schedules produced, and the
heuristics presented in the rest of this section vary in
how they perform this sorting.

Because the DDG may contain instructions from
separate paths, the list scheduler may place instruc-
tions from multiple paths into the same cycle in the
schedule. If the instructions do not conict in their
use and/or de�nition of data items, this causes no
problems. If they do conict, compile-time register

renaming [9] is used.
The treegion scheduler can speculate instructions

above branches. Speculating an instruction above a
branch may cause incorrect execution if the instruc-
tion de�nes data that is used on another exit from
the branch. The treegion scheduler uses register re-
naming to prevent such live-out violations.
The treegion scheduler often produces schedules

where several branches are scheduled in one cy-
cle (providing the architecture allows it). Predica-
tion [10] is used to ensure that the proper branch is
executed. The combination of predicated branches
and speculation is similar to techniques used for crit-
ical path reduction [11].

Unit 3Unit 2Unit 1Unit 0

r1 = LD (A) r2 = LD (B) b8 = PBR (bb8)

p1 = CMPP (r1>r2)

BRCF (b8, p1)

BRCF (b4, p3)

BRU (b5)

r3 = r1 + r2 b5 = PBR (bb5) r4 = 1

b4 = PBR (bb4)

p3 = CMPP (r3<100)

r5 = 2

bb4: r4 = 3 r5 = 4 b5 = PBR (bb5)

BRU (b5)

b9 = PBR (bb9)bb8: r6 = 5

BRU (b9)

execution time = 35(5) + 25(6) + 40(5) = 525

Figure 4: An example superblock schedule. Instruc-
tions in italics are speculated above branches upon
which they are dependent.

Figures 4 and 5 show schedules for the topmost
treegion in Figure 1 using superblock scheduling and
treegion scheduling, respectively1. The estimated ex-
ecution times for both schedules are derived by mul-
tiplying the schedule height of each path by the num-
ber of times the pro�le weights indicate that the path
will be executed. A four-issue processor with uni-
versal functional units and unit instruction latencies
is assumed. The schedules use operations similar to
those found in Hewlett-Packard Laboratories Play-
Doh speci�cation [12] that are also common in other
experimental architectures: speculation, predication,
and a compare-to-predicate operation. Registers be-
ginning with \r" are general-purpose integer registers,
those beginning with \p" are predicate registers, and
those beginning with \b" are branch target registers
(BTRs). The PBR operation initializes a BTR by

1For simplicity, the examples only consider the topmost

treegion.

3

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

Unit 3Unit 2Unit 1Unit 0

r1 = LD (A) r2 = LD (B) b2 = PBR (bb2)

p1,p2=CMPP(r1>r2)

BRCT (b2, p1)

bb2: BRCT (b3, p3)

r3 = r1 + r2 b5 = PBR (bb5) b6 = PBR (bb5)

b3 = PBR (bb3)

p3, p4 = CMPP
(r3<100) ? p1

r5 = 2

r4 = 1b9 = PBR (bb9)

r4a = 3 r5a = 4

BRCT (b9, p2)BRCT (b6, p4)BRCT (b5, p3)bb3: r6 = 5

execution time = 35(5) + 25(5) + 40(5) = 500

Figure 5: An example treegion schedule. Instructions
in italics are speculated above branches upon which
they are dependent. Instructions in shaded blocks
show the e�ect of register renaming.

setting it to a target address, the CMPP operation
saves the result (and optionally, the complement of
the result) of a comparison into destination predicate
registers, and the BRCT, BRCF, and BRU opera-
tions are branches if condition true, if condition false,
and unconditionally, respectively.

The superblock schedule (Figure 4) is split into
three sections. The top section is for the superblock
created from (bb1, bb2, bb3), the middle section is
for bb4, and the bottom section is for bb8. The esti-
mated execution time for this section of code is 525
cycles. The treegion schedule (Figure 5) executes in
500 cycles, 25 less than the superblock schedule. This
is primarily due to the speculation of additional in-
structions from bb4.

On a very wide machine, both schedulers are able
to speculate more instructions. However, the treegion
scheduler has access to multiple paths, allowing even
more speculation and facilitating the completion of
additional paths.

Note that the �rst operation in the �fth cycle of the
treegion schedule (r6 = 5) is executed uncondition-
ally instead of being predicated. This is permissible
since r6 is not live-out on any paths out of the tree-
gion, so no conicts arise. If r6 were live-out, register
renaming can be used as described above.

The di�erent scheduling heuristics presented in the
remainder of this section are compared with basic
block scheduling and with scheduling for simple linear

regions (SLRs). Simple linear regions are formed in
the same manner as superblocks, but tail duplication
is not permitted. In fact, their formation is imple-
mented as a special case of treegion formation, where
for a given node (basic block) placed into an SLR,

Program avg # bb max # bb avg # Ops

compress 1.30 3 9.43

gcc 1.26 54 8.98

go 1.20 22 9.16

ijpeg 1.32 18 11.58

li 1.44 7 10.25

m88ksim 1.34 9 10.19

perl 1.27 24 9.29

vortex 1.25 8 12.71

Table 2: SLR statistics. The data presented above,
from left to right, are average basic block count per
SLR, maximum basic block count in an SLR, and
average number of operations per SLR.

the successor node with the highest pro�le weight is
selected next for possible inclusion rather than all
successors of the node. The result is a single-entry,
multiple-exit region formed without tail duplication.
Treegions will be compared with superblocks in Sec-
tion 4, after the application of tail duplication to tree-
gions has been presented.

Characteristics for the regions resulting from SLR
formation across SPECint95 are presented in Table 2.
The SLRs typically include 1-2 basic blocks and 8-12
instructions, which is less than treegions formed over
the same programs. Tables 1 and 2 illustrate that a
treegion provides a scheduler with more instructions
(as well as more paths) to speculate and schedule.

Before presenting the heuristics used for treegion
scheduling and the results, our framework for these
experiments will be described. Programs from the
SPECint95 benchmark suite were used, as explained
in Section 2. Two machine models were used for this
study: a 4-issue processor (4U) and a 8-issue proces-
sor (8U), both with universal units. Both machines
are statically-scheduled, very long instruction word
(VLIW) architectures [1] (A VLIW instruction can
also be referred to as a MultiOp, with each individual
operation in the MultiOp termed an Op [13]. The
Op/MultiOp terminology is used in the remainder of
this paper.) All operations in the two machines are
unit latency except for load (2 cycles), oating-point
multiply (3 cycles), and oating-point divide (9 cy-
cles). Memory operations are serialized (loads cannot
bypass stores) since no aliasing information is avail-
able, and since the machine models are Playdoh-style
machines a store and any dependent memory opera-
tions can be scheduled in the same cycle. All func-
tional units are fully pipelined. Program performance
was measured by using the pro�le count and schedule
height of each region to estimate execution time. The
e�ects of instruction and data caches were ignored,

4

and perfect branch prediction was assumed, in order
to determine the maximum bene�t of the scheduling
heuristics. Speedup over basic block scheduling on
a single-issue, pipelined universal unit machine was
the performance metric used. Copy Ops added due
to renaming were not used in computing speedup.

Dependence height treegion scheduling

The dependence height heuristic | also commonly
referred to as critical path scheduling | is the sim-
plest of the heuristics discussed here. In the second
step of treegion scheduling, the DDG nodes are sorted
by their heights. This provides the most opportunity
for speculation since Ops very far down in the tree-
gion that have a large dependence height are given
the same priority as those nearer the treegion root.
On a very wide machine a large amount of specula-
tion will occur due to abundant processor resources.

1

1.2

1.4

1.6

1.8

2

2.2

2.4

compress gcc go ijpeg li m88ksim perl vortex arith.
mean

Benchmarks

S
pe

ed
up

basic block scheduling SLR scheduling treegion scheduling

a) 4U machine model

1

1.2

1.4

1.6

1.8

2

2.2

2.4

compress gcc go ijpeg li m88ksim perl vortex arith.
mean

Benchmarks

S
pe

ed
up

basic block scheduling SLR scheduling treegion scheduling

b) 8U machine model

Figure 6: Dependence height treegion scheduling.

The results of the experiments with dependence

height treegion scheduling are shown in Figure 6.

128

128

128

128 0

0

0

Figure 7: A biased treegion. The block numbers in-
dicate pro�le weight. The leftmost path is the only
path executed in the treegion.

The results show that this heuristic performs well.
The speedup for treegion scheduling here exceeds that
of ordinary basic block scheduling by 48% and 35%
for the 4U and 8U machine models, respectively, and
it also exceeds the speedup of SLR scheduling by 8%
and 11% (SLR scheduling was performed as treegion
scheduling using the dependence height heuristic as
well). The speedup for treegion scheduling is always
the greatest except for the 4U schedule for ijpeg; this
is because that particular benchmark has a prepon-
derance of biased treegions, where a single path is
executed 100% of the time. An example of such a
treegion in ijpeg is shown in Figure 7. SLRs can fo-
cus on this path by itself, while treegions allow their
schedule heights to stretch a bit in order to give sev-
eral paths a chance to execute.

Though the results for this heuristic at �rst seem
promising, there is a danger of overaggressive specula-
tion for heavily-executed large treegions. Exits from
these treegions may be delayed because Ops from less
frequently executed paths which happen to have a
greater dependence height may be speculated into the
top of the treegion schedule. This would lead to poor
usage of resources since the results of these specu-
lated Ops are rarely used while all execution paths in
the treegion are delayed. The next heuristic attempts
to avoid this danger.

Exit count treegion scheduling

The scheduling results for the remaining three heuris-
tics are presented in Figure 8. Each heuristic will be
described in turn, accompanied by an analysis of the
heuristic's results.

The exit count heuristic is adapted from the helped
count priority function of speculative hedge [4]. In

5

1

1.2

1.4

1.6

1.8

2

2.2

2.4

compress gcc go ijpeg li m88ksim perl vortex arith.
mean

Benchmarks

S
pe

ed
up

exit count scheduling dependence height scheduling
global weight scheduling weighted count scheduling

a) 4U machine model

1

1.2

1.4

1.6

1.8

2

2.2

2.4

compress gcc go ijpeg li m88ksim perl vortex arith.
mean

Benchmarks

S
pe

ed
up

exit count scheduling dependence height scheduling
global weight scheduling weighted count scheduling

b) 8U machine model

Figure 8: The four treegion scheduling heuristics.

this scheme, the priority of an Op is equal to the
Op's exit count, which is the number of exits that
follow the Op in control ow in the treegion. This
heuristic gives highest priority to Ops in the root of
the treegion, since by de�nition they help every exit
in the treegion. The nodes in the treegion DDG are
sorted �rst by exit count; then, Ops with the same
exit count are sorted by dependence height.

This heuristic attempts to curtail any overaggres-
sive speculation by accounting for the treegion topol-
ogy; however, the results are mixed, and overall the
dependence height heuristic provides 2{4% higher
speedup. Notably, this heuristic performs very poorly
on gcc and perl.

An explanation for the surprising results for the
exit count heuristic was found by examining particu-
lar treegions in the two problem benchmarks. These
treegions were each rooted by a very wide multiway
branch, and their leaves were the various choices for
the branches. Furthermore, the treegions were shal-

6691

6691

35 109 2992 5 410

... ...

Figure 9: A wide, shallow treegion. The block num-
bers indicate pro�le weight. The branch destinations
with the highest exit count are not necessarily the
most often executed.

low; only a few treegion exits resided along any one
branch destination. A simpli�ed example of such a
treegion, taken from gcc, is shown in Figure 9.

The fundamental aw of the exit count heuristic
exposed by these treegions is the assumption that
an area of code with a higher exit count typically
has a higher pro�le weight. In these treegions, each
area of code at a branch destination had a roughly
equal (small) exit count. However, most of them (not
shown) had zero pro�le weight, and those with the
highest exit counts did not have the highest weight.

As a result of this aw, those branch destinations
with low exit count and high pro�le weight were given
less priority than those with a high exit count but a
low pro�le weight. The most often executed sections
of the treegion away from the root were therefore de-
layed. This behavior was aggravated by the large

width and symmetry of the treegions. On the other
hand, the dependence height heuristic is more demo-
cratic in these situations, and tends to schedule all
destinations at an equal priority. Hence it produces
better schedules for these treegions.

Global weight treegion scheduling

The global weight heuristic uses pro�le weights to pri-
oritize Ops. This gives an advantage to Ops executed
more often, which may help the most frequently exe-
cuted paths be scheduled more quickly. The priority
value assigned to an Op is the pro�le weight of the
original basic block which contains it. Ops with the
same weight are sorted by dependence height. This
heuristic stems from the helped weight heuristic of
speculative hedge, which uses the total weight of all
exits helped by an Op as a priority value. Since a tree-

6

gion is fundamentally a tree of execution paths, the
weight of all exits reached through an Op in a tree-
gion is equal to the weight of that Op's basic block.

The results in Figure 8 show that this heuristic has
the best overall performance. It provides 3% higher
speedup than the dependence height heuristic for the
4U machine model, and about 1% higher speedup
for the 8U model. There is greater improvement for
the 4U model because the global weight heuristic tar-
gets heavily executed Ops aggressively, and this tactic
pays o� more when resources are less available.

Note that the global weight heuristic avoids the
aw of the exit count heuristic, at the expense of re-
lying on pro�le information. By targeting those areas
of code with high weight, the global weight heuristic
selects the proper branch destinations of the multi-
way branches and gives them highest priority.

Weighted count treegion scheduling

The weighted count heuristic combines the global
weight and exit count heuristics. The focus on pro�le
weight of the former heuristic is tempered by the re-
strictions on speculation imposed by the latter. The
primary sorting criterion is pro�le weight, to give
heavily executed Ops an advantage. Ops with the
same weight are sorted by exit count to avoid overag-
gressive speculation. Ops with both the same weight
and exit count are sorted by dependence height.

The hope for this heuristic is that the aw in the
exit count heuristic will be avoided by prioritizing
Ops primarily by weight. However, it does not im-
prove over the dependence height heuristic as much
as the simpler global weight heuristic. In particular,
the speedup of vortex is reduced.

The reason for the slight degradation in perfor-

mance is again due to sorting by exit count. By giv-
ing highest priority to Ops early in a treegion, the
heuristic naturally retires exits higher in the treegion
earlier. However, the most taken exits may be lower
in the treegion, and thus are delayed. The sorting
by weight that the weighted count heuristic performs
partially solves this problem, but when the weights in
a treegion are equal or very close, and the exits near
the bottom are taken most often, the performance
degradation surfaces.

This e�ect is most noticeable in biased treegions
that are also linearized, i.e., that contain a single ex-
ecution path. An example of a linearized treegion in
vortex is shown in Figure 10. Since the weights of
the blocks are the same, the weighted count heuristic
behaves like the exit count heuristic, and so the only
taken exit at the bottom of the treegion is delayed.
On the other hand, the global weight heuristic treats

783

783

783

Figure 10: A linearized treegion. The block numbers
indicate pro�le weight. The most frequently taken
exit is at the bottom of the treegion; the weighted
count heuristic instead focuses on the intermediate
exits, which are never taken.

all of the blocks equally, and manages to schedule the
taken exit in less time.

In summary, the dependence height and global
weight heuristics produce the best overall speedup.
The former heuristic is useful when pro�le informa-
tion is unavailable or unreliable, while the latter can
make use of reliable pro�le information. The exit
count and weighted count heuristics su�ers from some
aws; however, it remains to be seen whether they
perform well in the face of pro�le variations, where
they may preserve performance better.

4 Applying Tail Duplication to Treegions

Intuition suggests that large treegions are better
for producing high-performance schedules than small
treegions, since large treegions provide more opportu-
nity for speculation. This section examines the use of
tail duplication in expanding treegions and compares
the schedules derived from them with superblocks.

Tail duplication heuristics

The fundamental goal of any attempt to expand tree-
gions beyond their normal size is to eliminate merge
points, since they delimit treegion boundaries. Tail
duplication, a process applied during superblock [2]
and hyperblock [14] formation, can be used in tree-
gion formation to convert saplings (which are merge
points) into a set of single entry blocks which can
be absorbed into surrounding treegions. Before de-
scribing the algorithm for treegion formation with tail
duplication, the heuristics applied to tail duplication
will be described.

7

A code expansion limit is the primary heuristic.
Uncontrolled code expansion will create large tree-
gions at the expense of treegions following them in
the code. Limiting code expansion creates more bal-
anced treegions and keeps the code size and compile
time under control. The number of distinct execu-
tion paths in a treegion (path count) is also limited
for similar reasons. A large number of paths in a tree-
gion will lead to increased interference between paths
when competing for schedule slots, so limiting their
number prevents some from being delayed too long.

Finally, a limit on a tail duplicated sapling's merge

count , or number of incoming edges, is used. Tail
duplicating a sapling with a large merge count is
expensive in terms of code size and compile time.
Therefore, saplings with high merge counts are not
tail duplicated unless they are merge points with no
successors in the CFG, such as function exits.

Modi�ed treegion formation algorithm

1 treeform-td (CFG)

2 {

3 Add top node(s) of CFG to unprocessed queue

4 while unprocessed queue is not empty {

5 Get first node in unprocessed list

6 if node is already in a treegion continue

7 Make a new empty treegion

8 absorb-into-tree (treegion, node)

9 do {

10 if treegion path count exceeds limit break

11 for each sapling of current treegion {

12 if sapling is in another treegion

13 continue

14 if code expansion limit might be exceeded

15 continue

16 if sapling merge count exceeds allowed

17 limit continue

18 use this sapling

19 }

20 if sapling selected for tail duplication {

21 if sapling is merge point

22 tail-duplicate (sapling onto node

23 in tree)

24 absorb-into-tree (treegion, duplicate)

25 else

26 absorb-into-tree (treegion, sapling)

27 }

28 } while some sapling is selected for tail

29 duplication

30 for each sapling of current treegion

31 if sapling is not in a treegion

32 add sapling node to unprocessed queue

33 }

34 }

Figure 11: Treegion formation algorithm with tail du-
plication. After the initial formation, tail duplication
is performed and duplicates are added to the treegion
until no saplings can be tail duplicated.

The treegion formation algorithm can be modi�ed
to use tail duplication; the result is shown in Fig-
ure 11. Tail duplication is performed on each tree-
gion as it is formed, before the next treegion is cre-
ated. A sapling which quali�es is found and tail du-
plicated. The duplicate is then absorbed into the
treegion. This continues until no qualifying saplings
remain. Often a sapling that has been tail dupli-
cated will have only one remaining incoming edge.
The algorithm takes this into account and absorbs
such saplings directly.

r1 = ld[A]
r2 = ld[B]
if (r1 > r2)
 goto bb2

r3 = r1 + r2
if (r3 < 100)
 goto bb3

r4 = 1
r5 = 2

r4 = 3
r5 = 4

r6 = 0
if (r5 == r2)
 goto bb6

r6 = 5

bb1

bb2 bb8

bb3 bb4

bb5 r6 = 0
if (r5 == r2)
 goto bb6

bb5a

Figure 12: A treegion after tail duplication. The top-
most treegion in Figure 1 is shown above after bb5
has been tail duplicated.

Figure 12 shows the topmost treegion of Figure 1
after basic block 5, originally a merge point, has been
tail duplicated, and both the original block and its
duplicate have been absorbed into the treegion. This
process could be continued through the CFG in Fig-
ure 1 to the leaf node at basic block 9, resulting in one
large treegion where each execution path through the
original CFG has been converted into a unique path
through the treegion. The entire CFG could then be
scheduled as a single unit.

Dominator parallelism in treegion scheduling

A primary drawback of tail duplication is the intro-
duction of redundant operations which may waste re-
sources and extend execution time when speculated.
In some cases the scheduler can take advantage of
dominator parallelism to eliminate redundant Ops
from the schedule.

Dominator parallelism is exhibited by identical Ops
from di�erent execution paths which are speculated
into a block that dominates each Op [15]. When this
occurs, all but one of the Ops can be safely eliminated
from the schedule. The remaining Op will perform

8

the operation for all paths concerned. The Op often
is still speculative, as varying data dependencies may
have prevented identical Ops from all paths from be-
ing speculated into a single dominator, but when a
complete set of identical Ops has moved into a dom-
inator, the single Op can be made non-speculative.
Dominator parallelism has been used and discussed
in both research and commercial contexts [16], [17].

The treegion scheduler can easily detect dominator
parallelism between tail duplicated Ops. Because of
the treegion's structure, any block in a treegion dom-
inates all blocks below it. Ops speculated upwards
are always speculated into dominators. Therefore, if
a tail duplicated Op A0 is speculated into a block
where one of its duplicates A00 is already scheduled,
A0 can be eliminated.

As a simple example, refer to basic blocks 5 and 5a
in Figure 12. The operation r6 = 0 in both blocks
may be speculated into basic block 2 (or 1). If this
occurs, then only one copy of the Op needs to be
scheduled and the work will be done for both execu-
tion paths.

Comparison with superblocks

Experiments were run to show the e�ects of tail
duplication and dominator parallelism on treegion
scheduling. The results are compared to superblock
scheduling2. In these experiments, the code expan-
sion limit is set to 2.0 and 3.0 times the original code
size per treegion. The merge count limit is held at
four and the path count limit at twenty.

Tables 3 and 4 present statistics on the character-
istics of the superblocks and treegions with tail dupli-
cation formed by the LEGO compiler. Figure 4 shows
the sizes of the regions formed. For most of the pro-
grams, treegions contain more basic blocks and Ops
than superblocks. This is an intuitive result, since
treegions consider multiple paths. Table 4 shows the
amount of code expansion that occurs when form-
ing superblocks and treegions. Treegions experience
more code expansion than superblocks, another in-
tuitive result, since tail duplication can occur along
multiple paths within a treegion. Overall, the amount
of code duplication is moderate for both types of re-
gions. This implies that the instruction cache behav-
ior of the programs will not be dramatically a�ected
by the increase in code size.

Figure 13 shows the results of treegion scheduling
using the global weight heuristic versus superblock

2Every attempt was made to produce superblocks within

the LEGO compiler as described in the literature [2], [18], [19];

di�erences between the LEGO compiler and the IMPACT com-

piler are unavoidable, but minimized.

Program Region type

sb tree (2.0) tree (3.0)

compress 1.26 1.34 1.62

gcc 1.14 1.32 1.43

go 1.21 1.33 1.40

ijpeg 1.15 1.26 1.38

li 1.20 1.26 1.31

m88ksim 1.19 1.34 1.49

perl 1.07 1.30 1.38

vortex 1.17 1.37 1.45

average 1.18 1.32 1.44

Table 3: Code expansion statistics. The data pre-
sented indicate the factor by which code size in-
creased for superblocks (sb) and treegions (tree). The
numbers in parentheses indicate treegion code expan-
sion limits.

scheduling. For both machine models, the speedup of
treegion scheduling exceeds that of superblock sched-
uling by 15% with a code expansion limit of 2.0 (ac-
tual code expansion 1.32), and by 20% with a code
expansion limit of 3.0 (actual code expansion 1.44).
Overall, just as with treegions without tail duplica-
tion versus SLRs, the additional paths and Ops avail-
able within a treegion enable the extraction of higher
levels of ILP.

5 Related work

Previous work on non-linear regions have inuenced
the study of treegions. The most direct ancestor to
this work is decision tree scheduling (DTS) [20]. DTS
recurses down the paths of a decision tree (similar
to a treegion) producing schedules. Guarded instruc-
tions, the predecessors of predicated instructions [10],
occupy branch delay slots. Ops are prioritized by
the weight of the execution paths running through
them and by their position along the critical path,
a heuristic similar to global weight. Although DTS
shares the same spirit as treegion scheduling, the for-
mer addresses pipelined processors, while the latter is
more concerned with ILP. Also, treegion scheduling
has the advantage of using speculation to move oper-
ations above branches and thereby exploiting domi-
nator parallelism.

The IBM VLIW architecture is based on a tree-

instruction which contains a decision-tree set of op-
erations. The machine evaluates the various con-
ditionals and executes all necessary operations in
a single cycle. The �nite-resource global schedul-
ing technique [21] schedules ordinary code into tree-

9

Region type

Benchmark # regions avg # bb avg # Ops

sb tree (2.0) sb tree (2.0) sb tree (2.0)

compress 19 87 5.263158 5.195402 31 35.632184

gcc 3471 15186 5.576491 6.152575 32.033708 41.123864

go 1644 3280 3.753041 5.608232 24.63017 39.246646

ijpeg 347 1575 3.962536 4.795556 26 37.392381

li 180 1053 4.366667 4.584995 23.7 30.91453

m88ksim 129 1483 5.844961 6.923803 72 48.937964

perl 144 3527 6.659722 6.198469 38.659722 42.955486

vortex 184 1175 9.054348 7.724255 74.945652 72.055319

Table 4: Superblock and treegions with tail duplication statistics. The data described, from left to right,
are total region count, average basic block count per region, and average number of Ops per region. 'sb'
indicates a superblock, 'tree' indicates a tree.

instructions with help from a modi�ed version of per-
colation scheduling [22]. The degree of speculation
(DOS) heuristic controls how operations are moved
through and between tree-instructions.

Hyperblocks [14] are an extension of superblocks
that contain predicated code. Multiple paths are
scheduled together, and predication ensures that only
instructions on the taken path write back their re-
sults. Trace scheduling-2, or TRACE-2 [17], performs
scheduling across a cluster of basic blocks. This al-
lows the technique to detect dominator parallelism
and to generate compensation code as scheduling pro-
ceeds. A speculative yield function contributes to
prioritizes the operations. TRACE-2 allows merge
points, but requires some scheduling complications
treegion scheduling avoids.

6 Conclusion

This paper presented treegions and treegion schedul-
ing. A treegion is a pro�le-independent tree-shaped
subgraph of a program CFG. The tree topology may
contain multiple paths of control. To an instruction
scheduler, this presents greater opportunities for uti-
lizing processor resources and more operations for
speculative execution. The process of scheduling the
operations in a treegion is termed treegion scheduling.
Four scheduling heuristics were presented that can
be used with treegion scheduling: dependence height,
exit count, global weight, and weighted count. The
use of tail duplication to expand the scope of a tree-
gion and the exploitation of dominator parallelism
to increase schedule ine�ciency were also discussed.
Treegion scheduling using the various heuristics and
both with and without tail duplication were com-
pared to scheduling with three types of linear regions
{ basic blocks, simple linear regions, and superblocks.

The resulting performance is highly dependent on
the heuristic used. The heuristic that performs best
proved to be global weight, and treegion schedules
obtained with tail duplication and dominator paral-
lelism performs 12% and 20% better than SLRs and
superblocks, respectively. Based on these results, it
can be concluded that treegions are a promising al-
ternative to more traditional, linear regions.
There are several items of interest for future work

in treegion scheduling. First, we would like to investi-
gate the performance of treegion schedules across dif-
ferent sets of inputs, to see the e�ects of pro�le varia-
tions using the various heuristics, and on dynamically
scheduled processor models. Second, this study did
not employ any software pipelining techniques, which
would surely improve the performance of loops in the
code [21]. Third, we are currently investigating the
bene�ts of integrating code in the form of if-then and
if-then-else statements into treegions. The serializa-
tion of code using predication as in hyperblocks [14]
is an alternative to using tail duplication to eliminate
merge points. We also plan to compare the tradeo�s
between hyperblocks and treegions directly and to
evaluate the merits of predication versus speculation
for scheduling. Work on a complete implementation
of hyperblocks in the LEGO compiler is currently un-
derway.

Acknowledgements

This work was supported by IBM, Hewlett-Packard,
Intel, and the National Science Foundation under
grants MIP-9625007 and GER-9454175.

References

[1] J. A. Fisher, \Trace scheduling: A technique for
global microcode compaction," IEEE Trans. Com-
put., vol. C-30, no. 7, pp. 478{490, July 1981.

10

1

1.5

2

2.5

3

compress gcc go ijpeg li m88ksim perl vortex arith.
mean

Benchmarks

S
pe

ed
up

superblock treegion (2.0), dominator parallelism treegion (3.0), dominator parallelism

a) 4U machine model

1

1.5

2

2.5

3

3.5

compress gcc go ijpeg li m88ksim perl vortex arith.
mean

Benchmarks

S
pe

ed
up

superblock treegion (2.0), dominator parallelism treegion (3.0), dominator parallelism

b) 8U machine model

Figure 13: Results for global weight tail duplicated
treegion scheduling.

[2] W. W. Hwu, S. A. Mahlke, W. Y. Chen, P. P. Chang,
N. J. Warter, R. A. Bringmann, R. G. Ouellette,
R. E. Hank, T. Kiyohara, G. E. Haab, J. G. Holm,
and D. M. Lavery, \The Superblock: An e�ective
structure for VLIW and superscalar compilation,"
The Journal of Supercomputing, vol. 7, pp. 229{248,
Jan. 1993.

[3] W. W. Hwu and P. P. Chang, \Trace selection
for compiling large C application programs to mi-
crocode," in Proc. 21st Ann. Workshop on Micropro-
gramming and Microarchitectures, (San Diego, CA.),
Nov. 1988.

[4] B. L. Deitrich and W. W. Hwu, \Speculative hedge:
regulating compile-time speculation against pro�le
variations," in Proc. 29th Ann. Int'l Symp. Microar-
chitecture [23].

[5] T. M. Conte, K. N. Menezes, and M. A. Hirsch, \Ac-
curate and practical pro�le-driven compilation using
the pro�le bu�er," in Proc. 29th Ann. Int'l Symp.
Microarchitecture [23].

[6] S. Banerjia, W. A. Havanki, and T. M. Conte, \Tree-
gion scheduling for highly parallel processors," in
Proc. Euro-Par'97, (Passau, Germany), Aug. 1997.

[7] W. A. Havanki, \Treegion scheduling for VLIW pro-
cessors," Master's thesis, Dept. of Electrical and
Computer Engineering, North Carolina State Uni-
versity, Raleigh, NC 27695-7911, July 1997.

[8] R. Johnson and M. Schlansker, \Analysis techniques
for predicated code," in Proc. 29th Ann. Int'l Symp.
Microarchitecture [23], pp. 100{113.

[9] R. Cytron and J. Ferrante, \What's in a name? -or-
The value of renaming for parallelism detection and
storage allocation," in Proc. 1987 Int'l Conf. Parallel
Processing, pp. 19{27, Aug. 1987.

[10] J. R. Allen, K. Kennedy, C. Porter�eld, and J. War-
ren, \Conversion of control dependence to data de-
pendence," in Proc. 10th Ann. ACM Symp. Princi-
ples of Programming Languages, Jan. 1983.

[11] M. S. Schlansker and V. K. Kathail, \Critical path
reduction for scalar programs," in Proc. 28th Ann.
Int'l Symp. Microarchitecture, (Ann Arbor, MI),
Dec. 1995.

[12] V. Kathail, M. Schlansker, and B. R. Rau, \HPL
PlayDoh architecture speci�cation: version 1.0,"
Tech. Rep. HPL-93-80, Hewlett-Packard Laborato-
ries, Technical Publications Department, 1501 Page
Mill Road, Palo Alto, CA 94304, Feb. 1994.

[13] B. R. Rau, D. W. L. Yen, W. Yen, and R. A. Towle,
\The Cydra 5 departmental supercomputer," Com-
puter, vol. 22, pp. 12{35, Jan. 1989.

[14] S. A. Mahlke, D. C. Lin, W. Y. Chen, R. E. Hank,
and R. A. Bringmann, \E�ective compiler support
for predicated execution using the Hyperblock," in
Proc. 25th Ann. Int'l Symp. Microarchitecture [24],
pp. 45{54.

[15] A. V. Aho, R. Sethi, and J. D. Ullman, Compil-
ers: Principles, techniques, and tools. Reading, MA:
Addison-Wesley, 1986.

[16] R. Gupta and M. L. So�a, \Region scheduling:
An approach for detecting and redistributing par-
allelism," IEEE Trans. Soft. Engg., vol. 16, no. 4,
pp. 421{431, 1990.

[17] J. A. Fisher, \Global code generation for instruction-
level parallelism: Trace Scheduling-2," Tech. Rep.
HPL-93-43, Hewlett-Packard Laboratories, June
1993.

[18] S. A. Mahlke, Exploiting instruction level parallelism
in the presence of branches. PhD thesis, Department
of Electrical and Computer Engineering, University
of Illinois at Urbana-Champaign, Urbana, IL, 1996.

[19] R. A. Bringmann, Enhancing instruction level paral-
lelism through compiler-controlled speculation. PhD
thesis, Department of Electrical and Computer Engi-
neering, University of Illinois at Urbana-Champaign,
Urbana, IL, 1995.

[20] P. Y. T. Hsu and E. S. Davidson, \Highly concurrent
scalar processing," in Proc. 13th Ann. Int'l Symp.
Computer Architecture, (Tokyo, Japan), June 1986.

[21] S.-M. Moon and K. Ebcio�glu, \An e�cient resource-
constrained global scheduling technique for super-
scalar and VLIW processors," in Proc. 25th Ann.
Int'l Symp. Microarchitecture [24], pp. 55{71.

[22] A. Nicolau, \Percolation scheduling: a parallel com-
pilation technique," Technical report TR-678, De-
partment of Computer Science, Cornell University,
Ithaca, NY, May 1985.

[23] Proc. 29th Ann. Int'l Symp. Microarchitecture,
(Paris, France), Dec. 1996.

[24] Proc. 25th Ann. Int'l Symp. Microarchitecture,
(Portland, OR), Dec. 1992.

11

