

Weld: A Multithreading Technique Towards Latency-
tolerant VLIW Processors

Emre Özer, Thomas M. Conte and Saurabh Sharma

{eozer,conte,ssharma2}.eos.ncsu.edu

Department of Electrical and Computer Engineering,
North Carolina State University, Raleigh, N.C., 27695.

Abstract. This paper presents a new architecture model, named Weld, for VLIW processors.
Weld integrates multithreading support into a VLIW processor to hide run-time latency effects
that cannot be determined by the compiler. It does this through a novel hardware technique
called operation welding that merges operations from different threads to utilize the hardware
resources more efficiently. Hardware contexts such as program counters and fetch units are
duplicated to support multithreading. The experimental results show that the Weld architecture
attains a maximum of 27% speedup as compared to a single-threaded VLIW architecture.

1. Introduction

Variable memory latencies in VLIW processors are one of the most crucial
problems that VLIW processors face. A VLIW processor might have to stall for a
large number of cycles until the memory system can return the data required by the
processor. Multithreading is a technique that has been used to tolerate long latency
instructions or run-time events such as cache misses, branch mispredictions, and
exceptions. It has also been used to improve single program performance by spawning
threads within a program, such as loop iterations or acyclic pieces of code. Weld is a
new architecture model that uses compiler support for multithreading within a single
program to combat variable latencies due to unpredictable run-time events in VLIW
architectures.

There are two main goals that Weld aims to achieve: 1) better utilization of
processor resources during unpredictable run-time events and 2) dynamic filling of
issue slots that cannot be filled at compile time. Unpredictable events that cannot be
detected at compile time, such as cache misses, may stall a VLIW processor for
numerous cycles. The Weld architecture tolerates those wasted cycles by issuing
operations from other active threads when the processor stalls for an unpredictable
run-time event within the main thread. VLIW processors are also limited by the fact
that they use a discrete scheduling window. VLIW compilers partition the program
into several scheduling regions and each scheduling region is scheduled by applying
different instruction-level parallelism (ILP) optimization techniques such as
speculation, predication, loop unrolling, etc. The VLIW compiler cannot fill all
schedule slots in every MultiOp [12]1 because the compiler cannot migrate operations
from different scheduling regions. A hardware mechanism called the operation
welder is introduced in this work to achieve our second goal. It merges operations

1 A MultiOp is a group of instructions that can be potentially executed in parallel.

from different threads in the issue buffer during each cycle to eliminate empty issue
slots, or NOPs. A scheduling region is a potential thread in our model. Executing
operations from different scheduling regions and filling the issue slots from these
regions simultaneously at run time can increase resource utilization and performance.
The main objective of this study is to increase ILP using compiler-directed threads
(scheduling regions) in a multithreaded VLIW architecture.

The remainder of this paper is organized as follows. Section 2 introduces the
general Weld architecture. Section 3 explains the bork insertion algorithm, which
defines how the compiler spawns new threads. Section 4 presents performance results
and analysis. Section 5 discusses the related work in multithreading techniques.
Finally, Section 6 concludes the paper and discusses future work.

2. The General Weld Architecture Model

The Weld model assumes that threads are generated from a single program
by the compiler. During program execution there is a single main thread and
potentially several speculative threads, but the main thread has the highest priority
among all threads. The general Weld architecture is shown in Figure 1. Each thread
has its own program counter, fetch unit and register file while all threads share the
branch predictor and instruction and data caches. Weld consists of a basic 5-stage
VLIW pipeline. The fetch stage fetches MultiOps from the Icache, and the
decode/weld stage decodes and welds them together. The operation welder is

integrated into the decode stage in the pipeline. The operand read stage reads
operands into the buffer for each thread and sends them to the functional units. The
execute stage executes operations, and the write-back stage writes the results into the
register file and Dcache.

2.1. ISA Extension

Shared L2 I& D C ache

I C ache D C ache

Fetch1

O perand R ead

Execute

W eld/D ecode

W riteback

R egister
F ile1

B ranch
Predictor

SM O BFetchN
Thread
Table

R egister
F ileN

SSB

com m it

Figure 1. The general Weld architecture

A new instruction and some extensions to the ISA are required to support
multithreading in a VLIW. A new instruction is needed to spawn threads. A branch
and fork operation, or bork, is introduced to spawn new threads and create new
hardware contexts for those threads. It has a target address, which is the address of the
new, speculative thread.

Two extra bits are added to each MultiOp in the ISA: separability and
synchronization bits. A separability bit is necessary for each MultiOp to distinguish
between separable and inseparable MultiOps. In a separable MultiOp, the individual
operations that form the MultiOp can be issued across multiple cycles without
violating dependencies between those operations. The reason for this classification is
that there might be anti or output dependencies between operations in a MultiOp.
Splitting such operations from the whole MultiOp may disrupt the correct execution
of the program. The synchronization bit is added to each MultiOp in the ISA and is
set in the first MultiOp of each thread at compile-time to help synchronize threads at
run-time. With the combination of ISA and hardware support, threads can merge in a
straightforward way as explained in Section 2.2.

2.2. Thread Creation and Synchronization

When a bork is executed, a new hardware context (register file, fetch unit
and program counter) is assigned to the new thread if those resources are available. If
there is not an available hardware context for the new thread, the bork behaves like a
NOP. Once the new hardware context has been created, the register file of the
ancestor thread is copied into the register file of the descendant thread, and the
program counter of the descendant thread is initialized with the target address of the
bork. Moreover, the target address is also stored in the Thread Table for thread
synchronization. Speculative threads can then spawn other speculative threads, and so
on. However, a thread (main or speculative) may spawn only one thread, i.e. the
compiler guarantees that there is only one bork operation per executed path in order to
reduce the complexity of thread synchronization. If there is a stall in one thread due to
a cache miss, the other threads can still continue to fetch and execute. Even if there is

0 Bork 100

PC=100

Spawn T1

T0 100

Thread Table

T1

T0

T2

1
1

Sync B it

Thread PC

PC=400

=
Com m it T1

Executed
Path

0 Bork 100

PC=100

Spawn T1

T0 100

T1

T0

T2

11
Sync B it

Thread PC

PC=400

? =
Squash T1

Executed
Path

Thread Table
(a) (b)

Figure 2. An example of synchronization of two threads

no stall in any thread, the decode/weld stage can fill from multiple threads by taking
advantage of any empty fields in the MultiOps.

An ancestor thread merges with its own descendant thread when the ancestor
fetches the first MultiOp instruction in the descendant thread. The fetch unit checks if
the synchronization bit of the fetched MultiOp is set. If set, the PC address of the
instruction is compared with the address stored in the Thread Table. If they are the
same, the descendant thread is correctly speculated and can be committed. The
ancestor thread dies and the descendant thread takes over in case of a commit. If the

addresses do not match, then the descendant thread is incorrectly speculated. In this
case, the descendant thread and its own descendant threads must be squashed. Also,
the speculative stores in the Speculative Store Buffer (SSB) and the speculative loads
in the Speculative Memory Operation Buffer (SMOB) are invalidated. Figure 2a
shows an example of synchronization of two threads. Thread 0 (T0) spawns Thread 1
(T1) at address 100. Address 100 is also written in the Thread Table together with the
thread id. If the control flow goes into T1, T0 fetches the first MultiOp, which is the
MultiOp at address 100. The fetch unit for T0 checks if the synchronization bit is set.
Then, the PC address 100 is compared with the address in the Thread Table, which is
also 100. There is a match, therefore T1 can commit, which means T0 dies and T1
becomes the main thread. If the control flow goes into Thread 2, then T1 was
misspeculated, as shown in Figure 2b. The PC address 400 is compared with the
address 100 in the Thread Table. There is no match, so T1 must be squashed.

2.3. Operation Welder

A1 A2 A3 B1 B2

A1 A2 A3 B1

ALU ALU BR UNIV ALU ALU BR UNIV

A4 B2

A4 B2

1

1

Cycle 0

Cycle 1

Issue Buffer after Weld

A5 A6 B3 B4 B5

A5 A6

0

B3 B4 B5 0

B3 B4 A7 B5

Cycle 2

Cycle 3

ALU ALU BR UNIV ALU ALU BR UNIV

A7

ALU ALU BR UNIV S-bit ALU ALU BR UNIV

B1 B2

A4 B3 B4 B5

1

0

A1 A2 A3

A5 A6

A7

Figure 3. The example for the operation welder and its cycle steps

The weld/decode stage in the pipeline takes MultiOps from each active thread,
welds them together and decodes the welded MultiOp. The welding should be done
before the operand read stage because the number of bits in an operation to be routed
before decode is much less than the number of bits in the operand read stage.
Therefore, the operation welder is integrated into the decode pipeline stage. It can
send an operation to any functional unit as long as it is the correct resource to execute
the operation. Each thread has a buffer called the prepare-to-weld buffer to hold a
MultiOp. At each cycle, a MultiOp is sent from the fetch buffer to the weld/decode
stage. Each operation has an empty/full bit that states whether an operation exists in
the slot, and each MultiOp also has a separability bit. The operation welder consists of
an array of multiplexers to forward the operations to the functional units. Control
logic takes the empty/full and separability bits and sends control signals to the
multiplexers. Each functional unit has a multiplexer in front of it. In the Weld
architectural model, the main thread has the highest priority. Among the speculative
threads, older threads have higher priority than younger ones. All operations in the
main thread are always forwarded to the issue buffer. The empty slots in the issue
buffer are filled from operations in the speculative threads. Some operations in a
MultiOp of a speculative thread may be sent to the functional units while the
remaining operations stay in the prepare-to-weld buffer. In this case, the fetch from
this thread is stalled until the remaining operations in the buffer are issued.

The example in Figure 3 demonstrates how the operation welder works. There
are two threads scheduled for a 4-issue VLIW machine. Two ALU units, one branch
unit and one universal functional unit are used in the example architecture. The thread
on the right shows the speculative thread and the separability bit for each of its
MultiOps. At cycle 0, the first MultiOps from both threads are in the prepare-to-weld
buffer. First, the whole MultiOp from A is forwarded into the issue buffer. Then a
check is made if the separability bit of the MultiOp from B is set. Since it is set, the
operations from B are separable. B1 is welded into slot 4 of the issue buffer. The
remaining operations stay in the prepare-to-weld buffer of B. At cycle 1, the second
MultiOp from A is forwarded into the issue buffer. B2 is welded into slot number 3 of
the issue buffer. At cycle 2, thread A puts its third MultiOp and thread B puts its
second MultiOp into their respective prepare-to-weld buffers. Again, thread A
forwards all operations into the issue buffer. However, there can be no welding with
thread B because its separability bit is 0. Therefore, all operations from this MultiOp
must be sent to the issue buffer at the same time. Only the MultiOp from thread A is
sent to the functional units. At cycle 3, the last MultiOp from thread A is put into the
prepare-to-weld buffer and forwarded into the issue buffer. A check is made if all
operations from B can be welded. Since there are three slots available in the issue
buffer and they are the right resources, B3, B4 and B5 are all welded into the issue
buffer.

2.4. Thread Table

The thread table (TT) keeps track of threads that have been spawned and
merged. There is an entry for each active thread. Each entry keeps a thread id, register
file id, and the borked PC address. The thread id is a unique number that identifies
each active thread. This unique id can be obtained from a time-stamp counter. The

time stamp represents the age of the threads. Each time a new thread is created, the
counter is incremented by one and stamped into the thread and written into the TT.
The time-stamp counter must be wide enough so as not to overflow. Otherwise, the
time order of the threads would be disrupted. The time-stamp counter is reset to zero
when there is only one active thread, which is the main thread. If the counter
overflows while there are active threads, all of the speculative threads are squashed
and the counter is reset to zero. The register file id is the identifier of the register file
assigned to the thread. The time-stamp id is also attached to each operation in a thread
to distinguish operations from different threads. When an operation completes, it
searches the TT to find the proper register file id by comparing the attached time
stamp with time stamps in the table. The TT can be designed as a shift register. When
two threads merge, the ancestor thread dies and the descendant thread takes over. This
involves deleting the ancestor thread’s entry from the TT. Before removing it, its
borked PC is copied into the borked PC field of its own ancestor thread, if there is
any. Then the descendant thread’s entry is shifted up and overwritten into the ancestor
thread.

2.5. Speculative Memory Operation Buffer (SMOB) and Speculative Store

Buffer (SSB)

Load operations from speculative threads are kept in a buffer called the
speculative memory operation buffer (SMOB). The operating principle of the SMOB
is similar to the ARB [14][15]. However, it is different from the ARB in the sense that
only load operations are kept in the SMOB. It uses a single shared fully associative
buffer to resolve run-time load/store violations. A SMOB entry contains the
speculative load memory address, the speculative thread’s time stamp, and a valid bit.
An outstanding speculative/nonspeculative store memory address together with the
time stamp is compared associatively in the SMOB for a conflict. A conflict can occur
only when an outstanding store address matches a load address in a more speculative
thread in time in the SMOB. The main thread store operations check all load
operations in the SMOB. On the other hand, a speculative thread checks only the
descendant speculative threads (i.e. by comparing time stamps) for a conflict. If there
is a conflict, the speculative thread and all descendant speculative threads are
squashed. The SMOB entry and the other entries with the same time stamp or larger
are invalidated in the SMOB. The main thread re-executes all instructions in the
speculative thread where a thread misspeculation has occurred.

Speculative store values are kept in the speculative store buffer (SSB) shared
by all speculative threads. The main thread updates the data cache as soon as store
operations are executed. Speculative threads write store values in the SSB until
commit time. Each SSB entry contains a memory address, store value, a next link
pointer, store write time and a valid bit. Each thread has a head pointer and a tail
pointer to the SSB that denote the first and last store operations from that thread.
Those pointers are saved in a table called the pointer box. The time stamp (i.e. thread
id) of a store operation decides how to access the correct pointer set (i.e. the head and
tail pointers). When a speculative store operation executes, a search is made to find an
available entry in the SSB. If one exists, the entry is allocated and the memory
address and store value are all written into the entry. The next link pointer of the

previous store in the same thread pointed by the tail pointer is set to point to the
current SSB entry. A speculative load operation in a thread can read the most recent
store by reading the value with the latest store write time. When a store is written into
the table, the store write time value is obtained from a counter that is incremented by
one every time a new store is written. The counter is reset when there is no active
speculative thread left. Speculative stores are written into the data cache, in order, as
soon as the speculative thread is verified as a correct speculation since stores in a
thread are executed in order. Those entries are removed at the time of a commit or a
squash from the SSB by visiting all links starting from the thread’s head pointer to the
tail pointer. If the SSB becomes full, all speculative threads stall. The main thread
continues and frees the SSB entries by committing threads.

3. Bork Insertion Algorithm

The bork insertion algorithm determines the earliest schedule cycle that the
compiler can schedule a bork operation in the code and spawn a new thread. The bork
insertion algorithm was implemented within the LEGO experimental compiler[10],
which uses treegion scheduling [11] as a global, acyclic scheduling algorithm. Each
node of a treegion is a basic block. Treegions are single entry, multiple exit regions
and can be formed with or without profile information. The scheduler is capable of
code motion and instruction speculation above dependent branches. Load and store
operations are not allowed to be speculated during scheduling, but other operations
can be hoisted up to any basic block within the treegion. Once treegions are formed,
the scheduler schedules each treegion separately. After the program is scheduled,
register allocation is performed and physical registers are assigned. Then, borks are
inserted into the scheduled and register allocated code. Borks spawn speculative
treegions and are inserted as early as possible in the code in an attempt to fully
overlap treegions. True data dependencies between two treegions are considered when
inserting borks. There is only one bork per path allowed in each treegion, enforcing
the rule that each thread may spawn at most one speculative thread.

X X

X

= R 2

R 1 = X

= R 1
= R 4

R 4 =

T r e e g i o n 1

T r e e g i o n 2

1
2

3
4
5

3
4

5
6
7

1
2

3
4

3
4
5

X X

S T

X X

X X

X X
R 2 = X

s t i m e

X X
L D X

L i v e - o u t (R 2 , R 4)

L i v e - o u t (R 1)

Figure 4. An example for the bork insertion algorithm

The algorithm scans through all treegions in the program. To consider the
true data dependencies, it takes a treegion (Tmain) and computes the live-out set of
operands from Tmain to each succeeding treegion, Ts. For each path in Tmain, if there
are any register definitions of each live-out operand, the location and schedule time of
those operands in that path are found. The completion times of all live-out operand
definitions for the path are computed. The maximum completion time among all
dependencies is found by taking the maximum of all completion times in the path.
The earliest time to schedule a bork is determined by the maximum completion time.
A schedule hole is sought to insert a bork into a cycle between the earliest cycle time
and the last schedule time of the selected path in Tmain. The bork is inserted into the
path in Tmain. The algorithm tries to insert a bork for every possible path in Tmain to
Ts. When there is no path left, the next succeeding treegion is processed. This
continues until all treegions in the source file are visited. More than one bork can
appear on a path since a bork is inserted for each path in a treegion after all paths are
visited. Elimination is needed to reduce the number of borks to one for each path. To
accomplish this, the earliest bork is kept and later bork(s) in the schedule are
removed. The elimination phase of redundant borks is performed after insertion of
borks for each treegion. Figure 4 shows an example of bork insertion. The figure
shows the schedule of a piece of code before the insertion of borks. Treegion 1 enters
into Treegion 2 with two exits. Each rectangle represents a basic block. Within a basic
block, a row represents a MultiOp that contains two operations. Only the operations
that are relevant are shown in the figures. X denotes an operation not under
consideration and empty slots are denoted by NOPs. Also, stime represents the
scheduling time for each MultiOp. All operations are assumed to take one cycle and
all functional units are universal. There are two paths entering into Treegion 2 from
Treegion 1. On the left path, there is only one live-out (R1). The completion time of
the operation that defines R1 is the sum of its stime and the operation latency, which
is 4. Cycle 4 is the earliest cycle a possible bork can be scheduled on the left path. An
available slot is found at cycle 4 in slot 2. A bork is scheduled in that slot. On the
right path, R2 and R4 are the live-outs. The completion times of the operations that
define R2 and R4 are computed similarly, which are 5 and 8 respectively. The
maximum of 5 and 8 determines the earliest time for a bork, which is cycle 8.
However, there is no cycle 8 on the right path. So, no bork is scheduled on this path.

4. Performance Evaluation

A trace-driven simulator was written to simulate multiple threads running at
the same time. 2-way set associative 32KB L1 instruction and 32KB data caches,
512KB 2 way set associative L2 instruction and data cache, 16KB shared PAS branch
predictor, 128-entry SMOB and 64-entry SSB, 1-cycle L1 cache hit time, 10-cycle L2
hit time, 30-cycle L2 miss time, 5-cycle thread squash penalty time are assumed in the
simulations. ALU, BR, BORK, ST and floating-point ADD take one cycle. LD takes
two cycles and finally floating-point multiplication and division take three cycles. The
machine model used for the experiments is a 6-wide VLIW processor with 2 universal
and 4 ALU/BR units, 128 integer and 128 floating-point registers. Universal units
can execute any type of instructions and ALU/BR units can execute only ALU and
branch instructions. The SPECint95 benchmark suite is used for all runs. 100 million

instructions were executed using the training inputs. Multiple thread runs are
compared to the baseline model with a single thread run of the same benchmark
program. The same compiler optimizations are applied to produce codes for single
thread and multiple thread models in the experiments.

Figure 5 shows speedup results for Weld models consisting of one to six
threads. As shown in the graph, an average speedup of 23% is attained with two
threads over all benchmarks. With three threads, it is 26%. After three threads, the
speedup stabilizes at 27%. There is little change in speedup as the number of threads
increases beyond three threads. This is because the number of penalty cycles increases
with the number of threads. As the number of threads increases, the SMOB and SSB
fill up more quickly and stall the speculative threads. Also, the chances for SMOB
conflicts increase as the architecture keeps more active threads. This effect can be
observed in 129.compress, 130.li, 147.vortex, 126.gcc and 124.m88ksim. In
132.ijpeg, the two-thread model gives the best performance. As the number of threads
increases beyond two threads, the stalls due to SMOB conflicts take over and cancel
out the benefit gained from multithreading. The same effect can be observed in
134.perl where the six-thread model is worse than the four- and five-thread models.
This is because the number of SMOB conflicts in the four- and five-thread models is
much less than the number of conflicts in the six-thread model. Therefore, the five-
thread model can go ahead in time and finish earlier.

Figure 6 depicts speedup results of a model that uses the operation welder
versus one that does not. Not using the welder implies that a speculative thread can
only issue when the parent stalls. With two threads, the operation welder gives a 5%
speedup over all the benchmarks. With three threads and beyond, the speedup is
8.5%. An increase in the number of threads increases the chances of welding
operations from many speculative threads. However, in 132.ijpeg, the opposite effect
can be observed because the number of SMOB stalls beyond two threads is so high
that the benefit from welding is hidden behind the SMOB squashes.

As seen from the experimental results, the models with three or more threads
perform equally well. On the other hand, the two-thread model has performance of

0
5

10
15
20
25
30
35
40
45
50

12
9.

co
m

pr
es

s
13

0.
li

13
2.

ijp
eg

13
4.

pe
rl

14
7.

vo
rte

x

09
9.

go

12
6.

gc
c

12
4.

m
88

ks
im

Arit
hm

et
ic

M
ea

n

S
p

ee
d

u
p

 (
%

)

Thread2 Thread3 Thread4 Thread5 Thread6

Figure 5. Speedup results

only 3-4% less in speedup than the other thread models, but with a much simpler
register file organization, thread synchronization mechanism and less complicated
SMOB and SSB.

5. Related Work

SPSM (Single-program Speculative Multithreading) [1] speculatively
spawns multiple paths in a single program and simultaneously executes those paths or
threads on a superscalar core. In SPSM there is a main thread that can spawn many
speculative threads, whereas speculative threads can also spawn speculative threads in
Weld. When the main thread merges with a speculative thread, the speculative
thread’s state merges with the main thread. At this point, the speculative thread dies
and the main thread continues. SPSM is, however, for dynamic (superscalar)
architectures.

Dynamic Multithreading Processors (DMT) [2] provide simultaneous
multithreading on a superscalar core with threads created by the hardware from a
single program. Each thread has its own program counter, rename tables, trace buffer,
and load and store queues. All threads share the same register file, Icache, Dcache and
branch predictor. DMT is proposed for dynamically scheduled processors.

MultiScalar Processors [3] consist of several processing units that have their
own register file, Icache and functional units. In Weld, threads share the functional
units and caches. Each MultiScalar processing unit is assigned a task, which is a
contiguous region of the dynamic instruction sequence. Tasks are created statically by
partitioning the control flow of the program. As in SPSM and DMT, MultiScalar is
proposed for dynamically scheduled processors.

TME (Threaded Multiple Path Execution) [4] executes multiple alternate
paths on a Simultaneous Multithreading (SMT) [5] superscalar processor. It uses free
hardware contexts to assign paths of conditional branches. Speculative loads are
allowed. In contrast, threads are created at compile time in Weld.

0

5

10

15

20

25

12
9.c

om
pr

es
s

13
0.

li

13
2.

ijp
eg

13
4.

pe
rl

14
7.

vo
rte

x

09
9.

go

12
6.

gc
c

12
4.

m
88

ks
im

Arit
hm

et
ic

M
ea

n

S
p

ee
d

u
p

 (
%

)
Thread2 Thread3 Thread4 Thread5 Thread6

Figure 6. Speedup results of a model with welder vs. without welder

 Prasadh [6] et al. proposed a multithreading technique in a statically
scheduled RISC processor. Statically scheduled VLIWs from different threads are
interleaved dynamically to utilize NOPs. If a NOP is encountered in a VLIW at run
time, it is filled with an operation from another thread through a dynamic interleaver.
The dynamic interleaver does not interleave instructions across all issue slots and
therefore there is one-to-one mapping between functional units. Weld has neither of
these limitations. Also, threads are the different benchmarks or programs in their
experiments unlike multithreading from a single program in Weld.

In Processor Coupling [7][8], several threads are scheduled statically and
interleaved into clusters at run time. A cluster consists of a set of functional units that
share a register file. Operations from different threads compete for a functional unit
within a cluster. Interleaving does not occur across all issue slots. The compiler
inserts explicit fork and forall operations to partition code into several parallel
threads. On the other hand, Weld allows operation migration at run time and
speculative threads to be spawned.

XIMD [9] is a VLIW-like architecture that has multiple functional units and
a large global register file similar to VLIW. Each functional unit has an instruction
sequencer to fetch instructions. A program is partitioned into several threads by the
compiler or a partitioning tool. The XIMD compiler takes each thread and schedules
it separately. Those separately scheduled threads are merged statically to decrease
static code density or to optimize for execution time. However, Weld merges threads
at run time by taking advantage of dynamic events.

6. Conclusion and Future Work

In this paper, a new architecture model called Weld is proposed for VLIW
processors. Weld exploits the ISA, compiler, and hardware to provide multithreading
support. The compiler, through the insertion of bork instructions, creates multiple
threads from a single program, which are acyclic regions of the control graph. At run
time, threads are welded to fill in the holes by special hardware called the operation
welder. The experimental results show that a maximum of 27% speedup using Weld
is possible as compared to a single-threaded VLIW processor.

We will focus on the dual-thread Weld model for further research. The
issues such as the sizes of SMOB and SSB on performance, variable memory
latencies, and higher branch penalty in deeper pipelines will be studied for the dual-
thread model. We are also working on a compiler model for Weld without the SMOB
in order to avoid squashes due to load/store conflicts at the thread level.

Acknowledgements

This research was supported by generous hardware and cash donations from
Sun Microsystems and Intel Corporation.

References

[1] P. K. Dubey, K. O’Brien, K. M. O’Brien and C. Barton, "Single-Program
Speculative Multithreading (SPSM) Architecture: Compiler-Assisted Fine-
Grained Multithreading," in Proc. Int’l Conf. Parallel Architecture and
Compilation Techniques. (Cyprus). June 1995.

[2] H. Akkary and M. A. Driscoll, "A Dynamic Multithreading Processor," in Proc.
31st Ann. Int’l Symp. Microarchitecture, Nov. 1998.

[3] G. S. Sohi, S. E. Breach and T. N. Vijaykumar, “ Multiscalar Processors,” in
Proc.22nd Ann. Int’l Symp. Computer Architecture. (Italy). May 1995.

[4] S. Wallace, B. Calder and D. M. Tullsen, “Threaded Multiple Path Execution,”
in Proc. 25th Ann. Int’l Symp. Computer Architecture, Barcelona, Spain, June
1998.

[5] D. M. Tullsen, S. J. Eggers and H. M. Levy, “Simultaneous Multithreading:
Maximizing On-chip Parallelism,” in Proc. 22nd Ann. Int’l Symp. Computer
Architecture, Italy, May 1995.

[6] G. Prasadh and C. Wu, ”A Benchmark Evaluation of a Multithreaded RISC
Processor Architecture,” in Proc. of Int’l Conf. on Parallel Processing, Aug.
1991.

[7] S. W. Keckler and W. J. Dally, “Processor Coupling: Integrating Compile Time
and Runtime Scheduling for Parallelism,” in Proc. 19th Ann. Int’l Symp.
Computer Architecture, Australia, May 1992.

[8] M. Fillo, S. W. Keckler, W. J. Dally, N.P. Carter, A. Chang, Y. Gurevich and
W.S. Lee, ”The M-Machine Multicomputer,” in Proc.28th Ann. Int’l Symp.
Microarchitecture, Ann Arbor, MI, Dec. 1995.

[9] A. Wolfe and J.P. Shen,” A Variable Instruction Stream Extension to the VLIW
Architecture,” in Proc. 4th Int’l Conf. on Architectural Support for
Programming Languages and Operating Systems, ACM Press, Apr. 1991.

[10] W. A. Havanki, “Treegion Scheduling for VLIW Processors”, Master’s Thesis,
Dept. of Electrical and Computer Engineering, North Carolina State University,
Raleigh, NC 27695-7911, July 1997.

[11] W. A. Havanki, S. Banerjia and T. M. Conte, “Treegion Scheduling for Wide-
issue Processors”, in Proc. 4th Int’l Symp. High Performance Computer
Architecture, Las Vegas NV, Feb. 1998.

[12] B. R. Rau, “Dynamically Scheduled VLIW Processors,” Proc. 26th Ann. Int’l
Symp. Microarchitecture, Dec 1993.

[13] J. E. Smith and A. R. Pleszkun, “Implementing Precise Interrupts in Pipelined
Processors”, in IEEE Trans. on Computers, Vol. 37, NO. 5, May 1988.

[14] M. Franklin and G. S. Sohi, “The Expandable Split Window Paradigm for
Exploiting Fine-grain Parallelism”, Proc. 19th Ann. Int’l Symp. Computer
Architecture, Gold Coast, Australia, May 1992.

[15] M. Franklin and G. S. Sohi, “ARB: A Hardware Mechanism for Dynamic
Reordering of Memory References”, in IEEE Trans. on Computers, May 1996.

