
Commercializing Pro�le-Driven Optimization

J. Stan Cox� David P. Howell� Thomas M. Contey

�Database and Compiler Technology yDepartment of Electrical and Computer Engineering
AT&T Global Information Solutions University of South Carolina
Columbia, South Carolina 29170 Columbia, South Carolina 29205

Abstract

There are a broad selection of code-improving opti-

mizations and scheduling techniques based on pro�le

information. Industry has been slow to productize

these because traditional ways of pro�ling are cum-

bersome. Pro�ling slows down the execution of a pro-

gram by factors of 2 to 30 times. Software vendors

must compile, pro�le, and then re-compile their prod-

ucts. In addition, pro�ling requires a representative

set of inputs and is hard to validate. Finally, pro�ling

has had little success for system code such as kernel

and I/O drivers.

This paper discusses experiences AT&T Global In-

formation Solutions has had with commercializing

pro�le-driven optimizations. Three approaches to

pro�ling are discussed, along with results and com-

ments concerning their advantages and drawbacks.

The validity of pro�ling is discussed. One new in-

novation, hardware-based pro�ling, removes many of

the problems vendors have with pro�ling. The paper

also discusses methods to pro�le system code and sup-

port debugging. In general, the data and techniques

presented in this paper can be used to productize pro-

�ling and advocate its use to the software business

community.

1 Introduction

Advanced compilers perform optimizations across
block boundaries to increase instruction level par-
allelism, enhance resource usage and improve cache
performance. Many of these methods, such as trace
scheduling [1],[2] superblock scheduling [3] and soft-
ware pipelining [4] either rely on or can bene�t from
information about dynamic program behavior. For
example, traditional optimizations enhance perfor-
mance by an additional 15% when combined with
pro�le-driven superblock formation [3]. Other exam-
ples include data preloading [5], improved function

in-lining [6], and improved instruction cache perfor-
mance [8].

There are several drawbacks to pro�le-driven op-
timizations. Many of the techniques can result in
code size explosion if they are performed too aggres-
sively. Dynamic basic block execution frequencies can
be used to reduce this phenomenon. More problem-
atic is the task of pro�ling itself. Obtaining pro�le
data through software methods can be complex and
time consuming, requiring additional steps in the de-
velopment process. The usual method employed is a
compile-run-recompile sequence. First, the program
is compiled with pro�ling probes placed within each
basic block. The program is then run using several
representative test inputs. The resulting pro�le data
is used to drive a pro�le-based compilationof the orig-
inal program.

Execution of the pro�led version of the program is
slow. With some methods, the pro�led version runs
30 times slower than the optimized program. In ad-
dition it is di�cult to choose and validate the test
inputs used for pro�ling [9],[10]. Even given the ob-
vious performance advantages, software vendors are
hesitant to use pro�le-driven optimizations due to the
added complexity of development, maintenance, sup-
port, and debugging.

Static estimation solves some of the problems re-
lated to gathering pro�le data [11]. However, these
techniques are not as accurate as pro�ling [9],[10].
When used for superblock scheduling, static estimates
achieve approximately 50% of the speedup that pro�l-
ing can achieve [7]. In addition to this, static estima-
tion cannot capture highly data-dependent branches,
limiting the acceptance of this approach by software
vendors.

AT&T Global Information Solutions is a server sys-
tem company. Our key applications are third-party
database products. Many of the published solutions
to pro�ling's problems do not apply to our business.
This paper discusses the how our pro�ling techniques



evolved based on our experiences with third-party
vendors. Several pro�ling techniques are presented
and compared, along with our approach to commer-
cializing pro�le-driven optimization.

2 Pro�ling Techniques

Techniques for implementing pro�ling often trade ac-
curacy for pro�led code speed. We started with
highly accurate techniques, explored less-accurate
methods, and gained experience in the advantages
and disadvantages of each approach.

2.1 Probe-based pro�ling

Our �rst attempt at basic block pro�ling used the
technique of gathering a trace of basic block id to-
kens, and then interpreting the trace and counting
the transitions made between the basic blocks. In
this technique, the transition data is written out to
a data �le organized by modules, functions in each
module, and basic blocks in functions with transitions
to other basic blocks and corresponding counts. The
trace contains handle tokens and basic block tokens.
To fully qualify a basic block requires a handle that
holds string pointers to the module name and func-
tion name for the block, followed by a block number
token. The handles and block tokens both use 32
bit containers. To di�erentiate them, the basic block
numbers use the bottom 16 bits with the upper set to
zero, and handles use the full 32 bits with the upper
16 always non-zero.
To shorten the trace, a handle is only generated if

a transition out of the function is made, otherwise a
stream of basic block number tokens are generated.
For example, consider Figure 1. If the execution tran-

3

4 5

6 7

8

9

ID2 − foo.c,
calls bar()

ID1 − zed.c,
function zack()

Figure 1: Probe-based pro�ling example.

sitions from blocks 3 to 4, calls function bar(), re-
turns to 4, and then goes onto 9, this results in the
trace: ID1, 3, 4, ID2, : : : , ID1, 4, 9. This is

then converted on-the-y into a basic block transition
count tree structure, shown in Figure 2. The pro�le

module zed.c

function zack

bb 9
module foo.c

function bar. . .

bb 3, successor 4, count=10

bb 4, successor 9, count=10

Figure 2: Transition count tree structure.

data �le follows the same structure as the transition
count tree, threaded with module pointers.
We designed the pro�le-driven optimizations

around basic block transition count statistics since
we felt that this was an accurate method for deter-
mining the behavior of an application for later opti-
mization. A design goal of the pro�ling scheme was to
provide exibility of information collection and pro-
cessing. To that end, either a trace or the summer-
ized basic block transition count can be generated by
switching the pro�le data handling library and re-
linking. Due to the size of the unprocessed trace, the
transition count form of the pro�le data is used for
the optimizer.
The optimizer reads in the pro�le data after build-

ing the ow graph for the program and correlates it
with each node and node successor in the ow graph.
Optimizations are then driven using the weighted ba-
sic blocks.
The primary weakness of this technique is the run

time overhead incurred for pro�ling (about 26� on
average, measured using SPECint92 benchmarks{ see
Section 2.5 below for the full data). Another ma-
jor weakness is the inaccurate conversion from the
trace to transition counts due to asynchronous events.
These events include signal handlers, interrupts, and
thread managers. This especially limits the opti-
mizer's use of the pro�le data and forces the inval-
idation of the pro�le data for functions where it oc-
curs. Many of our applications have high amounts of
I/O, and this presented a major problem. This pro-
�ling scheme is also unacceptable for several key ap-
plications where asynchronous ow changes are com-
mon, like the Unix kernel and applications that use
threads packages. We did manage to gather good
pro�le data for these applications, but not without



signi�cant modi�cations to the pro�ling and applica-
tion code.
Another problem is skewed program results due to

the overhead of performing pro�ling. The few appli-
cations we tried to optimize with pro�le data didn't
realize the full potential of pro�le-driven optimization
due to timing impacts of pro�ling overhead.
We were able to successfully pro�le major com-

mercial database products, with no change to the
pro�ling implementation or application. The results
of optimization using this data was very promising.
This supplied the motivation to develop other pro�l-
ing schemes with less shortcomings.

2.2 Node-based pro�ling

Node-based pro�ling is used in other commercial com-
pilers that we have evaluated. In this technique, ev-
ery basic block entrance is recorded by increment-
ing a counter, with one unique counter per block. A
database that represents the program's control ow
graph is generated by the compiler. Once the pro�led
program is run, the database with counts is read in
by the optimizer to weigh each node in the ow graph
and optimize accordingly.
While quick and e�ective, the node-based tech-

nique has some problems. The most-notable problem
is the lack of block-to-block transition information.
Counting the basic block transitions would give us a
more accurate representation of the behavior of the
program and weighting of the ow graph for opti-
mization. Although transition counts can be approx-
imated from the block counts, we found that more
accuracy was required.

2.3 Arc-based pro�ling

The arc-based pro�ling approach counts the dynamic

transitions between basic blocks during execution.
This is similar to the node based approach except that
the arc transitions are counted, instead of the block
entrances themselves. To achieve this pro�ling tech-
nique, the compiler places probe instructions into the
program that count each block transition. As in the
node based approach the probe is simply a sequence
of instructions which increment the corresponding el-
ement in the static table. For each basic block, if it
has only one successor block, then the probe can be
placed in the block. If the block has multiple suc-
cessors, then the probe can be placed in a successor
if the successor's only predecessor is the block. For
each case where the block has multiple successors and
a successor has multiple predecessors, a new block has
to built and placed between the block and the given
successor.

Table 1: Static control ow graph statistics for
SPECint92 and arc-based pro�ling.

addional
Benchmark blocks transitions trans. blocks

compress 356 511 (144%) 118 (+33%)
eqntott 1032 1529 (148%) 482 (+47%)
espresso 6134 8791 (143%) 2803 (+46%)
gcc 22282 34633 (155%) 13199 (+59%)
li 2106 2819 (134%) 1026 (+49%)
sc 3029 4652 (154%) 1375 (+45%)
avg. 5823 8823 (152%) 3167 (+54%)

Table 1 shows the static number of basic blocks,
block-to-block transitions, and additional transi-
tion blocks required for arc-based pro�ling for the
SPECint92 benchmarks. Surprisingly, the average
number of transitions is only approximately 1.5 times
the number of blocks. Furthermore, the number of
transition blocks that have to be added for this pro-
�ling approach is not excessive (an increase of 54%
in the number of blocks). This makes the arc-based
scheme an e�cient and accurate method to perform
basic block pro�ling. Unlike the node counting ap-
proach, the arc based approach is completely accu-
rate. This accuracy is obtained by requiring a slightly
larger static table. In addition, arc-based pro�ling
has a slightly larger increase in run-time slowdown
over node-based pro�ling. One minus is some post-
processing is required to extract node weights from
the arc-based pro�le information.

2.4 Hardware-based pro�ling

One signi�cant revelation for us was that the entire
information needed for the arc-based approach was
already maintained inside the branch-target-bu�er
(BTB) of our processor. The BTB is indexed by the
address of each branch and stores the most-recent
target address of the branch. Thus, each entry in
the BTB comprises a (source address, destination
address)-pair, which is easily translated to identify
speci�c arcs. In addition to this, the prediction in-
formation maintained is an approximate count of the
number of times the arc was executed, although some
post-processing is required.
Hardware-based pro�ling can be used with exist-

ing processors by exploiting BIST scan paths or per-
formance monitoring features. The accuracy of the
scheme is not as high as probe-based or arc-based
pro�ling, since the BTB must be sampled. This is
discussed in depth in [15]. One reason for the error



is that short-lived arcs are not well represented in
the sampled data. However, they comprise the less-
frequently executed transitions in the program. The
error is quanti�ed in the following section.

2.5 Comparisons

The slowdown of each pro�ling technique for
SPECint92 is shown in Table 2. Clearly, probe-
based pro�ling is the worst, exceeding 37� for
espresso. Node-based and arc-based pro�ling are rel-
atively close, with arc-based pro�ling nearly as fast.
Hardware-based pro�ling is by far the fastest, with
two benchmarks showing no appreciable slowdown
whatsoever.

Table 2: Slowdown of the pro�ling techniques.

Benchmark probe node arc hw

compress 14.2 1.36 1.71 1.03
espresso 37.2 1.51 1.56 1.05
eqntott 28.4 1.71 1.79 1.01
gcc 25.4 1.79 1.83 1.03
li 33.1 1.21 1.27 1.00
sc 19.6 1.31 1.32 1.00

The accuracy of the four techniques di�er. In the
absence of asynchronous events, probe-based pro�l-
ing and arc-based pro�ling are perfectly accurate.
In the presence of such events, arc-based pro�ling
has superior accuracy. Node-based pro�ling is much
less accurate than either probe- or arc-based because
it does not fully model transitions between blocks.
Hardware-based pro�ling is inaccurate, but for a dif-
ferent reason: it is forced to sample the execution
instead of processing a full trace of all transitions.
Nevertheless, the near-zero slowdown of the hardware
technique allows it to be used in ways that the other
techniques cannot. For example, it can be used with-
out the users' knowledge{ allowing an application to
be installed for some period of time then later re-
trieved. Once retrieved, its accumulated pro�le data
can be used to re-optimize the code based on actual
usage.
Validation of hardware pro�ling is done by compar-

ing traditionally-generated pro�les (actual pro�les) to
hardware-generated pro�les (estimated pro�les). One
method for this is to perform trace selection on both
the actual and the estimated pro�les and compare the
results. An example of trace selection is illustrated in
Figure 3. Graph (a) is annotated with the actual pro-
�le information, whereas graph (b) is the hardware-
generated pro�le. Traces are formed using an arc

(a)

1

2

3 4

5 6

7

8

9 10

11

12 13

0.4 0.6

0.8 0.2

0.5 0.5

0.1 0.9

Actual graph

0.66 0.34 0.37 0.63

0.02

0.10

0.08

0.040.04

0.02

0.01 0.01

0.15

0.05

0.25

0.14

0.09

1

2

3 4

5 6

7

8

9 10

11

12 13

0.6 0.4 0.25 0.75

(b)

0.690.31

0.080.92

0.55 0.45

0.25

0.08

0.010.07

0.04 0.03

0.17

0.020.01

0.03

0.180.82

0.06

0.15

0.09

Estimated (hardware−generated) graph

Figure 3: Trace selection example.

trace selection threshold of 60% to group blocks [14].
Code explosion is avoided by not extending traces to
blocks with low weights. This is also implemented as
a threshold. Threshold values of 0.1%, 1%, 3% and
5% are considered below. The lower this threshold,
the larger the code size of the generated executable,
since additional patch-up code is required when in-
structions are moved inside a trace.
The metric for trace selection error is introduced

using the example of Figure 3. In the actual graph
(graph (a)), basic blocks 1, 7, 11 and 13 are grouped
together to form a trace. Due to errors in the weights
of outgoing arcs for block 7, the blocks 1, 7, 8 and 9
are grouped to form a trace in the estimated graph.
The error for block 7 is due to the di�erence in
arc weights between the two graphs. The transition
from block 7 to 8 will occur 0:15 � 0:1 = 1:5% of
the total execution time. Similarly, the transition
from 7 to 11 will occur 0:15 � 0:9 = 13:5% of the
time. (Since the actual graph contains the real exe-
cution frequencies of the program, these frequencies
are used.) Hence, the transition from 7 to 11 occu-



pies a higher percentage of the total execution. The
trace in graph (b) incorrectly assumes the transition
of 7 to 8 is more likely. This assumption is wrong
for 13:5%� 1:5% = 12% of the execution. The �gure
of 12% is therefore the percentage of execution time
that the incorrect trace membership will be exercised.
In general, the trace selection error is the total per-
centage of execution time that incorrect trace mem-
bership is exercised due to errors in the estimated
pro�le. Table 3 presents the trace selection error for
the SPECint92 benchmarks.
The worst-case error is for espresso with a very re-

laxed cuto� threshold of 0.1%. The 18.49% in Table 3
is the amount of program execution where the trace
selection would di�er. Examination of the sources for
this error revealed an interesting trend. For example,
in compress a trace composed of blocks 33-36-37-38
in the actual pro�le was split into two traces between
blocks 36 and 37 in the estimated pro�le. This oc-
curred because of an error in the estimated arc fre-
quency between blocks 36 and 37. In this case the
weight of this arc was less than the trace selection
threshold, preventing the trace to grow beyond block
36. Such errors in trace selection have the e�ect of
reducing the scope of the pro�le-based optimizations,
which has few detrimental e�ects.
Another method for comparison is the distribution

of arc weight error versus block weights. This metric
is useful since it shows where the trace selection error
is occurring. The distribution is calculated by com-
puting the maximum di�erences between the actual
and the estimated arc weights for each category of
block frequencies. The maximum di�erence is used
in order to avoid over-counting a single error. For
example, there is a 4% di�erence for two arcs with
weights 40%/60% (actual) vs. 44%/56% (estimate),
not an 8% di�erence. The distribution of arc weight
error provides good insight into the performance of
the hardware technique, as is shown in Figure 4.
Two features are evident in the �gure. First,

the majority of the error is for low-weight blocks.
This appeals to intuition, since infrequently-executed
branches will be sampled less frequently by the tech-
nique. A second feature is the lack of error between
block weights of approximately 0.3 and 1.0. This indi-
cates that very heavily-weighted blocks are captured
correctly. Even the magnitude of the error for moder-
ately small weights (e.g., 0.001) is small and therefore
non-critical (< 15%).

3 Commercialization Issues

The performance advantage obtained with pro�le
driven optimizations are dramatic and have been pre-

sented in several papers [1],[2],[3],[4],[5],[6],[8]. Soft-
ware vendors and developers of complex applications
are, however, hesitant to use pro�le-driven optimiza-
tions. Their concerns vary, but usually involve the
worry that the optimizations may not improve the
performance of the application for all input sets, or
could actually slow their application down for di�er-
ing input sets. Developers are also uneasy about what
input sets to choose for pro�ling. Current research
suggests however that these concerns not critical. In
particular, pro�le-driven optimizations improve pro-
gram performance for all inputs.

Hwu, et al. [12] reported that with pro�ling they
were able to obtain branch prediction accuracy com-
parable with much more expensive hardware mecha-
nisms. They also report that 98% of the advantage
of prediction was preserved across runs with varying
input sets.

More research in this area was performed by Fisher
and Freudenberger [9] and Wall [10]. Fisher and
Freudenberger reported that \: : :even code with a

complex ow of control, including system utilities and

language processors written in C, are dominated by

branches which go in one way, and that this direction

usually varies little when one changes the data used

as the predictor and target."

Their experiments compared a run of an optimized
application using an input from the pro�ling input set
versus a run using an input not in the pro�ling set.
Their data showed an application using an input not
in the pro�ling set can expect to achieve 75% or more
of the bene�t obtained from the ideal case. Fisher
and Freudenberger reported that branch prediction
\can be done almost as well as is possible by taking

previous runs of a program, and using those runs to

make decisions about which way branches will go in

future runs." Similarly, Wall concluded that pro�les
used to predict program behavior for di�erent run
characteristics might not do as well, but was \often
quit close, however and was usually at lease half as

good." Wall's data backs up Fisher's results of 75%
of the bene�t of use a \perfect" or identical data set
run for runs with di�ering input.

The examples and conclusions above are further
supported by work which is on-going at the Uni-
versity of Illinois. In [3], the di�erent inputs were
used to pro�le from the ones used to measure per-
formance. Good performance bene�ts were sustained
across these inputs. In [13], the same type of ex-
periments were performed for superscalar processors.
Again, pro�le-driven optimizations with di�erent in-
puts from the pro�ling run sustained good results.

If the hardware-based pro�ling approach is used,
the problem of input set selection is removed. This



Table 3: Hardware pro�ling - trace selection error (percent).

Trace selection error
Benchmark Threshold: 0.1% Threshold: 1% Threshold: 3% Threshold: 5%

espresso 18.49 5.51 0.02 0
xlisp 8.51 2.30 0 0
eqntott 3.66 3.64 3.64 0
compress 11.92 10.89 2.65 2.65
sc 3.46 1.14 0 0
gcc 5.99 0 0 0

0

20

40

60

80

100

1e-07 1e-06 1e-05 0.0001 0.001 0.01 0.1 1

A
r
c
 
w
e
i
g
h
t
 
e
r
r
o
r
 
(
%
)

Block weight (log scale)

compress
espresso
eqntott

li
sc
gcc

Figure 4: Distribution of arc weight error for hardware pro�ling.



is a direct consequence of the speed of this approach,
which has a nearly imperceptible slowdown. Using
hardware-based pro�ling, the application can be beta
tested in a \real-world" environment and thus is ex-
ercised as it would be once released. The collected
pro�le information would accurately capture the ac-
tual usage characteristics of the application. This ap-
proach is also more e�ective for real-time and other
time-based applications.

3.1 Support

Another point of concern which prevents vendors
from using pro�le-driven optimizations is the added
e�ort for support. Gathering pro�le data to use for
optimization is a time consuming process but is eas-
ily justi�able given the bene�ts obtained. Unlike the
SPEC92 benchmarks, real applications' source code
changes over time due to bug �xes and feature en-
hancements. These changes can in turn invalidate
pro�le data that has been gathered for the applica-
tion.
Software vendors are justi�ably unwilling to re-

pro�le an entire application for each bug �x and code
change over the lifetime of an application release. On
the other hand, software vendors cannot allow the
performance of an application to decline over time
because of code changes which invalidate pro�le data.
To alleviate this problem, it is important that the

compiler invalidate pro�le data at the function or
block level. If the pro�le data used is based on source
lines and module names in the application, then a
single bug �x can invalidate the pro�le data for an
entire module. This is clearly unacceptable. The
pro�le data should not be based on source line num-
bers and should invalidate only those functions that
have changed due to a code change. Furthermore, it
is easy for the compiler, based on the given pro�le
data, to warn the developer when a frequently exe-
cuted or \hot" function has been invalidated due to
a source change. This pro�le set is then used by the
compiler to optimize over the lifetime of the release.
If code changes are made, only the functions involved
will have their pro�le data invalidated. The compiler
will warn when a \hot" functions pro�le data is no
longer valid, and only in this case will the process of
pro�ling be repeated.

3.2 Debugging

Debugging is also a major concern for software ven-
dors. Relating assembly code back to source code
seems to be a major concern. This is hard to do
in the presence of the block-reordering optimizations
performed by our compiler.

To address these issues and to enable additional
tools to be written to utilize the basic block data,
we have implemented a basic block table that de-
scribes each basic block in an application. Pro�ling
is done using references to a basic block transition
table, where each table slot is a (from, to) pair of in-
dices to basic block entries that represent a transition
between two basic blocks. A simple counter for each
transition represents the pro�le data counts for the
transition.
The basic block table entries carry the basic block

handle which gives the module name and function
name, the block number, the start text address, its
size, and the start source line number. An entry is
created each time that the compiler builds a basic
block. Likewise, every time a block ends, a transition
table entry is generated to its successors, and probes
are inserted. Blocks and transition table entries from
modules are appended together by the linker when an
executable is built.
This structure enables a number of debugging and

pro�ling tools. For example, an application that has
been optimized will have very little correlation back
to the source code due to block rearrangement. The
basic block table can be used to look up the block
number (each table entry has a start address and
size) and display the source module, function, and
line number where the block starts. This enables
source level debugging for block-reorganized code.
Pro�ling tools can also make use of the basic block

and transition to show program hot spots and hot
paths. The transition counts can be correlated with
the block counts to show hot basic blocks, or to show
execution coverage of a set of blocks, which can then
be related back to the source using the basic block
table. The transition table, which is really a attened
ow graph, can be used to show the hot program
traces or to show weighted arcs between blocks with
a hypertext-type tool. These tools help developers
realize the best performance from their applications
and are an added bene�t of pro�ling technology.

4 Concluding Remarks

Pro�le-driven optimizations have untapped potential
for improving commercial application performance.
Much of this is due to skepticism from software ven-
dors based primarily on pro�ling input set selection,
pro�ling performance, and problems with debugging
and support.
We have implemented the major pro�ling ap-

proaches at AT&T Global Information Solutions and
evaluated their tradeo�s. Several techniques have
clear advantages over the others. Where before the



overhead and intrusiveness of our original pro�ling
made it impossible to pro�le the full Unix kernel, the
new arc- and hardware-based implementations have
made kernel pro�ling practical. Multithreading issues
are also resolved by the new implementation as arc
counts can represent any kernel process (or proces-
sor).
In terms of slowdown, arc-based pro�ling is nearly

as fast as node-based pro�ling, yet more accurate.
In addition, it handles asynchronous events such as
interrupts and thread managers. Hardware-based is
best for speed, allowing a new style of pro�ling where
the program is installed and pro�led unbeknownst
to the users, then later collected and recompiled.
This technique has been well-received by practicing
database engineers.

5 Acknowledgements

Thanks to Marv Graham, Lorraine Lee and Linda
Gray (of AT&T Global Information Solutions), and
Burzin Patel (graduate student at South Carolina)
for comments, suggestions and support.

References

[1] J. A. Fisher, \Trace scheduling: A tech-
nique for global microcode compaction," IEEE

Trans. Comput., vol. C-30, no. 7, pp. 478{490,
July 1981.

[2] J. R. Ellis, Bulldog: A compiler for VLIW archi-

tectures. Cambridge, MA: The MIT Press, 1986.

[3] P. P. Chang, S. A. Mahlke, and W. W. Hwu,
\Using pro�le information to assist classic code
optimizations," Software{Practice and Experi-

ence, vol. 21, pp. 1301{1321, Dec. 1991.

[4] B. R. Rau and C. D. Glaeser, \Some scheduling
techniques and an easily schedulable horizontal
architecture for high performance scienti�c com-
puting," in Proc. 14th Annual Workshop on Mi-

croprogramming, pp. 183{198, Nov. 1981.

[5] W. Y. Chen, Data preload for superscalar and

VLIW processors. PhD thesis, Dept. of Elec-
trical and Computer Engineering, University of
Illinois, Urbana-Champaign, IL, 1993.

[6] W. W. Hwu and P. P. Chang, \Inline func-
tion expansion for compiling C programs," in
Proc. ACM SIGPLAN '89 Conference on Pro-

gramming Language Design and Implementa-

tion, (Portland, OR), June 1989.

[7] R. E. Hank, S. A. Mahlke, J. C. Gyllenhaal,
R. Bringmann, and W. W. Hwu, \Superblock
formation using static program analysis," in
Proc. 26th Ann. Int'l. Symp. on Microarchitec-

ture, (Austin, TX), pp. 247{255, Dec. 1993.

[8] W. W. Hwu and P. P. Chang, \Achieving high
instruction cache performance with an optimiz-
ing compiler," in Proc. 16th Ann. International

Symposium Computer Architecture, (Jerusalem,
Israel), pp. 242{251, May 1989.

[9] J. A. Fisher and S. M. Freudenberger, \Predict-
ing conditional branch directions from previous
runs of a program," in Proc. 5th Int'l. Conf. on

Architectural Support for Prog. Lang. and Oper-

ating Systems, (Boston, MA), pp. 85{95, Oct.
1992.

[10] D. Wall, \Predicting program behavior using
real or estimated pro�les," in Proc. ACM SIG-

PLAN '91 Conference on Programming Lan-

guage Design and Implementation, (Toronto,
Ontario, Canada), pp. 59{70, June 1991.

[11] T. Ball and J. R. Larus, \Branch prediction for
free," in Proceedings of the ACM SIGPLAN '93

Conference on Programming Language Design

and Implementation, pp. 300{313, June 1993.

[12] W. W. Hwu, T. M. Conte, and P. P. Chang,
\Comparing software and hardware schemes for
reducing the cost of branches," in Proc. 16th

Ann. International Symposium Computer Archi-

tecture, (Jerusalem, Israel), pp. 224{233, May
1989.

[13] W. W. Hwu, et al. \The superblock: An e�ec-
tive structure for VLIW and superscalar compi-
lation," Journal of Supercomputing, pp. 229{248,
July 1993.

[14] W. W. Hwu and P. P. Chang, \Trace selection
for compiling large C application programs to
microcode," in Proc. 21st Ann. Workshop on

Microprogramming and Microarchitectures, (San
Diego, CA.), Nov. 1988.

[15] T. M. Conte, B. A. Patel, and J. S. Cox, \Us-
ing branch handling hardware to support pro�le-
driven optimization," in Proceedings of the 27th

Annual International Symposium on Microarchi-

tecture, (San Jose, CA), Dec. 1994.


