
Treegion Instruction Scheduling in GCC

Michael C. Rosier and Thomas M. Conte
Center for Embedded System Research

Department of Electrical and Computer Engineering
North Carolina State University
{mcrosier,conte}@ncsu.edu

Abstract

Instruction scheduling is a critical compila-
tion phase for extracting significant amounts of
parallelism within a program. The first step
of instruction scheduling is region formation;
the size and characteristics of the region play
an important role in determine the amount of
available ILP. In this work the status of the
implementation of an architecture-independent,
aggressive global instruction scheduler based
on Treegions is presented. A Treegion is a
a tree-shaped subgraph of the control-flow-
graph (CFG). Unlike other region formation
algorithms, such as Traces or Superblocks,
Treegions take into account multiple execution
paths, producing more opportunities for paral-
lelism. Unlike Hyperblocks, Treegions do not
require predicates. Treegion formation can use
tail duplication. To limit the possible negative
side effects of code expansion, our Treegion
scheduler uses the Instantaneous Code Size Ef-
ficiency (ICSE) heuristic of Zhou for conserva-
tive tail duplication. Experimental results show
that Treegion formation dramatically increases
the average region size as compared to the cur-
rent region formation code. The implemen-
tation currently resides on the sched-treegion-
branch.

1 Introduction

High performance microprocessors use com-
plex hardware techniques (e.g., out-of-order ex-
ecution, branch prediction, prefetching) to ex-
ploit parallelism within a program. Alterna-
tively, instruction scheduling is a compile-time
technique for extracting instruction-level paral-
lelism (ILP). For wide-issue statically sched-
uled processors (e.g., EPIC, VLIW), instruction
scheduling plays an exceedingly important role
in improving performance.

During global instruction scheduling the com-
piler divides a program’s control flow graph
(CFG) into multiple regions and then sched-
ules each region separately. The scope of a re-
gion may be limited to a basic block (i.e., ba-
sic block scheduling) or encompass the entire
CFG. Past work has predominantly focused on
linear regions, i.e., regions containing a sin-
gle control path, which often limits specula-
tion, resulting in an under utilization of proces-
sor resources. These types of global instruction
scheduling techniques include Trace schedul-
ing [1], Superblocks [2], and Hyperblocks [3].
Trace scheduling forms linear regions, called
traces, of basic blocks that execute sequentially.
Loop-unrolling is commonly used as a trace en-
larging optimization. Similar to Trace schedul-
ing, Superblocks form single-entry, (possibly)

1



multiple-exit linear regions. After Superblock
formation side entrances are removed via tail
duplication. Finally, Hyperblocks extend upon
Superblocks by using hardware predication to
reduce the need for tail duplication. These tech-
niques suffer from a number of pitfalls. First,
formation is based on profile information. Of-
ten when scheduling for the more probable path
the less likely path suffers. Variation in input
sets or lack of profile information can result in a
significant performance penalty. Furthermore,
the linearity of these regions limit the opportu-
nity for speculation.

A Treegion is a non-linear, single-entry,
multiple-exit region of code containing ba-
sic blocks that constitute a tree-shaped sub-
graph of the control-flow-graph (CFG). Build-
ing large regions is a critical aspect of instruc-
tion scheduling that enables the compiler to ex-
tract parallelism. Unlike other region formation
algorithms, such as Traces and Superblocks,
Treegions include multiple paths of execution,
producing larger regions and more opportuni-
ties for speculation. In addition, Treegions do
not require special architectural features for re-
gion formation.

GCC currently supports both linear and non-
linear regions. Linear regions are supported in
the form of Superblocks (tracer.c) and Ex-
tended Basic Blocks (EBB) (sched-ebb.c).
Meanwhile, support for non-linear regions
(sched-rgn.c) are limited to loop-free pro-
cedures and reducible inner loops. Treegions
have the advantage that unlike Superblocks and
EBB, their formation includes multiple paths of
execution and do not require profile informa-
tion. Generally, Treegions can realize signifi-
cantly larger regions than other region forma-
tion techniques.

The remainder of this paper is organized as
follows. Section 2 describes the current GCC
global instruction scheduler. Section 3 de-
scribes natural treegion formation, or treegion

formation without tail duplication. Section 4
describes an efficient technique for the tail du-
plication of treegions. Sections 5 and 6 discuss
Treegion scheduling and experimental results,
respectively. Finally, section 7 gives a brief
conclusion.

2 GCC Instruction Scheduling

The GCC instruction scheduler is a list-based
instruction scheduler derived from work orig-
inally developed at IBM Haifa Labs. The
generic parts of the scheduler are found
in haifa-sched.c. The goal of list-
scheduling is to minimizing the length of the
critical path while maximizing the opportunity
for parallelism. The steps to list scheduling are
as follows:

1. Build the data dependence graph.

2. Calculate priorities for each instruction.

3. Iteratively schedule ready instructions.

The scheduler is invoked before and after reg-
ister allocation. Treegion scheduling extends
upon the interblock scheduling pass, found
in sched-rgn.c, performed prior to regis-
ter allocation. Instructions may be specula-
tively scheduled during the first pass with much
greater ease than during the second pass. Af-
ter register allocation each pseudo-register has
been assigned a physical register, introducing
anti- and output-dependencies. These depen-
dencies greatly restrict scheduling.

Region formation is the first step of interblock
scheduling. In this work, treegions are the cho-
sen region type. Treegion formation is a two
step process involving natural treegion forma-
tion and tail duplication, which are discussed
in sections 3 and 4, respectively.

2



Prior to scheduling, dependencies between in-
structions are found for each basic block within
the region. Such dependencies include those
between registers (i.e., true-, anti-, and output-
dependencies), memory dependencies, depen-
dencies to maintain function call ordering, and
the dependence between a conditional branch
and the setting of the condition code. Rou-
tines for building the data dependence graph are
found in sched-dep.c.

Next, instruction priorities are calculated. The
priority of an instruction dictates the order in
which it may reside on the ready list, or the list
of instructions whos dependencies have been
resolved and are available for scheduling. Pri-
orities are calculated in reverse order beginning
with a basic block’s tail instruction and end-
ing with the head instruction. The priority of
an instruction is found by summing the latency
of the instruction and the maximum priority of
any dependent successor instruction. This has
the effect of exposing the longest dependency
chain, giving those instruction along the criti-
cal path highest priority.

Finally, after finding dependencies and cal-
culating priorities, schedule_block() is
called for each basic block within the region
to perform list-scheduling. During the schedul-
ing process instructions are added to the ready
list when their dependencies are resolved. De-
pendent instructions that become ready, but do
not reside in the current block, may be added
to the ready list if the current block dominates
the block in which the potentially speculative
instruction resides. The flow probability of a
speculative instruction is an important factor to
consider when performing interblock motion.
Over speculation may delay the critical path or
increase contention for resources, while under
speculation may result in missed opportunities
for increasing parallelism.

The ordering of the ready list is an important
factor to consider when list-scheduling. If mul-

tiple instructions share the same priority, at-
tributes of these instructions, such as regis-
ter pressure, affect later scheduling decisions.
Choosing between these instructions plays a
critical role in finding the optimal schedule.
The algorithm for sorting instruction in the
ready list is as follows:

1. select the instruction with the highest pri-
ority, ties broken by

2. select the instruction which least con-
tributes to register pressure, ties broken by

3. prefer in-block upon interblock motion,
ties broken by

4. prefer useful upon speculative motion, ties
broken by

5. choose the instruction with the highest
flow probability, ties broken by

6. choose the instruction which is least de-
pendent upon the previously scheduled in-
struction, ties broken by

7. choose the instruction which has the most
instructions dependent upon it, or finally

8. choose the instruction with the lowest
UID.

Sorting instructions based on this algorithm
maximizes the opportunity for parallelism
while minimizing the length of the critical path.

3 Treegion Formation

This section describes the two step process
of treegion formation. First, natural treegions
based on the original CFG are formed. Then,
the ICSE heuristic is applied to perform tail du-
plication.

3



3.1 Natural Treegion Formation

Natural treegion formation begins at the entry
block of a procedure, which forms the root of
a new treegion. Starting at this root, the CFG
is traversed and successor basic blocks are ab-
sorbed into the treegion if they are not a merge
point (i.e., have multiple predecessor edges).
Eventually all successor blocks that do not con-
tain merge points are consumed by the tree-
gion and only leaf nodes remain. These leaf
nodes, referred to as saplings, are then added
to a saplings list. Saplings form the roots of
new treegions. For each sapling the same pro-
cess is applied until all basic blocks in the CFG
have been consumed.

Figure 1 shows pseudo-code for finding natu-
ral treegions. Initially the saplings list includes
only the successor to the ENTRY_BLOCK of
the current procedure. This basic block is
then removed from the saplings list to form
the root of a new treegion. Next, all succes-
sors of the root node are added to the suc-
cessor edge list. Each edge in the edge list
is then traversed in breadth first order to ab-
sorb successor blocks into the newly formed
treegion. Backedges are not traversed to pre-
vent the forming of cyclic regions. Traversal
also ends at the EXIT_BLOCK. If the cur-
rent basic block has multiple predecessor edges
(i.e., EDGE_COUNT(edge->preds) > 1)
the node is added to the saplings list and its
successor basic blocks are not considered for
inclusion in the current treegion. Finally, if the
current node is absorbed into the treegion all its
successor edges are added to the successor edge
list.

Figure 2 shows an example CFG after treegion
formation. The size and number of treegions is
based on the layout of the CFG, not profile in-
formation. From figure 2 it can be seen that for
any block in a treegion all predecessor blocks

find_treegions (void)
{
add ENTRY_BLOCK->succs to saplings;
while(more saplings)
{
node = first set bit (saplings);
treegion += node;
edge_list += node->succs;

while(more edges)
{
curr_edges = edge_list[];
curr_node = curr_edges[]->dest;

while(more succ in curr_edges[])
{
/* Dont traverse backedges */
if(edge->flags & BACK_EDGE)
continue;

/* Skip Exit Block */
if(curr_node == EXIT_BLOCK)
continue;

/* Add merge to saplings */
if(EDGE_COUNT(edge preds) > 1)
{
SET_BIT (saplings, curr_node);
continue;

}

/* Add node to treegion */
treegion += curr_node;

/* Add succs to edge list */
edge_list += curr_node->succs;

}
}

}
}

Figure 1: Pseudo-code for natural treegion for-
mation

4



BB0

BB1 BB2

BB3 BB4

BB5

BB7BB6

BB8

Treegion 0

Treegion 1

Treegion 2

 

Figure 2: CFG after treegion formation

dominate it. In section 5.2 further optimiza-
tions based on dominator parallelism are dis-
cussed. It is also important to note that specu-
latively scheduled instructions are never dupli-
cated because treegions do not contain merge
points. For our chosen benchmark suite the av-
erage natural treegion contains 2.65 blocks and
20.89 instructions. For these regions, on aver-
age 3.65 instructions are speculatively sched-
uled.

4 Tail Duplication

Tail duplication is performed in order to in-
crease region size providing more opportunity
for speculation. However, overly aggressive
duplication has the potential to negatively im-
pact the performance of the instruction cache
and TLB. This section begins by presenting the
tail duplication implementation, with treegions
being the unit of duplication. Then an efficient
technique for deciding upon when to apply tail
duplication is presented. This metric, referred
to as the Instantaneous Code Size Efficiency
(ICSE), is defined as the change in IPC relative
to the change in code size after tail duplication.

For each edge between a pair of treegions the
ICSE is calculated to determine if the duplica-
tion of the child treegion will be beneficial.

4.1 Tail Duplication Example

The tail duplication process begins by calculat-
ing the ICSE of each candidate, discussed in
subsection 4.2. Each control edge between a
parent and child treegion is a potential candi-
date with the child treegion being the target for
duplication. After calculating all ICSEs, the
best candidate is selected for duplication if it
is above the ICSE threshold. If no more can-
didates are available for duplication then the
scheduling process may begin.

BB0

BB1/
BB5'

BB2

BB3 BB4

BB5

BB7BB6

BB8

Treegion 0

Treegion 1

Treegion 2

BB7'BB6'

 

Figure 3: Duplication of candidate edge be-
tween BB1 and BB5

Continuing with the example in figure 2, fig-
ure 3 depicts the result of selecting the candi-
date edge between basic blocks 1 and 5. Blocks
5, 6, and 7 in the child treegion, treegion 1, are
duplicated. These duplicated blocks, denoted
with tick marks, are then absorbed into tree-
gion 0. After calling cleanup_cfg() basic
blocks BB5’ and BB1 are merged into a sin-
gle block. Tail duplication continues until ei-
ther no more candidates exist or no more can-

5



didates are above the ICSE threshold. Under
code size or compile time constraints, treegion
size may also be limited by the number of basic
blocks and/or the number of instructions con-
tained with in the treegion. Compilation flags
for constraining tail duplication and region for-
mation are discussed in subsection 4.4.

4.2 Instantaneous Code Size Efficiency

In previous work Zhou et al. [4] have shown
that for a minimal code size increase (~2%)
a significant speedup can be obtained. Fur-
thermore, duplication beyond that of the initial
code size increase produces only small addi-
tional gains in performance. Due to these facts
the ICSE equation was developed and is as fol-
lows:

E f f iciency =

IPCa f ter_td − IPCbe f ore_td

code_sizea f ter_td − code_sizebe f ore_td
(1)

In equation 1, IPCbe f ore_td and IPCa f ter_td re-
fer to the instruction-per-cycle (IPC) ratio of a
treegion before and after the application of tail
duplication, respectively. code_sizea f ter_td −
code_sizebe f ore_td refers to the change in code
size due to tail duplication. Equation 1 requires
the IPC of a region to be known at compile
time. Since this information is not available, a
heuristic is used to estimate the execution time
of a treegion, defined as follows:

Exec_Time =

∑
pathi

[Max(ddbpathi,rbpathi)∗ f reqpathi] (2)

The estimated execution time of a multi-path
treegion is defined as the sum of the expected
execution time of each path through a tree-
gion biased by the execution frequeny of each

path. The execution frequency of each path,
f reqpathi , is determined through profiling. If
profile information is not available, GCC uses a
number of heuristics to approximate the execu-
tion frequencies. The expected execution time
of any path is the maximum of the data depen-
dence bound, ddbpathi , and the resource bound,
rbpathi .

The data dependence and resource bounds are
found using similar techniques as those used
during modulo scheduling [5] to find the mini-
mum initiation interval (MII). For a given tree-
gion, the data dependence bound is calculated
as the height of the longest true-dependency
chain in the DDG. The resource bound is com-
puted as the number of instructions in the tree-
gion divided by the issue width of the target
machine.

4.3 Tail Duplication Implementation

Figure 4 shows a partial call graph for the main
tail duplication function, td_treegions().
The td_init_candidates() function is
first called to calculate the ICSE for all possi-
ble tail duplication candidates. Prior to calling
td_add_candidate(), candidates that ex-
ceed user defined parameters (e.g., maximum
number of basic blocks per region) are elim-
inated to restrict the formation of excessively
large regions. This prevents compile time from
becoming exceedingly long.

Next, td_classify_candidate() is
called to classify the candidate into one of four
possible types. The classification is based on
two factors: (1) the number of predecessor
edges entering the child treegion and (2) the
number of parent treegions the child possesses.
These two factors strongly influence efficiency.
For example, assume there exists two edges
between a parent treegion A and a child tree-
gion B. No additional predecessor edges are

6



td_treegions ()

td_init_candidates ()

td_add_candidate ()

td_classify_candidate () td_candidate_efficiency ()

td_treegion (best)

td_reform_treegions ()

td_update_candidates () td_free_candidates ()

td_add_candidate ()

td_classify_candidate () td_candidate_efficiency ()

td_treegion_exec_time ()

td_build_DDG () td_free_DDG ()td_path_res_bound ()td_path_dd_bound ()
 

 

Figure 4: Partial call graph for tail duplication code

entering treegion B. This implies treegion A is
the lone parent of treegion B. After duplicating
the child treegion, denoted B’, both treegion B
and treegion B’ can be merged into the parent
treegion A. This type of duplication produces
much larger regions relative to a small code
size increase. Alternatively, if three edges are
shared between the parent and child only the
duplicated treegion B’ can be merged into the
parent treegion A.

After classifying the candidate,
td_candidate_efficiency() is
called to calculated ICSE. Based on the
type of candidate the estimated execution
time, as defined in equation 2, is calculated
by td_treegion_exec_time(). The
estimated execution time is used to approx-
imate the change in IPC before and after
tail duplication. To find the resource and
data dependence bounds of a treegion the
DDG must first be built. This is done us-
ing the routines found in sched-dep.c.
The treegion is then traversed in depth-first
order. For each unique path through the
treegion the td_path_res_bound() and
td_path_dd_bound() functions are called
to find the maximum bound.

Once all ICSEs have been calculated the best
candidate is selected for duplication. After
duplication, td_reform_treegions() is
called to incrementally update the data struc-
ture of each effected treegion. td_update_
candidates is then called to recalculate
the ICSE for each effected treegion. This
incremental updating process is critical for
minimizing compile time. After all pos-
sible candidates have been duplicated, td_
free_candidates() is called to free all
tail duplication related data structures. Finally,
cleanup_cfg() is called to optimize the
CFG and merge basic blocks. Scheduling then
begins after calling find_treegions()
again due to the fact the calling of cleanup_
cfg() invalidates all region related data struc-
tures.

4.4 Compilation Parameters

Compile time is an important consideration for
a production level compiler. Various compila-
tion parameters can be used to limit compile
time as well as fine tune the performance of the
application being compiled. These parameters
are as follows:

7



1. max-sched-region-blocks - limit the size of
the region based on the number of basic
blocks.

2. max-sched-region-insns - limit the size of
the region based on the number of instruc-
tions.

3. treegion-max-code-growth - limits tail du-
plication based on a maximum amount of
code growth.

4. treegion-icse-threshold - sets the ICSE
threshold. Prior work [4] has shown the
optimal range to be between 0.268 and
0.577. A higher threshold results in less
duplication.

5. min-spec-prob - the minimum probability
of reaching a source block for interblock
speculative scheduling.

5 Treegion Scheduling

Due to the acyclic nature of treegions, the Haifa
scheduler does not require any modifications to
accomodate treegions. However, in this section
various modifications are proposed to enhance
the performance of the scheduler.

5.1 Tree Traversal Scheduling

The goal of Tree Traversal Scheduling
(TTS) [6] is to speedup every execution path
through the treegion. This is accomplished
by prioritizing speculative instructions from
different paths which compete for limited
resources. Profile information is used to
prioritize the scheduling of basic blocks within
a treegion.

The algorithm for tree traversal scheduling is as
follows:

1. For a treegion, sort the basic blocks ac-
cording to a depth-first traversal order with
the child block selected with the highest
execution frequency.

2. Begin list scheduling blocks at the root ba-
sic block.

3. During the scheduling of a basic block,
consider speculation for instructions dom-
inated by this basic block.

4. Repeat step 3 until all basic blocks in the
treegion have been scheduled.

The primary strength of Tree Traversal
Scheduling is that the frequently executing
path is given highest priority, while the less
frequently executing paths are not severly
penalized.

5.2 Operation Combining (Future Work)

The application of tail duplication enables the
removal of merge point between treegions, pro-
ducing larger regions. However, despite the
benefits, tail duplication has the potential to de-
crease the performance of the instruction cache
and TLB due to the creation of many redun-
dant instructions. In some instances the instruc-
tion scheduler can take advantage of dominator
parallelism to remove redundant operations at
schedule time.

Dominator parallelism [7] presents itself when
an instruction is speculatively scheduled into
a predecessor block that dominates blocks
containing redundant copies of the scheduled
instruction. In these instances, a form of
schedule-time partial redundancy elimination
(PRE), also referred to as operation combining,
may be applied to remove all but the specula-
tively scheduled copy of the instruction. The

8



single remaining instruction performs the op-
eration for all paths. If the instruction is re-
dundant in every control path below the tar-
get block the instruction can be made non-
speculative.

    r1 = ld[A]
    r2 = r1 + 10
    if( r2 > 100 )
       goto bb1

R3 = 1
R4 = 5

R3 = 6
R4 = 9

    r5 = 10
    if( r4 == r2 )
       goto bb4

    r5 = 10
    if( r4 == r2 )
       goto bb4

bb0

bb1 bb2

bb3'bb3

 

Figure 5: Example of operation combining
within a treegion

Figure 5 depicts an example treegion after the
duplication of basic block bb3, denoted bb3’.
During the scheduling of bb0, the instruction
r5 = 10 can be speculatively moved from
both blocks bb3 and bb3’ into basic block
bb0. Assuming r5 = 10 has already been
hoisted from bb3, the redundant copy from
bb3’ may be safely eliminated. The scheduler
can easily detect this optimization due to the
characteristic that any basic block within a tree-
gion dominates all its successor blocks. Any
instruction speculated upward is always moved
into a dominator. Therefore, if an instruction is
speculated into a block where a redundant copy
of the instruction has already been scheduled,
one copy can be removed.

6 Experimental Results

Experiments were performed to evaluate the
performance of the Treegion instruction sched-
uler. All tests were conducted on an Itanium 2
processor. The benchmark suite consisted of a
subset of benchmarks from the SPEC2K suite

including: gzip, mcf, crafty, parser, gap, bzip2,
twolf, wupwise, swim, mgrid, applu, equake,
ammp, sixtrack, and apsi. Profile information
was generated using the -fprofile-arcs
flag and all benchmarks were compiled using
the -O3 and -fbranch-probabilities
flags. Flags set to control speculation include
-fsched-interblock, -fsched-spec,
and -fsched-spec-load.

Table 1 presents various region related statistics
for the original region formation code, natu-
ral treegion formation, treegion formation with
tail duplication bounded by an ICSE threshold
of 0.577, and treegion formation bounded by
a maximum of 100 instructions per region, re-
spectively. The current region formation code
produces and average region size of 1.10 basic
blocks, containing 8.66 instructions of which
0.09 were speculatively scheduled. Due to
the limited scope of the region the opportu-
nity for speculation is limited. Natural tree-
gions, i.e., treegions without tail duplication,
produce an average region size of 2.65 basic
blocks, containing 20.89 instructions of which
3.65 were speculatively scheduled. Even with-
out the application of tail duplication natural
treegions provide greater opportunity for paral-
lelism. Limiting duplication to a ICSE thresh-
old of 0.577 produces only slightly larger re-
gions beyond that of natural treegions. Finally,
applying unlimited tail duplication while limit-
ing region size to a maximum of 100 instruc-
tions produces an average regions size of 5.70
basic block, containing 35.95 instructions of
which 6.00 were speculatively scheduled.

Table 2 shows the speedups for the various re-
gion formation techniques. Speedups are rel-
ative to basic block scheduling. The execu-
tion time of each SPEC benchmark was found
by averaging five runs using the ref input set.
The speedup results vary across benchmarks.
The original region code produces speedup
for parser, twolf, and ammp while gap and

9



Table 1: Region statistics
Region Natural Treegion Treegion (k = 0.577) Treegion (100 insns)

# Basic Blocks 1.10 2.65 2.79 5.70
Instructions 8.66 20.89 21.70 35.95
Interblock 0.09 3.65 3.81 6.00

Table 2: Speedup results
Region Natural Treegion Treegion (k = 0.577) Treegion (100 insns)

gzip 1.00 0.96 0.96 1.03
mcf 1.00 1.00 1.00 1.00

crafty 1.00 0.99 1.00 1.00
parser 1.01 1.01 1.01 1.01

gap 0.99 1.01 1.00 1.00
bzip2 0.99 1.06 1.06 1.06
twolf 1.03 1.01 1.01 1.03

wupwise 1.00 0.99 1.02 1.01
swim 1.00 1.02 1.04 1.01
mgrid 1.00 0.99 0.99 1.00
applu 1.00 1.00 1.00 1.00

equake 1.00 1.00 1.01 1.00
ammp 1.01 1.01 1.00 1.00

sixtrack 1.00 0.98 0.98 0.98
apsi 1.00 1.01 1.01 1.01

average 1.00 1.00 1.01 1.01

bzip slowdown. Natural treegions produce a
speedup for seven of the fifteen benchmarks,
slowdowns for five of the benchmarks, while
three benchmarks remain uneffected. The most
significant speedup (6%) is for bzip2. For wup-
wise, swim, and equake the best performance
gain is realized using the ICSE threshold. Ap-
plying unlimited tail duplication while limit-
ing region size to 100 instructions produce a
speedup for seven of the fifteen benchmarks,
slowdown for only sixtrack, while seven bench-
marks remain uneffected. On average the orig-
inal region formation code and natural tree-
gion formation provide no speedup, while tree-
gion formation with tail duplication bounded

by ICSE and treegion formation bounded by in-
struction count produce and average speedup of
1%.

7 Conclusions

This paper presents the status of the imple-
mentation of an architecture-independent, ag-
gressive global instruction scheduler based on
Treegions. Natural Treegion formation and
tail duplication have been completed and are
currently maintained on the sched-tree-branch.
The ICSE heuristic has also be implemented as

10



a means of judiciously applying tail duplica-
tion. To ensure compile time does not become
exceedingly long fine tuning of this code is an
ongoing process. Also, while tail duplication
has the benefit of increasing region size, it does
introduce redundant instructions. Finally, oper-
ation combining is presented as future work for
eliminating redundant instructions as schedule
time.

Our results show that treegion formation dra-
matically increases the average region size as
compared to the current region formation code.
This in turn results in a significant increase
in the number of speculatively scheduled in-
structions. Our results show performance ben-
efits for a few benchmarks (i.e., parser, bzip2,
wupwise, twolf, swim, and apsi) while others
show little improvement because of architec-
tural features such as memory latencies that
hide scheduling improvements. Techniques
such as software prefetching should be able to
alleviate such issues resulting in future perfor-
mance gains from Treegion scheduling.

8 Acknowledgments

Thanks go to Diego Novillo and Gerald Pfeifer
for their assistance during the opening of the
Treegion scheduling branch. Thanks also to
TINKER members Balaji Iyer, Paul Bryan,
Jesse Beu, and Saurabh Sharma, for their help-
ful insight.

References

[1] J. Fisher, “Trace Scheduling: A Technique
for Global Microcode Compaction,” in
IEEE Transactions on Computers,
pp. 478–490, 1981.

[2] W. W. Hwu, S. A. Mahlke, W. Y. Chen,
P. P. Chang, N. J. Warter, R. A.
Bringmann, R. G. Ouellette, R. E. Hank,
T. Kiyohara, G. E. Haab, J. G. Holm, and
D. M. Lavery, “The Superblock: An
Effective Technique for VLIW and
Superscalar Compilation,” Journal of
Supercomputing, 1993.

[3] S. A. Mahlke, D. C. Lin, W. Y. Chen, R. E.
Hank, and R. A. Bringmann, “Effective
Compiler Support for Predicated
Execution using the Hyperblock,” in 25th
Annual International Symposium on
Microarchitecture, 1992.

[4] H. Zhou and T. M. Conte, “Code Size
Efficiency in Global Scheduling for ILP
Processors,” in Proceedings of the 6th
Annual Workshop on the Interaction
between Compilers and Computer
Architectures (INTERACT-6) held in
conjunction with the 8th International
Symposium on High Performance
Computer Architecture (HPCA-8),
(Cambridge, MA), February 2002.

[5] M. Hagog and A. Zaks, “Swing Modulo
Scheduling for GCC,” in The 2004 GCC
Developers’ Summit, (Ottawa, Canada),
June 2004.

[6] H. Zhou, M. D. Jennings, and T. M. Conte,
“Tree Traversal Scheduling: A Global
Scheduling Technique for VLIW/EPIC
Processors,” in Proceedings of the 14th
Annual Workshop on Languages and
Compilers for Parallel Computing
(LCPC’01), (Cumberland Falls, KY),
August 2001.

[7] A. V. Aho, R. Sethi, and J. D. Ullman,
Compilers: Principles, Techniques, and
Tools. Addison–Wesley, 1986.

11


