
Treegion Scheduling for Highly Parallel Processors �

Sanjeev Banerjia William A. Havanki Thomas M. Conte

Department of Electrical and Computer Engineering

North Carolina State University

Raleigh, North Carolina 27695-7911

(919)-515-7983

fsbanerj,wahavank,conteg@eos.ncsu.edu

Abstract

Instruction scheduling is a compile-time technique for extracting parallelism from

programs for statically scheduled instruction-level parallel processors. Typically, an

instruction scheduler partitions a program into regions and then schedules each region.

One style of region represents a program as a set of decision trees or treegions. The

non-linear nature of the treegion allows scheduling across multiple paths. This paper

presents such a technique, termed treegion scheduling . The results of experiments

comparing treegion scheduling to scheduling for basic blocks and across \simple linear

regions" show that treegion scheduling outperforms the other techniques.

1 Introduction

The performance of statically-scheduled, instruction-level parallel (ILP) processors depends

on compiler techniques that extract parallelism from programs. In order to extract large

amounts of ILP from non-scienti�c, integer programs, instruction scheduling must be per-

formed across basic blocks [1], [2]. Schedulers typically group together basic blocks which

may execute together into regions and then schedule each region. Regions are either linear

(containing a single path of control) or non-linear (containing multiple paths of control).

The grouping process (region formation) is often done using pro�le information [2], [3];

if program behavior di�ers from this information, performance can su�er [4]. Other prob-

lems may arise due to merge points, instructions to which control can ow from multiple

instructions. If an instruction is speculated above a merge point, it must be duplicated

along all paths that join at the merge point. Merge points also add complexity to dynamic

recompilation techniques [5].

�This paper will appear in the Proceedings of Euro-Par'97 , August 1997, Passau, Germany.

One region that is resistant to unpredictable execution and that does not include merge

points is a treegion, a tree-shaped subgraph of a program's control ow graph (CFG). This

paper describes treegions and how they can be scheduled and is organized as follows. Sec-

tion 2 de�nes treegions and introduces treegion scheduling via an example. Section 3 presents

experimental results for treegion scheduling and compares the results with scheduling for ba-

sic blocks and \simple linear regions". Section 4 describes related work in non-linear regions,

and Section 5 concludes with comments on future work and a summary.

2 Treegions

bb1

bb2

bb4 bb5 bb6

bb3

bb8

bb7

A

B

bb1

bb2

bb4 bb5 bb6

bb3

bb8a

bb7a

A’

bb8b

bb7b

(a) Treegions in a CFG (b) After tail duplication

Figure 1: Figure (a) shows the CFG broken into two treegions A and B. Figure (b) shows

how the two treegions can be combined into one treegion A' with tail duplication.

A treegion is a rooted tree subgraph of a CFG. An example of a CFG partitioned into

treegions is shown in Figure 1(a). The size and number of treegions in a CFG are determined

by the CFG topology, not pro�le information. However, heuristics using pro�le information

can guide methods to expand treegions; tail duplication on basic blocks 7 and 8 results in

the CFG shown in Figure 1(b). Many of the procedures used with superblocks [3] may be

applied to treegions.

Treegion formation begins at each entry node of a CFG. Nodes encountered while travers-

ing from each entry node are absorbed into a treegion until merge points are encountered,

each of which becomes the root of a new treegion. This process continues until every node

is in some treegion.

r1 = r2 + r3
r5 = ld(r1)
r6 = r5 - r2
if (r5 < r2)
 goto bb2

r1 = r8 / r19
r2 = r5 + r1
goto bb112

r8 = ld(r6)
r13 = r8 * r9
if (r13 = 0)
 goto bb4

r13 = r8 / r9
r2 = r8 - r5
goto bb239

r7 = ld(r13)
r1 = st(r4)
goto bb232

T

F

F

T

bb1

bb5

bb4

bb3

bb2

Figure 2: A sample CFG. The emphasized basic blocks are a possible preferred path.

2

r1 = r2 + r3
r5 = ld(r1) r1 = st(r4)
r6 = r5 - r2 blt bb2 ,r5,r2
r8 = ld(r6)
r13 = r8 * r9
bne bb5 ,r13,0 r7 = ld(r13)
goto bb232
bb2: r1 = r8 / r19
goto bb112 r2 = r5 + r1
bb5: r13 = r8 / r9 r2 = r8 - r5
goto bb239

0
1
2
3
4
5
6
7
8
9
10

Cycle # ALU-1 ALU-2

r1 = r2 + r3 r1a = r8 / r19
r5 = ld(r1) r1 = st(r4)
r6 = r5 - r2 r2 = r5 + r1a
blt bb2 ,r5,r2 r8 = ld(r6)
r13 = r8 * r9 r13 = r8 / r9
bne bb5 ,r13,0 r7 = ld(r13)
goto bb232
bb2: goto bb112 r1 = r1a
bb5: goto bb239 r2 = r8 - r5

0
1
2
3
4
5
6
7
8

Cycle # ALU-1 ALU-2

(a) Successive retirement (b) Treegion scheduling

Figure 3: Sample CFG schedules. Underlined instructions are speculated above their control-

dependent branches. Italicized instructions have had register renaming performed.

Figure 2 shows a sample CFG. Figure 3(a) shows a schedule formed from the CFG

using the successive retirement scheduling algorithm [6] (the example machine is a two-issue

processor with universal functional units and unit latency). This schedule retires the exits

from the preferred path1 in sequential order and performs speculation only along that path.

Program execution along the preferred path f bb1, bb3, bb4 g takes seven cycles (cycles

0{6), assuming there are no cache misses and perfect branch prediction. Program execution

along the path f bb1, bb3, bb5 g takes eight cycles (cycles 0{5,9,10).

Figure 3(b) is a schedule formed from the CFG using treegion scheduling . The priority

function used is the number of treegion execution paths through the operation [4]. Unlike

successive retirement, operations from other paths (\o�-paths") become intermingled into

the schedule, so that operations from multiple paths are scheduled to execute together.

Compile-time register renaming is used to allow speculation of operations above their control-

dependent branches, preserving live-out register values. If the preferred path is executed at

run-time, this schedule again takes seven cycles to execute. However, the execution time of

the path f bb1, bb3, bb5 g has been reduced from eight to seven cycles.

One strength of treegion scheduling is that by scheduling multiple paths in parallel, a

high-performance schedule for a preferred path can be generated without unduly penalizing

o�-paths. This characteristic hedges against poor performance when the executed path

di�ers from the compile-time preferred path. In this respect, treegion scheduling is similar

in spirit to the speculative hedge heuristic [4] of superblock scheduling.

3 Experimental results

Experiments were conducted to gauge the e�ectiveness of treegion scheduling using the

SPECint95 benchmark suite. Classic optimizations and a pro�ling run using training inputs

1The preferred path is the most frequently executed path within a region as indicated by pro�le informa-

tion or static heuristics.

3

0

0.5

1

1.5

2

2.5

3

compress gcc go ijpeg li m88ksim perl vortex h.mean

Benchmark programs

IP
C

Basic block scheduling

SLR scheduling

Treegion scheduling

0

0.5

1

1.5

2

2.5

3

compress gcc go ijpeg li m88ksim perl vortex h.mean

Benchmark programs

IP
C

Basic block scheduling

SLR scheduling

Treegion scheduling

(a) EIGHT-CONS model (b) EIGHT-AGGRmodel

Figure 4: Performance of basic block scheduling, SLR scheduling and treegion scheduling for

the two machine models. h.mean denotes harmonic mean.

were applied to the benchmarks before scheduling for treegions, \simple linear regions"2

(SLRs), and basic blocks using the LEGO compiler, a research ILP compiler developed at

N.C. State University. Scheduling was performed for two statically-scheduled machine mod-

els: an eight-issue processor with universal functional units, EIGHT-AGGR, and one with

a mix of four integer/branch, two memory, and two oating-point units, EIGHT-CONS.

Instructions are unit latency except loads (2 cycles), oating-point multiply (3 cycles), and

oating-point divide (9 cycles). Program performance was measured by using the pro�le

count and schedule height of each region to estimate execution time. The e�ects of instruc-

tion and data caches were ignored. Useful instructions completed per cycle (IPC) was the

performance metric used. Instructions added due to renaming were not used in computing

IPC.

Figure 4 presents the results. In every case, treegion scheduling yielded higher perfor-

mance than basic block scheduling, and about the same as or better than SLR scheduling.

The treegion schedule performed worse than the SLR schedule for perl under EIGHT-

CONS because of aggressive speculation, which extends the preferred path schedule by

speculating more o�-path operations. The IPC improvements are larger with EIGHT-

AGGR because the exibility of the model permitted the treegion scheduler to �ll more

empty slots in the schedule with o�-path operations. This illustrates that treegion schedul-

ing yields the most bene�t on highly parallel processors.

4 Related work

Hsu and Davidson's decision tree scheduling (DTS) [7] is the predecessor of the work pre-

sented here. DTS schedules along multiple paths within a decision tree, inserting instructions

into branch delay slots and using guards to control writeback of speculated instructions. The

VLIW project at IBM Research embellished Nicolau's percolation scheduling [8], using them

to implement a VLIW compiler [9]. The heart of the IBM VLIW machine is a tree instruc-

2Simple linear regions are built like superblocks, but without tail duplication.

4

tion, which has the ability to evaluate multiple branches in one clock cycle. The initial work

in VLIW architectures was based on a single-path scheduling algorithm called trace schedul-

ing [2]. The Trace Scheduling-2 algorithm is an extension of the original trace scheduling

algorithm that schedules along multiple paths simultaneously [10]. Hyperblock scheduling

also schedules multiple paths in parallel [3] by removing branches from the instruction stream

entirely through if-conversion.

5 Concluding remarks and acknowledgements

There are issues related to treegions that merit further research. The use of if-conversion and

tail duplication could eliminate merge points and allow for the formation of larger treegions.

Also, di�erent heuristics for treegion scheduling need to be identi�ed and analyzed.

This paper introduced treegion scheduling, which performs scheduling across the tree

subgraphs that compose a CFG. The technique extracts high amounts of ILP by scheduling

and speculating operations along multiple paths. The advantages of treegion scheduling

were illustrated by comparing treegions to other regions. The latter technique is especially

e�ective for highly parallel processors.

The authors would like to thank Scott Mahlke of the CAR Group at Hewlett-Packard

Labs for providing the optimized SPECint95 benchmarks used in this paper, and Kishore

Menezes and Sumedh Sathaye for discussions that greatly improved the quality of this paper.

The comments from the anonymous referees are also appreciated. This work was supported

by IBM, Hewlett-Packard, and the National Science Foundation under grants MIP-9696010,

MIP-9625007, and GER-9454175.

References

[1] G. S. Tjaden and M. J. Flynn, \Detection and parallel execution of independent instructions,"

IEEE Trans. Comput., vol. C-19, pp. 889{895, Oct. 1970.

[2] J. A. Fisher, \Trace scheduling: A technique for global microcode compaction," IEEE

Trans. Comput., vol. C-30, no. 7, pp. 478{490, July 1981.

[3] S. A. Mahlke, Exploiting instruction level parallelism in the presence of branches. PhD the-

sis, Department of Electrical and Computer Engineering, University of Illinois at Urbana-

Champaign, Urbana, IL, 1996.

[4] B. L. Deitrich and W. W. Hwu, \Speculative hedge: regulating compile-time speculation

against pro�le variations," in Proc. 29th Ann. Int'l Symp. on Microarchitecture [11].

[5] T. M. Conte and S. W. Sathaye, \Dynamic rescheduling: A technique for object code com-

patibility in VLIW architectures," in Proc. 28th Ann. Int'l Symp. on Microarchitecture, (Ann

Arbor, MI), Nov. 1995.

5

[6] C. Chekuri, R. Johnson, R. Motwani, B. Natarajan, B. Rau, and M. Schlansker, \Pro�le-driven

instruction level parallel scheduling with application to superblocks," in Proc. 29th Ann. Int'l

Symp. on Microarchitecture [11], pp. 58|67.

[7] P. Y. T. Hsu and E. S. Davidson, \Highly concurrent scalar processing," in Proc. 13th Ann.

Int'l Symp. Computer Architecture, (Tokyo, Japan), June 1986.

[8] A. Nicolau, \Percolation scheduling: a parallel compilation technique," Technical report TR-

678, Department of Computer Science, Cornell University, Ithaca, NY, May 1985.

[9] K. Ebcio�glu, \Some design ideas for a VLIW architecture for sequential-natured software,"

in Proceedings of the IFIP Working Group 10.3 Working Conference on Parallel Processing,

(Pisa, Italy), pp. 3{21, North Holland, 1988. (published as Parallel Processing, M. Cosnard,

et al., (eds).).

[10] J. A. Fisher, \Global code generation for instruction-level parallelism: Trace Scheduling-2,"

Tech. Rep. HPL-93-43, Hewlett-Packard Laboratories, June 1993.

[11] Proc. 29th Ann. Int'l Symp. on Microarchitecture, (Paris, France), Dec. 1996.

6

