
Value Speculation Scheduling for High Performance
Processors

Chao-ying Fu Matthew D. Jennings Sergei Y. Larin Thomas M. Conte

Department of Electrical and Computer Engineering
North Carolina State University

Raleigh, NC 27695-7911
{cfu, mdjennin, sylarin, conte}@eos.ncsu.edu

ABSTRACT
Recent research in value prediction shows a
surprising amount of predictability for the
values produced by register-writing
instructions. Several hardware based value
predictor designs have been proposed to
exploit this predictability by eliminating flow
dependencies for highly predictable values.
This paper proposed a hardware and software
based scheme for value speculation scheduling
(VSS). Static VLIW scheduling techniques are
used to speculate value dependent instructions
by scheduling them above the instructions
whose results they are dependent on.
Prediction hardware is used to provide value
predictions for allowing the execution of
speculated instructions to continue. In the
case of miss-predicted values, control flow is
redirected to patch-up code so that execution
can proceed with the correct results. In this
paper, experiments in VSS for load operations
in the SPECint95 benchmarks are performed.
Speedup of up to 17% has been shown for
using VSS. Empirical results on the value
predictability of loads, based on value
profiling data, are also provided.

Keywords
Value speculation, value prediction, VLIW instruction
scheduling, instruction level parallelism

1. INTRODUCTION
Modern microprocessors extract instruction level
parallelism (ILP) by using branch prediction to break
control dependencies and by using dynamic memory
disambiguation to resolve memory dependencies [1].
However, current techniques for extracting ILP are still
insufficient. Recent research has focused on value
prediction hardware for dynamically eliminating flow
dependencies (also called true dependencies) [2], [3], [4],
[6], [7], [8], [9]. Results have shown that values produced
by register-writing instructions are potentially highly
predictable using various value predictors: last-value,
stride, context-based, two-level, or hybrid predictors. This
work illustrates that value speculation in future high
performance processors will be useful for breaking flow
dependencies, thereby exposing more ILP. This paper
examines ISA, hardware and compiler synergies for
exploiting value speculation. Results indicate that this
synergy enhances performance on difficult, integer
benchmarks.

Prior work in value speculation utilizes hardware-only
schemes (e.g. [2], [3]). In these schemes, the instruction
address (PC) of a register-writing instruction is sent to a
value predictor to index a prediction table at the beginning
of the fetch stage. The prediction is generated during the
fetch and dispatch stages, then forwarded to dependent
instructions prior to their execution stages. A value-
speculative dependent instruction must remain in a
reservation station (even while its own execution
continues), and be prevented from retiring, until verification
of its predicted value. The predicted value is compared
with the actual result at the state-update stage. If the
prediction is correct, dependent instructions can then
release reservation stations, update system states, and retire.
If the predicted value is incorrect, dependent instructions
need to re-execute with the correct value. Figure 1

Figure 1. Pipeline Stages of Hardware Value Speculation
Mechanism for Flow Dependent Instructions. The dependent
instruction executes with the predicted value in the same cycle as

the predicted instruction.

illustrates the pipeline stages for value speculation utilizing
a hardware scheme.

Little work has been done on software-based schemes to
perform value prediction and value speculation of
dependent instructions. In a related approach to a different
problem, the memory conflict buffer [1] was presented to
dynamically disambiguate memory dependencies. This
allows the compiler to speculatively schedule memory
references above other, possibly dependent, memory
instructions. Patch-up code, generated by the compiler,
ensures correct program execution even when the memory
dependencies actually occur. Speculatively scheduled
memory references improves performance by aggressively
scheduling references that are highly likely to be
independent of each other. Likewise, value-speculative
scheduling attempts to improve performance by
aggressively scheduling flow dependencies that are highly
likely to be eliminated through value prediction. Patch-up
code is used when values are miss-predicted. We apply this
scheme to value speculation and propose a combined
hardware and software solution, which we call value
speculation scheduling (VSS).

Hardware pipeline stages for the VSS scheme are shown in
Figure 2. Two new instructions, LDPRED and UDPRED,
are introduced to interface with the value predictor during
the execution stage. LDPRED loads the predicted value
generated by the predictor into a specified general-purpose
register. UDPRED updates the value predictor with the
actual result, resetting the device for future predictions after
a miss-prediction. Figure 3 shows an example of using
LDPRED and UDPRED to perform VSS.

In the original code sequence of Figure 3(a), instructions I1
to I6 form a long flow dependence chain, which must
execute sequentially. If the flow dependence from

Figure 2. Pipeline Stages of Value Speculation Scheduling
Scheme. Two new instructions, LDPRED and UDPRED,

interface with the value predictor during the execution stage.

(a) Original code

I1: ADD R1 Ç R2, 5
I2: SHL R3 Ç R1, 2
I3: LW R4 Ç 0(R3)
I4: ADD R5 Ç R4, 1
I5: OR R6 Ç R5, R7
I6: SW 0(R3) Ç R6
Next:
(b) New code after value speculation of R4 (predicted instruction I3)

I1: ADD R1 Ç R2, 5
I2: SHL R3 Ç R1, 2
I3: LW R4 Ç 0(R3)
I7: LDPRED R8 Ç index // load prediction into R8
I4’: ADD R5 Ç R8, 1
I5’: OR R6 Ç R5, R7
I6’: SW 0(R3) Ç R6
I8: BNE Patchup R8, R4 // verify prediction
Next:

Patchup:
I9: UDPRED R4, index // update predictor with R4
I4: ADD R5 Ç R4, 1
I5: OR R6 Ç R5, R7
I6: SW 0(R3) Ç R6
I10: JMP Next

Figure 3: Example of Value Speculation Scheduling.

instruction I3 to I4 is broken, via VSS, the dependence
height of the resulting dependence chain is shortened.
Furthermore, ILP is exposed by the resulting data
dependence graph. Figure 4 shows the data dependence
graphs for the code sequence of Figure 3 before and after
breaking the flow dependence from instruction I3 to I4.
Assume that the latencies of arithmetic, logical, branch,
store, LDPRED and UDPRED instructions are 1 cycle, and
that the latency of load instructions is 2 cycles. Then, the
schedule length of the original code sequence of Figure
4(a), instructions I1 to I6, is seven cycles. By breaking the
flow dependence from instruction I3 to I4, VSS results in a
schedule length of five cycles. Figure 4(b) illustrates the
schedule now possible due to reduced overall dependence
height and ILP exposed in the new data dependence graph.

Fetch Dispatch Execute State-
Update

Value Predictor Prediction
Verification

Fetch Dispatch Execute State-
Update

Predicted Value

Actual Value

(Predicted
Instruction)
PC

(Dependent
Instruction)
PC

Fetch Dispatch Execute State-
Update

Value
Predictor

Predicted Value

LDPRED

UDPRED

This improved schedule length, from seven cycles to five
cycles, does not consider the penalty associated with miss-
prediction due to the required execution of patch-up code.
The impact of patch-up code on performance will be
discussed in section 3.

Figure 4. Data Dependence Graphs for Codes of Figure 3. The
numbers along each edge represent the latency of each instruction.

In 4(a), the schedule length is seven cycles. In 4(b), because of
exposed ILP and dependence height reduction, the schedule

length is reduced to five cycles.

In Figure 3(b), the value speculation scheduler breaks the
flow dependence from instruction I3 to I4. Instructions I4,
I5 and I6 now form a separate dependence chain, allowing
their execution to be speculated during scheduling. They
become instructions I4’ I5’ and I6’, respectively. An
operand of instruction I4’ is modified from R4 to R8.
Register R8 contains the value prediction for destination
register R4 of the predicted instruction I3.

Instruction I7, LDPRED, loads the value prediction for
instruction I3 into register R8. When the prediction is
incorrect (R8≠R4), instruction I9, UDPRED, updates the
value predictor with the actual result of the predicted
instruction, from register R4. Note that the resulting
UDPRED instruction is part of patch-up code and its
execution is only required when a value is miss-predicted.
To ensure correct program execution, the compiler inserts
the branch instruction, I8, after the store instruction, I6’, to
branch to the patch-up code when the predicted value does
not equal the actual value. The patch-up code contains
UDPRED and the original dependent instructions, I4, I5
and I6. After executing patch-up code, the program jumps
to the next instruction after I8 and execution proceeds as
normal.

Each LDPRED and UDPRED instruction pair that
corresponds to the same value prediction uses the same
table entry index into the value predictor. Each index is
assigned by the compiler to avoid unnecessary conflicts
inside the value predictor. While the number of table

entries is limited, possible conflicts are deterministic and
can be factored into choosing which values to predict in a
compiler approach. A value predictor design, featuring the
new LDPRED and UDPRED instructions, will be described
in section 2.

By combining hardware and compiler techniques, the
strengths of both dynamic and static techniques for
exploiting ILP can be leveraged. We see several possible
advantages to VSS:

• Static scheduling provides a larger scheduling scope
for exploiting ILP transformations, identifying long
dependence chains suitable for value prediction and
then re-ordering code aggressively.

• Value-speculative dependent instructions can execute
as early as possible before the predicted instruction that
they depend.

• The compiler controls the number of predicted values
and assigns different indices to them for accessing the
prediction table. Only instructions that the compiler
deems are good candidates for predictions are then
predicted, reducing conflicts for the hardware.

• Patch-up code is automatically generated, reducing the
need for elaborate hardware recovery techniques.

• Instead of relying on statically predicted values (e.g.,
from profile data), LDPRED and UDPRED access
dynamic prediction hardware for enhanced prediction
accuracy.

• VSS can be applied to dynamically-scheduled
(superscalar) processors, statically-scheduled (VLIW)
processors, or EPIC (explicitly parallel instruction
computing) processors [14].

There is a drawback to VSS. Because static scheduling
techniques are employed, value-speculative instructions are
committed to be speculative and therefore always require
predicted values. Hardware only schemes can dynamically
decide when it is appropriate to speculatively execute
instructions. The dynamic decision is based on the value
predictor’s confidence in the predicted value, avoiding
miss-prediction penalty for low confidence predictions.

The remainder of this paper is organized as follows: Section
2 examines the value predictor design for value speculation
scheduling. Section 3 introduces the VSS algorithm.
Section 4 presents experimental results of VSS. Section 5
concludes the paper and mentions future work.

2. VALUE PREDICTOR DESIGN
Microarchitectural support for value speculation scheduling
(VSS) is in the form of special-purpose value predictor
hardware. Value prediction accuracy directly relates to
performance improvements for VSS. Various value
predictors, such as last-value, stride, context-based, two-
level, and hybrid predictors [2], [3], [4], [6], [7], [9],

(a) Before breaking dependence (b) After breaking dependence from I3 to I4

I1

 I2

 I3

1

1

2

 I8

1

I7

 I4’

 I5’

1

1

1

 I6’

1

1

1
1

 I1

 I2

 I3

1

1

2

 I4

 I5

1

1

 I6

1

provide different prediction accuracy. Value predictors
with the most design complexity, in general, provide for the
highest prediction accuracy. In order to feature LDPRED
and UDPRED instructions for VSS, previously proposed
value predictors must be re-designed slightly.

Figure 5 shows the block diagram of a value predictor that
includes LDPRED and UDPRED instructions. In this value
predictor, there are three fundamental units, the current
state block, the old state block and the prediction hardware
block. The current state block may contain register values,
finite state machines, history information, or machine flags,
depending on the prediction method employed. The old
state block hardware is a duplicate of the current state block
hardware. Predictions are generated by the prediction
hardware with input from the current state block. Various
prediction mechanisms can be used. For example,
generating the prediction as the last value (last value
predictors [2], [3]). Or, generating the prediction as the
sum of the last value and the stride, which is the difference
between the most recent last values (stride predictors [4],
[6], [7], [9]). Also, two-level predictors [7] allow for the
prediction of recently computed values. For two-level
predictors, a value history pattern indexes a pattern history
table, which in turn is used to index a value prediction from
recently computed values. Two-level value prediction
hardware is based on two-level branch prediction hardware.

Figure 5. Block Diagram of Value Predictor featuring
LDPRED and UDPRED.

Both the LDPRED and UDPRED instructions contain an
immediate operand that specifies the value predictor table
index. In general (independent of the prediction hardware
chosen) the LDPRED instruction performs three actions.
The compiler assigned number indexes each action. First,
the prediction hardware generates the predicted value by
using input from the current state block. Second, current
state information is shifted to the old state block. Last, the
current state block is updated based on the predicted value
from the prediction hardware. Information used by the

prediction hardware is updated simultaneously with the
current state block update. Note that for the LDPRED
instruction, the predicted value is used to update the current
state block speculatively.

The compiler assigned number also indexes the operation
of the UDPRED instruction. When the value prediction is
incorrect, the patch-up basic block of Figure 3(b) must be
executed. The execution of UDPRED instructions only
occurs in patch-up code, or only when values are miss-
predicted. The UDPRED instruction causes the update of
both the current state block and the prediction hardware
with the actual computed value and the old state block.

If the compiler can ensure that each LDPRED/UDPRED
instruction pair is executed in turn (each prediction is
verified and value predictions are not nested) the old state
block requires only one table entry. The same table entry in
the old state block is updated by every LDPRED
instruction, and used by every UDPRED instruction, in the
case of miss-prediction.

Figure 6. Hybrid Predictor (Stride and Two-Level). Saturating
counters are compared to select between the prediction

techniques.

In the VSS scheme, a prediction needs to be generated for
each LDPRED instruction. There is no flag in the value
predictor to indicate if a value prediction is valid or not.
The goal of the value predictor is to generate as many
correct predictions as possible. In this paper, stride, two-
level and hybrid value predictors [7] are implemented to
find the design which provides the highest prediction
accuracy for use in the VSS scheme. Stride predictors
predict arrays and loop induction variables well. Two-level
predictors capture the recurrence of recently used values
and generate predictions based on previous patterns of
values. However, neither of them alone can obtain high
prediction accuracy for all programs, which exhibit
different characteristics. Therefore, hybrid value
predictors, consisting of both stride and two-level
prediction are designed to cover both of these situations.

Current State

Old State

Prediction
Hardware

Actual
Value
(UDPRED)

Index
(LDPRED,
UDPRED)

Index
(UDPRED)

Predicted
Value

LDPRED

UDPRED

Index

Prediction
Index

Stride
Predictor

2:1
MUX

Two-Level
Predictor

Counters for
Stride
Predictor

CMP
 (>)

Counters for
Two-Level
Predictor

Figure 6 shows such a hybrid predictor that obtains high
prediction accuracy. The selection between the stride
predictor and the two-level predictor is different from that
in [7]. Every table entry has a saturating counter in the
stride predictor and in the two-level predictor. The
saturating counter increments when its corresponding
prediction is correct, and decrements when its prediction is
incorrect. Both saturating counters and predictors are
updated for each prediction, regardless of which prediction
is actually selected. The hybrid predictor selects the
predictor with the maximum saturating counter value. In
the event of a tie, the hybrid predictor favors the prediction
from the two-level predictor. Prediction accuracy results
for the three value predictors will be presented in section 4.

3. VALUE SPECULATION SCHEDULING
Performance improvement for value speculation scheduling
(VSS) is affected by prediction accuracy, the number of
saved cycles (from schedule length reduction) and the
number of penalty cycles (from execution of patch-up
code). Suppose that after breaking a flow dependence,
value-speculative dependent instructions are speculated,
saving S cycles in overall schedule length when the
prediction is correct. Patch-up code is also generated and
requires P cycles. Prediction accuracy for the speculated
value is X. In this case, speedup will be positive if S > (1-
X) * P holds. For the example of Figure 3(b) VSS saves 2
cycles (from 7 cycles to 5 cycles) and the resulting patch-up
code contains 5 instructions, requiring 3 cycles in an ILP
processor. Therefore, for positive speedup, the prediction
accuracy must be greater than 33%. If the actual prediction
accuracy is less, performance will be degraded by VSS.

With these performance considerations in mind, an
algorithm for VSS is proposed in Figure 7.

The first step is to perform value profiling. The scheduler
must select highly predictable instructions to improve
performance through VSS. Results from value profiling
under different inputs and parameters have been shown to
be strongly correlated [5], [6]. Therefore, value profiling

can be used to select highly predictable instructions on
which to perform value speculation.
Value profiling can be performed for all register-writing
instructions. If profiling overhead is a concern, a filter may
be used to perform value profiling only on select
instructions. Select instructions may be those that reside in
critical paths (long dependence height) or those that have
long latency (e.g., load instructions). In [5], estimating and
convergent profiling are proposed to reduce profiling
overhead for determining the invariance of instructions.
Similar techniques could be applied for determining the
value predictability of instructions.

Next, the value speculation scheduler performs region
formation. Treegion formation [10] is the region type
chosen for our experiments. A treegion is a non-linear
region that includes multiple execution paths in the form of
a tree of basic blocks. The larger scheduling scope of
treegions allows the scheduler to perform aggressive
control and value speculation. A data dependence graph is
then constructed for each treegion. In step four, a threshold
of prediction accuracy is used to determine whether or not
to perform value speculation on each instruction. For each
instruction, the scheduler queries the value profiling
information to get the estimate of its predictability. If the
predictability estimate is greater than the threshold, value
prediction is performed. For aggressive scheduling, more
instructions can be speculated by choosing a low threshold.
Suggested values for the threshold are derived from
experimental results in section 4.

When an instruction is selected for value prediction, a
LDPRED instruction is inserted directly after it. The
LDPRED instruction has an immediate value that is
assigned by the scheduler to be its chosen index into the
value predictor. A new register is also assigned as the
destination of the LDPRED instruction. Once the new
destination register has been chosen for the LDPRED
instruction, any dependent instruction(s) need to update
their source register(s) to reflect the new dependence on the
LDPRED instruction. Only the first dependent instruction
in a chain of dependent instructions needs to update its
register source, the remaining dependencies in the chain are

1. Perform Value Profiling
2. Perform Region Formation
3. Build Data Dependence Graph for Region
4. Select Instruction with Prediction Accuracy (based on Value Profiling) greater than a Threshold
5. Insert LDPRED after Predicted Instruction (selected instruction of step 4)
6. Change Source Operand of Dependent Instruction(s) to Destination Register of LDPRED
7. Insert Branch to Patch-up Code
8. Generate Patch-up Code (which contains UDPRED)
9. Repeat Steps 4 – 8 until no more Candidates Found
10. Update Data Dependence Graph for Region
11. Perform Region Scheduling
12. Repeat Steps 2 – 11 for each Region

Figure 7. Algorithm of Value Speculation Scheduling.

unaffected. Even though more than one chain of dependent
instructions may result from just one value prediction, only
one LDPRED instruction is needed for each value
prediction.

In step seven, a branch to patch-up code is inserted for
repairing miss-predictions. Only one branch per data value
prediction is required and the scheduler determines where
this branch is inserted. Once the location of the branch is
set, all instructions in all dependence chains between the
predicted instruction and the branch to patch-up code are
candidates for value-speculative execution. It is therefore
desirable to schedule any of these instructions above the
predicted instruction. Actual hardware resources will
restrict the ability to speculatively execute these candidates
for value speculation. Also, as all candidates for value
speculation are duplicated in patch-up code, their number
directly affects the penalty for miss-prediction. These
factors affect the scheduler’s decision on where to place the
branch to patch-up code.

In step eight, patch-up code is created for repairing miss-
predictions. The patch-up code contains the UDPRED
instruction, a copy of each candidate for value-speculative
execution, and an unconditional jump back to the
instruction following the branch to patch-up code. The
UDPRED instruction uses the same immediate value,
assigned by the scheduler, as its corresponding LDPRED
instruction for indexing the value predictor. The other
source operand for the UDPRED instruction is the
destination register of the predicted instruction (the actual
result of the predicted instruction). The UDPRED
instruction index and the actual result are used to update the
value predictor.

Finally, in steps ten and eleven, the data dependence graph

is updated to reflect the changes and treegion scheduling is
performed. Because of the machine resource restrictions
and dependencies, not all candidates for value speculation
are speculated above the predicted instruction. Section 4
shows the results of using different threshold values for
determining when to do value speculation.

4. EXPERIMENTAL RESULTS
The SPECint95 benchmark suite is used in the experiments.
All programs are compiled with classic optimizations by the
IMPACT compiler from the University of Illinois [11] and
converted to the Rebel textual intermediate representation
by the Elcor compiler from Hewlett-Packard Laboratories
[12]. Then, the LEGO compiler, a research compiler
developed at North Carolina State University, is used to
insert profiling code, form treegions, and schedule
instructions [10]. After instrumentation for value profiling,
intermediate code from the LEGO compiler is converted to
C code. Executing the resultant C code generates value
profiling data.

For the experiments in value speculation scheduling (VSS),
load instructions are filtered as targets for value
speculation. Load instructions are selected because they are
usually in critical paths and have long latencies. Value
profiling for load instructions is performed on all programs.
Table 1 shows the statistics from these profiling runs. The
number of total profiled load instructions represents the
total number of load instructions in each benchmark, as all
load instructions are instrumented (profiled). The number
of static load instructions represents the number of load
instructions that are actually executed. The difference
between total profiled and static load instructions is the
number of load instructions that are not visited. The
number of dynamic load instructions is the total of each

S tr id e , T w o -L eve l, an d H yb r id P r ed ic to r s

0%

1 0%

2 0%

3 0%

4 0%

5 0%

6 0%

7 0%

8 0%

9 0%

1 0 0%

09 9 .g o 1 24 .m 8 8 k s im 1 2 6 .gc c 1 2 9 .c o m pres s 13 0 . l i 1 32 . i jpe g 1 3 4 .p e rl 1 47 .vo rte x A rith m e t ic M e a n

S P E C i n t9 5

P
re

d
ic

ti
o

n
 A

cc
u

ra
ci

es
 o

f
L

o
ad

 In
st

ru
ct

io
n

s

S tr ide Two-Level Hy b r id

Figure 8. Prediction Accuracy of Load Instructions under Stride, Two-Level, and Hybrid Predictors.

load executed multiplied by its execution frequency.

Stride, two-level, and hybrid value predictors are simulated
during value profiling to evaluate prediction accuracy for
each load instruction. Since the goal of this paper is to
measure the performance of VSS rather than the required
capacities of the hardware buffers, no indices conflicts
between loads are modeled. An intelligent index
assignment algorithm likely will produce results similar to
this, but development of such an algorithm is outside the

SPECint95 Total
Profiled
Load
Instructions

Static Load
Instructions

Dynamic Load
Instructions

099.go 7,702 6,370 86,613,967
124.m88ksim 2,954 747 15,765,232
126.gcc 35,948 17,418 132,178,579
129.compress 96 72 4,070,431
130.li 1,202 414 24,325,835
132.ijpeg 5,104 1,543 118,560,271
134.perl 6,029 1,429 4,177,141
147.vortex 16,587 10,395 527,037,054

Table 1. Statistics of Total Profiled, Static and Dynamic Load
Instructions.

scope of this paper and left for future work. During value
profiling, after every execution of a load instruction, the
simulated prediction is compared with the actual value to
determine prediction accuracy. The value predictor
simulators are updated with actual values, as they would be
in hardware, to prepare for the prediction of the next use.

Each entry for the stride value predictor used has two fields,
the stride, the current value. The prediction is always the
current value plus the stride. The stride equals the
difference between the most recent current values. The
stride value predictor always generates a prediction. No
finite state machine hardware is required to determine if a
prediction should be used.

The two-level value predictor design is as in [7], with four
data values and six outcome value history patterns in the
value history table of the first level. The value history
patterns index the pattern history table of the second level.
The pattern history table employs four saturating counters,
used to select the most likely prediction amongst the four
data values. The saturating counters in the pattern history
table increment by three, up to twelve, and decrement by
one, down to zero. Selecting the data value with the
maximum saturating counter value always generates a
prediction.

The hybrid value predictor of stride and two-level value
predictors utilizes the previous description illustrated earlier
in Figure 6 of section 2. In the hybrid design, the saturating
counters, used to select between stride and two-level
prediction, also increment by three, up to twelve, and
decrement by one, down to zero.

Figure 8 shows the prediction accuracy of load instructions
under stride, two-level, and hybrid predictors. The
prediction accuracy of the two-level predictor is higher than
that of the stride predictor for all benchmarks except

129.compress and 132.ijpeg. However, the average
prediction accuracy for the stride predictor is higher than
that for the two-level predictor because of the large
performance difference in 129.compress. Examining the
value trace for 129.compress shows many long stride
sequences that are not predicted correctly by the history-
based two-level predictor. The hybrid predictor, capable of
leveraging the advantages of each prediction method, has
the highest prediction accuracy, at 63% on average across
all benchmarks.

Figures 9 and 10 show prediction accuracy distribution for
load instructions using the hybrid predictor. Figure 9 is the
distribution for static loads and Figure 10 is the distribution

for dynamic loads. For 124.m88ksim, 90% of dynamic
load instructions have prediction accuracy of 90%. For
129.compress, 80% of dynamic load instructions have
prediction accuracy of 90%. For 124.m88ksim, 45% of the
static loads have prediction accuracy 90%, representing
most of the dynamic load instructions. For 129.compress,
70% of the static loads have prediction accuracy of 90%.
These loads are excellent candidates for VSS. Such high
prediction accuracy results in low overhead due to the
execution of patch-up code. However, for benchmarks
099.go and 132.ijpeg respectively, only 15% and 25% of

Figure 9. Prediction Accuracy Distribution for Static Load
Instructions Using Hybrid Predictor.

Hybrid Predictor

0

10

20

30

40

50

60

70

80

90

100

≥9 0 % ≥8 0 % ≥7 0 % ≥6 0 % ≥5 0 % ≥4 0 % ≥3 0 % ≥2 0 % ≥1 0 % ≥0 %

Prediction Accuracies
P

er
ce

n
ta

g
e

o
f S

ta
tic

 L
o

ad
 (%

)

099.go

124.m88ksim

126.gc c
129.c ompress

130. li

132. ijpeg

134.perl
147.vortex

Figure 10. Prediction Accuracy Distribution for Dynamic
Load Instructions Using Hybrid Predictor.

Hybrid Predictor

0

10

20

30

40

50

60

70

80

90

100

≥90% ≥80% ≥70% ≥60% ≥50% ≥40% ≥30% ≥20% ≥10% ≥0%

Prediction Accuracies

P
er

ce
n

ta
g

e
o

f D
yn

am
ic

 L
o

ad
 (%

)

099.go

124.m88ksim

126.gcc

129.compress

130.li

132.ijpeg

134.perl

147.vortex

dynamic load instructions have prediction accuracy above
50%. Therefore, they will not gain much performance
benefit from VSS.

The VSS algorithm of Figure 7 is performed on the
programs of SPECint95. Prediction accuracy threshold
values of 90%, 80%, 70%, 60% and 50% are evaluated.
The number of candidates for value-speculative execution
is limited to three for each value prediction. This parameter
was varied in our evaluation, with the value of three
providing good results.

For the evaluation of speedup, a very long instruction word
(VLIW) architecture machine model based on the Hewlett-
Packard Laboratories PlayDoh architecture [13] is chosen.
One cycle latencies are assumed for all operations
(including LDPRED and UDPRED) except for load (two
cycles), floating-point add (two cycles), floating-point
subtract (two cycles), floating-point multiply (three cycles)
and floating-point divide (three cycles). The LEGO
compiler statically schedules the programs of SPECint95.
The scheduler uses treegion formation [10] to increase the
scheduling scope by including a tree-like structure of basic
blocks in a single, non-linear region. The compiler
performs control speculation, which allows operations to be
scheduled above branches. Universal functional units that
execute all operation types are assumed. An eight universal
unit (8-U) machine model is used. All functional units are
fully pipelined, with an integer latency of 1 cycle and a load
latency of 2 cycles. Program execution time is measured by
using the schedule length of each region and its execution
profile weight. The effects of instruction and data cache are

ignored, and perfect branch prediction is assumed in an
effort to determine the maximum potential benefits of VSS.

Figure 11 shows the execution time speedup of programs
scheduled with VSS over without VSS. Five different
prediction accuracy thresholds are used to select which load
operations are value speculated.

The maximum speedup for all benchmarks is 17% for
147.vortex. As illustrated in Figure 10, 147.vortex has
many dynamic load operations that are highly predictable.
While 147.vortex does not have the highest predictability
for load operations, the sheer number, as illustrated in
Table 1, results in the best performance. Benchmarks
124.m88ksim and 129.compress also show impressive
speedups, 10% and 11.5% respectively, using a threshold of
50%. Speedup for 124.m88ksim actually goes up, even as
the prediction threshold goes down, from 90% to 50%.
This result can be deduced from the distribution of dynamic
loads. For 124.m88ksim, there is a steady increase in the
number of dynamic loads available as the threshold
decreases from 90% to 50%. There is a tapering off in
speedup though, as more miss-predictions are seen near a
threshold of 50%. For 129.compress, the step in the
distribution of dynamic loads from 80% to 70% is reflected
in a corresponding step in speedup. Performance gains for
126.gcc are more reflective of the large number of dynamic
load operations than of their predictability. Penalties for
miss-prediction at the lower thresholds reduce speedup for
126.gcc. Benchmark 130.li, with a distribution of dynamics
loads similar to 126.gcc, has lower performance due to
fewer dynamic loads. Benchmark 134.perl clearly suffers

8U Machine Model

1

1.02

1.04

1.06

1.08

1.1

1.12

1.14

1.16

1.18

099.go 124.m88ksim 126.gcc 129.compress 130.li 132.ijpeg 134.perl 147.vortex

SPECint95

S
p

ee
d

u
p

90% 80% 70% 60% 50%

Figure 11. Execution Time Speedup for VSS over no VSS.
Prediction accuracy threshold values of 90%, 80%, 70%, 60% and 50% are used.

from not having many dynamic loads. Benchmarks 099.go
and 132.ijpeg do not have good predictability for load
operations.

Based on these performance results, a predictability
threshold of 70% appears to be a good selection. From the
distribution of predictability for dynamic loads in Figure
10, a threshold 70% includes a large majority of the
predictable dynamic loads. Choosing a threshold of
predictability lower than 70% results in a tapering off in
performance for some benchmarks. This is due to both a
higher penalty for miss-prediction and saturation of
functional unit resources, resulting in fewer saved execution
cycles.

5. CONCLUSIONS AND FUTURE WORK
This paper presents value speculation scheduling (VSS), a
new technique for exploiting the high predictability of
register-writing instructions. This technique leverages
advantages of both hardware schemes for value prediction
and compiler schemes for exposing ILP. Dynamic value
prediction is used to enable aggressive static schedules in
which value dependent instructions are speculated. In this
way, VSS can be thought of as a static ILP transformation
that relies on dynamic value prediction hardware. The
results for VSS presents in this paper are impressive,
especially when considering that only load operations were
considered for value speculation. Future work will include
the study of heuristics for selecting register-writing
operations in critical paths. Available functional unit
resources and remaining data dependencies affect the
ability to improve the static schedule and the penalty for
patch-up code. VSS should also be applied to operations
other than loads based on their predictability and potential
benefit to speedup. How many candidates for value-
speculative execution (dependent instructions between the
predicted instruction and the branch to patch-up code) to
allow is also an important parameter. In general, better
heuristics for deciding when to speculate values and how
many VSS candidates to allow (directly affecting the
amount of patch-up code) will be studied.

6. ACKNOWLEDGMENTS
This work was funded by grants from Hewlett-Packard,
IBM, Intel and the National Science Foundation under
MIP-9625007.

We would like to thank Bill Havanki, Sumedh Sathaye,
Sanjeev Banerjia, and other members in the Tinker group.
We also thank the anonymous reviewers for their valuable
comments.

7. REFERENCES

[1] D. M. Gallagher, W. Y. Chen, S. A. Mahlke, J. C.
Gyllenhall, W. W. Hwu, “Dynamic Memory
Disambiguation Using the Memory Conflict Buffer,”
Proceedings of the 6th International Conference on
Architecture Support for Programming Languages and
Operating Systems (ASPLOS-VI), pp. 183-195,
October 1994.

[2] M. H. Lipasti, C. B. Wilkerson, J. P. Shen, “Value
Locality and Load Value Prediction,” Proceedings of
the 7th International Conference on Architecture
Support for Programming Languages and Operating
Systems (ASPLOS-VII), pp. 138-147, October 1996.

[3] M. H. Lipasti and J. P. Shen, “Exceeding the Dataflow
Limit via Value Prediction,” Proceedings of the 29th
International Symposium on Microarchitecture
(MICRO-29), pp. 226-237, December 1996.

[4] Y. Sazeides and J. E. Smith, “The Predictability of
Data Values,” Proceedings of the 30th International
Symposium on Microarchitecture (MICRO-30), pp.
248-258, December 1997.

[5] B. Calder, P. Feller, and A. Eustace, “Value Profiling,”
Proceedings of the 30th International Symposium on
Microarchitecture (MICRO-30), pp. 259-269,
December 1997.

[6] F. Gabbay and A. Mendelson, “Can Program Profiling
Support Value Prediction?,” Proceedings of the 30th
International Symposium on Microarchitecture
(MICRO-30), pp. 270-280, December 1997.

[7] K. Wang and M. Franklin, “Highly Accurate Data
Value Prediction using Hybrid Predictors,”
Proceedings of the 30th International Symposium on
Microarchitecture (MICRO-30), pp. 281-290,
December 1997.

[8] F. Gabbay and A. Mendelson, “The Effect of
Instruction Fetch Bandwidth on Value Prediction,” EE
Department TR #1127, Technion, November 1997.

[9] F. Gabbay, “Speculative Execution based on Value
Prediction,” EE Department TR #1080, Technion,
November 1996.

[10] W. A. Havanki, S. Banerjia, and T. M. Conte,
“Treegion Scheduling for Wide-Issue Processors,”
Proceedings of the 4th International Symposium on
High-Performance Computer Architecture (HPCA-4),
February 1998.

[11] W. W. Hwu, S. A. Mahlke, W. Y. Chen, P. P. Chang,
N. J. Warter, R. A. Bringmann, R. G. Ouellette, R. E.
Hank, T. Kiyohara, G. E. Haab, J. G. Holm, and D. M.
Lavery, “The Superblock: An Effective Technique for
VLIW and Superscalar Compilation,“ The Journal of
Supercomputing, vol. 7, pp. 229-248, January 1993.

[12] R. Johnson and M. Schlansker, “Analysis Techniques
for Predicated Code,” Proceedings of the 29th
International Symposium on Microarchitecture
(MICRO-29), pp. 100-113, December 1996.

[13] V. Kathail, M. Schlansker, and B. R. Rau, “HPL
PlayDoh Architecture Specification: Version 1.0,”
Hewlett-Packard Laboratories Technical Report HPL-
93-80, Computer Systems Laboratory, February 1994.

[14] L. Gwennap, “Intel, HP Make EPIC Disclosure,”
Microprocessor Report, 11(14): 1-9, October 1997.

