
1

Extending Moore’s Law via Computationally Error Tolerant
Computing

BOBIN DENG, Georgia Institute of Technology*
SRISESHAN SRIKANTH, Georgia Institute of Technology*
ERIC R. HEIN, Georgia Institute of Technology
THOMAS M. CONTE, Georgia Institute of Technology
ERIK DEBENEDICTIS, Sandia National Laboratories**
JEANINE COOK, Sandia National Laboratories
MICHAEL P. FRANK, Sandia National Laboratories

Dennard scaling has ended. Lowering the voltage supply (Vdd) to sub volt levels causes intermi�ent losses in
signal integrity, rendering further scaling (down) no longer acceptable as a means to lower the power required
by a processor core. However, it is possible to correct the occasional errors caused due to lower Vdd in an
e�cient manner, and e�ectively lower power. By deploying the right amount and kind of redundancy, we can
strike a balance between overhead incurred in achieving reliability and energy savings realized by permi�ing
lower Vdd . One promising approach is the Redundant Residue Number System (RRNS) representation. Unlike
other error correcting codes, RRNS has the important property of being closed under addition, subtraction
and multiplication, thus enabling computational error correction at a fraction of an overhead compared to
conventional approaches. We use the RRNS scheme to design a Computationally-Redundant, Energy-E�cient
core, including the microarchitecture, ISA and RRNS centered algorithms. From the simulation results, this
RRNS system can reduce the energy-delay-product (EDP) by about 3× for multiplication intensive workloads
and by about 2× in general, when compared to a non-error-correcting binary core.

Extension of Conference Paper : �is paper is an extension of ”Computationally-Redundant Energy-E�cient Processing for
Y’all (CREEPY)” [11]. �is submission adds the following:

(1) Correction factor analysis for RRNS signed arithmetic, including an improved correction factor computation for
signed multiplication via an LUT based mechanism. (Section 4.8.5)

(2) Design and evaluation of an e�cient RRNS multiplier unit by using the index-sum technique, along with associated
re-derivation of suitable RRNS bases. (Sections 4.4 and 4.5)

(3) A novel adaptive check insertion strategy that leverages hardware/so�ware runtime or compiler. (Section 4.6.3)
(4) Impact of multi-domain voltage supply to further lower energy consumption. (Sections 4.7, 6.1 and 6.3)
(5) Improved evaluation accuracy by simulating an LLC-main memory hierarchy instead of a perfect cache. (Section

5)
(6) Energy limit analysis for binary, RNS and RRNS cores. (Section 6)

�ese add signi�cantly more than 30% new material and provide greater insight into RRNS core design. W.r.t. wri�en
content, every section has been revamped to be�er present the new �ndings above.

* �ese authors contributed equally to this work.
** �is work is supported by Laboratory-Directed Research and Development (LDRD) Project 180819 from Sandia National
Laboratories. Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology
and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S.
Department of Energys National Nuclear Security Administration under contract DE-NA0003525. Approved for public
release SAND2018-0257 J.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for pro�t or commercial advantage and that copies bear this notice and
the full citation on the �rst page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permi�ed. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior speci�c permission and/or a fee. Request permissions from permissions@acm.org.
© 2017 ACM. XXXX-XXXX/2017/1-ART1 $15.00
DOI: 10.1145/nnnnnnn.nnnnnnn

1:2 B. Deng, S. Srikanth et al.

CCS Concepts: •Computer systems organization →Reliability; Processors and memory architec-
tures; Redundancy;

Additional Key Words and Phrases: Error-tolerant computing, low energy, reliability

1 INTRODUCTION
Dennard scaling [12] has been one of the main phenomena driving e�ciency improvements of
computers through several decades. �e main idea of this law is that transistors consume the same
amount of power per unit area as they scale down in size. However, leakage current and threshold
voltage limits caused Dennard scaling to end [46] about a decade ago. �is essentially negates any
performance bene�ts that Moore’s law may provide in the future; power considerations dictate that
a higher transistor density results in either a lower clock rate or a reduction in active chip area.

�eis and Solomon [82] suggest that new device concepts within the purview of two-dimensional
lithography technology, such as tunneling FETs, enable reduction of the 1

2CV
2 energy to small

multiples of kT , without resulting in low switching speed [81]. Similarly, research on ferroelectric
transistors, aka negative capacitance FETs (NCFETs) demonstrates a sub-60mV /dec slope as well
as a higher drive current [34–36, 65], both of which are necessary in rendering Vdd reduction
bene�cial to energy reduction without sacri�cing performance.

�ese next generation devices are fast switching even at few tens of millivolts, but as a result,
are vulnerable to thermal noise perturbations. �is translates into intermi�ent, stochastic bit errors
in logic. With signal energies approaching the kT noise �oor, future architectures will need to treat
reliability as a �rst-class citizen, by employing e�cient computational error correction.

In this paper, we propose a scalable architectural technique to e�ectively extend the bene�ts of
Moore’s law. We enable reducing the supply voltage beyond conservative thresholds by e�ciently
correcting intermi�ent computational errors that may arise as a result of thermal noise. Energy
bene�ts are observed as long as the overhead incurred in error correction is less than that saved by
lowering Vdd . �e creepy approach of introducing error correcting hardware to lower energy is
demonstrated as bene�cial in this paper.

1.1 Contributions
(1) Development of microarchitecture, ISA and RRNS centered algorithms towards a

Computationally-Redundant, Energy-E�cient core design.
(2) Design and analysis of an e�cient RRNS multiplier unit using the index-sum technique.
(3) Novel RRNS-check-insertion heuristics to optimize performance/energy/reliability trade-

o�s.
(4) Derivation of an estimated lower limit on signal energies via stochastic fault injecting

simulation.
We �rst introduce some mathematical background and notation in Section 2 and then provide

a high level overview of a CREEPY core in Section 3 before describing the RRNS algorithms
and several other aspects towards designing a CREEPY core in Section 4. We then describe our
evaluation methodology, results before discussing related work and concluding in Sections 5, 6, 7
and 8 respectively.

2 BACKGROUND
2.1 Triple Modular Redundancy (TMR)
Error-correcting codes (ECC) are widely used in modern processors to improve reliability. However,
these are limited to memory/communication systems and are unable to achieve computational

Computationally Error Tolerant Computing 1:3

Table 1. A (4, 2)-RRNS example with the simplified base set (3, 5, 2, 7, 11, 13).
Range is 210, with 11 and 13 being the redundant bases.

Decimal mod 3 mod 5 mod 2 mod 7 mod 11 mod 13
13 1 3 1 6 2 0
14 2 4 0 0 3 1

13+14=27 (1+2)mod 3=0 2 1 6 5 1
All columns function independently of one another.

An error in any one of these columns (residues) can be
corrected by the remaining columns.

+

13 14

27

+

13 14

25

+

13 14

27

Majority	
 Vote

27

Fig. 1. Triple Modular Redundancy in action.

fault tolerance. �e conventional approach to computational fault tolerance is TMR [86]. As shown
in Figure 1, the idea is to replicate the computation twice (for a sum total of three computations
per computation) and then take a majority vote. With a model that assumes that at most one of
these three computations can be in error at any given point in time, it follows that at least two of
the computations are error-free; this can thus be used to detect and correct a single error, assuming
an error-free voter.

While simple to understand and implement, this introduces more than 200% overhead in area
and power leaving plenty of room for improvement. Any energy savings from lowering Vdd would
be eclipsed due to this overhead in correcting resultant errors.

2.2 Residue Number System (RNS)
�e Residue Number System has been used as an alternative to the binary number system chie�y
to speed up computation [1, 51]. �is increased e�ciency comes from the fact that a large integer
can be represented using a set of smaller integers, with arithmetic operations permissible on the
set in parallel. We present some of the properties of RNS below.

Let B = {mi ∈ N f or i = 1, 2, 3, ...,n} be a set of n co-prime natural numbers, which we shall
refer to as bases or moduli. M =

∏n
i=1mi de�nes the range of natural numbers that can be

injectively represented by RNS that is de�ned by the set of bases B. Speci�cally, for x such that
x ∈ N and x < M , then, x ≡ (|x |m1 , |x |m2 , |x |m3 , ..., |x |mn), where |x |m = x mod m. Each term in
this n-tuple is referred to as a residue.

We also note that addition, subtraction and multiplication are closed under RNS. �is is because
of the following observation: given x ,y ∈ N and x ,y < M , we have |x op y |m = | |x |m op |y |m |m ,
where op is any add/subtract/multiply operation.

2.3 Redundant RNS (RRNS)
To augment RNS with fault tolerance, r redundant bases are introduced. �e set of moduli now
contains n non-redundant and r redundant moduli: B = {mi ∈ N f or i = 1, 2, 3, ...,n,n+1, ...,n+r }.
�e reason these extra bases are redundant is because any natural number smaller than M
(= ∏n

i=1mi) can still be represented uniquely by its n non-redundant residues. Intuitively,
the r redundant residues form a sort of error code because all residues are transformed in
an identical manner under arithmetic operations. For x such that x ∈ N, x < M , then,

1:4 B. Deng, S. Srikanth et al.

x ≡ (|x |m1 , |x |m2 , |x |m3 , ..., |x |mn , |x |mn+1 , ..., |x |mn+r) contains n non-redundant residues as well
as r redundant residues. For convenience, we further de�ne MR =

∏n+r
i=n+1mi .

Upon applying arithmetic transformations to an RRNS number, any error that occurs in one
of the residues is contained within that residue and does not propagate to other residues. When
required, such an error can be corrected with the help of the remaining residues. Speci�cally, an
RRNS system with (n, r) = (4, 2), a single errant residue can be corrected, or, two errant residues
can be detected. Table 1 provides a simple example, Section 4.8 outlines necessary algorithms
to do so. Research by Watson and Hastings [25, 89, 90] lays the foundation for the underlying
theoretical framework that is used and extended in our work. �eir work also details algorithms
to handle RRNS scaling and fractional multiplication. �ey used (199, 233, 194, 239, 251, 509) as
the (4, 2)-RRNS system, providing a range M = 199 × 233 × 194 × 239 ∈ (231, 232). In Section 4.5,
we discuss the methodology and implications of choosing a di�erent set of RRNS bases for the
purposes of trading range with overhead.

Not only does a residue number system achieve a higher e�ciency due to enhanced bit-level
parallelism (also, no carries required for addition), but also that introducing 50% of overhead is
su�cient to provide resiliency. As the granularity of an error is that of an entire residue, RRNS is
capable of potentially correcting multi-bit errors as well, for free.

We design a computer based on these properties.

3 CREEPY OVERVIEW
Given new device concepts that enable device operation at signal energies close to the kT noise
�oor [34–36, 65, 81, 82], CREEPY aims to achieve lower energy consumption by lowering Vdd in
such a manner that the intermi�ent errors that thereby arise are corrected e�ciently.

We take note of the compute preserving properties of RRNS (cf. Section 2.3) and propose building
a Turing-complete computer around this idea.

A CREEPY core consists of 6 subcores, an Instruction Register (IR) and a Residue Interaction Unit
(RIU), as depicted in Figure 2.

Each subcore consists of an adder, a multiplier, a portion of the distributed register �le and a
portion of the distributed data cache. �e bit-width of these components is same as that of their
corresponding residue (8-bit or 9-bit in this example). Each subcore is fault-isolated from the other
because it is designed to operate on a single residue of data(analogous to a bit-slice processor, with
bolsters). Post a successful instruction fetch (the instruction cache stores instructions in binary,
and is ECC-protected), the ECC-checked instruction is dispatched onto the 6 subcores, which then
proceed to operate on their corresponding slice of data. For example, adding two registers is done
on a per residue basis; the register �le is itself distributed across the 6 subcores. Similarly, the data
cache is also distributed across the 6 subcores and stores RRNS protected data. �e RIU is then
responsible to perform any operations that involve more than a single residue.

Section 4 evaluates several aspects of designing such a core, and provides solutions. For example,
conventional multipliers incur high cost in both energy and area, therefore, we leverage RRNS
properties to provide an e�cient solution in Section 4.4. �e RRNS base selection is also very
important in CREEPY core design because it directly a�ects the computational range and energy
e�ciency, which we discuss in Section 4.5. �e RIU logic includes 3 parts: RRNS consistency check
logic, RRNS comparison logic and RRNS to binary conversion logic.For the RRNS consistency check
logic and RRNS comparison logic designs, we have detailed discussions in Section 4.8.1 and Section
4.8.4 respectively. �e RRNS to binary conversion logic is relatively less important as it is used
only to support operations that are not native to RRNS, such as bit-shi�ing and division, which are
relatively few in number. Furthermore, the circuitry to convert from RRNS to binary is identical to

Computationally Error Tolerant Computing 1:5

Subcore 1
Modulus

𝒎𝟏

Subcore 2
Modulus

𝒎𝟐

Subcore 3
Modulus

𝒎𝟑

Subcore 4
Modulus

𝒎𝟒

Subcore 5
Modulus

𝒎𝟓

Subcore 6
Modulus

𝒎𝟔

Residue Interaction Unit(RIU): Consistency Check, Comparison, RRNS to Binary Conversion, etc.

Verified
Addr/DataNon-­Redundant Moduli Redundant Moduli

Core

Instruction Register(IR)

ICache DCache

Memory

Fig. 2. The CREEPY Core with the reference RRNS system. The register file and data cache are distributed
across the subcores.

that found in the literature[7, 25, 76] to convert from RNS to binary, therefore we omit it for space
constraints.

Because conversions to and from binary are expensive and rather unnecessary for RRNS data, a
CREEPY core operates entirely on RRNS data and literals. An upshot of this is that control-path
errors manifest themselves as data errors, meaning that they can be handled simply by handling
the data error. For example, if there is an error in bypass logic in a subcore, or, if a faulty decoder
in one of the subcores causes it to perform a multiplication instead of an addition, the resultant
residue for that subcore would have an erroneous value, but can be recovered from the remaining
5 residues that were a result of the correct addition operation.

Although operating entirely on RRNS data and literals avoids the signi�cant overheads of
converting to/from binary, representing a memory address (for the purposes of PC, LD and ST)
in an RRNS format naively may cause signi�cant degradation in locality and changes memory
access pa�erns, which is fundamental to memory systems performance. �is issue has already
been handled by Srikanth et. al. [70], where they propose bit-manipulation techniques as well as
a compiler based approach, with li�le to no overhead. Of the techniques proposed, their rns sub
scheme, which essentially subtracts the least signi�cant residue from the others, renders the most
energy e�cient architecture along with the added advantage of requiring no support from the
so�ware stack.

Interfacing a CREEPY core with heterogeneous accelerators (such as those on an SoC) that may
or may not be RRNS based, is a more involved issue, and we leave that to future work.

CREEPY employs standard ECC-protected main memory because of ECC’s compactness and
e�ciency when it comes to protecting stored data. However, standard ECC isn’t amenable to
computational fault tolerance and therefore, the representation of data is in RNS form (as opposed
to binary). �e memory controller checks ECC on a processor load and generates the two redundant
residues before loading the resultant RRNS data into the last level cache. Similarly, it generates
ECC upon a processor store (and the redundant residues are not stored into the main memory). �e
exact choice of ECC is not relevant to this article; any of the existing schemes [43] may be used.

4 CREEPY CORE
In this section, we present several considerations for the design of the CREEPY core.

4.1 Instruction Set Architecture (ISA)
�e description of CREEPY ISA is laid out in a manner similar to that of the MIPS ISA, for explanatory
purposes. To simplify instruction fetch and decode, all instructions are of �xed length; 32 bits. �e

1:6 B. Deng, S. Srikanth et al.

ISA expects 32 registers (R0-R31), with R0 hard-wired to zero, R30 being the link register and R31
storing the default next PC (= PC + 4). In our micro-architecture, each register is 49 bits long (i.e.,
it contains the RRNS redundant residues as well) and is sliced on a per-modulus (sub-core) basis.
�e data cache is also implemented in a similar manner, as it stores data in an RRNS format.

(1) R-Format (ADD/SUB/MUL)
�ese instructions assume that the destination operand as well as both source operands

are registers.
Opcode Src Reg1 Src Reg2 Dest Reg Reserved

6b 5b 5b 5b 11b

(2) I-Format (ADDI/SUBI/MULI)
For instructions that require compiler generated immediate literals, two new instructions

(that always occur in succession without exception) are de�ned. Telescopic op-codes are
employed to facilitate implementation of such set instructions. �e fundamental need for
the set instruction arises from the fact that literals are 49 bit RRNS values and would not
otherwise simply �t within a 32 bit �eld (next to an immediate instruction, for example).

Set123 sets the the �rst 3 residues of the immediate value into the �rst 3 sub-core slices
of the destination register and Set456 sets the remaining 3 residues of the immediate value
into the other three sub-core slices of the destination register.

Opcode Dest Reserved Residue3 Residue2 Residue1
11[2b] 5b 0[1b] 8b 8b 8b

Opcode Dest Residue6 Residue5 Residue4
11[2b] 5b 9b 8b 8b

For an example, consider the immediate instruction Addi R1, R2, 0x020202020202. A
CREEPY program would implement this instruction as follows:
(a) Set123 R3, 020202
(b) Set456 R3, 020202
(c) Add R1, R3, R2

(3) Branch
Opcode Reg1 Reg2 Reg3 Link Reserved

6b 5b 5b 5b 1b 10b

Recall that R0 = 0, R31 = PC + 4 and that R30 is the link register. A CREEPY branch
follows one of the following semantics:
(a) Reg1 = R0 and Reg3 = R0 and Link = 0: An unconditional branch that always jumps to

the address in Reg2.
(b) Link = 0: A conditional branch that jumps to the address in Reg2 (base) + Reg3 (o�set)

if Reg1 is 0. �is is otherwise known as a beqz instruction.
(c) Link = 1: A branch and link instruction to enable sub-routine calls and returns. �e

default next PC is stored into the link register and the program jumps to the address
in Reg2.

(4) Load/Store
Opcode Reg1 Reg2 Reg3 Reserved

6b 5b 5b 5b 11b

Reg3 is the destination for a load and is the source register for a store. �e source/desti-
nation address for a load/store is given by Reg1 (base) + Reg2 (o�set). Note that the memory
address is hereby stored in an RRNS format. Recall from Section 3 that e�ciently han-
dling RRNS addresses without conversion to binary is critical to application performance.
Tradeo�s and methodologies in this space have been handled by Srikanth et. al. [70].

Computationally Error Tolerant Computing 1:7

(5) RRNS Check

Opcode Reg1 Reserved
6b 5b 21b

Reg1 is the register that needs to be checked. Once an error is detected, the system
would try to correct it, for example, by performing the RRNS Single Error Detection and
Correction algorithm (Section 4.8). Candidate usage scenarios are discussed in Section 4.6
and evaluated in Section 6. Helper instructions such as mov, ret etc. also exist, but are
omi�ed from this description for brevity.

4.2 Error Model
First, we distinguish fault, error and failure as follows:

Fault. A single bit �ips, but is not stuck-at, i.e., only intermi�ent / transient faults are considered.
Causes may range from unreliable devices to low supply voltage to particle strikes to random noise
and any combination therein.

Error. One or more faults in a single residue that show up during a consistency check.
Failure. Error uncorrectable and no recovery mechanism, or error undetectable.
Faults may lead to errors which may lead to failures. We can guarantee the system is reliable if at

most one error per core occurs between two RIU checks. Multiple bit �ips are rare but this phenomenon
occurs if a circuit in the carry chain fails [40]. In our design, carry chains are limited to a residue as
there are no carries between residues. �erefore, any resulting multi-bit errors would be localized
to a single residue, which we can correct. If this RRNS system needs to detect and correct multiple
error residues, an extra checkpoint and rollback mechanism is necessary. However, based on
the discussion above, the case of multiple residues in error is extremely rare. So we ignore the
checkpoint mechanism design in current system and leave it to future work.

Redundancy in time, i.e., check at cycle x , check again at cycle y, check again at cycle z, and
vote, does not apply to this model as it is possible that the three checks su�er 3 independent 1
bit faults, rendering voting useless. �e transient clause in the model rules out stuck-at faults.
An implication of this is that we cannot achieve reliability by merely trading performance alone.
Additional resources in terms of spatial redundancy are necessary, which is exactly what has been
designed.

Di�erent components of the core are protected via specialized means that target each component.
�e guiding principle is to design a system that uses the more e�cient of RRNS/ECC based
redundancy based on the range and nature of data being protected. Where both techniques are
deemed insu�cient to prevent the fault from metastasizing into an error, and eventually into a
failure, the more conventional (and expensive) method: Triple Modular Redundancy (TMR), is
employed. An alternative is to prevent the fault from occurring in the �rst place by using high Vdd
(and/or circuit hardening). Choosing optimally between the la�er expensive techniques is beyond
the scope of this document but we assume that the RIU uses a high Vdd / hardened circuitry. We
assume that error in control signals manifest themselves as errors in data (for example, a control
error causing one of the subcores to operate on the wrong opcode will be caught as a data error);
however, one can potentially further improve the control signals’ integrity by using either TMR or
intelligent state assignment, and that the RIU uses a high Vdd / hardened circuitry.

4.3 Signed Number Representation
�ere are three competing ways of representing signed numbers, given an RRNS framework as
presented in Section 2.3. Each presents its set of trade-o�s, which we now detail.

1:8 B. Deng, S. Srikanth et al.

M is the product of all the non-redundant moduli (M = m1*m2*m3*m4) and MR is the product of
all the redundant moduli (MR = m5*m6).

(1) Complement M*MR Signed Representation
�e M*MR complement signed representation is depicted by Figure 3. To provide a few

examples, 0 is represented by 0, 1 is represented by 1, M
2 − 1 is represented by M

2 − 1, -1 is
represented by M ∗MR − 1 and −M

2 is represented by M ∗MR − M
2 . �is is similar to signed

binary representation. However, representing numbers in this manner breaks known error
correction algorithms[89].

+integers)integerserror+region

M/20 M*MR)M/2 M*MR
Fig. 3. Complement M*MR signed representation

(2) Complement M Signed Representation
�e M complement signed representation is depicted in Figure 4. �is is similar to the

M*MR complement representation, except that the wrap-around occurs at M as opposed to
M*MR. �is representation does not break error correction algorithms, provided that some
correction factors (scaling and o�set) are applied to the result of each arithmetic operation.
However, further analysis indicates that these correction factors require knowledge of the
signs of the operands, which are not trivial to determine like in binary. �e RRNS sign
determination is a time-consuming algorithm. Moreover. arithmetic operation over�ow
detection is unknown for this representation.

+integers)integers error+region

M/2=)M/20 M M*MR
Fig. 4. Complement M signed representation

(3) Excess-M2 Signed Representation
�e Excess-M2 signed representation is depicted in Figure 5. �e excess notation, some-

times known as o�set notation, merely shi�s each number by M
2 . To further elaborate, 0 is

represented by M
2 , 1 is represented by M

2 + 1 and -1 is represented by M
2 − 1. Similar to

the M Complement representation, the results of arithmetic operations must be o�set by a
correction factor before they can be corrected. However, these correction factors turn out
to be independent of the sign of the operands. We also �nd that this representation enables
simple algorithms for comparison (and thereby sign detection) and arithmetic operation
over�ow detection. In fact, these algorithms make use of a technique used in the error
correction algorithm itself. �ese algorithms are discussed in detail in Section 4.8.

!integers +integers error+region

M/2=00 M M*MR
Fig. 5. Excess -M/2 signed representation

We choose Excess-M2 to be the de facto signed representation scheme for CREEPY.
4.4 Optimized Multiplier Unit Design
Many workloads in the domains of multimedia, image processing and digital signal processing
are highly multiplication intensive [87] . Index-sum multiplication has been proposed in the past
[57, 58] to achieve multiplication via simple addition and table lookup operations, thereby rendering
it more e�cient than traditional binary multiplication provided the size of the LUT is not too large.
�e principle is analogous to using a logarithm operation, i.e., a multiplication can be achieved via
a table lookup, addition and a reverse table lookup, as summarized as follows for the product of
two numbers X and Y :

Computationally Error Tolerant Computing 1:9

Table 2. Mapping table of GF (59) with a primitive root of 11 (д = 11)
X 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
α 0 7 2 14 42 9 10 21 4 49 1 16 25 17 44 28 48 11 34 56
X 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
α 12 8 47 23 26 32 6 24 22 51 53 35 3 55 52 18 37 41 27 5
X 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
α 40 19 57 15 46 54 45 30 20 33 50 39 38 13 43 31 36 29

Ex: X = 3, Y = 6 =⇒ αX = 2, αY = 9, whose sum is 11, which reverse maps to 18 and is indeed the desired product.

(1) Use a pre-de�ned mapping table to generate index (X) and index (Y).
(2) Compute the sum Z = index (X) + index (Y).
(3) Use a pre-de�ned reverse mapping table to return the product XY as reverse index (Z).

While realizing an LUT that is addressable by a 32-bit input is rather expensive, leveraging RNS
properties allows us to slice this table into a few tables with address sizes closer to 8 bits, as outlined
by Preethy et al. [57, 58] . We extend this idea into RRNS by adjusting the RRNS bases (cf. 4.5) to
be amenable to index-sum LUTs, the requirements for which, are summarized below.

Index-sum multiplication is based on the theory of Galois �elds, which can be classi�ed into 3
types: GF (p), GF (pm) and GF (2m), where, p is an odd prime number and m ∈ Z+. �e range of
integers that can be represented bijectively in Galois �elds, and the encoding methodology depends
on the GF type[58]: (We skip the methodology of deriving GF (pm) as we don’t utilize this for
CREEPY.)

GF (p) : Any integer x ∈ [1,p − 1] can be uniquely coded as a single integral index code α
by the relationship X = |дα |p , where α ∈ [0,p − 2], and д is a primitive root such that
|дp−1 |p = 1. See Table 2 for an example.

GF (2m) : Any integer x ∈ [1, 2m − 1] can be coded as a triple integral index code < α , β ,γ >
by the relationshipX = 2α |5β (−1)γ |2m , where α ∈ [0,m−1], β ∈ [0, 2m−2−1] andγ ∈ [0, 1].
See Table 3 for an example.

�erefore, the relative preference of GF types are GF (p) > GF (pm) > GF (2m) as they require 1,
2 and 3 index codes respectively. Furthermore, a smaller value of p andm leads to a smaller LUT.
�ese considerations impact the choice of RRNS bases, as discussed in Section 4.5 / Table 4.

By using the index-sum technique in conjunction with RRNS, we greatly simplify the complexity
of multiplication. Index-sum multiplication can be e�ciently performed via a simple addition
and two modest table lookup operations. We achieve a reduction in ALU gate count using this
approach by about 87% when compared to using a traditional multiplier in RRNS, which itself
reduces the gate count by 52% when compared to a traditional non-error-correcting binary ALU,
thereby realizing area, energy and reliability improvements, as we demonstrate in Section 6.

4.5 Selecting RRNS Bases
Watson [89] used the base set (199, 233, 194, 239, 251, 509) in his paper. However, the range rendered
by this set is larger than 231 but smaller than that of a 32-bit unsigned integer: 232. Furthermore,
these bases are not amenable to designing index-sum based multipliers, as discussed in Section 4.4.
�ese limiting necessary and su�cient conditions can be summarized as follows:

(1) Each pair of basesmi ,mj must be relatively prime. (For RRNS representation [89].)
(2) maxn+1≤i≤n+r

MR
mi
≥ max1≤i≤nmi

(3) MR ≥ max1≤i,j≤nmimj
(4) MR , 2mimj − n1mi − n2mj ; 1 ≤ i , j ≤ n; 1 ≤ n1 ≤ mj − 1; 1 ≤ n2 ≤ mi − 1
(5) MR ≥ 2∑n

i=1 (mi − 1) +∑n+r
i=n+1 (mi − 1). (For RRNS single error correction [89].)

1:10 B. Deng, S. Srikanth et al.

Table 3. Mapping table of GF (26)
X 1 2 3 4 5 6 7 8 9 10 11 12

α, β, γ 0,0,0 1,0,0 0,3,1 2,0,0 0,1,0 1,3,1 0,10,1 3,0,0 0,6,0 1,1,0 0,5,1 2,3,1
X 13 14 15 16 17 18 19 20 21 22 23 24

α, β, γ 0,15,0 1,10,1 0,4,1 4,0,0 0,12,0 1,6,0 0,7,1 2,1,0 0,13,0 1,5,1 0,14,1 3,3,1
X 25 26 27 28 29 30 31 32 33 34 35 36

α, β, γ 0,2,0 1,15,0 0,9,1 2,10,1 0,11,0 1,4,1 0,8,1 5,0,0 0,8,0 1,12,0 0,11,1 2,6,0
X 37 38 39 40 41 42 43 44 45 46 47 48

α, β, γ 0,9,0 1,7,1 0,2,1 3,1,0 0,14,0 1,13,0 0,13,1 2,5,1 0,7,0 1,14,1 0,12,1 4,3,1
X 49 50 51 52 53 54 55 56 57 58 59 60

α, β, γ 0,4,0 1,2,0 0,15,1 2,15,0 0,5,0 1,9,1 0,6,1 3,10,1 0,10,0 1,11,0 0,1,1 2,4,1
X 61 62 63

α, β, γ 0,3,0 1,8,1 0,0,1
Ex: X = 3, Y = 6 map to, respectively, < 0, 3, 1 >, < 1, 3, 1 >, whose sum results in < 1, 6, 2 >. Since γ ∈ [0, 1], the

modulo sum results in < 1, 6, 0 >, which reverse maps to 18 and is the desired product.

Table 4. New base sets that satisfy all conditions listed in Section 4.5. For reference, the range of Watson’s
base set (8-8-8-8-8-9) is 2,149,852,322, and 232 is 4,294,967,296.

Subcore bits Total bits Range Possible base sets Bases’ format
6-8-7-7-8-8 44 82,600,832 (61,149,128,71,179,181) (p,p,27,p,p,p)
7-8-7-8-8-8 46 467,921,792 (97,223,128,169,239,241) (p,p,27,132,p,p)
7-8-7-8-8-9 47 729,405,056 (113,239,128,211,251,263) (p,p,27,p,p,p)
8-8-7-8-8-8 47 635,871,872 (151,167,128,197,211,223) (p,p,27,p,p,p)
7-8-8-7-9-9 48 430,002,432 (89,233,256,81,283,293) (p,p,27,34,p,p)
8-8-8-8-8-9 49 2,149,852,322 (199,233,194,239,251,509) Watson[89]**

9-6-9-5-10-10 49 251,904,512 (269,59,512,31,521,523) (p,p,29,p,p,p)
9-7-8-8-9-9 50 1,230,080,256 (433,81,256,137,439,443) (p,34,27,p,p,p)

9-7-9-7-10-10 52 1,719,885,312 (367,113,512,81,521,523) (p,p,29,34,p,p)
9-8-8-9-9-10 53 7,891,035,392 (421,211,256,347,503,521) (p,p,28,p,p,p)
9-9-8-9-9-9 53 7,710,332,672 (277,317,256,343,409,421) (p,p,28,73,p,p)

** these bases do not satisfy index sum constraint.

(6) |m1m2−m3m4 | = 1; also known as theK ,K−1 property. (For RRNS fractional multiplication
[89].)

(7) mi ∈{x | x is either (p) prime, (pm) a power of prime, or (2m) a power of 2}. Recall that the
relative order of preference is p > pm > 2m , and that smaller bases result in smaller ROMs.
(For index sum multiplication (Section 4.4).)

�e proofs of Condition (1)-(6) are available in Waston′s thesis[89] and Condition (7) is based
on the theory of Galois �elds which has been discussed in Section 4.4. We limit our analysis to
(n, r) = (4, 2) for simplicity and �nd bases that satisfy the conditions summarized above, while
keeping the overhead to a minimum. Table 4 lists several such possibilities. (61, 149, 128, 71, 179,
181) is the set of bases that o�ers least overhead, whereas (421, 211, 256, 347, 503, 521) on the other
hand, o�ers a range superior to 232 at additional overhead.
4.6 RRNS Check Insertion Strategies
Given that the CREEPY microarchitecture supports the error model outlined in Section 4.2, it
is necessary to carefully insert RRNS check instructions as they have a direct impact on the
performance-energy-reliability metrics of the core. In this section, we outline the following check
insertion schemes.

Computationally Error Tolerant Computing 1:11

4.6.1 Periodic check. Insert a single check instruction a�er every n instructions. When n = ∞,
this is an unchecked core and when n = 1, every instruction is checked. Note that lowering the
value of n increases the check insertion frequency, raising performance overhead. While increased
check insertion frequency typically provides increased reliability, one must be vary of the fact that
the check instruction itself is of non-zero latency (cf. Section 4.8), meaning that, the longer the core
spends in consistency checking, the longer it leaves its state vulnerable for errors to creep in. On
the other hand, not checking every instruction also increases the probability of errors manifesting
into multiple residues, leading to core failure.

4.6.2 Pipelined check. Insert a pipelined check that checks n instructions a�er every n instruc-
tions. �is approach has the performance advantage of amortizing the latency of RRNS check via
pipelining as well as the reliability advantage of being able to increase state coverage of consistency
check.

4.6.3 StateTable guided adaptive check. We de�ne a bookkeeping entity known as
StateTable in Section 5 to maintain temporal information of the vulnerability of processor state.
Whenever the probability of a register exceeds a certain threshold, an RRNS check is inserted for
that register. Naturally, this can be extended to insert pipelined checks if more than one register
is in need of a check. �is StateTable itself is assumed to be an error-free entity that can either
be implemented in so�ware or hardware. Like the other two schemes, this insertion scheme can
be implemented by the compiler or by the runtime (hardware or so�ware); however, it is likely
that utilizing a runtime component for this purpose would yield greater accuracy, which trans-
lates to improved e�ciency and reliability, although subject to the overhead the StateTable itself
introduces.

Irrespective of the check strategy, we acknowledge that the following need to be error-free
for correct execution; however, for the purposes of this simulation, we ignore their overhead-
s/implications on control �ow by assuming periodic checkpointing for potential rollbacks: (1)
E�ective address of each memory access (RRNS check), (2) Instruction contents (standard ECC
check), and, (3) Main memory contents (standard ECC check). For a low-overhead checkpoint
mechanism candidate, one can use an incremental checkpoint scheme to save energy and reduce
storage overhead, when compared to using full checkpoints alone. �e incremental checkpoints
only record the modi�ed entries from the last checkpoint (the last checkpoint could either be a full
checkpoint or an incremental checkpoint). Once the rollback operation is necessary, the system
can then use the last full checkpoint and the subsequent incremental checkpoints to recovery the
machine state. A detailed trade-o� analysis of the size, frequency, reliability and energy of such a
scheme is beyond the scope of this paper.
4.7 Multi-Domain Voltage Supply
�e error distribution for each domain of a CREEPY core, viz., computational logic, SRAM cells and
RIU logic, are di�erent. In an SRAM device, any fault occurring in one of its transistors gets latched,
thereby resulting in an error. To contrast, glitches in logic transistors get masked if the glitch does
not occur close to the clock edge. Also, to avoid having to ’check a check instruction’, we assume
the RIU logic is error-free protected via TMR, hardened logic, and/or higher signal energies, with
the la�er su�cient to model the energy e�ects of the former. Given that the vulnerability of these
domains increases from computational logic to SRAM cells to RIU logic, it is ine�cient to assume a
uniformly high signal energy across these domains. We model this phenomena by independent
voltage rails for each of these domains. Shimazaki [68] and Rusu [64] proposed some multi-voltage
domain designs. �e voltage domains referred to in CREEPY are coarse-grained (module-based),
rendering the implementation feasible.

1:12 B. Deng, S. Srikanth et al.

Table 5. Error Correction table of RRNS System with Moduli (3,5,2,7,11,13)
∆m5,∆m6 i′ ϵ ∆m5,∆m6 i′ ϵ ∆m5,∆m6 i′ ϵ ∆m5,∆m6 i′ ϵ ∆m5,∆m6 i′ ϵ

1 , 10 4 6 4 , 5 1 1 5 , 12 3 1 7 , 7 4 3 9 , 3 2 2
2 , 10 2 3 4 , 6 4 4 6 , 1 3 1 7 , 8 1 2 10 , 3 4 1
2 , 12 4 6 4 , 7 2 1 6 , 4 2 4 8 , 1 2 2
3 , 3 1 1 4 , 11 4 5 6 , 5 4 3 8 , 4 4 2
3 , 9 4 5 5 , 8 4 4 7 , 2 4 2 8 , 10 1 2
3 , 12 2 3 5 , 9 2 1 7 , 6 4 2 9 , 1 4 1

4.8 RIU Algorithms
�e algorithm for single error correction was originally given by Watson [89]. However, RNS
renders comparison and arithmetic over�ow detection to be a non-trivial exercise. We present
algorithms to perform these RIU functions by augmenting the consistency checking algorithm.
�is way, no extra hardware is warranted beyond that required by the error check.

4.8.1 Single Error Detection and Correction Algorithm. �e single error detection and
correction algorithm proposed by Watson [89] is based on an error correction table. �e working
of this algorithm for a system with 4 non-redundant moduli (m1,m2,m3,m4) and 2 redundant
moduli (m5,m6), for any given integer X (< M =m1m2m3m4) is as follows: (a) Use a base-extension
algorithm [25, 52, 89] to compute |X ′ |m5 and |X ′ |m6 , where |X ′ |m5 and |X ′ |m6 are the outputs of
the parallel RIU base-extension algorithm. �e inputs to the RIU base-extension algorithm are
the outputs of non-redundant subcores: |X |m1 , |X |m2 , |X |m3 and |X |m4 , where |X |m = X mod m;
the computational output of the subcore with mi modulus. (b) For i = 5, 6: compute ∆mi =

|X ′ |mi − |X |mi . (c) A non-zero di�erence indicates the presence of an error. �is pair of di�erences
indexes into an entry of a pre-computed (�xed) error correction table, which contains the index of
the residue that is in error and a correction o�set that needs to be added to that residue to correct
said error.

�e RRNS check instruction performs this RRNS Single Error Detection and Correction algorithm.
For the error detection step, the system would perform (a) and (b) to the get values of ∆m5 and
∆m6. For the error correction step (if necessary), it performs (c). Analysis of the algorithm reveals
that the error detection step would take 8 cycles while the correction step takes 2 cycles. �erefore,
once the system inserts an RRNS check instruction, the �rst step is to execute the 8-cycle error
detection procedure. If no error is found, then this RRNS check instruction is complete and it takes
8 cycles in total. But if an error is detected, then we need 2 more cycles for the RRNS correction
operation to complete (resulting in 10 cycles in total).

For ease of presentation, we present such an error correction table for a smaller (toy) set of RRNS
base moduli in Table 5. �e total entries in such a table is at most 2∑4

i=1 (mi − 1). For the remainder
of this section, these set of bases are used for explanatory purposes.

4.8.2 Unsigned Number Overflow Detection. In the absence of any error or over�ow,
adding 2 unsigned RRNS numbers results in both ∆m5 and ∆m6 being zero. As has been just
explained, presence of an error is handled by the error correction table. In the absence of error,
we observe that any over�ow manifests itself as a �xed index into the error correction table, with
the entry not corresponding to any error. Table 6 provides some examples of this observation.
While computation of the deltas is most e�cient using a base-extension algorithm, we use Chinese
Remainder �eorem(CRT) or the Mixed-Radix Conversion (MRC) method to �rst convert the
RRNS number to binary, before computing deltas. �is is solely for explanatory purposes; binary
conversion is not actually necessary to detect over�ow.

Iterating through all possible combinations of numbers and operations, we observe that the
value pair of (∆m5, ∆m6) is �xed. Moreover, (∆m5, ∆m6) = (10,11) is not a legitimate address of the

Computationally Error Tolerant Computing 1:13

Table 6. Unsigned Number Overflow Examples in RRNS with Moduli (3,5,2,7,11,13)
X+Y X RRNS Y RRNS X+Y RRNS CRT/MRC |X ′ |m5, |X ′ |m6 ∆m5, ∆m6

2+209 (2,2,0,2,2,2) (2,4,1,6,0,1) (1,1,1,1,2,3) (1, 1, 1, 1) ⇔ 1 |1 |11=1, |1 |13=1 10 11
3+209 (0,3,1,3,3,3) (2,4,1,6,0,1) (2,2,0,2,3,4) (2, 2, 0, 2) ⇔ 2 |2 |11=2, |2 |13=2 10 11

… … … … … … 10 11
209+209 (2,4,1,6,0,1) (2,4,1,6,0,1) (1,3,0,5,0,2) (1, 3, 0, 5) ⇔ 208 |208 |11=10, |208 |13=0 10 11

Table 7. Excess-M2 Overflow Examples for addition of two positive numbers in RRNSwithModuli (3,5,2,7,11,13)
X+Y X RRNS Y RRNS X+Y RRNS Add Correction Factors CRT/MRC |X ′ |m5, |X ′ |m6 ∆m5,∆m6

1+104 (1,1,0,1,7,2) (2,4,1,6,0,1) (0,0,1,0,7,3) (0,0,0,0,1,2) (0, 0, 0, 0) ⇔ 0 |0 |11=0, |0 |13=0 10 11
2+104 (2,2,1,2,8,3) (2,4,1,6,0,1) (1,1,0,1,8,4) (1,1,1,1,2,3) (1, 1, 1, 1) ⇔ 1 |1 |11=1, |1 |13=1 10 11

… … … … … … … 10 11

Table 8. Excess-M2 Overflow Examples for addition of two negative numbers in RRNS with Moduli
(3,5,2,7,11,13)

X+Y X RRNS Y RRNS X+Y RRNS Add Correction Factors CRT/MRC |X ′ |m5 , |X ′ |m6 ∆m5 ,∆m6
-1-105 (2,4,0,6,5,0) (0,0,0,0,0,0) (2,4,0,6,5,0) (2,4,1,6,10,12) (2, 4, 1, 6) ⇔ 209 |209 |11=0, |209 |13=1 1 2
-3-104 (0,2,0,4,3,11) (1,1,1,1,1,1) (1,3,1,5,4,12) (1,3,0,5,9,11) (1, 3, 0, 5) ⇔ 208 |208 |11=10, |208 |13=0 1 2

… … … … … … … 1 2

If#|X|mi#<=mi#*1#for#1<=#i#<=6

Use#|X|mi for#1<=#i <=4#to#compute#|X|’m5 and#|X|’m6

Set#|X|mi#=#0

N

Y

Calculate#|Delta|mc=#||X|’mc * |X|mc|mc for#5<=#c#<=6#

Replace#incorrect|X|mc with#
corresponding# |X|’mc

Correct# the#residue#value#via#
Error#Correction# Table(ECT)

Exit

Both* |Delta|mc=*0
One*|Delta|mc !=*0 Both* |Delta|mc !=*0&*

valid*addr of*ECT

Exit

|Delta|m5*=*10&*
|Delta|m6=*11

|Delta|m5*=*1&*
|Delta|m6=*2

Exit

Exit Exit
No*Error One*Error*in*a

Redundant*
Residue

One*Error*in*a
NonERedundant*

Residue

Overflow Underflow

Fig. 6. Single error detection and correction algorithm with overflow/underflow detection

error correction table (Table 5), thus enabling a distinction between an error and an over�ow. �is
approach, however, does not apply to multiplication.

4.8.3 Signed Number Overflow Detection. Recall from Section 4.3 that CREEPY uses the
Excess-M2 signed representation. We discuss the two sources of over�ow independently:

(1) Add two positive numbers. Table 7 provides a few examples illustrating the algorithm
(Correction factors are explained in detail in Section 4.8.5). �e 1+ 104 in the �rst column is
represented in decimal. A�er Excess-M2 mapping, the computing equation is transformed
to 106+ 209 since M

2 = 105 for the toy set of moduli. �erefore, the X RRNS value is the the
RRNS of 106 and Y RRNS value is the the RRNS of 209. We observe that the pair (∆m5,∆m6)
remains at a �xed value (10,11).

(2) Add two negative numbers. Similarly, examples for adding two negative numbers are shown
in Table 8. In this case, we observe that the pair (∆m5,∆m6) is �xed to (1,2).

Note that neither (10, 11) nor (1, 2) are legitimate addresses in Table 5, thereby enabling a distinction
between an error and an over�ow. However, while this method works for both addition and
subtraction, it does not hold for detection of multiplication over�ow as the delta-pair is not constant
and sometimes indexes into a legal error correction table entry.

Figure 6 shows the overview of the whole algorithm.

1:14 B. Deng, S. Srikanth et al.

+/-­/* +/-­ Consistency Check

Correction FactorRRNS_X

RRNS_Y

Error?
Overflow?

(a) Signed Overflow Detection

-­ Consistency Check

RRNS_X

RRNS_Y

Error?
X>=Y?

(b) Signed Comparison
Fig. 7. Signed Overflow Detection and Comparison

We observe that the described algorithm works in a similar manner even with the base sets in
Table 4. E.g. Waston’s bases (199,233,194,239,251,509), an over�ow results in a delta-pair of (77, 289),
whereas an under�ow results in (174, 220). Both these pairs do not index into legitimate entries of
the error correction table for these set of bases (cf. Appendix E, Watson [89]).

4.8.4 Comparison. Comparison is an important operation because of its use in determining
control �ow. In a manner similar to over�ow detection, we explore potential algorithms to perform
RRNS comparison without incurring unnecessary hardware overhead.

Jen-shiun et al. [9] and Omondi [52] proposed number comparison methods for residue numbers
based on parity bits. However, a prerequisite of these parity comparison methods is that all moduli
are supposed to be odd (in addition to being pair-wise relatively prime). In CREEPY, one of the
non-redundant moduli is even (to enable fast fractional multiplication [89]), therefore this approach
is not suitable.

Instead, we propose leveraging the error check algorithm itself to check for an over�ow post
a subtraction: To compare X and Y , perform X − Y and derive the delta-pair (∆m5, ∆m6). �en,
X ≥ Y i� the delta-pair is (0, 0) (i.e., no over�ow) and X < Y i� the delta-pair is (174, 220) (i.e.,
X − Y results in an under�ow).

�is new residue number comparison method can be used for both unsigned and Excess-M2
signed numbers. It is easy to understand that this idea is suitable for unsigned residue numbers: if
X < Y , then X − Y < [0,M), thereby resulting in an under�ow. For an Excess-M2 signed number
X, an injective mapped residue number can be de�ned as follows: Xmapped =

M
2 + X . �erefore,

X ≥ Y i� Xmapped ≥ Ymapped , which reduces to an unsigned comparison. A caveat to note is
that correction factors should not be added for a comparison operation. �ese are summarized in
Figures 7a and 7b.

4.8.5 Correction Factors. In this section, we are concerned with the addition, subtraction and
multiplication operations on two numbers that do not generate any over�ow. Recall from Section
4.3 that CREEPY uses the Excess-M2 notation, which means that there is a bijective mapping from
any number x such that −M

2 < x < M
2 to x + M

2 . Because of this o�set, arithmetic operations results
need to be re-adjusted using what we term as correction factors. [However, this has nothing to do
with the RRNS error correction operation.]

Addition Consider the addition of two numbers x and y. To represent the mapping, de�ne a
and b such that 0 ≤ a,b < M

2 so that there is no over�ow.
Case 1: x ,y ≥ 0

Consider x = a and y = b. �e sum x +y can be represented for each subcore 1 ≤ i ≤ n + r
as follows:

���� |
M
2 + a |mi + |

M
2 + b |mi

����mi
=
��� |M |mi + |a + b |mi

���mi
(1a)

= |a + b |mi f or 1 ≤ i ≤ n (1b)

However, the expected addition result is:
����
M
2 + a + b

����mi
=
���� |
M
2 |mi + |a + b |mi

����mi
(2)

It follows that:

Computationally Error Tolerant Computing 1:15

(1) 1 ≤ i ≤ n andmi is odd: Examining equations 1b and 2 imply that no correction factor
is necessary.

(2) 1 ≤ i ≤ n and mi is even: Examining equations 1b and 2 implies that a constant
correction factor of |M2 |mi needs to be added to the result.

(3) n + 1 ≤ i ≤ n + r : Examining equations 1a and 2 imply that a constant correction
factor of |M2 |mi needs to be subtracted from the result.

Case 2: x ,y < 0
Se�ing x = −a and y = −b, and re-working equations similar to Equations 1a, 1b and 2
result in correction factors that are identical to Case 1.

Case 3: x > 0, y < 0 (Without loss of generality.)
Se�ing x = a and y = −b, and re-working equations similar to Equations 1a, 1b and 2 result
in correction factors that are identical to Case 1.

Subtraction Due to the symmetric and o�set based nature of the Excess-M2 representation,
we again present the working of just one of the cases; without loss of generality: x = a and
y = b. �en, x − y becomes:

���� |
M
2 + a |mi − |

M
2 + b |mi

����mi
= |a − b |mi (3)

However, the expected subtraction result is:
����
M
2 + a − b

����mi
=
���� |
M
2 |mi + |a − b |mi

����mi
(4)

From examining equations 3 and 4, it follows that:
(1) 1 ≤ i ≤ n andmi is odd: No correction factor is necessary.
(2) 1 ≤ i ≤ n andmi is even: A constant correction factor of |M2 |mi needs to be added to

the result.
(3) n + 1 ≤ i ≤ n + r : A constant correction factor of |M2 |mi needs to be added to the result.

Multiplication Again, for brevity, we only present the case where two positive integers are
multiplied; without loss of generality: x = a and y = b; the product xy becomes:

���� |
M
2 + a |mi |

M
2 + b |mi

����mi
=
�����
|
M2

4 +
(a + b)M

2 |mi + |ab |mi

�����mi
(5)

However, the expected multiplication result is:
����
M
2 + ab

����mi
=
���� |
M
2 |mi + |ab |mi

����mi
(6)

As residues are typically 8-bit wide, consider a 511 entry LUT per subcore that stores
the following:

LUT (s) =
�����
M2

4 +
(s − 1) (M)

2
�����mi

(7)

From examining equations 5, 6 and 7, it follows that:
(1) 1 ≤ i ≤ n andmi is odd: No correction factor is necessary.
(2) 1 ≤ i ≤ n andmi is even: �e correction factor can be e�ected by computing s = a +b

and then subtracting LUT (s) from the result of the multiplier.
(3) n + 1 ≤ i ≤ n + r : �e correction factor can be e�ected by computing s = a + b and

then subtracting LUT (s) from the result of the multiplier.
�e correction factors for the addition and subtraction operations require a single, con-

stant addition/subtraction operation, whereas for multiplication, 2 additions/subtractions
and a modest table lookup are required. Another advantage of the schemes presented here
is that sign determination is not necessary and that they can be performed at the subcore
level, without the involvement of the RIU.

1:16 B. Deng, S. Srikanth et al.

5 EVALUATION METHODOLOGY
To measure the performance-energy-reliability trade-o� of a CREEPY core, we augment a stochastic
fault injection mechanism into a cycle-accurate in-order trace-based simulator. We abstract the
notion of using next-generation devices operating at low signal energies (Es) and the resulting
interaction with the kT noise �oor into Pe , the probability of an error occurring in a transistor
state in any given cycle. Es , provided as an input to the simulation, is a measure of the signal
energy at the input of a transistor; Pe is the probability of a fault occurring at the output of a
transistor in any given cycle. �e relationship of Es and Pe can be de�ned by the following relation:
Pe = exp (−EskT). From Section 4.7, these inputs are vectors as they denote the signal energies and
error probabilities for each voltage domain, however, for explanatory purposes, we present them
as scalars for the remainder of this section. Also input to the simulator is the check insertion
strategy, as discussed in Section 4.6. Because we are evaluating a very di�erent number system,
we simulated an unpipelined microarchitecture with no branch prediction and a 2-level memory
hierarchy (LLC-DRAM, with latencies of 12 cycles and 100 cycles for LLC hit and miss respectively)
to maintain our primary focus in this paper. Adding more features to our design has been le� as
future work.

We �rst introduce a series of error events and their probabilities.
Pe Probability of an error occurring in a transistor state in any given cycle. �is is provided

as an input to the simulation, as just discussed.
Padd Probability of at least a single error in an adder (each sub-core has an adder). If there are

Nadd transistors in an adder, the probability of each of these transistors being free of error
is (1 − Pe)

Nadd . �erefore, Padd=1-(1 − Pe)
Nadd . Similarly, Psub and Pmul are calculated.

For multi-cycle operations, this de�nition holds as long as the state of each transistor is
used exactly once for the operation. �is is true for the said operators. Note that this is a
conservative (pessimistic) estimate in our evaluation because we ignore any error masking
that may potentially occur.

PRi Probability of at least 1 error being present in a slice (sub-core/residue) of register Ri
since its last write. To compute this, we devise a StateTable , the ith entry of which holds
the tuple (P , cycle), where, P is the probability of Ri having atleast 1 error being present in
the corresponding residue upon its most recent update at cycle cycle . �is StateTable is
updated for each register write.

For example, consider the register R0. 1) At cycle 0, the default value of R0 tuple is
(P=0, cycle=0). 2) At cycle 10, assume that we have an ADD instruction: ADD R0, R1,
R2, and that it is the �rst instruction writing to R0. We then update the tuple value to
(Error Probability ADD, 10). It is necessary to update the P value here because the error
probability of this ADD instruction should be taken into account. P value would then be
set back to 0 once an RRNS check is inserted for that register and no error is detected,
and then set the current system cycle value to the cycle �eld. �is way, the P �eld in the
StateTable always re�ects the probability of that register of having at least 1 error being
present in one of its residues, given its most recent update at the cycle �eld.

Assuming an SRAM implementation of 8-bit wide Ri , the number of transistors is
8 × 6 = 48. �e probability of Ri being error free is subject to two probabilities: (1)
probability of an error-free write, (P1 = 1 − StateTable[Ri].P) and, (2) probability of no
error creeping into it since its last write (P2 = (1 − P ′e)48(c−StateT able[Ri].cycle)), where, c is
the current cycle and P ′e is the probability of an error occurring in the state of an SRAM
transistor. Due to the nature of an SRAM device, any fault occurring in one of its transistors
gets latched, resulting in a higher probability of an error (when compared with glitches in

Computationally Error Tolerant Computing 1:17

logic transistors ge�ing masked if the glitch does not occur close to the clock edge). As
such, we assume P ′e = 100Pe . Pu�ing it all together, we have PRi = 1 − P1 ∗ P2.

PLOAD X Probability of at least 1 error being present in the loaded data of address X . �is is
analogous to PRi , with the extended StateTable storing an entry for each cache line. As we
assume a perfect o�-chip (ECC protected) main memory, cache miss repairs are initialized
with a zero probability in error, and cache replacement victims’ entries are evicted from
the StateTable . Finally, PLOAD X encapsulates the probability of an error in the implicit
computation of the address X itself (from its base and o�set) during the execution of the
load, in addition to the probability of an error in the loaded data from the cache line.

PSC Probability of at least 1 error occurring in a sub-core from the last time it was checked.
To illustrate, consider the following add instruction: ADD R3,R2,R1. �en, at the end of
instruction, PSC = 1 − (1 − Padd) (1 − PR2) (1 − PR1).

PC Probability of exactly 1 error occurring in a CREEPY core from the last time it was checked.
�is translates to exactly 1 sub-core being in error (where the sub-core error itself may
be of multi-bit form; RRNS can tolerate multi-bit �ips within a single residue). �erefore,
PC = 6C1 × PSC (1 − PSC)5, where the combinatorial choose operator nCr enumerates the
number of ways in which r items can be chosen from n distinct items.

P0
C Probability of no error in a CREEPY core from the last time it was checked. P0

C = 6C0 ×

(1 − PSC)6 = (1 − PSC)6.
P
f ail
C Probability of a CREEPY core failing at any given cycle, since the last time it was checked.

�e current version of the CREEPY micro-architecture is unable to correct more than 1
error occurring in the core, and assumes a recovery mechanism such as checkpointing is
in place. As such, we deem ≥ 2 errors in the core as amounting to a failure. �erefore,
P
f ail
C =

∑
2≤r ≤6 6Cr × P

r
SC (1 − PSC)

6−r = 1 − P0
C − PC .

Note that the computation of these error probabilities is done a�er every instruction (irrespective
of the check insertion strategy) for the purposes of bookkeeping such as StateTable update and to
estimate the probability of a failure P

f ail
C,i at each time step ti . We use a typically used reliability

metric, Mean Time Between Failure (MTBF) [77], which can be de�ned as follows: MTBF =
Total Cycles

CPU Frequency ×
∑
i P

f ail
C,i

. �e subscript i in P
f ail
C,i represents the ith instruction of the instruction

stream. MTBF also corresponds to mean time to checkpoint recovery.

6 SIMULATION RESULTS
6.1 Signal Energy Limits
From an independent set of simulations of a non-error-correcting core operating on binary data,
we �nd that the minimal signal energy required for ensuring its reliable operation is 48kT . In our
previous design of an error correcting RRNS core [11], we assumed a single voltage domain across
computational logic, SRAM cells and RIU logic. Together with a traditional multiplier (i.e., without
index-sum), a pipelined check insertion strategy (with a frequency of 5 instructions) and a 16MB
LLC, the result is that we can tolerate gate signal energies of 42 − 43kT , as shown in Figure 8.

However, given the dissimilarity in error distribution across computation, SRAM and RIU (Section
4.7), we consider independent voltage domains for these. For simplicity, we conservatively set the
RIU gate signal energy to be 48kT (i.e., same as that required for a non-error correcting binary
core), although it can be potentially lowered as its functionality is a subset of that of a binary core.
We �nd that the relative impact of energy savings in the RIU is rather limited (Section 6.5), and
therefore restrict the RIU gate signal energy to 48kT in our evaluations.

1:18 B. Deng, S. Srikanth et al.

1.00E-­‐05
1.00E-­‐03
1.00E-­‐01
1.00E+01
1.00E+03
1.00E+05
1.00E+07
1.00E+09
1.00E+11
1.00E+13
1.00E+15
1.00E+17
1.00E+19
1.00E+21
1.00E+23
1.00E+25
1.00E+27
1.00E+29
1.00E+31

46 45 44 43 42 41 40 39

M
TB
F(
Se
co
nd
s)

Signa	
 Energy	
 per	
 Gate(KT)

Perlbench

gobmk

hmmer

Matmul

mcf

fft

dct

gcc

bzip2

miniFE

miniXyce

Fig. 8. Reliability when a single voltage domain is used.
Table 9. Sensitivity of MTBF (seconds) to benchmarks and gate signal energies of computational logic,

SRAM cells and RIU logic. For example, 30-43-48 denotes the gate signal energy for computational logic to be
30kT , SRAM cells to be 43kT , and RIU logic to be 48kT .

Benchmarks 36-43-48 35-43-48 34-43-48 33-43-48 32-43-48 31-43-48 30-43-48 29-43-48 28-43-48 27-43-48
perlbench 1.70E+17 2.29E+16 3.10E+15 4.20E+14 5.69E+13 7.70E+12 1.04E+12 1.41E+11 1.91E+10* 2.62E+09
gobmk 1.07E+17 1.44E+16 1.95E+15 2.64E+14 3.58E+13 4.85E+12 6.55E+11 8.87E+10 1.22E+10* 1.97E+09
hmmer 4.08E+16 5.53E+15 7.48E+14 1.01E+14 1.37E+13 1.85E+12 2.51E+11 3.40E+10* 6.23E+09 9.69E+08
matmul 1.08E+16 1.47E+15 1.99E+14 2.69E+13 3.64E+12 4.93E+11 6.66E+10 9.02E+09* 1.22E+09 2.76E+08
mcf 1.81E+17 2.44E+16 3.31E+15 4.47E+14 6.06E+13 8.20E+12 1.11E+12 1.50E+11 2.03E+10* 2.80E+09
�t 7.63E+14 1.03E+14 1.40E+13 1.89E+12 2.56E+11 3.47E+10* 4.69E+09 6.35E+08 1.86E+08 2.32E+07
dct 1.33E+15 1.80E+14 2.44E+13 3.30E+12 4.47E+11 6.05E+10 8.18E+09* 1.11E+09 3.11E+08 4.02E+07
gcc 1.41E+17 1.91E+16 2.59E+15 3.50E+14 4.75E+13 6.42E+12 8.68E+11 1.18E+11 1.60E+10* 2.37E+09
bzip2 1.73E+17 2.34E+16 3.17E+15 4.29E+14 5.81E+13 7.86E+12 1.06E+12 1.44E+11 1.95E+10* 2.65E+09
miniFE 6.94E+14 9.39E+13 1.27E+13 1.72E+12 2.33E+11 3.15E+10* 4.26E+09 5.77E+08 1.69E+08 2.11E+07

miniXyce 1.09E+16 1.47E+15 1.99E+14 2.69E+13 3.64E+12 4.93E+11 6.66E+10 9.02E+09* 2.04E+09 3.06E+08
* We use these signal energies for the remainder of this paper, as they render reasonable reliability.

We abstract these voltage domains as a triplet; for example, 30 − 43 − 48 denotes the gate signal
energy for computational logic to be 30kT , SRAM cells to be 43kT , and RIU logic to be 48kT . For
the purposes of this evaluation, we assume a target MTBF of 1E + 10 seconds (over 300 years) and
�nd that the gate signal energy for computational logic can be lowered all the way to 28 − 31kT ,
depending upon the benchmark, as shown in Table 9.

Given these minimum signal energies, we evaluate the performance, e�ciency and reliability
of various core con�gurations in Sections 6.2, 6.3 and 6.4 respectively. �e core con�gurations
presented are as follows:

Binary A non-error-correcting core operating on binary data. �is is the baseline and requires
signal energies of at least 48kT in order to achieve reasonable reliability.

RNS A non-error-correcting core operating on RNS data. In other words, an RRNS core
without redundant subcores and error correction capabilities.

RRNS pipe5 An error correcting RRNS core with a pipelined check insertion strategy (with a
frequency of 5 instructions), as was determined as the most optimal strategy in our previous
RRNS core design [11].

Index-sum pipe5 Similar to RRNS pipe5, except that the traditional multiplier is replaced
with an index-sum multiplier.

RRNS Adapt 1e-9 An error correcting RRNS core with an adaptive check insertion strategy
(with an error probability threshold of 1e−9. We found that 1e−9 was the optimal threshold
obtained via simulation for target MTBF/signal energy).

Index-sum Adapt 1e-9 Similar to RRNS Adapt 1e-9 that uses an index-sum multiplier.

6.2 Performance
Figure 9 presents the performance of various core con�gurations listed in Section 6.1, normalized
to that of a non-error-correcting binary core.

Computationally Error Tolerant Computing 1:19

130.29%
116.74% 115.44% 116.89%

124.17%
109.92% 108.59%

120.64%
129.41%

114.47%
125.60% 119.29%

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%
100%
110%
120%
130%
140%
150%
160%
170%

perlbench gobmk hmmer matmul mcf fft dct bzip2 gcc miniFE miniXyce average

Binary

RNS

RRNS_pipe5

Index-­‐sum_pipe5

RRNS_Adapt_1e-­‐9

Index-­‐sum_Adapt_1e-­‐9

Fig. 9. Performance of various core configurations, normalized to an non-error-correcting binary core

48.49% 46.60% 48.16%
43.13%

48.21%

31.10% 34.50%

49.47% 47.27%

30.61%

45.19% 42.97%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

perlbench gobmk hmmer matmul mcf fft dct bzip2 gcc miniFE miniXyce average

Binary

RNS

RRNS_pipe5

Index-­‐sum_pipe5

RRNS_Adapt_1e-­‐9

Index-­‐sum_Adapt_1e-­‐9

Fig. 10. Energy Comparison for Di�erent Strategies

63.17%
54.41% 55.59%

50.41%
59.86%

34.18% 37.46%

59.68% 61.17%

35.04%

56.76%
51.61%

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%
100%
110%
120%
130%

perlbench gobmk hmmer matmul mcf fft dct bzip2 gcc miniFE miniXyce average

Binary

RNS

RRNS_pipe5

Index-­‐sum_pipe5

RRNS_Adapt_1e-­‐9

Index-­‐sum_Adapt_1e-­‐9

Fig. 11. EDP Comparison for Di�erent Strategies

�ere is an inherent performance degradation in running binary-optimized code on an (R)RNS-
based core because position-based bit manipulation techniques are expensive in (R)RNS, however,
this is limited to about 20% on average. Introducing error correction may further degrade perfor-
mance if naive or static check insertion strategies are used. �e overhead due to error correction is
amortized when the check insertion strategy is adaptive instead.

6.3 Energy
�e primary concern of CREEPY core design is reducing the core energy overhead. Figure 10 shows
the normalized energy consumption of the aforementioned con�gurations.

�e non-error-correcting binary core requires high gate signal energies in order to be reliable.
Given the low-bit-width and carry-free nature of RNS arithmetic, RNS based cores are inherently
more energy e�cient than their binary counterparts. When e�cient error correction is introduced,
further energy savings can be achieved as the supply voltage can be turned down while still
maintaining reliable functionality. We ensure that the overhead of error correction is minimal by
using an adaptive check insertion strategy. Finally, using index-sum multipliers enables further
energy savings as they are more e�cient than traditional multipliers (savings of over 3× for
multiplication intensive benchmarks and over 2.3× on average).

6.4 Energy Delay Product(EDP)
Figure 11 shows the Energy Delay Product (EDP) of these core con�gurations, normalized to
that of a non-error-correcting binary core. With the exception of arithmetic intensive workloads,
RNS cores typically have a higher EDP than binary cores. However, via e�cient error correction,
our RRNS cores show signi�cantly improved EDP. Speci�cally, by utilizing our best optimization
scheme (index-sum multiplier and adaptive check insertion), we see EDP bene�ts of about 2× on
average, or about 3× for multiplication intensive workloads.

1:20 B. Deng, S. Srikanth et al.

80%

90%

100%

perlbench gobmk hmmer matmul mcf fft dct gcc bzip2 miniFE miniXyce average

Binary

Computation

Zero

Fig. 12. The Potential of RIU Energy Optimization

6.5 Energy Potential of RIU Optimizations
As described in Sections 4.7 and 6.1, we conservatively choose the gate signal energy for RIU logic
to be that necessary for reliable operation of a Turing complete non-error-correcting binary core,
i.e., 48kT . One of the reasons for this is to side-step the issue of ’checking the checker’. However, if
we were to deploy self-checking logic or some other optimizations in the RIU, it may no longer
be necessary to use a high voltage supply for the RIU domain. In this limits study, we evaluate
3 possibilities of the gate signal energy to RIU logic: Binary - 48kT , Computation - same as that
of RRNS subcore computational logic, Zero - 0kT . From an Amdahl’s law perspective, we �nd
that optimizing RIU logic has limited impact on core energy, as shown in Figure 12, thanks to our
judicious RIU usage via adaptive check insertion.

7 RELATEDWORK
RNS and RRNS �e energy e�cient properties of RNS due to its low-bit-width operations and
absence of carries across residues has found applications in the digital signal processing (DSP)
[10, 14, 60] domain. Furthermore, the representability of high bit-width integers as a tuple-of-resides
has been leveraged by the cryptography (RSA) [4, 28, 94] community. Anderson [1] proposed an
architecture and ISA for an RNS co-processor designed to run datapath operations in tandem with
a general-purpose processor running binary instructions, where the primary role of the general
purpose processor is to handle control �ow. �e RNS co-processor uses an accumulator based ALU
and does not support caching or computational error correction (RRNS). Furthermore, it requires a
conversion to binary (and vice-versa) for comparison operations, which is expensive. Clearly, our
CREEPY architecture is signi�cantly more e�cient. A unique feature of their ISA is their ability to
encode instructions targeting two ALUs simultaneously. But this can easily be extended to our
architecture and enable such Superscalar-like capabilities if need be.

Chiang et al. [9] provide RNS algorithms for comparison and over�ow detection, but assume all
bases to be odd and do not consider error correction. Similarly, Preethy et al. [57, 58] integrate
index-sum multiplication into RNS, but do not consider its impact on the properties of RRNS bases
critical to CREEPY.

Ever since Watson and Hastings [25, 89, 90] introduced RRNS as an e�cient means for computa-
tional error correction, there has been a signi�cant body of research [3, 5, 8, 13, 17, 21, 22, 24, 32,
38, 39, 42, 53, 59, 61, 67, 71–73, 75, 76, 78–80, 91–93, 95] that strives to improve upon it. �ese are
orthogonal to CREEPY, and further such algorithmic research can be used to optimize aspects of
the core itself, such as the RIU.

Computational Error Correction Standard error correcting codes (ECC)[43] have already
been adopted into modern memory systems. �ese codes accommodate errors occurring in storage
and communication/network tra�c, but are not able to protect computational logic. �e naive
approach to computational error correction is triple modular redundancy (TMR)[86], requiring over
a 200% overhead in area and energy for single error correcting capability. Several techniques in the
form of arithmetic codes such as AN codes[6, 18, 19, 41, 66, 88], self-checking[30, 33, 44, 48–50, 84]
and self-correcting[15, 20, 26, 37, 45, 55, 62, 63, 74, 83] adders and multipliers have since been devised.

Computationally Error Tolerant Computing 1:21

RRNS_pipe5

TMR

DIVA

SITR

IBM_S/390_G5

No	
 Protection

RRNS_best

Timing	
 Speculation

RESO

REDWC

RETWV

SCCSA

SHA

0.00%

50.00%

100.00%

150.00%

200.00%

250.00%

300.00%

350.00%

0% 100% 200% 300% 400% 500% 600% 700%

Ar
ea
	

EDP	

RESO[54], REDWC[31], RETWV[27], SCCSA[85], SHA[56], DIVA[2], SITR[47], Timing Speculation[16, 23]
Fig. 13. First order comparison of area overhead and energy-delay product (EDP) of various mechanisms for
computational error correction, depicting the superiority of RRNS. Computational error correction techniques
use a combination of spatial and temporal redundancy techniques. While temporal redundancy allows for a
low area overhead, they su�er from a significant performance penalty. Timing speculation techniques seem
more e�icient than RRNS, however, their error model assumes all bit errors manifest as circuit timing errors,
which is not su�icient to work with ultra low energy logic devices.

Orthogonally, proposals employ redundancy at a higher granularity, such as timing speculation
(wherein error correction capability is limited to circuit timing violations)[16, 23], partial pipeline
replication[2] or checkpoint-rollback-recovery such as those in IBM Power8 processors[29]. While
these are more e�cient than naive TMR, they come with limitations on their error model, or, their
area overheads are still over 100% and/or incur a signi�cant performance penalty, owing to the fact
that they leverage temporal redundancy in an e�ort to minimize area overhead[69]

Figure 13 summarizes some of these techniques in comparison with RRNS. We refer the interested
reader to Srikanth et al.[69] for a more detailed survey on some of these non-residue techniques,
but the takeaway is that RRNS is generally considered superior in terms of capability and e�ciency
for computational error resilience.

Approaches that employ timing speculation[16, 23] may seem superior to RRNS at �rst glance.
However, the error model that can be supported by an RRNS error correcting microarchitecture is
orthogonal to theirs, if not broader. For example, razor[16] uses conventional transistors, therefore
lowering Vdd lowers MOSFET switching speed, resulting in a frequency drop, which could cause
setup time violations that they handle via a delayed latch mechanism. �ey assume that any
error manifests itself as a timing error. Similarly, decor[23] uses a delayed commit approach (with
rollback support) to handle violations in timing margins. However, with emerging devices (Section
1), Vdd can be lowered to few tens of millivolts without frequency loss, meaning that operating at
the resultant thermal noise �oor leads to stochastic, intermi�ent bit �ips, which cannot be captured
as circuit timing errors. Unlike such approaches, a CREEPY core can not only tolerate such errors
in the data path, but also in the control path between memory accesses.

In terms of being able to tolerate control path errors, approaches such as DIVA[2] that replicate
parts of the pipeline are capable. �eir design provides recovery by having a simple core recalculate
results of an out-of-order core. In this approach, the simple core is assumed to be error-free. �is is
similar to a ”double-modular-redundancy” approach with a rad-hard node, implying a relatively
high overhead. Furthermore, if the rad-hard simple core is instead prone to error, checkpoint and
re-execute methods would need to be employed, similar to the IBM POWER7/8 processors[29]. On
the other hand, a CREEPY core is able to tolerate errors in its redundant as well as non-redundant
computations.

1:22 B. Deng, S. Srikanth et al.

8 CONCLUSION
�e advent of next generation device concepts such as tunneling FETs and ferroelectric/negative-
capacitance FETs enables reduction of supply voltage to few tens of millivolts without degradation
in switching speed. However, as a result of operating close the the kT noise �oor, computational
logic is subject to intermi�ent, stochastic errors. �e RRNS representation is a promising approach
towards using such ultra low power devices, by employing e�cient computational error correction.

In this paper, we design a Compuationally-Redundant, Energy-E�cient core, including the
microarchitecture, ISA and RRNS centered algorithms. We elucidate several novel optimizations
and RRNS-based design considerations to demonstrate signi�cant improvements over a non-error-
correcting binary core.

9 ACKNOWLEDGMENT
We sincerely thank the anonymous reviewers of the TACO review process for their constructive
feedback on this research.

REFERENCES
[1] Daniel Anderson. 2014. Design and Implementation of an Instruction Set Architecture and an Instruction Execution

Unit for the REZ9 Coprocessor System. M.S. �esis, U of Nevada LV (2014).
[2] Todd M Austin. 1999. DIVA: A reliable substrate for deep submicron microarchitecture design. In Microarchitecture,

MICRO-32. Proceedings. 32nd Annual International Symposium on. IEEE, 196–207.
[3] Jean-Claude Bajard, Julien Eynard, and Nabil Merkiche. 2016. Multi-fault A�ack Detection for RNS Cryptographic

Architecture. In Computer Arithmetic (ARITH), 2016 IEEE 23nd Symposium on. IEEE, 16–23.
[4] J-C Bajard and Laurent Imbert. 2004. A full RNS implementation of RSA. IEEE Trans. Comput. 53, 6 (2004), 769–774.
[5] Ferruccio Barsi and Piero Maestrini. 1974. Error detection and correction by product codes in residue number systems.

IEEE Trans. Comput. 100, 9 (1974), 915–924.
[6] David T Brown. 1960. Error detecting and correcting binary codes for arithmetic operations. IRE Transactions on

Electronic Computers 3 (1960), 333–337.
[7] YG.C. Cardarilli and M. Re ; R. Lojacono. 1998. RNS-to-binary conversion for e�cient VLSI implementation. IEEE

Transactions on Circuits and Systems I: Fundamental �eory and Applications 45 (1998), 667–669.
[8] Chip-Hong Chang, Amir Sabbagh Molahosseini, Azadeh Alsadat Emrani Zarandi, and Tian Fa� Tay. 2015. Residue

number systems: A new paradigm to datapath optimization for low-power and high-performance digital signal
processing applications. IEEE circuits and systems magazine 15, 4 (2015), 26–44.

[9] Jen-Shiun Chiang and Mi Lu. 1991. Floating-point numbers in residue number systems. Computers & Mathematics
with Applications 22, 10 (1991), 127–140.

[10] Rooju Chokshi, Krzysztof S Berezowski, Aviral Shrivastava, and Stanislaw J Piestrak. 2009. Exploiting residue number
system for power-e�cient digital signal processing in embedded processors. In Proceedings of the 2009 international
conference on Compilers, architecture, and synthesis for embedded systems. ACM, 19–28.

[11] B. Deng, S. Srikanth, E. R. Hein, P. G. Rabbat, T. M. Conte, E. DeBenedictis, and J. Cook. 2016. Computationally-
redundant energy-e�cient processing for y’all (CREEPY). In IEEE International Conference on Rebooting Computing
(ICRC). 1–8.

[12] R. H. Dennard, F. H. Gaensslen, V. L. Rideout, E. Bassous, and A. R. LeBlanc. 1974. Design of ion-implanted MOSFET’s
with very small physical dimensions. IEEE Journal of Solid-State Circuits 9, 5 (Oct 1974), 256–268.

[13] Elio D Di Claudio, Gianni Orlandi, and Francesco Piazza. 1993. A systolic redundant residue arithmetic error correction
circuit. IEEE Trans. Comput. 42, 4 (1993), 427–432.

[14] Elio D Di Claudio, Francesco Piazza, and Gianni Orlandi. 1995. Fast combinatorial RNS processors for DSP applications.
IEEE transactions on computers 44, 5 (1995), 624–633.

[15] Shlomi Dolev, Sergey Frenkel, Dan E Tamir, and Vladimir Sinelnikov. 2013. Preserving Hamming Distance in Arithmetic
and Logical Operations. Journal of Electronic Testing 29, 6 (2013), 903–907.

[16] Dan Ernst, Nam Sung Kim, Shidhartha Das, Sanjay Pant, Rajeev Rao, Toan Pham, Conrad Ziesler, David Blaauw, Todd
Austin, Krisztian Flautner, and others. 2003. Razor: A low-power pipeline based on circuit-level timing speculation. In
Microarchitecture,MICRO-36. Proceedings. 36th Annual IEEE/ACM International Symposium on. IEEE, 7–18.

[17] M Etzel and W Jenkins. 1980. Redundant residue number systems for error detection and correction in digital �lters.
IEEE Transactions on Acoustics, Speech, and Signal Processing 28, 5 (1980), 538–545.

Computationally Error Tolerant Computing 1:23

[18] Christof Fetzer, Ute Schi�el, and Martin Süßkraut. 2009. AN-encoding compiler: Building safety-critical systems with
commodity hardware. In International Conference on Computer Safety, Reliability, and Security. Springer, 283–296.

[19] Ph Forin. 1989. Vital coded microprocessor principles and application for various transit systems. IFAC Control,
Computers, Communications (1989), 79–84.

[20] Swaroop Ghosh, Patrick Ndai, and Kaushik Roy. 2008. A novel low overhead fault tolerant Kogge-Stone adder using
adaptive clocking. In Design, Automation and Test in Europe, 2008. DATE’08. IEEE, 366–371.

[21] Vik Tor Goh and Mohammad Umar Siddiqi. 2008. Multiple error detection and correction based on redundant residue
number systems. IEEE Transactions on Communications 56, 3 (2008).

[22] Oded Goldreich, Dana Ron, and Madhu Sudan. 1999. Chinese remaindering with errors. In Proceedings of the thirty-�rst
annual ACM symposium on �eory of computing. ACM, 225–234.

[23] Meeta S Gupta, Krishna K Rangan, Michael D Smith, Gu-Yeon Wei, and David Brooks. 2008. DeCoR: A delayed commit
and rollback mechanism for handling inductive noise in processors. In High Performance Computer Architecture, HPCA,
IEEE 14th International Symposium on. IEEE, 381–392.

[24] Nor Zaidi Haron and Said Hamdioui. 2011. Redundant residue number system code for fault-tolerant hybrid memories.
ACM Journal on Emerging Technologies in Computing Systems (JETC) 7, 1 (2011), 4.

[25] C. W. Hastings. 1966. Automatic detection and correction of errors in digital computers using residue arithmetic. In
Region Six Annu. Conf. IEEE, 429–464.

[26] Yuang-Ming Hsu and EE Swartzlander. 1992. Time redundant error correcting adders and multipliers. In Defect and
Fault Tolerance in VLSI Systems, 1992. Proceedings., 1992 IEEE International Workshop on. IEEE, 247–256.

[27] Yuang-Ming Hsu and EE Swartzlander. 1992. Time redundant error correcting adders and multipliers. In Defect and
Fault Tolerance in VLSI Systems, Proceedings., International Workshop on. IEEE, 247–256.

[28] Ching Yu Hung and Behrooz Parhami. 1994. Fast RNS division algorithms for �xed divisors with application to RSA
encryption. Inform. Process. Le�. 51, 4 (1994), 163–169.

[29] IBM. 2014. IBM Power System E880 server, an IBM POWER8 technology-based system, addresses the requirements of
an industry-leading enterprise class system. (2014).

[30] Barry W Johnson, James H Aylor, and Haytham H Hana. 1988. E�cient use of time and hardware redundancy for
concurrent error detection in a 32-bit VLSI adder. IEEE journal of solid-state circuits 23, 1 (1988), 208–215.

[31] Barry W Johnson, James H Aylor, and Haytham H Hana. 1988. E�cient use of time and hardware redundancy for
concurrent error detection in a 32-bit VLSI adder. journal of solid-state circuits 23, 1 (1988), 208–215.

[32] Rajendra S. Ka�i. 1996. A new residue arithmetic error correction scheme. IEEE transactions on computers 45, 1 (1996),
13–19.

[33] Osnat Keren, Ilya Levin, Vladimir Ostrovsky, and Beni Abramov. 2008. Arbitrary error detection in combinational
circuits by using partitioning. In Defect and Fault Tolerance of VLSI Systems, 2008. DFTVS’08. IEEE International
Symposium on. IEEE, 361–369.

[34] Asif Islam Khan, Korok Cha�erjee, Juan Pablo Duarte, Zhongyuan Lu, Angada Sachid, Sourabh Khandelwal, Ra-
mamoorthy Ramesh, Chenming Hu, and Sayeef Salahuddin. 2016. Negative capacitance in short-channel FinFETs
externally connected to an epitaxial ferroelectric capacitor. IEEE Electron Device Le�ers 37, 1 (2016), 111–114.

[35] Asif Islam Khan and Sayeef Salahuddin. 2015. 4 Extending CMOS with negative capacitance. CMOS and Beyond: Logic
Switches for Terascale Integrated Circuits (2015), 56–76.

[36] Asif I Khan, Chun W Yeung, Chenming Hu, and Sayeef Salahuddin. 2011. Ferroelectric negative capacitance MOSFET:
Capacitance tuning & antiferroelectric operation. In Electron Devices Meeting (IEDM), 2011 IEEE International. IEEE,
11–3.

[37] EV Krekhov, Al-r A Pavlov, AA Pavlov, PA Pavlov, DV Smirnov, AN Tsar’kov, PA Chistopol’skii, AV Shandrikov,
BA Sharikov, and DA Yakimov. 2008. A method of monitoring execution of arithmetic operations on computers in
computerized monitoring and measuring systems. Measurement Techniques 51, 3 (2008), 237–241.

[38] Hari Krishna, Bal Krishna, Kuo-Yu Lin, and Jenn-Dong Sun. 1994. Computational Number �eory and Digital Signal
Processing: Fast Algorithms and Error Control Techniques. Vol. 6. CRC Press.

[39] Hari Krishna, K-Y Lin, and J-D Sun. 1992. A coding theory approach to error control in redundant residue number
systems. I. �eory and single error correction. IEEE Transactions on Circuits and Systems II: Analog and Digital Signal
Processing 39, 1 (1992), 8–17.

[40] Daniel Lipetz and Eric Schwarz. Self Checking in Current Floating-Point Units. In Proceedings of the 2011 IEEE 20th
Symposium on Computer Arithmetic (ARITH ’11). IEEE Computer Society, Washington, DC, USA, 73–76.

[41] Chao-Kai Liu. 1972. Error-correcting-codes in computer arithmetic. Technical Report. DTIC Document.
[42] Hao-Yung Lo and Ting-Wei Lin. 2013. Parallel Algorithms for Residue Scaling and Error Correction in Residue

Arithmetic. Wireless Engineering and Technology 4, 04 (2013), 198.
[43] Florence Jessie MacWilliams and Neil James Alexander Sloane. 1977. �e theory of error-correcting codes. Elsevier.

1:24 B. Deng, S. Srikanth et al.

[44] Daniel Marienfeld, Egor S Sogomonyan, Vitalij Ocheretnij, and M Gossel. 2005. New self-checking output-duplicated
booth multiplier with high fault coverage for so� errors. In Test Symposium, 2005. Proceedings. 14th Asian. IEEE, 76–81.

[45] J Mathew, S Banerjee, P Mahesh, DK Pradhan, AM Jabir, and SP Mohanty. 2010. Multiple bit error detection and
correction in GF arithmetic circuits. In Electronic System Design (ISED), 2010 International Symposium on. IEEE, 101–106.

[46] A. McMenamin. 2013. �e End of Dennard Scaling. (2013).
[47] Elias Mizan, Tileli Amimeur, and Margarida F Jacome. 2007. Self-imposed temporal redundancy: An e�cient technique

to enhance the reliability of pipelined functional units. In Computer Architecture and High Performance Computing,
SBAC-PAD. 19th International Symposium on. IEEE, 45–53.

[48] Michael Nicolaidis. 2003. Carry checking/parity prediction adders and ALUs. IEEE Transactions on Very Large Scale
Integration (VLSI) Systems 11, 1 (2003), 121–128.

[49] Michael Nicolaidis and Hakim Bederr. 1994. E�cient implementations of self-checking multiply and divide arrays. In
European Design and Test Conference, 1994. EDAC, �e European Conference on Design Automation. ETC European Test
Conference. EUROASIC, �e European Event in ASIC Design, Proceedings. IEEE, 574–579.

[50] Michael Nicolaidis and RO Duarte. 1998. Design of fault-secure parity-prediction booth multipliers. In Design,
Automation and Test in Europe, 1998., Proceedings. IEEE, 7–14.

[51] Eric B Olsen. 2015. Introduction of the Residue Number Arithmetic Logic Unit With Brief Computational Complexity
Analysis (Rez-9 so� processor). Whitepaper, Digital System Research (2015).

[52] Amos Omondi and Benjamin Premkumar. Residue Number Systems: �eory and Implementation. Imperial College
Press.

[53] Glenn A. Orton, Lloyd E. Peppard, and Sta�ord E. Tavares. 1992. New fault tolerant techniques for residue number
systems. IEEE transactions on computers 41, 11 (1992), 1453–1464.

[54] Janak H. Patel and Leona Y. Fung. 1982. Concurrent error detection in ALU’s by recomputing with shi�ed operands.
IEEE Trans. Computers 31, 7 (1982), 589–595.

[55] Song Peng and Rajit Manohar. 2005. Fault tolerant asynchronous adder through dynamic self-recon�guration. In
Computer Design: VLSI in Computers and Processors, 2005. ICCD 2005. Proceedings. 2005 IEEE International Conference
on. IEEE, 171–178.

[56] Song Peng and Rajit Manohar. 2005. Fault tolerant asynchronous adder through dynamic self-recon�guration. In
Computer Design: VLSI in Computers and Processors, ICCD. Proceedings.International Conference on. IEEE, 171–178.

[57] AP Preethy and D Radhakrishnan. 1999. A 36-bit balanced moduli MAC architecture. In Circuits and Systems, 1999.
42nd Midwest Symposium on, Vol. 1. IEEE, 380–383.

[58] AP Preethy and D Radhakrishnan. 2000. RNS-based logarithmic adder. IEE Proceedings-Computers and Digital
Techniques 147, 4 (2000), 283–287.

[59] Vijaya Ramachandran. 1983. Single residue error correction in residue number systems. IEEE transactions on computers
32, 5 (1983), 504–507.

[60] J Ramirez, A Garcia, S Lopez-Buedo, and A Lloris. 2002. RNS-enabled digital signal processor design. Electronics Le�ers
38, 6 (2002), 266–268.

[61] �ammavarapu RN Rao. 1970. Biresidue error-correcting codes for computer arithmetic. IEEE Transactions on computers
100, 5 (1970), 398–402.

[62] Wenjing Rao and Alex Orailoglu. 2008. Towards fault tolerant parallel pre�x adders in nanoelectronic systems. In
Design, Automation and Test in Europe, 2008. DATE’08. IEEE, 360–365.

[63] Wenjing Rao, Alex Orailoglu, and Ramesh Karri. 2006. Fault identi�cation in recon�gurable carry lookahead adders
targeting nanoelectronic fabrics. In Test Symposium, 2006. ETS’06. Eleventh IEEE European. IEEE, 63–68.

[64] Stefan Rusu. 2010. Multi-Domain Processors Design Overview. ISCA tutorial on Multi-domain Processors: Challenges,
Design Methods, and Recent Developments (June 2010).

[65] Sayeef Salahuddin and Supriyo Da�a. 2008. Can the subthreshold swing in a classical FET be lowered below 60
mV/decade?. In Electron Devices Meeting, 2008. IEDM 2008. IEEE International. IEEE, 1–4.

[66] Ute Schi�el, André Schmi�, Martin Süßkraut, and Christof Fetzer. 2010. ANB-and ANBDmem-encoding: detecting
hardware errors in so�ware. In International Conference on Computer Safety, Reliability, and Security. Springer, 169–182.

[67] Avik Sengupta and Balasubramaniam Natarajan. 2013. Performance of systematic RRNS based space-time block codes
with probability-aware adaptive demapping. IEEE Transactions on Wireless Communications 12, 5 (2013), 2458–2469.

[68] Y. Shimazaki, R. Zlatanovici, and B. Nikolic. 2004. A shared-well dual-supply-voltage 64-bit ALU. Journal of Solid-State
Circuits 39, 3 (2004), 494–500.

[69] Sriseshan Srikanth, Bobin Deng, and �omas M Conte. 2016. A Brief Survey of Non-Residue Based Computational
Error Correction. arXiv preprint arXiv:1611.03099 (2016).

[70] S. Srikanth, P. G. Rabbat, E. R. Hein, B. Deng, T. M. Conte, E. DeBenedictis, J. Cook, and M Frank. Memory System
Design for Ultra Low Power, Computationally Error Resilient Processor Microarchitectures. In International Symposium
on High Performance Computer Architecture (HPCA),2018. [to appear].

Computationally Error Tolerant Computing 1:25

[71] C-C Su and H-Y Lo. 1990. An algorithm for scaling and single residue error correction in residue number systems.
IEEE Trans. Comput. 39, 8 (1990), 1053–1064.

[72] J-D Sun and Hari Krishna. 1992. A coding theory approach to error control in redundant residue number systems.
II. Multiple Error detection and correction. IEEE Transactions on Circuits and Systems II: Analog and Digital Signal
Processing 39, 1 (1992), 18–34.

[73] J-D Sun, Hari Krishna, and KY Lin. 1992. A superfast algorithm for single-error correction in RRNS and hardware
implementation. In Circuits and Systems, 1992. ISCAS’92. Proceedings., 1992 IEEE International Symposium on, Vol. 2.
IEEE, 795–798.

[74] Yan Sun, Minxuan Zhang, Shaoqing Li, and Yali Zhao. 2010. Cost e�ective so� error mitigation for parallel adders by
exploiting inherent redundancy. In IC Design and Technology (ICICDT), 2010 IEEE International Conference on. IEEE,
224–227.

[75] Andraos Sweidan and Ahmad A Hiasat. 2001. On the theory of error control based on moduli with common factors.
Reliable computing 7, 3 (2001), 209–218.

[76] Nicholas S Szabo and Richard I Tanaka. 1967. Residue arithmetic and its applications to computer technology. McGraw-
Hill.

[77] J. Tan and O. Rosen. 2004. Process for determining competing cause event probability and/or system availability during
the simultaneous occurrence of multiple events. (April 22 2004). h�ps://www.google.com/patents/US20040078167 US
Patent App. 10/272,156.

[78] Yangyang Tang, Emmanuel Boutillon, Christophe Jégo, and Michel Jézéquel. 2010. A new single-error correction
scheme based on self-diagnosis residue number arithmetic. In Design and Architectures for Signal and Image Processing
(DASIP), 2010 Conference on. IEEE, 27–33.

[79] �ian Fa� Tay and Chip-Hong Chang. 2014. A new algorithm for single residue digit error correction in Redundant
Residue Number System. In Circuits and Systems (ISCAS), 2014 IEEE International Symposium on. IEEE, 1748–1751.

[80] �ian Fa� Tay and Chip-Hong Chang. 2016. A non-iterative multiple residue digit error detection and correction
algorithm in RRNS. IEEE transactions on computers 65, 2 (2016), 396–408.

[81] T. N. �eis. 2012. (keynote) in quest of a fast, low-voltage digital switch. ECS Transactions 45, 6 (2012), 3–11.
[82] T. N. �eis and P. M. Solomon. 2010. In �est of the Next Switch: Prospects for Greatly Reduced Power Dissipation in

a Successor to the Silicon Field-E�ect Transistor. Proc. IEEE 98, 12 (Dec 2010), 2005–2014.
[83] Mojtaba Valinataj and Saeed Safari. 2007. Fault tolerant arithmetic operations with multiple error detection and

correction. In Defect and Fault-Tolerance in VLSI Systems, 2007. DFT’07. 22nd IEEE International Symposium on. IEEE,
188–196.

[84] Dilip P Vasudevan and Parag K Lala. 2005. A technique for modular design of self-checking carry-select adder. In
Defect and Fault Tolerance in VLSI Systems, 2005. DFT 2005. 20th IEEE International Symposium on. IEEE, 325–333.

[85] Dilip P Vasudevan, Parag K Lala, and James Patrick Parkerson. 2007. Self-checking carry-select adder design based on
two-rail encoding. IEEE Transactions on Circuits and Systems I: Regular Papers 54, 12 (2007), 2696–2705.

[86] John Von Neumann. 1956. Probabilistic logics and the synthesis of reliable organisms from unreliable components.
Automata studies 34 (1956), 43–98.

[87] E George Walters III, Mark G Arnold, and Michael J Schulte. 2003. Using truncated multipliers in DCT and IDCT
hardware accelerators. In Optical Science and Technology, SPIE’s 48th Annual Meeting. International Society for Optics
and Photonics, 573–584.

[88] Ute Wappler and Christof Fetzer. 2007. Hardware failure virtualization via so�ware encoded processing. In Industrial
Informatics, 2007 5th IEEE International Conference on, Vol. 2. IEEE, 977–982.

[89] R. W. Watson. 1965. Error detection and correction and other residue interacting operations in a residue redundant
number system. Univ. California, Berkeley.

[90] Richard W Watson and Charles W Hastings. 1966. Self-checked computation using residue arithmetic. Proc. IEEE 54,
12 (1966), 1920–1931.

[91] Hanshen Xiao, Hari Krishna Garg, Jianhao Hu, and Guoqiang Xiao. 2016. New Error Control Algorithms for Residue
Number System Codes. ETRI Journal 38, 2 (2016), 326–336.

[92] Li Xiao and Xiang-Gen Xia. 2015. Error correction in polynomial remainder codes with non-pairwise coprime moduli
and robust Chinese remainder theorem for polynomials. IEEE Transactions on Communications 63, 3 (2015), 605–616.

[93] SS-S Yau and Yu-Cheng Liu. 1973. Error correction in redundant residue number systems. IEEE Trans. Comput. 100, 1
(1973), 5–11.

[94] Sung-Ming Yen, Seungjoo Kim, Seongan Lim, and Sang-Jae Moon. 2003. RSA speedup with Chinese remainder theorem
immune against hardware fault cryptanalysis. IEEE Transactions on computers 52, 4 (2003), 461–472.

[95] Pengsheng Yin and Lei Li. 2013. A new algorithm for single error correction in RRNS. In Communications, Circuits and
Systems (ICCCAS), 2013 International Conference on, Vol. 2. IEEE, 178–181.

https://www.google.com/patents/US20040078167

	Abstract
	1 Introduction
	1.1 Contributions

	2 Background
	2.1 Triple Modular Redundancy (TMR)
	2.2 Residue Number System (RNS)
	2.3 Redundant RNS (RRNS)

	3 CREEPY Overview
	4 CREEPY Core
	4.1 Instruction Set Architecture (ISA)
	4.2 Error Model
	4.3 Signed Number Representation
	4.4 Optimized Multiplier Unit Design
	4.5 Selecting RRNS Bases
	4.6 RRNS Check Insertion Strategies
	4.7 Multi-Domain Voltage Supply
	4.8 RIU Algorithms

	5 Evaluation Methodology
	6 Simulation Results
	6.1 Signal Energy Limits
	6.2 Performance
	6.3 Energy
	6.4 Energy Delay Product(EDP)
	6.5 Energy Potential of RIU Optimizations

	7 Related Work
	8 Conclusion
	9 Acknowledgment
	References

