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I. INTRODUCTION TO THE ROGUES GALLERY

The Rogues Gallery is a new deployment for understanding

next-generation hardware with a focus on unorthodox and

uncommon technologies. This testbed project was initiated in

2017 in response to Rebooting Computing efforts and initiatives.

The Gallery’s focus is to acquire new and unique hardware (the

rogues) from vendors, research labs, and start-ups and to make

this hardware widely available to students, faculty, and industry

collaborators within a managed data center environment. By

exposing students and researchers to this set of unique hardware,

we hope to foster cross-cutting discussions about hardware

designs that will drive future performance improvements in

computing long after the Moore’s Law era of cheap transistors

ends. We have defined an initial vision of the infrastructure and

driving engineering challenges for such a testbed in a separate

document, so here we present highlights of the first one to

two years of post-Moore era research with the Rogues Gallery

and give an indication of where we see future growth for this

testbed and related efforts.

The important research insights from this testbed (so far)

are the following:

• Post-Moore computing research is built on a hierarchy
of novel architectures with varying levels of software
support. Of the current rogues, the Emu has the most

“developed” software stack, but this means that it still lacks

critical libraries, compiler optimizations, and APIs for in-

terfacing with target applications. Neuromorphic, quantum,

and other more revolutionary architectures still lack much

of the needed compiler and library infrastructure to map

meaningful applications.

• We can demonstrate small “wins” from technologies
like the Emu Chick or Hybrid Memory Cube but these
results indicate the need for deeper study and more
focused engineering. Our initial Emu results indicate

a suitability for graph analysis, but we cannot yet run

large graphs or at scale due to load imbalance and

thread migration issues. Likewise, the packet-oriented

nature of the Hybrid Memory Cube (HMC) interface

allows for more focused latency and BW tradeoff studies,

but applications research using a combined HMC and

FPGA platform is limited by the lack of well-supported

high-level synthesis (HLS) tools for FPGAs and similar
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Fig. 1. High-level overview of the CRNCH Rogues Gallery

programmable devices. Both of these early prototypes

indicate a focused need for more research studies and

engineering efforts.

• Tools, runtimes, and benchmarking are an important
challenge for post-Moore research that needs more re-
search investment as an enabling infrastructure. Tools

like the Habanero programming model and runtime [1],

Kokkos portability API [2], and benchmarking are “high-

effort” investments. However, their respective benefits can

justify the cost, if we can build sufficient communities

around platforms and tools that are convincing to the

research community and funding agencies.

• Education and engagement with undergrads will be
important elements to push post-Moore research into
the forefront for students. There is currently a strong

push from industry and funding agencies for students

and researchers to tackle machine learning topics on

current-day architectures. We need to engage students

in post-Moore computing efforts by bridging from current

machine learning to topics that require future architectures.

We detail one example of how we are working to map from

machine learning applications to post-Moore architectures

in Section VIII.
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II. THE ROGUES GALLERY

As Figure 1 demonstrates, the CRNCH Rogues Gallery

initially encompasses five different areas of research: 1)

Traditional computation and accelerators that include en-

abling technologies like FPGAs, RISC-V, and related HPC

technologies that provide a good bridge to post-Moore hardware.

2) Near-memory computation and data rearrangement
technologies like High-bandwidth memories (HBM), NVM (as

typified by newer 3D XPoint devices), near-storage accelerators,

and prototypes like the Emu Chick [3], [4]. 3) Neuromorphic
accelerators, which extend our conception of machine learning

accelerators to brain-inspired computing with lower power

requirements and real-time processing power. 4) Revolutionary
Architectures that include sparse accelerators like our local

project, Strider, emerging quantum efforts, reversible, and

thermodynamic computing. 5) Tools and resources that are

critical to map today’s algorithms and applications of interest to

novel architectures, especially those that are truly revolutionary.

We present examples of each of these categories from the

Rogues Gallery in the following sections.

III. TRADITIONAL ARCHITECTURES - RECONFIGURABLE

COMPUTING

Field Programmable Gate Arrays are not post-Moore archi-

tectures in themselves, but they can enable the evaluation of

novel memory systems and accelerators like the neuromorphic

DANNA implementation [5]. Recent work with the Rogues

Gallery has focused on compilation tools for FPGAs and

evaluating memory systems like the Hybrid Memory Cube

[6], which has been made available for researchers as part of a

Micron-supported Xilinx FPGA and HMC module called the

AC-510. This platform has enabled several recent publications

[7], [8] that are focused on low-level characterizations of this

type of 3D stacked memory. As Figure 2 shows, the packet-

oriented nature of HMC requests allows for packaging multiple

DRAM read requests into a larger payload that can then be sent

to the memory with related trade-offs in latency or improved

overall bandwidth utilization of the serialized link. While

Micron has recently moved away from future HMC designs,

the similarities of HMC accesses with traditional networking

payloads and the abstracted nature of the HMC’s DRAM

interface may play a role in future post-Moore successors

to High-bandwidth memory (HBM) including those enabled

by packet-oriented technologies like Gen-Z [9].

More traditional FPGA research results have included

the usage of Intel and Xilinx platforms for research into

runtimes and compiler frameworks. Most notably, standard

Arria 10 boards provide an opportunity to evaluate joint

industry and academic research on the Temporal to Spatial

(T2S) programming system [10] that allows for decoupling

of different spatial optimizations and orientations from the

functionality of an accelerated kernel like a matrix-multiply

operation. Results from this study show that dense tensor

algebra kernels (GEMM, Tensor-Times Matrix, etc.) can easily

be mapped to an Intel FPGA platform with a 1.76X speedup

Fig. 2. Characterization of the AC-510 FPGA+HMC platform shows
clear trade-offs for latency versus bandwidth as packet sizes change.
[8]

for GEMM over an NDRange-based OpenCL implementation

and up to 88% of a hand-tuned HDL implementation.

Ongoing work in this space is looking at mapping machine

learning and high-performance computing kernels to recon-

figurable platforms using compiler optimizations and systems

like T2S and related research projects like OpenARC [11] and

Chisel to reduce the overhead of testing new accelerators from

that required with hand-tuned HDL or OpenCL codes.

IV. NEAR-MEMORY COMPUTATION

We envision that near-memory processing architectures will

increasingly migrate computation near high-bandwidth and non-

volatile memories as in previous work [12], [13], [14], [15]

and will be supplemented by an evolving set of near-storage

processors like the recently announced Western Digital SweRV

RISC-V core. In our local testbed, we have been focused

on characterizing and evaluating optimizations for current

near-memory systems like HMC and novel architectures like

the Emu system. The Emu architecture focuses on improving

random-access bandwidth scalability by migrating lightweight

Gossamer threads to data and by emphasizing fine-grained

memory access. We leave the more detailed description of this

system to other related work [3], [16], [4], [17]. Our currently

evolving prototype contains eight nodes that are each organized

into eight gossamer cores (also referred to as a nodelet) and

that are clocked at 175 MHz with DDR4 DRAM memory

that is clocked at 1600MHz. The current generation of Emu

system, the Emu Chick, includes one stationary processor for

each of the eight nodelets contained within a node. The Emu

Chick provides an interesting use case as an intermediate-level

rogue in that it has a basic Linux-based OS on the stationary

cores, a detailed single-threaded simulator, and support for

Cilk++ and some basic Python functionality. While there are

many missing libraries for the Emu architecture, students have

used the testbed to perform characterization experiments, run

graph-oriented benchmarks, and test basic machine learning

algorithms using a SciKit-Learn interface.

Detailed microbenchmark characterization for this architec-

ture has been explored in [18], so we present two sample

results that demonstrate initial ”wins” for irregular algorithm

design. Figure 3 shows a custom pointer chasing benchmark

that was designed to test the irregular access capabilities

of the Emu system in a more fine-grained manner than the



Fig. 3. Bandwidth utilization of pointer chasing, compared between Sandy
Bridge Xeon and Emu (64 nodelets) [18]

Fig. 4. Streaming BFS on the Emu Chick versus x86 Cilk and STINGER for
balanced Erdös-Rényi) graphs. Scale: log2 of the number of vertices. [19]

traditional GUPS benchmark. Blocks of data in a linked list

are increasingly shuffled to simulate different levels of random

access, and the CPU system (a Sandy Bridge box) exhibits a

somewhat expected bandwidth utilization trend line that follows

the caching and paging trend lines up to 16K sized blocks. At

the same time, the Emu is able to achieve a relatively consistent

bandwidth utilization result for all but the smallest and largest

block sizes.

The results in Figure 4 compare Emu single node (8 cores)

and multi-node (64 cores) with a Haswell server system running

a streaming BFS application using either Cilk or a recent

state-of-the-art STINGER [20] implementation. Despite the

differences in clock rate and memory speed for the Emu and

CPU systems, the Chick is able to achieve similar rates of edge

traversal for the input balanced graphs. This result indicates

that at least for small amounts of data, the cacheless Emu

architecture can perform as well as a heavily optimized CPU-

based system. Note that the Emu currently does not perform

nearly as well for unbalanced RMAT-style graphs due to load

imbalance issues with the current code implementation.

Interestingly, both of these positive results were somewhat

limited in their impact for the Emu architecture due to a later

analysis [18] that showed that the current Chick prototype is

compute-bound due to the underlying FPGA boards that are

used to construct its fabric and gossamer core architecture. This

further analysis demonstrates that we need to be careful in
extrapolating larger trends for post-Moore architectures
from small “wins” that show positive progress for key

applications.

A. Compiler-oriented optimizations

Even though the Emu system is designed to improve the per-

formance of data-sensitive workloads exhibiting weak-locality,

the thread migrations across nodelets can also hamper the

performance if overhead from the thread migration dominates

the benefits achieved through the migration. Also, frequent

thread creations can hamper the performance because thread

creation on a remote nodelet results in migrating to that remote

nodelet and spawning locally [21], [16].

Recent work using the Rogues Gallery Emu Chick system

[22] measures the total number of migrations arising from a set

of popular graph applications such as Bellman-Ford’s algorithm

for the single-source shortest path problem (SSSP), triangle

counting, and conductance, using an in-house simulation

environment of the Emu prototype. These measurements

showed that many unnecessary and redundant thread migrations

occurred because of naive algorithmic implementations. To

address these unnecessary thread migrations, two high-level

compiler optimizations, loop fusion and edge flipping, and one

low-level compiler transformation that incorporates hardware

support for remote atomic updates were explored to address

overheads arising from thread migration, creation, and atomic

operations.

A preliminary evaluation of these compiler transformations

was performed by manually applying them for SSSP, triangle

counting, and conductance over a set of RMAT graphs from

Graph500. RMAT graphs (edges of these graphs are generated

randomly with a power-law distribution) were used with the

number of vertices running from 26 to 214 (scale 6 through

14) and average degree 16 as specified by Graph500 [23].

These graphs were generated using the utilities present in the

STINGER framework [24]. This evaluation targeted a single

node of the Emu hardware prototype, and summary results

are presented for the combined set of optimizations on the

three types of input graphs in Figure 5. Applying all of thes

optimizations results in an overall geometric mean reduction

of 22.12% in thread migrations [22]. This preliminary study

clearly motivates further exploration of the implementation of

automatic compiler transformations to alleviate these thread

migration overheads arising from running graph applications

on the Emu system.

V. NEUROMORPHIC

The Field Programmable Analog Array (FPAA) [25] imple-

ments a combined analog and digital board that can implement

many analog and neuromorphic architectures [26], [27]. The

FPAA combines a 2D array of ultra-low-power floating-gate

analog plus digital blocks with a driving 16-bit MSP430

microprocessor. The exploration and development platform

consists of a USB-attached board with multiple analog input

ports (Figure 6).

For a device manufactured on a 350nm CMOS process, the

FPAA provides a very low-power platform for neuromorphic,

machine learning, and classification tasks. For example, the



Fig. 5. Experimental evaluation (i.e., %reduction in thread migrations) of
three graph algorithms (Conductance, SSSP-BF and Triangle counting) on the
RMAT graphs from scales 6 to 14 specified by Graph500. Transformations
applied on the algorithms: Conductance/SSSP-BF/Triangle counting: (Node
fusion)/(Edge flipping and Remote updates)/ (Remote updates). The evaluation
is done a single node (8 nodelets) of the Emu system [22].

Fig. 6. The Field Programmable Analog Array (FPAA)

FPAA uses 23 μW to recognize the word “dark” in the TIMIT

database [26]. Similarly, classifying acoustic signals from

a knee joint requires 15.29 μW [27]. Both of these types

of computations are performed in real time, so these power

savings translate directly to energy savings and help to provide

justification for further research in mixed analog and digital

hardware for multiple applications.

Our current focus for research with the FPAA platform

is focused on extending existing classification and spiking

neural network examples to support higher level neuromorphic

APIs like the TennLab exploratory framework [28] and Sandia

National Lab’s N2A [29]. Currently the FPAA is primarily

programmed with a graphical interface using Scilab and XCos

tools, so we initially need to provide a mapping from high-

level neuromorphic APIs to the modular and macro-block

programming environment that is used to create mixed analog

and digital designs on the FPAA. While this initial engineering

effort may not be groundbreaking in terms of post-Moore

research, it is a critical effort to bring this novel hardware to a

wider community of potential users.

VI. REVOLUTIONARY ARCHITECTURES

The final category of post-Moore devices are those that

are revolutionary in terms of upending the traditional von

Neumann model for computing. While we group reversible,

thermodynamic, quantum, and some specialized accelerators in

this category, we currently are investigating two types of revo-

Fig. 7. Intelligent and dynamic memory-centric marshalling of sparse
data with the Strider architecture significantly improves DRAM
performance and results in over a magnitude of speedup for sparse
reductions [31], [32].

lutionary architectures, sparse non-von Neumann accelerators

and quantum computing enabling software and algorithms.

A. Accelerators for Sparse Data

Conventional architectures are inefficient for a class of

emerging workloads that exhibit low locality of reference.

These sparse data applications suffer from a high cache miss

ratio and expose DRAM (main memory) latency to the critical

path. Recent research [30], [31], [32] has revealed that DRAM-

centric sparse representations, algorithms and architectures have

the potential of improving the state-of-the-art performance

and energy by an order of magnitude. In particular, these

works have focused on the sparse reduction kernel, wherein

an associative operation is applied to the values of two or

more key-value pairs that share the same key. For example,

in generalized sparse matrix-matrix multiplication (SpGEMM,

used in a variety of domains including graph analytics and

HPC [33]), the accumulation phase is nothing but a sparse

reduction problem where the “keys” are the matrix indices

of the non-zero partial products (“values”) that need to be

summed (reduction operator).

Figure 7 demonstrates the tremendous speedup achieved due

to using such an approach with our custom architecture, Strider,

when compared with software binary tree and Kokkos-based

approaches to the same problem. Speedups of up to 30x are

measured as an average across a variety of SpGEMM-based

workloads as well as for Firehose, a cybersecurity benchmark

that models soft real time events. While these results are

obtained via implementations in cycle-accurate simulators,

FPGA synthesis of the underlying hardware operations [34]

suggests that we could pursue a future integration of such

accelerators for irregular data streams in the reconfigurable

arena of the Rogues Gallery (Section III).

B. Quantum

The Rogues Gallery focuses on the programming and

systems level of quantum computing while leveraging both

local [35] and remote “Noisy Intermediate-Scale Quantum”

devices (NISQ) [36] systems for intermediate results. The

strenuous physical requirements for hosting quantum systems

limits their physical deployment, so we focus more on easing

intermediate access steps for algorithm development and

helping users access available remote testbeds.



Programs for NISQ devices must adapt to the noise and

errors [37]. This currently requires multiple runs along with

adapting both algorithms and hardware mappings. The Rogues

Gallery framework already recognizes systems where stability

is an issue and extends directly to quantum sampling.

Beyond all of the systems issues lie the educational aspects.

Quantum computing requires many mental pivots from classical

computing. Section VIII briefly outlines our undergraduate

efforts for quantum platforms leveraging existing frameworks

like Qiskit[38] and building on existing training programs

like NSF’s EPicQC quantum computing tutorials and summer

schools.

VII. SOFTWARE RESOURCES

Making new hardware available is a key component of a

successful post-Moore testbed, but we argue that the tools and

benchmarks made available are critical to build an interested

community around specific architectures.

A. Benchmarking from Micro to Macro

Initial research into post-Moore architectures has resulted in

a rich set of microbenchmarks that can be used and modified

to test new architectures. For instance, characterizations of the

Emu Chick system at our institute has led to a novel pointer-

chasing benchmark that can be run on CPU-based systems as

well as on the Emu platform, streaming graph benchmarks,

sparse-matrix vector microkernels, and related graph and sparse

microbenchmarks from related characterizations [17]. Likewise,

local tensor libraries like ParTI [39] have variants for traditional

systems and the Emu system and are supported by growing,

collaborative datasets like the FROSTT tensor repository [40].

Figure 8 shows results for traditional HPC-oriented systems

with the newly released Spatter benchmark suite [41], which

enables users to test variations of gather and scatter operations

and to characterize and evaluate patterns of indexed accesses

that occur commonly in sparse algorithms and HPC applica-

tions. These results show the correlation between the sparsity

of accesses, where the sparsity of 16 is equivalent to accessing

one out of every 16 elements, and the effective bandwidth of

these accesses when compared to a more traditional STREAM

benchmark. While some current systems like the KNL struggle

with reasonably sparse gather operations, newer GPUs like the

V100 and AVX-enabled CPUs like the Skylake can effectively

perform gather operations with high amounts of performance.

Our current focus is on extending Spatter by adding new

backends for post-Moore architectures, including the cacheless

Emu architecture, FPGAs with OpenCL, Metastrider, and

neuromorphic accelerators. We anticipate that these cacheless

architectures may be much better than traditional CPU- and

GPU-based platforms at performing these types of critical

memory accesses.

B. Portability Tools and Libraries

In addition to benchmarking efforts, there are early efforts to

explore both the Kokkos performance portability API [42] and

the GraphBLAS [43] on the Emu Chick in collaboration with
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other labs and universities. These engineering efforts contribute

to the overall community around a tool and enable a larger

number of applications to be tested on a novel post-Moore

architecture. For instance, the ongoing development of an Emu

Cilk backend for Kokkos would enable the execution of many of

the Mantevo mini-apps and other Kokkos-enabled applications

that have been ported by researchers at Sandia National Labs

and other DoE-associated laboratories. It is highly unlikely

that graduate students could port this same set of codes to the

Emu Chick by generating custom Cilk kernels for a set of

mini-apps.

Likewise, we look to build on related external libraries and

APIs for neuromorphic computing to enable a wider audience

for neuromorphic hardware like the FPAA. With a limited

number of researchers in the post-Moore computing space and

many high-effort infrastructure pieces to build, we should look

to grow our community’s research impact by building on and

improving existing tools and frameworks where at all possible.

VIII. EDUCATION AND OUTREACH

One important aspect of the Rogues Gallery is ensuring that

knowledge of novel platforms grows beyond the labs from

which they come. Many new ideas are tested only locally,

educating a only few graduate students about a platform’s

benefits and drawbacks. Making the platforms more widely

available combined with providing tutorial and educational

material should accelerate novel computing research. We also

organize sessions at scientific computing conferences that bring

together potential users, the Rogues Gallery, and other test

beds.



A. Training and Demonstration

In April 2018 we held a neuromorphic workshop combining

invited speakers with hands-on FPAA demonstrations. The

hands-on portion required physical attendance. Participants

organized into small groups, each of which had a FPAA to set

up and use.

Our more recent approach focuses on remote access to

our platforms. Rogues Gallery recently set up a JupyterLab1

environment for tutorials. These allow active participation for

those who want it, and a pre-made demonstration for those

who would rather listen and read. The pre-made portion also

is useful when the venue’s network is unreliable. Even without

making new Jupyter kernels, the environment permits editing

code, running compilers, visualizing results, and even shell

access. This proved useful for tutorials run at ASPLOS 2019

and PEARC 2019.

Tutorial and presentation material is made available through

our institutional website and a separate Gitlab website2. Soon

we hope these tutorials can be run entirely remotely, which

would ease access from classes.

B. Education and Undergraduate Research

The authors had experience with novel platforms as under-

graduates back when computing was not as homogeneous as it

is now. We understand the benefits of exposing undergraduates

to more than the few dominant platforms. One benefit to hosting

the Rogues Gallery at a university is integrating the Gallery

into undergraduate education.

Our initial undergraduate research class, part of the Vertically

Integrated Projects program [44], provides novel architecture

access for early computing and engineering students. The

students are engaged and self-organized into groups focused

on the FPAA, the Emu Chick, and integrating quantum

simulators like Qiskit [38]. The students interested in quantum

computing have learned initial skills from tutorials provided

by efforts like the NSF EPiQC program and have identified

the need for both diagrammatic and programmatic expression

of quantum algorithms. These undergraduate students are

excited to use novel architectures and provide feedback on

how their preparation does or does not match the expectations

in many platforms’ documentation. Additionally, many of our

microbenchmarking and initial engineering efforts provide a

good entry point for undergraduate students looking to get

involved with post-Moore computing research.

We also provide access to external graduate students at

multiple universities. So far the access has been mainly limited

to final projects for parallel computing classes, but we anticipate

providing more materials that can extend the reach of post-

Moore computing into traditional classwork.

IX. LOOKING TO THE FUTURE OF POST-MOORE TESTBEDS

We provide an overview of recent research results that have

been enabled by the Rogues Gallery testbed to provide a

1https://jupyterlab.readthedocs.io/en/stable/
2https://gitlab.com/crnch-rg

sampling of what near-term and future research for post-Moore

computing is ongoing at our institute. As with other larger

architectural testbeds like CENATE [45] at Pacific Northwest

National Lab, ExCL3 at Oak Ridge National Lab, and Sandia

HAAPS4, we are focused on different aspects of the post-Moore

computing landscape with a slightly different but overlapping

audience of industry collaborators, researchers, and students.

To make sense of this broad research landscape we have

attempted to organize the emerging candidate architectures

into a basic classification scheme focused on how “near-term”

a potential architecture might be. We propose a few initial

lessons learned that reinforce our common need to investigate

new post-Moore candidate architectures at a deep level while

supplementing them with a research organizaton built around

tools, benchmarking, and common APIs. Finally, we propose

that efforts like our own undergraduate post-Moore course and

large-scale education and tutorial efforts like those supported by

NSF (e.g., EPiQC) are critical to growing a thriving community

around post-Moore architecture testbeds.
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