
The Superstrider Architecture: Integrating Logic and
Memory towards non-von Neumann Computing

Sriseshan Srikanth and Thomas M. Conte
Georgia Institute of Technology

Atlanta, Georgia
Email: seshan@gatech.edu; conte@gatech.edu

Erik P. DeBenedictis and Jeanine Cook
Center for Computing Research

Sandia National Laboratories
Albuquerque, NM

Email: epdeben@sandia.gov; jeacook@sandia,gov

Abstract—We present a new non-von Neumann architecture,
termed “Superstrider,” predicated on no more than current
projected improvements in semiconductor components and 3D
manufacturing technologies, which should offer orders of
magnitude advances in both energy efficiency and performance
for many high-utility problem classes. The architecture is
described, which is based on computing on row-wide memory
words to accelerate sparse matrix algebraic operations that are
normally implemented as scalar operations. A cycle-accurate
simulation demonstrates potential performance improvements on
existing High Bandwidth Memory (HBM) on the order of 50× that
increases to 1000× or more when implemented using a fully
integrated 3D technology and compared to a simple baseline.
Further refinement may change these numbers, but the magnitude
of the opportunity suggests further work.

Keywords—Moore’s law; superstrider; processor-in-memory;
component; von Neumann; sparse matrix; associative array

I. INTRODUCTION
Realization of Moore’s law created a world-wide

information revolution and economic expansion due to the
exponential growth in the number of components per integrated
structure [1] (chip) and the computing applications it enabled.
Flatlining of line width on chips is evidence that Moore’s law is
at least changing. Moore’s article included a projection of an
exponentially increasing number of devices per 2D chip over
time, but there are now numerous examples of
(memory/storage) chips that are scaling in the third dimension,
making it no longer necessary for line width to scale to maintain
the vision originally proposed by Moore.

A traditional von Neumann architecture implements the
stored-program concept, with both data and instructions being
stored in a common memory and moved to the compute unit
over a bus. Although the von Neumann architecture and
Moore’s law are largely responsible for the performance of
today’s computers, the von Neumann architecture has
negatively impacted speed and energy efficiency, particularly
with respect to data movement, to a point that renders it
unsustainable. The cost of moving data between caches and
main memory accounts for a large portion of total energy in

several application domains and is cited as the key challenge in
future exascale systems [2].

Although memory and storage are now implemented in 3D
structures, they are currently being used only in computers of
the typical von Neumann architecture. So even if scaling in the
third dimension can extend Moore’s law, unless we mitigate the
von Neumann bottleneck that is created by the bus between
processor and memory, we will not see computational efficiency
(performance and energy efficiency) grow at the rates that drove
economic growth over the past several decades.

In this work, we make use of additional design flexibility
brought out by the shift from 2D to 3D [3] and the associated
possibility of collocating logic and memory. Some very
effective algorithms, such as merging (a type of sorting),
become inefficient at large scale simply due to the large amount
of data movement between logic and memory chips. Using a
merge network as an example, Fig. 1 shows how 3D integration
makes the needed interconnection pathways possible and
efficient.

Fig. 1: For highest performance, functions are defined as schematics and

laid out to reduce communications latency and energy, such as the bitonic merge
network on the top. (lower) A 3D physical module with tight coupling between
logic and memory allows short connections instead of conversion of signals to
high energy levels and off-chip delays. An external von Neumann processor can
be interfaced with one of the layers to establish compatibility with existing
software. The red curve shows a representative data movement step in merging,
which has no off-chip links.

Sandia National Laboratories is a multimission laboratory managed and
operated by National Technology and Engineering Solutions of Sandia, LLC.,
a wholly owned subsidiary of Honeywell International, Inc., for the U.S.
Department of Energy’s National Nuclear Security Administration under
contract DE-NA-0003525.

Superstrider belongs to a special class of accelerators, which,
in conjunction with a traditional processor, alleviates the von
Neumann bottleneck by collocating some computational
functions and their associated memory access, enabling
increased performance and energy efficiency over a broad class
of applications (e.g., data analytics, graph processing,
scientific/linear algebra). Superstrider itself is not a von
Neumann architecture, as it combines computation and memory
into a single component that is directed by a control unit and can
be integrated with a standard processor.

II. THE SUPERSTRIDER ARCHITECTURE
The Superstrider architecture performs a limited set of

operations using conjoined logic and memory, enabling it to
efficiently execute several algorithms related to sparse matrices,
which are the primary computational kernels in several scientific
applications. Its organization is non-von Neumann in that it
computes very close to memory rows with no processor in the
traditional sense. This eliminates the need to move data (referred
to as records or key-value pairs) from the processor to memory
over a bus, thereby eliminating the von Neumann bottleneck.

A. Overview of Superstrider Operation
The operational primitive of Superstrider is to perform in-

situ sorting (Section IIB) and compression (combining values of
records with identical keys, discussed in Section IIF) at the
granularity of a memory row. To achieve this, we organize
memory into a tree where the nodes are entire physical rows of
the memory, where each row comprises records in sorted order
and a pivot key that distinguishes subtrees. By setting the
fundamental unit of data to be a memory row, we achieve high
bandwidth utilization and eliminate bank conflicts.

Superstrider currently implements a fixed set of fundamental
algorithms to support sparse matrix computation. In this paper,
we focus specifically on the addition or accumulation phase of
sparse matrix multiplication. In dense multiplication of matrices,
C = AB, each record cij of C is the vector dot product of a row
of A and a column of B, such that cij = ¦k aikbkj. If we define cij

(k)
= aikbkj, many cij

(k) do not exist when A and B are sparse. When
the sparsity pattern is too irregular to exploit, this can be treated
as a data processing problem on a series of records of the form
{ i, j, cij

(k) }. Superstrider takes vectors of records in the form

{ i, j, cij
(k) }, sorts them into a standard form, then sums all the

values cij
(k) for a given (i, j). This is precisely the accumulation

phase of sparse matrix multiply.

Therefore, in the context of such an accumulation phase, an
addition operation is used to compress records with identical
keys. However, Superstrider implementations of other data
processing problems may employ a different collision
function [4] to achieve compression. In this paper, we limit the
collision function to addition.

Fig. 2 depicts an overview of Superstrider’s architecture and
operation. Our Superstrider implementation involves several
components:

- A memory array where the rows organized as a tree; where
each row stores at most K records.

- An “open row” buffer and an accumulator of size K each, to
buffer input and intermediate processed data.

- A merge network to sort records in the open row buffer and
the accumulator taken together. When laid out in a different
manner and used in reverse, such a network is used to
eliminate empty records that manifest as a result of
compression.

- A pool of function units consisting of comparators and adders
in order to aid with compression.

 We dedicate the remainder of this section to explain each of
these in further detail.

B. The Merge Operation and Sorted Invariant
Superstrider’s sort/merge capability is key to its efficient

operation. Shown at the top of Fig. 1, it is based on a bitonic
merge network that was first proposed decades ago for use in
specialized chips [5]. This network takes two sequences of 8
numbers, each sequence in sorted order, i. e. a bitonic sequence,
as input on the left, which flow through the network and are
output as single sequence of 16 numbers in sorted order at the
right. The vertical lines are comparators, and when two numbers
reach the ends of a vertical line, they are compared and swapped
so that the larger number is on top. A four-stage network is
shown in Fig. 1, where each stage of the network outputs sorted
sequences of decreasing size (e.g., bitonic sequences of 8 are
merged in the first stage, the second stage merges sequences of
4, the 3rd stage merges bitonic sequences of 2, etc.).

Fig. 2: Superstrider architecture and functionality. In a typical operation, such as Addvec (Section IIE), pre-sorted records in the open row buffer and the
accumulator are merged using the merge network (Section IIB) and records with identical keys are summed (Section IIF) using the function unit pool. The
result is a vector of sorted records, each of which has a unique key. These are then written into the binary tree layout of memory, based on pivot values.

We are able to realize efficient sorting by using only the
merge capability of a bitonic network because we enforce the
invariant the records in memory rows and the accumulator are
always in sorted order. Merging requires just log2(n) stages,
where n is the number of records being merged. Note that
realizing such an efficient sorting paradigm not only aids in
insertion/lookup of records into a Superstrider tree, but also aids
faster compression.

C. Control Logic
The control logic in Superstrider was designed to

complement its other unique features, but the control logic will
be described only briefly due to space limitations. Superstrider
is a state machine overall with one state transition per memory
access, with the control logic holding the main part of the state.
The control logic receives signals from the data path containing
information like the number of records whose key is less than
the pivot or whether a subtree exists or not. The control logic
produces simple commands like whether to swap the
accumulator and open row buffer or to leave them as they are,
compute the address or the next row to be accessed, and which
function to “call” on the next row.

The most important high-level Superstrider functions
include Addvec (add vector of records to the tree) and
Normalize. These operate on a memory row and both use the
merge network and the pool of function units to accomplish their
tasks. Before describing these functions, we first describe the
Superstrider data layout and control fields.

D. Memory/Data Layout
A Superstrider row may span several physical memory

banks, but for simplicity, we use a single bank to illustrate the
data layout. Fig. 2 shows rows of K = 5 records from a
Superstrider bank. The fields shown to the left of the red and
green records are control fields that are described in Table 1. The
contents of each record are in the format “(key) = value”, so a
term of cij

(k) appears with the notation (n(i, j)) = cij
(k), where

n(i, j) is an invertible function mapping two integers to one.
While we perform compression (Section IIF) to remove
duplicate keys from the same row before adding them to the tree,
we explain in Section IIE that it is possible for the same key to
appear in different rows. At a later stage, we remove such
duplicate keys via normalization (Section IIH).

A bank has an open row, or a row whose contents have been
transferred to the open row buffer shown in blue at the bottom
of the bank. The control fields to the left of the buffer are likely
to be a few dozen bits, as shown in Table 1, with the

Table 1: Control fields
Addr:(size) The Superstrider row number (Addr) and computed

size of the subtree rooted at this row.
Pivot The pivot value for sorting; is set to p = K/2.

Elements of the left/right subtree are less
than/greater than or equal to this value.

L subtree(size) The Superstrider row number (Addr) of the left
subtree and size of the left subtree.

R subtree(size) The Superstrider row number (Addr) of the right
subtree and size of the right subtree.

Fig. 3: Addition of three records to an initially empty Superstrider

Addr. Pivot L subtree R subtree

DRAM Rows

Addr. Pivot L subtree R subtree

(2)=0.02 (14)=0.09 (17)=0.49 (20)=0.27 (22)=0.45

DRAM Rows

(2)=0.02 (14)=0.09 (17)=0.49 (20)=0.27 (22)=0.45

0:(5) 17 0(0) 0(0)

Addr. Pivot L subtree R subtree

(17)=0.49 (18)=0.63 (20)=0.88 (22)=0.45 (27)=0.20

DRAM Rows

(13)=0.50 (13)=0.04 (18)=0.63 (20)=0.61 (27)=0.20

1:(5) 20 0(0) 0(0)

(2)=0.02 (13)=0.54 (14)=0.09 0:(8) 17 0(0) 1(5)

Addr. Pivot L subtree R subtree

(17)=0.49 (18)=0.63 (20)=0.88 (22)=0.45 (27)=0.20

DRAM Rows

(7)=0.68 (13)=0.07 (18)=0.82 (26)=0.25 (28)=0.99

1:(5) 20 0(0) 0(0)

(2)=0.02 (7)=0.68 (13)=0.61 (14)=0.09 2:(4) 13 0(0) 0(0)

(18)=0.82 (26)=0.25 (28)=0.99 0:(12) 17 2(4) 1(5)

b Initial memory state: empty

cAddvec function call
 (a) Input to Accumulator
 (b) Copy from Accumulator to memory
 (c) Pivot = (17)

dAddvec function call
 (a) Input to Accumulator
 (b) Merge memory row 0 with Accumulator
 (2)(13)(13)(14)(17)(18)(20)(20)(22)(27)
 (c) Compression function call
 (2)(13)(14)(17)(18)(20)(22)(27)
 (i) Sends green list to right child (>= root)
 (ii) Adjust size of root (to 8)
 (d) Pivot (child) = (20)
 eAddvec function call
 (a) Input to Accumulator
 (b) Merge memory row 0 with Accumulator
 (2)(7)(13)(13)(14)(18)(26)(28)
 (c) Compression function call
 (2)(7)(13)(14)(18)(26)(28)
 (i) Sends red list to left child (< root)
 (ii) Adjust size of root (to 12)
 (c) Pivot (child) = (13)

NOTE: (18) does not match ground truth because it has not yet been merged, so is colored yellow.

Accumulator

Accumulator

Accumulator

Accumulator

remainder of the row divided into K data records. The magnitude
of K will vary depending on both the row length and size of user-
defined records, but a representative range could be from
K=200-2,000. This layout may look similar to a hashed array
tree with K-element leaves, however, it is a binary tree with K-
elements nodes because of its pivot based organization.

As mentioned previously, Superstrider’s primary primitive
is merge, with data organized optimally in memory via a tree-
based sort. Each row is considered a node in the tree, with the
root of Superstrider’s overall tree at address zero. We use a pivot
in each row that is slightly different than that found in the
algorithmic literature for sorting. All keys in the left subtree are
less than the pivot; all keys in the right subtree are greater than
or equal to the pivot. However, each row has records whose keys
can be less than, equal to, or greater than the pivot. In Fig. 2,
records in the row whose key is less than the pivot are colored
red, the others green, and the records are always sorted.

E. Addvec
Addvec adds a vector with up to K records to the tree present

in memory. All the records are added in parallel.

Fig. 3 shows how record vectors of size K = 5 are added to
an empty memory using a tree-based algorithm. Records whose
key is less than the pivot are colored red; all others are shown in
green.

The memory is initially empty, which is step 0. In step 1,
Addvec copies the input from the accumulator to memory as the
root of the tree (i.e., 0:(5)) and sets the pivot to the key of the
middle record, which in the example is 17. Pivots do not change
once set.

Step 2 shows a new sorted vector of records (length K) in the
accumulator being added to the root of the tree in memory. The
records in the accumulator and memory are merged, which
results in records with identical keys ((13) and (20) both occur
twice in the merged record). This merged vector of records (of
length 2K) is then compressed, which adds the values in records
with identical keys (e.g., records (13)=0.50 and (13)=0.04
become a single record (13)=0.54). So after compression, we
have three records that are less than the pivot value (shown in
red, (2), (13), (14)) and five that are greater than or equal to the
pivot value (shown in green, (17), (18), (20), (22), (27)). At this
point, the algorithm determines which of these vectors to store
in memory and which to keep in the open row buffer, and on
which child to recursively call Addvec. To maintain consistency
of the tree, the Addvec algorithm recursively operates on vectors
that are either all less than or all greater than or equal to the pivot
value (i.e., all red or all green). Using the pivot (17), a right
subtree child is created and written to memory, leaving the keys
that are less than 17 in the root (open row buffer) and those
greater than or equal to 17 in the right subtree. The size of the
root is changed (from 5 to 8) to reflect the new number of
records tracked from the root and the child pivot is set to the key
of the middle (third) record, or 20.

Addvec is recursively called on the left or right child in the
open row buffer, depending upon the relative number of red and
green records. This iteration repeats until the proper subtree does
not exist, i. e. a leaf of the tree has been reached and the iteration

attempts to move below the leaf. At this point, a new leaf node
is created with the accumulator value and Addvec completes.

F. Compression
Compression occurs when the same key appears in several

records. The merge at the beginning of each step results in
equivalent keys being adjacent in the row of records. The pool
of function units identifies these adjacent records and with the
help of the backward merge network, replaces them with a single
record with the common key and a combined value. This
shortens the list by some number of records. For accumulation
in our sparse vector multiplication example, values are
combined by floating point addition, but other applications may
use a different collision function.

The simulator that constructed the diagram in Fig. 3 also
computes a ground truth representation of the correct C matrix.
Cells are colored yellow if their value does not match the ground
truth. At some point later in algorithm processing
(normalization), these two records pictured in yellow will appear
in the same row and will be compressed.

G. Multiset, Set, and Standard Forms.
The sort algorithm implemented in memory allows the tree

to have an unusual structure, leading to multiple forms. A row
may contain records whose key is less than the pivot, but these
records can also be in the left subtree. Likewise, a row may
contain records whose key is greater than or equal to the pivot,
but such records can also be in the right subtree. For multiset
form in general, a key can be found in a leaf node and/or in any
ancestor node up to the root, or in any combination of these
nodes. This property is essential for computational efficiency.

During normalization, all duplicate keys are removed from
the tree, converting it from multiset to set form. Allowing only
unique keys in the set (i. e., no duplicates) abides by the strict
definition of set and requires that all keys in the left/right subtree
are less than/greater than or equal to all keys in the row above
(parent node) rather than just the pivot.

We define standard form as the set form with the additional
constraint that all rows except the last have exactly K records.
Standard form is unique.

H. Normalize
Normalization compacts and reorganizes multiset trees with

incompletely compressed (yellow) cells and rows of irregular
length to the set or standard form. It is recursively called to
adjust the division of records between each of its subtrees and
the open row, with the division chosen to make the number of
records in the left subtree a multiple of K and to fill the memory
row completely if there are enough records to do so.
Normalization also ensures that all the records in the left/right
subtree are less than/greater-than-or-equal to any record in the
tree node.

This shifting of records to/from the open row from/to a
subtree uses the Normalize function (as well as min and max
functions) and the Addvec function, respectively. Addvec shifts
records from a row to a subtree. The records are removed from
the open row starting at the pivot through the rightmost record
and are sent to the subtree, with the pivot being the leftmost
record in the new subtree. Normalize moves records from a

subtree to the open memory row, using either the min(n) or
max(n) functions. These functions are called to find and remove
the n smallest or n largest keys in a subtree and return their
records. The records are then added to the open row. Obviously,
this activity cannot remove more records from a subtree than
exist and cannot fill the row beyond its K-record capacity.

If the input tree is in set form, the output of Normalize will
be in standard form. All left subtrees will have a multiple of K
records, and hence will have rows filled to exactly K records.
Since every subtree except the rightmost leaf node of the entire
tree is a left subtree of some node, only this rightmost node is
not guaranteed to have K records. This corresponds to standard
form. If the input tree is in multiset form, the output of
Normalize will be in set form. The Normalize function makes
use of an estimate of the size of subtrees to compute how to
divide the records. However, the number of records in a subtree
will change during normalization when records merge. Even
though merging may leave rows incompletely filled, Normalize
still puts the tree in set form with no duplicates.

III. EXPERIMENTAL FRAMEWORK
We implemented a memory cycle-accurate simulator for the

Superstrider architecture and compared its performance to a von
Neumann architecture baseline. We call the simulator memory
cycle-accurate because it faithfully preserves cycle timing of
memory. However, HBM has a protocol for moving data from
the physical memory to the controller. We model this protocol
using published timing figures [6], but we extrapolate the
protocol to hypothetical HBM successors with wider interfaces
where the timing is speculative. At the widest possible interface
width, the timing simulated represents a fully integrated logic in
memory model.

The simulator accurately counts the number of cycles for the
merge network and the function unit pool, however, we do not
consider wire delay in these networks. We find that the
incremental benefits (even with optimistic performance
projections obtained by ignoring wire delays) due to relatively
larger networks are rather modest, thereby rendering their
complexity and overheads unjustified.

A. Front End
A front end generates sorted records to feed the Superstrider

HBM+logic structure as well as to measure performance of a
von Neumann baseline. The baseline implements no reordering
optimizations on the sparse input matrices and does not simulate
caches because there is negligible spatial locality in sparse
matrix inputs. The baseline traverses the HBM banks as
rectilinear memory, i.e., without the binary tree format of the
Superstrider algorithm. We use University of Florida
matrices [7] as well as pseudo-randomly generated sparse
matrices as input to the Superstrider simulator. The latter is
especially useful in performance analysis because they enable
arbitrarily large inputs, and we use these to demonstrate the
benefits of the Superstrider paradigm in Section IV, with the
random sparse matrix multiplication input generating 27 million
non-zero records as the Superstrider input stream, where the key
of each record is a pseudo-random number between 0 and 27
million.

Fig. 4: Experimental framework. Baseline is an HBM stack with controller (8
channels) but no cache anywhere. For compatibility, Superstrider is
implemented as 8 instances, one per HBM channel, with a sweep performed
over additional parameters.

B. Memory Model
To make reasonable comparisons with a conventional

processor, the simulator illustrated in Fig. 4 models 8 identical
instances of Superstrider, each connected to an HBM channel.
Each HBM channel, simulated with 1 rank, comprises 8 16,384-
bit wide physical DRAM banks.

Each simulated Superstrider record contains an integer key
and a single precision floating point value, or 8 bytes per record.
To achieve maximum algorithmic efficiency, each Superstrider
row is set as wide as possible, i. e., K = 2,048 records or 128K
bits wide, which is the total row width offered by combining all
8 banks together. A Superstrider row is strided across its 8 banks
to avoid bank conflicts, thereby realizing high channel
bandwidth utilization.

The physical configuration of a bank as well as the timing
parameters that govern row access time are obtained from the
High Bandwidth Memory (HBM) JEDEC standard [6].
However, for simplicity, we ignore the overheads due to DRAM
refresh and read-to-write delays. We assume that the HBM is
clocked at one-fourth the frequency of that of logic.

C. Simulated Parameters
In the simulator, we vary several parameters to explore the

design space of the Superstrider architecture. We perform
experiments to understand the sensitivity to performance of
varying the following characteristics: (1) function unit pool
configuration, (2) merge network size, (3) “tightness’’ of the
logic/memory integration (interface width), and (4) resource
pipelining.

1) Function Unit Pool Configuration
A pool of function units are made available to facilitate

compression. These can be global or shared across the HBM
channels (Superstrider instances), or can be
distributed/partitioned or private per HBM channel depending
upon the target design budget allocated.

We evaluate three scheduling schemes:

Partitioned/N. The pool of N function units is statically
partitioned and distributed across all channels equally.

FCFS Greedy/N. The pool of N function units is globally
shared across channels and allocation/scheduling is done on a
first-come first-serve basis. It is greedy in that the scheduler
allocates any available units to an incoming compress request,
even if a sufficient number of them is not available to perform
the addition in a single time step.

Infinite#. We also evaluate an upper limit policy where there
are an infinite number of function units available, guaranteeing
constant (single cycle) access time.

2) Merge Network Size
A merge network is responsible for merging the open row

buffer and the accumulator and for deleting empty records after
compression. We assume that each channel has a merge network
associated with it close to the open row buffer and accumulator
to minimize wire length. As explained in Section II, this network
is a log2n-level bitonic structure, with each level taking multiple
pipelined cycles depending upon the number of comparators
available. For simplicity, we assume that there are enough ports
to the network to feed all its comparators simultaneously.

Recall that a Superstrider row spans 8 banks, each of which
is 16,384 bits wide. This means that the open row buffer as well
as the accumulator can house 2,048 records each. We simulate
three merge network sizes by varying the number of single-cycle
two-record comparators available: 4, 256, 2,048. However,
because we observe low marginal utility from increasing the size
of the merge network all the way to support 2,048 comparisons
per cycle, we conclude such complexity as unwarranted, and
omit presentation of their results.

3) Interface width: Near-Memory vs. In-Memory Logic:
We simulate a near-memory compute paradigm by modeling

Superstrider as an HBM controller chip. Although the row
buffer is 16,384 bits wide in an example HBM configuration,
data is provided to the base layer I/O in bursts that are only 128
bits wide. This means that such a near-memory logic
configuration is limited by this narrow burst width, although a
memory access reads an entire row into the memory row buffer.

By simulating higher interface widths we increase the
“nearness” of near-memory compute, thereby increasing the
“tightness” of the coupling between logic and memory, making
it in-memory compute at the limit. While a production HBM has
a 128 bit interface (burst) width, we simulate interface widths of
16,384 bits and 128K bits using HBM timing. However, in the
absence of off-the-shelf implementations, we hypothesize the
physical realization and timing of the larger interface widths.

4) Resource Pipelining
As the Superstrider instances are mutually independent, we

allow for interleaving between components across these
instances, and, thereby benefit from channel-level parallelism.

In addition, we optionally allow for pipelined execution
within each Superstrider instance:

Non-pipelined. There is no pipelining between the operation
of the components (open row buffer, accumulator, merge
network, function unit pool), as they process any given row.

Pipelined. This builds upon the simplistic approach above
by allowing adjacent components to overlap execution. For

example, as a row is being read out from memory in bursts, it
can proceed to the first stage of the merge network in same-sized
bursts without having to wait for the entire row to be first read.
Similarly, the last stage of the merge network can be overlapped
with the first stage of the function unit execution, the last stage
of which can be overlapped with the first stage of the deleting
network. This fine-grained pipelining can be implemented using
FIFOs.

Pipelined with Write Buffer. The pipelining described
above is limited to a single row because we need to have finished
processing a row in its entirety before we know the address of
the next row. As such, there is a window of time where the
memory channel is inactive while it waits for the row processing
to finish. Subsequently, there is another window of time where
the processing logic is inactive when the just-processed row is
being written back to memory. To increase the overlap between
logic and memory components, we employ a write buffer to
store processed rows and flush them out while a subsequent row
is being processed.

IV. RESULTS

A. Data transfers
The principal advantage of Superstrider is that it mitigates

the von Neumann bottleneck by reducing the number of
bandwidth-limiting and energy-consuming transfers between
the processor and memory. In conventional processors, cache-
line utilization (including hardware prefetching) for sparse
matrices is extremely low. In contrast, Superstrider makes
effective use of an entire row and there is no extraneous traffic.
In fact, to benefit from bank level parallelism and extract
maximal algorithmic efficiency, recall that we stride a
Superstrider row across its 8 banks, thereby making effective
use of 8×2048 byte wide rows at a time.

For an estimation of energy saved due to reduced memory
traffic, we count the number of times logic accesses memory at
a DRAM row granularity. We find that Superstrider accesses
over 121× fewer physical rows from memory than the von
Neumann baseline.

We will see in the next section that the amount of
computational resources required for orders of magnitude
speedup is relatively low. A detailed power model is beyond the
scope of this paper, but it is well known [2] that data transfers
are the primary contributors to energy consumption. Clearly, the
significant reduction in memory traffic described above renders
a proportional reduction in system energy.

B. Performance
The Superstrider algorithm reduces the number of transfers

between logic and memory thereby saving energy and reducing
wasted bandwidth, or in other words, the Superstrider
architecture circumvents the von Neumann bottleneck. As we
shall describe below, even the most resource-constrained
configuration results in close to 50× performance improvement
over von Neumann baseline. Upon subsequently removing
various resource bottlenecks from our Superstrider
implementation, simulation shows an additional speedup of
close to 80×.

For the memory+logic configurations of Section III, we now
present sensitivity of performance of each configuration to the
simulation parameters as outlined in Section III C.

Function unit pool configuration. Partitioned/8 yields a
speedup of 49-96× for an HBM-based near-memory logic
configuration with 4 comparators per channel, depending upon
the Superstrider pipelining configuration employed. In other
words, allocating just a single function unit and 4 comparators
per Superstrider channel yields significant benefits, as shown in
Fig. 5.

Partitioned/64 and FCFS Greedy/8 yield identical benefits. In
other words, the designer can make a tradeoff between
dedicating 8 function units per Superstrider channel for shorter
wires/low scheduling overhead, and, sharing 8 units across all
channels for improved resource utilization.

In general, we find that FCFS Greedy/64 approaches the
performance of Infinite# when 4 comparators are used, meaning
that 64 function units are more than sufficient as the bottlenecks
are in the sorting network and memory access width.

 Merge network size. For an HBM-based near-memory
logic configuration, increasing the number of comparators per
merge network from 4 to 256 yields an additional improvement
of 1.8-2.6×, depending upon the resource pipelining scheme
employed. Further increasing the merge network size is not
useful as the system is bottlenecked by memory access width.

Interface width. Increasing the interface width from 128
bits to 16,384/128K bits (or by 128×/1024× respectively)
renders an additional improvement of slightly less than 2× (for
all resource pipelining and function unit pool configurations)
when the system is bottlenecked by a mere 4 comparators.

However, upon also increasing the number of comparators
per merge network to 256, significant additional improvement is
seen when the interface width and the capability of the function
unit pool are increased, as shown in Fig. 6. The larger merge
network is now able to better keep up with data being delivered
due to the increased interface width, rendering improved
marginal utility of more powerful function unit pool
configurations as well.

 Further increasing the size of the merge network to support
2,048 comparisons per cycle realizes very modest improvements
when increasing interface width to 16,384 bits and larger.
Similarly, the fabrication/implementation cost of achieving
logic-memory integration all the way to 128K bits is not

sufficiently justified by the relative improvement in
performance.

Resource pipelining. Improving the degree of overlap
between logic and memory access components yields additional
benefits (about 2×) in a manner similar to that of improving the
function unit pool or merge network’s capability, as the system
becomes bottlenecked by interface width. This is demonstrated
in Fig. 5, but applies to other configurations as well.

In the general scenario, the relative order of efficiency is
Non-pipelined < Pipelined < Pipelined with Write Buffer.
However, in the scenario where there is little overhead in
computation (such as with over 2,048 comparators and 64
function units), using write-buffer based pipelining can be
detrimental to performance. This is because without a write
buffer, the write-back occurs to the same row, resulting in a
single precharge latency incurred upon closing that row, post its
write. With a write buffer, however, adjacent reads and writes
are to different rows, meaning that there is an additional
overhead of row activation and precharge. When there is little
overhead in computation, this additional row opening and
closing DRAM command latencies are no longer hidden. A row
remap memory may be designed to remove this limitation.

V. COMPARISON WITH RELATED WORK
Superstrider is a proposed hardware solution to address

computational efficiency issues for many algorithms that
experience performance degradation due to the von Neumann
bottleneck. Sparse matrix multiplication suffers performance
loss on current computational platforms due to this bottleneck.

Fig. 5. Significant performance improvements are seen even with
simplistic, resource-constrained implementations of Superstrider, owing
to alleviation of the von Neumann bottleneck.

208 250 250261

3519 3831

0
1000
2000
3000
4000

128 16384 131072Sp
ee

du
p

vs
 v

on

N
eu

m
an

n
ba

se
lin

e

Comparisons per cycle = 256, Pipelined with Write Buffer

PARTITIONED/8 FCFS_GREEDY/8 FCFS_GREEDY/64 INFINITE#

Fig. 6: The utility of increasing the compute resources available to Superstrider is realized only when the memory access bottleneck is loosened. By
simulating higher-than-128 interface widths, progressively tighter integration of logic and memory is realized. For space constraints, only the best resource
pipelining scheme is shown, although these trends apply to other schemes as well.

Many software solutions have been proposed to address this [8-
11]. However, little work has been done to address this issue in
the hardware space.

Song et. al. introduce a graph processor architecture that
represents graph processing as a sparse matrix algebra
problem [12]. They propose a novel node architecture that
comprises several modules including memory (cacheless),
ALU, systolic merge sorter, matrix reader and writer, control,
and interprocessor communication. The systolic merger sorter is
used for sorting matrix record indices during matrix operations
and is the key to graph processing. The ALU module operates
on a stream of sparse matrix elements, making it more efficient
than operation of data in a register file as in traditional processor
architectures. These graph processing nodes are interconnected
in a 3D toroidal configuration to form a 3D parallel processor.
Through bit-level simulation models using various graph
processing kernels, they show orders of magnitude speedup over
commercial systems.

A 3D-stacked logic-in-memory (LiM) system architecture
for accelerating graph processing proposed [13] has logic layers
stacked between DRAM dies that communicate vertically using
through silicon vias. Their customized logic for processing
sparse matrix data is integrated with a CAM memory
customized to specifically support matrix assembly in the
SPGEMM benchmark. Results show over two orders of
magnitude of performance and energy efficiency improvement
over traditional multithreaded implementations. However, they
operate only on compressed data, which means that the input
matrices have to be static. Not only do we provide comparable
benefits (if not better), our architecture is also capable of
supporting inputs that require dynamic insertion. Furthermore,
our abstraction provides the potential to implement other data
irregular applications by modifying the collision function to
something other than addition.

Although we simulated only the accumulation phase of
sparse matrix multiply (index sort and merge), this accounts for
more than 95% of computational throughput for sparse matrix
multiply [12]. Neither of the architectures described above
implement as tight an integration of logic and memory,
Superstrider implements a unique merge capability, is coupled
with HBM rather than a more traditional memory device, and it
strides/operates on a “super”-sized, very wide memory word.
All of these features together realize very large improvements in
computational efficiency.

VI. CONCLUSION
In this work, we present Superstrider, a 3D architecture that

integrates logic in memory to alleviate the von Neumann
bottleneck and increase computational efficiency of key
scientific algorithms, particularly the sparse matrix
accumulation phase in sparse matrix multiplication that suffers
from poor cache utilization. We show that Superstrider can
potentially provide orders of magnitude speedup for
accumulation compared to conventional von Neumann
architectures and processing.

This is as a result of improved bandwidth utilization and we
attribute this to its unique operational primitives (merge and
compress) that operate at the granularity of a memory row, and

its novel tree-based representation of sparse matrices. Even the
most resource-constrained HBM configuration simulated results
in a 50× performance improvement. Furthermore, reasonably
increasing the tightness of logic-memory integration and the
amount of computational logic resources available renders a
further, potential improvement of 80×.

VII. FUTURE WORK
The authors have already performed additional theoretical

work on Superstrider’s generality, reported in Ref. 3. The
memory “tightness” can be generalized into an incremental
development strategy, like Moore’s law. Also, the floating point
add and multiply operations are a mathematical semi-ring. If the
semi-ring is replaced by, for example, addition and minimum,
Superstrider can perform graph operations useful in, for
example, big data computations. The generalization of
Superstrider is an associative array processor.

It should be possible to broaden Superstrider’s function
beyond “accumulation.” For example, store matrices A and B in
Superstrider and create an empty tree for C. Then run a function
that computes C = AB with no processor intervention.

Hardware demonstrations should be possible, even without
building any hardware. There are companies selling HBM
controller IP that offer samples of their product as an FPGA
connected to an HBM stack. If these companies would allow
augmentation of the controller IP with Superstrider function,
perhaps these product samples could become the first production
Superstrider hardware.

REFERENCES
[1] G. E. Moore, “Crammng more components onto integrated ciruits,”

Electronics Magazine, vol. 38, no. 8, 1965.
[2] G. Kestor, R. Gioiosa, D. J. Kerbyson, and A. Hoisie, “Quantifying the

energy cost of data movement in scientific applications,” presented at the
Proceedings of IEEE International Symposium on Workload
Characterization, 2013.

[3] Zhao, J., Zou, Q., & Xie, Y. (2017). Overview of 3-D Architecture Design
Opportunities and Techniques. IEEE Design & Test, 34(4), 60-68.

[4] J. Kepner, “Spreadsheets, Big Tables, and the Algebra of Associatve
Arrays,” MAA & AMS Joint Mathematics Meeting, Jan 4-7, 2012

[5] Batcher, K. E. (1968). “Sorting networks and their applications”. Proc.
AFIPS Spring Joint Computer Conference. pp. 307–31

[6] High bandwidth memory (hbm) dram. [Online]. Available:
https://www.jedec.org/standards-documents/results/HBM

[7] T. A. Davis and Y. Hu, “The university of Florida sparse matrix
collection,” ACM Transactions on Mathematical Software (TOMS), vol.
38, no. 1, 2011.

[8] K. Rupp, F. Rudolf, and J. Weinbub, “ViennaCL - a high level linear
algebra library for gpus and multi-core cpus,” in International Workshop
on GPUs and Scientific Applications, 2010.

[9] F. Gremse, A. Hofter, L. O. Schwen, F. Kiessling, and U. Naumann,
“GPU-accelerated sparse matrix-matrix multiplication by iterative row
merging,” SIAM Journal on Scientific Computing, vol. 37, no. 1, 2015.

[10] Deveci, M., Trott, C., & Rajamanickam, S. (2017, May). Performance-
Portable Sparse Matrix-Matrix Multiplication for Many-Core
Architectures. In Parallel and Distributed Processing Symposium
Workshops (IPDPSW), 2017 IEEE International (pp. 693-702). IEEE.

[11] S. Dalton, L. Olson, and N. Bell, “Optimizing sparse matrix-matrix
multiplication for the gpu,” ACM Transacations on Mathematical
Software (TOMS), vol. 41, no. 4, 2015.

[12] W. S. Song, J. Kepner, V. Gleyzer, H. T. Nguyen, and J. I. Kramer,
“Novel graph processor architecture,” Lincoln Laboratory Journal, vol.
20, no. 1, 2013.

[13] Zhu, Qiuling, et al. "Accelerating sparse matrix-matrix multiplication
with 3D-stacked logic-in-memory hardware." High Performance Extreme
Computing Conference (HPEC), 2013 IEEE. IEEE, 2013

