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Abstract—We present a new non-von Neumann architecture, 
termed “Superstrider,” predicated on no more than current 
projected improvements in semiconductor components and 3D 
manufacturing technologies, which should offer orders of 
magnitude advances in both energy efficiency and performance 
for many high-utility problem classes. The architecture is 
described, which is based on computing on row-wide memory 
words to accelerate sparse matrix algebraic operations that are 
normally implemented as scalar operations. A cycle-accurate 
simulation demonstrates potential performance improvements on 
existing High Bandwidth Memory (HBM) on the order of 50× that 
increases to 1000× or more when implemented using a fully 
integrated 3D technology and compared to a simple baseline. 
Further refinement may change these numbers, but the magnitude 
of the opportunity suggests further work. 

Keywords—Moore’s law; superstrider; processor-in-memory; 
component; von Neumann; sparse matrix; associative array 

I. INTRODUCTION 
Realization of Moore’s law created a world-wide 

information revolution and economic expansion due to the 
exponential growth in the number of components per integrated 
structure [1] (chip) and the computing applications it enabled. 
Flatlining of line width on chips is evidence that Moore’s law is 
at least changing. Moore’s article included a projection of an 
exponentially increasing number of devices per 2D chip over 
time, but there are now numerous examples of 
(memory/storage) chips that are scaling in the third dimension, 
making it no longer necessary for line width to scale to maintain 
the vision originally proposed by Moore. 

A traditional von Neumann architecture implements the 
stored-program concept, with both data and instructions being 
stored in a common memory and moved to the compute unit 
over a bus. Although the von Neumann architecture and 
Moore’s law are largely responsible for the performance of 
today’s computers, the von Neumann architecture has 
negatively impacted speed and energy efficiency, particularly 
with respect to data movement, to a point that renders it 
unsustainable. The cost of moving data between caches and 
main memory accounts for a large portion of total energy in 

several application domains and is cited as the key challenge in 
future exascale systems [2]. 

Although memory and storage are now implemented in 3D 
structures, they are currently being used only in computers of 
the typical von Neumann architecture. So even if scaling in the 
third dimension can extend Moore’s law, unless we mitigate the 
von Neumann bottleneck that is created by the bus between 
processor and memory, we will not see computational efficiency 
(performance and energy efficiency) grow at the rates that drove 
economic growth over the past several decades. 

In this work, we make use of additional design flexibility 
brought out by the shift from 2D to 3D [3] and the associated 
possibility of collocating logic and memory. Some very 
effective algorithms, such as merging (a type of sorting), 
become inefficient at large scale simply due to the large amount 
of data movement between logic and memory chips. Using a 
merge network as an example, Fig. 1 shows how 3D integration 
makes the needed interconnection pathways possible and 
efficient. 

 
Fig. 1: For highest performance, functions are defined as schematics and 

laid out to reduce communications latency and energy, such as the bitonic merge 
network on the top. (lower) A 3D physical module with tight coupling between 
logic and memory allows short connections instead of conversion of signals to 
high energy levels and off-chip delays. An external von Neumann processor can 
be interfaced with one of the layers to establish compatibility with existing 
software. The red curve shows a representative data movement step in merging, 
which has no off-chip links. 
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Superstrider belongs to a special class of accelerators, which, 
in conjunction with a traditional processor, alleviates the von 
Neumann bottleneck by collocating some computational 
functions and their associated memory access, enabling 
increased performance and energy efficiency over a broad class 
of applications (e.g., data analytics, graph processing, 
scientific/linear algebra). Superstrider itself is not a von 
Neumann architecture, as it combines computation and memory 
into a single component that is directed by a control unit and can 
be integrated with a standard processor. 

II. THE SUPERSTRIDER ARCHITECTURE 
The Superstrider architecture performs a limited set of 

operations using conjoined logic and memory, enabling it to 
efficiently execute several algorithms related to sparse matrices, 
which are the primary computational kernels in several scientific 
applications. Its organization is non-von Neumann in that it 
computes very close to memory rows with no processor in the 
traditional sense. This eliminates the need to move data (referred 
to as records or key-value pairs) from the processor to memory 
over a bus, thereby eliminating the von Neumann bottleneck. 

A. Overview of Superstrider Operation 
The operational primitive of Superstrider is to perform in-

situ sorting (Section IIB) and compression (combining values of 
records with identical keys, discussed in Section IIF) at the 
granularity of a memory row. To achieve this, we organize 
memory into a tree where the nodes are entire physical rows of 
the memory, where each row comprises records in sorted order 
and a pivot key that distinguishes subtrees.  By setting the 
fundamental unit of data to be a memory row, we achieve high 
bandwidth utilization and eliminate bank conflicts. 

Superstrider currently implements a fixed set of fundamental 
algorithms to support sparse matrix computation. In this paper, 
we focus specifically on the addition or accumulation phase of 
sparse matrix multiplication. In dense multiplication of matrices, 
C = AB, each record cij of C is the vector dot product of a row 
of A and a column of B, such that cij = ¦k aikbkj. If we define cij

(k) 
= aikbkj, many cij

(k) do not exist when A and B are sparse. When 
the sparsity pattern is too irregular to exploit, this can be treated 
as a data processing problem on a series of records of the form 
{ i, j, cij

(k) }. Superstrider takes vectors of records in the form  

{ i, j, cij
(k) }, sorts them into a standard form, then sums all the 

values cij
(k) for a given (i, j). This is precisely the accumulation 

phase of sparse matrix multiply. 

Therefore, in the context of such an accumulation phase, an 
addition operation is used to compress records with identical 
keys. However, Superstrider implementations of other data 
processing problems may employ a different collision      
function [4] to achieve compression. In this paper, we limit the 
collision function to addition.  

Fig. 2  depicts an overview of Superstrider’s architecture and 
operation. Our Superstrider implementation involves several 
components: 

- A memory array where the rows organized as a tree; where 
each row stores at most K records. 

- An “open row” buffer and an accumulator of size K each, to 
buffer input and intermediate processed data. 

- A merge network to sort records in the open row buffer and 
the accumulator taken together. When laid out in a different 
manner and used in reverse, such a network is used to 
eliminate empty records that manifest as a result of 
compression. 

- A pool of function units consisting of comparators and adders 
in order to aid with compression.  

 We dedicate the remainder of this section to explain each of 
these in further detail.  

B. The Merge Operation and Sorted Invariant 
Superstrider’s sort/merge capability is key to its efficient 

operation. Shown at the top of Fig. 1, it is based on a bitonic 
merge network that was first proposed decades ago for use in 
specialized chips [5]. This network takes two sequences of 8 
numbers, each sequence in sorted order, i. e. a bitonic sequence, 
as input on the left, which flow through the network and are 
output as single sequence of 16 numbers in sorted order at the 
right. The vertical lines are comparators, and when two numbers 
reach the ends of a vertical line, they are compared and swapped 
so that the larger number is on top. A four-stage network is 
shown in Fig. 1, where each stage of the network outputs sorted 
sequences of decreasing size (e.g., bitonic sequences of 8 are 
merged in the first stage, the second stage merges sequences of 
4, the 3rd stage merges bitonic sequences of 2, etc.).  

Fig. 2: Superstrider architecture and functionality. In a typical operation, such as Addvec (Section IIE), pre-sorted records in the open row buffer and the 
accumulator are merged using the merge network (Section IIB) and records with identical keys are summed (Section IIF) using the function unit pool. The 
result is a vector of sorted records, each of which has a unique key. These are then written into the binary tree layout of memory, based on pivot values. 



We are able to realize efficient sorting by using only the 
merge capability of a bitonic network because we enforce the 
invariant the records in memory rows and the accumulator are 
always in sorted order. Merging requires just log2(n) stages, 
where n is the number of records being merged. Note that 
realizing such an efficient sorting paradigm not only aids in 
insertion/lookup of records into a Superstrider tree, but also aids 
faster compression. 

C. Control Logic 
The control logic in Superstrider was designed to 

complement its other unique features, but the control logic will 
be described only briefly due to space limitations. Superstrider 
is a state machine overall with one state transition per memory 
access, with the control logic holding the main part of the state. 
The control logic receives signals from the data path containing 
information like the number of records whose key is less than 
the pivot or whether a subtree exists or not. The control logic 
produces simple commands like whether to swap the 
accumulator and open row buffer or to leave them as they are, 
compute the address or the next row to be accessed, and which 
function to “call” on the next row. 

The most important high-level Superstrider functions 
include Addvec (add vector of records to the tree) and 
Normalize. These operate on a memory row and both use the 
merge network and the pool of function units to accomplish their 
tasks. Before describing these functions, we first describe the 
Superstrider data layout and control fields. 

D. Memory/Data Layout 
A Superstrider row may span several physical memory 

banks, but for simplicity, we use a single bank to illustrate the 
data layout. Fig. 2 shows rows of K = 5 records from a 
Superstrider bank. The fields shown to the left of the red and 
green records are control fields that are described in Table 1. The 
contents of each record are in the format “(key) = value”, so a 
term of cij

(k) appears with the notation (n(i, j)) = cij
(k), where       

n(i, j) is an invertible function mapping two integers to one. 
While we perform compression (Section IIF) to remove 
duplicate keys from the same row before adding them to the tree, 
we explain in Section IIE that it is possible for the same key to 
appear in different rows. At a later stage, we remove such 
duplicate keys via normalization (Section IIH). 

A bank has an open row, or a row whose contents have been 
transferred to the open row buffer shown in blue at the bottom 
of the bank. The control fields to the left of the buffer are likely 
to be a few dozen bits, as shown in Table 1, with the  

Table 1: Control fields 
Addr:(size) The Superstrider row number (Addr) and computed 

size of the subtree rooted at this row. 
Pivot The pivot value for sorting; is set to p = K/2. 

Elements of the left/right subtree are less 
than/greater than or equal to this value. 

L subtree(size) The Superstrider row number (Addr) of the left 
subtree and size of the left subtree. 

R subtree(size) The Superstrider row number (Addr) of the right 
subtree and size of the right subtree. 

Fig. 3: Addition of three records to an initially empty Superstrider 

Addr. Pivot L subtree R subtree

     

DRAM Rows 

     

Addr. Pivot L subtree R subtree

(2)=0.02 (14)=0.09 (17)=0.49 (20)=0.27 (22)=0.45

DRAM Rows 

(2)=0.02 (14)=0.09 (17)=0.49 (20)=0.27 (22)=0.45

0:(5) 17 0(0) 0(0) 

Addr. Pivot L subtree R subtree

(17)=0.49 (18)=0.63 (20)=0.88 (22)=0.45 (27)=0.20

DRAM Rows 

(13)=0.50 (13)=0.04 (18)=0.63 (20)=0.61 (27)=0.20

1:(5) 20 0(0) 0(0) 

(2)=0.02 (13)=0.54 (14)=0.09   0:(8) 17 0(0) 1(5) 

Addr. Pivot L subtree R subtree

(17)=0.49 (18)=0.63 (20)=0.88 (22)=0.45 (27)=0.20

DRAM Rows 

(7)=0.68 (13)=0.07 (18)=0.82 (26)=0.25 (28)=0.99

1:(5) 20 0(0) 0(0) 

(2)=0.02 (7)=0.68 (13)=0.61 (14)=0.09  2:(4) 13 0(0) 0(0) 

(18)=0.82 (26)=0.25 (28)=0.99   0:(12) 17 2(4) 1(5) 

b Initial memory state: empty 
 

cAddvec function call 
    (a) Input to Accumulator 
    (b) Copy from Accumulator to memory 
    (c) Pivot = (17) 
 

dAddvec function call 
    (a) Input to Accumulator 
    (b) Merge memory row 0 with Accumulator 
        (2)(13)(13)(14)(17)(18)(20)(20)(22)(27) 
    (c) Compression function call 
        (2)(13)(14)(17)(18)(20)(22)(27) 
        (i) Sends green list to right child (>= root) 
        (ii) Adjust size of root (to 8) 
    (d) Pivot (child) = (20) 
 eAddvec function call 
    (a) Input to Accumulator 
    (b) Merge memory row 0 with Accumulator 
        (2)(7)(13)(13)(14)(18)(26)(28) 
    (c) Compression function call 
        (2)(7)(13)(14)(18)(26)(28) 
        (i) Sends red list to left child (< root) 
        (ii) Adjust size of root (to 12) 
    (c) Pivot (child) = (13) 

NOTE: (18) does not match ground truth because it has not yet been merged, so is colored yellow. 

Accumulator 

Accumulator 

Accumulator 

Accumulator 





 
remainder of the row divided into K data records. The magnitude 
of K will vary depending on both the row length and size of user-
defined records, but a representative range could be from 
K=200-2,000. This layout may look similar to a hashed array 
tree with K-element leaves, however, it is a binary tree with K-
elements nodes because of its pivot based organization. 

As mentioned previously, Superstrider’s primary primitive 
is merge, with data organized optimally in memory via a tree-
based sort. Each row is considered a node in the tree, with the 
root of Superstrider’s overall tree at address zero. We use a pivot 
in each row that is slightly different than that found in the 
algorithmic literature for sorting. All keys in the left subtree are 
less than the pivot; all keys in the right subtree are greater than 
or equal to the pivot. However, each row has records whose keys 
can be less than, equal to, or greater than the pivot. In Fig. 2, 
records in the row whose key is less than the pivot are colored 
red, the others green, and the records are always sorted. 

E. Addvec 
Addvec adds a vector with up to K records to the tree present 

in memory. All the records are added in parallel. 

Fig. 3 shows how record vectors of size K = 5 are added to 
an empty memory using a tree-based algorithm. Records whose 
key is less than the pivot are colored red; all others are shown in 
green. 

The memory is initially empty, which is step 0. In step 1, 
Addvec copies the input from the accumulator to memory as the 
root of the tree (i.e., 0:(5)) and sets the pivot to the key of the 
middle record, which in the example is 17. Pivots do not change 
once set. 

Step 2 shows a new sorted vector of records (length K) in the 
accumulator being added to the root of the tree in memory. The 
records in the accumulator and memory are merged, which 
results in records with identical keys ((13) and (20) both occur 
twice in the merged record). This merged vector of records (of 
length 2K) is then compressed, which adds the values in records 
with identical keys (e.g., records (13)=0.50 and (13)=0.04 
become a single record (13)=0.54). So after compression, we 
have three records that are less than the pivot value (shown in 
red, (2), (13), (14)) and five that are greater than or equal to the 
pivot value (shown in green, (17), (18), (20), (22), (27)). At this 
point, the algorithm determines which of these vectors to store 
in memory and which to keep in the open row buffer, and on 
which child to recursively call Addvec. To maintain consistency 
of the tree, the Addvec algorithm recursively operates on vectors 
that are either all less than or all greater than or equal to the pivot 
value (i.e., all red or all green). Using the pivot (17), a right 
subtree child is created and written to memory, leaving the keys 
that are less than 17 in the root (open row buffer) and those 
greater than or equal to 17 in the right subtree. The size of the 
root is changed (from 5 to 8) to reflect the new number of 
records tracked from the root and the child pivot is set to the key 
of the middle (third) record, or 20. 

Addvec is recursively called on the left or right child in the 
open row buffer, depending upon the relative number of red and 
green records. This iteration repeats until the proper subtree does 
not exist, i. e. a leaf of the tree has been reached and the iteration 

attempts to move below the leaf. At this point, a new leaf node 
is created with the accumulator value and Addvec completes. 

F. Compression 
Compression occurs when the same key appears in several 

records. The merge at the beginning of each step results in 
equivalent keys being adjacent in the row of records. The pool 
of function units identifies these adjacent records and with the 
help of the backward merge network, replaces them with a single 
record with the common key and a combined value. This 
shortens the list by some number of records. For accumulation 
in our sparse vector multiplication example, values are 
combined by floating point addition, but other applications may 
use a different collision function. 

The simulator that constructed the diagram in Fig. 3 also 
computes a ground truth representation of the correct C matrix. 
Cells are colored yellow if their value does not match the ground 
truth. At some point later in algorithm processing 
(normalization), these two records pictured in yellow will appear 
in the same row and will be compressed. 

G. Multiset, Set, and Standard Forms. 
The sort algorithm implemented in memory allows the tree 

to have an unusual structure, leading to multiple forms. A row 
may contain records whose key is less than the pivot, but these 
records can also be in the left subtree. Likewise, a row may 
contain records whose key is greater than or equal to the pivot, 
but such records can also be in the right subtree. For multiset 
form in general, a key can be found in a leaf node and/or in any 
ancestor node up to the root, or in any combination of these 
nodes. This property is essential for computational efficiency. 

During normalization, all duplicate keys are removed from 
the tree, converting it from multiset to set form. Allowing only 
unique keys in the set (i. e., no duplicates) abides by the strict 
definition of set and requires that all keys in the left/right subtree 
are less than/greater than or equal to all keys in the row above 
(parent node) rather than just the pivot. 

We define standard form as the set form with the additional 
constraint that all rows except the last have exactly K records. 
Standard form is unique. 

H. Normalize 
Normalization compacts and reorganizes multiset trees with 

incompletely compressed (yellow) cells and rows of irregular 
length to the set or standard form. It is recursively called to 
adjust the division of records between each of its subtrees and 
the open row, with the division chosen to make the number of 
records in the left subtree a multiple of K and to fill the memory 
row completely if there are enough records to do so. 
Normalization also ensures that all the records in the left/right 
subtree are less than/greater-than-or-equal to any record in the 
tree node. 

This shifting of records to/from the open row from/to a 
subtree uses the Normalize function (as well as min and max 
functions) and the Addvec function, respectively. Addvec shifts 
records from a row to a subtree. The records are removed from 
the open row starting at the pivot through the rightmost record 
and are sent to the subtree, with the pivot being the leftmost 
record in the new subtree. Normalize moves records from a 



subtree to the open memory row, using either the min(n) or 
max(n) functions. These functions are called to find and remove 
the n smallest or n largest keys in a subtree and return their 
records. The records are then added to the open row. Obviously, 
this activity cannot remove more records from a subtree than 
exist and cannot fill the row beyond its K-record capacity. 

If the input tree is in set form, the output of Normalize will 
be in standard form. All left subtrees will have a multiple of K 
records, and hence will have rows filled to exactly K records. 
Since every subtree except the rightmost leaf node of the entire 
tree is a left subtree of some node, only this rightmost node is 
not guaranteed to have K records. This corresponds to standard 
form. If the input tree is in multiset form, the output of 
Normalize will be in set form. The Normalize function makes 
use of an estimate of the size of subtrees to compute how to 
divide the records. However, the number of records in a subtree 
will change during normalization when records merge. Even 
though merging may leave rows incompletely filled, Normalize 
still puts the tree in set form with no duplicates. 

III. EXPERIMENTAL FRAMEWORK 
We implemented a memory cycle-accurate simulator for the 

Superstrider architecture and compared its performance to a von 
Neumann architecture baseline. We call the simulator memory 
cycle-accurate because it faithfully preserves cycle timing of 
memory. However, HBM has a protocol for moving data from 
the physical memory to the controller. We model this protocol 
using published timing figures [6], but we extrapolate the 
protocol to hypothetical HBM successors with wider interfaces 
where the timing is speculative. At the widest possible interface 
width, the timing simulated represents a fully integrated logic in 
memory model.  

The simulator accurately counts the number of cycles for the  
merge network and the function unit pool, however, we do not 
consider wire delay in these networks. We find that the 
incremental benefits (even with optimistic performance 
projections obtained by ignoring wire delays) due to relatively 
larger networks are rather modest, thereby rendering their 
complexity and overheads unjustified. 

A. Front End 
A front end generates sorted records to feed the Superstrider 

HBM+logic structure as well as to measure performance of a 
von Neumann baseline. The baseline implements no reordering 
optimizations on the sparse input matrices and does not simulate 
caches because there is negligible spatial locality in sparse 
matrix inputs. The baseline traverses the HBM banks as 
rectilinear memory, i.e., without the binary tree format of the 
Superstrider algorithm. We use University of Florida       
matrices [7] as well as pseudo-randomly generated sparse 
matrices as input to the Superstrider simulator. The latter is 
especially useful in performance analysis because they enable 
arbitrarily large inputs, and we use these to demonstrate the 
benefits of the Superstrider paradigm in Section IV, with the 
random sparse matrix multiplication input generating 27 million 
non-zero records as the Superstrider input stream, where the key 
of each record is a pseudo-random number between 0 and 27 
million. 

 
Fig. 4: Experimental framework. Baseline is an HBM stack with controller (8 
channels) but no cache anywhere. For compatibility, Superstrider is 
implemented as 8 instances, one per HBM channel, with a sweep performed 
over additional parameters. 

B. Memory Model 
To make reasonable comparisons with a conventional 

processor, the simulator illustrated in Fig. 4 models 8 identical 
instances of Superstrider, each connected to an HBM channel. 
Each HBM channel, simulated with 1 rank, comprises 8 16,384-
bit wide physical DRAM banks.  

Each simulated Superstrider record contains an integer key 
and a single precision floating point value, or 8 bytes per record. 
To achieve maximum algorithmic efficiency, each Superstrider 
row is set as wide as possible, i. e., K = 2,048 records or 128K 
bits wide, which is the total row width offered by combining all 
8 banks together. A Superstrider row is strided across its 8 banks 
to avoid bank conflicts, thereby realizing high channel 
bandwidth utilization. 

The physical configuration of a bank as well as the timing 
parameters that govern row access time are obtained from the 
High Bandwidth Memory (HBM) JEDEC standard [6]. 
However, for simplicity, we ignore the overheads due to DRAM 
refresh and read-to-write delays. We assume that the HBM is 
clocked at one-fourth the frequency of that of logic. 

C.  Simulated Parameters 
In the simulator, we vary several parameters to explore the 

design space of the Superstrider architecture.  We perform 
experiments to understand the sensitivity to performance of  
varying the following characteristics: (1) function unit pool 
configuration, (2) merge network size, (3) “tightness’’ of the 
logic/memory integration (interface width), and (4) resource 
pipelining. 

1) Function Unit Pool Configuration 
A pool of function units are made available to facilitate 

compression. These can be global or shared across the HBM 
channels (Superstrider instances), or can be 
distributed/partitioned or private per HBM channel depending 
upon the target design budget allocated. 

We evaluate three scheduling schemes: 

Partitioned/N. The pool of N function units is statically 
partitioned and distributed across all channels equally.  



FCFS Greedy/N. The pool of N function units is globally 
shared across channels and allocation/scheduling is done on a 
first-come first-serve basis. It is greedy in that the scheduler 
allocates any available units to an incoming compress request, 
even if a sufficient number of them is not available to perform 
the addition in a single time step.   

Infinite#. We also evaluate an upper limit policy where there 
are an infinite number of function units available, guaranteeing 
constant (single cycle) access time.  

2) Merge Network Size 
A merge network is responsible for merging the open row 

buffer and the accumulator and for deleting empty records after 
compression. We assume that each channel has a merge network 
associated with it close to the open row buffer and accumulator 
to minimize wire length. As explained in Section II, this network 
is a log2n-level bitonic structure, with each level taking multiple 
pipelined cycles depending upon the number of comparators 
available. For simplicity, we assume that there are enough ports 
to the network to feed all its comparators simultaneously. 

Recall that a Superstrider row spans 8 banks, each of which 
is 16,384 bits wide. This means that the open row buffer as well 
as the accumulator can house 2,048 records each. We simulate 
three merge network sizes by varying the number of single-cycle 
two-record comparators available: 4, 256, 2,048. However, 
because we observe low marginal utility from increasing the size 
of the merge network all the way to support 2,048 comparisons 
per cycle, we conclude such complexity as unwarranted, and 
omit presentation of their results. 

3) Interface width: Near-Memory vs. In-Memory Logic:  
We simulate a near-memory compute paradigm by modeling 

Superstrider as an HBM controller chip. Although the row 
buffer is 16,384 bits wide in an example HBM configuration, 
data is provided to the base layer I/O in bursts that are only 128 
bits wide. This means that such a near-memory logic 
configuration is limited by this narrow burst width, although a 
memory access reads an entire row into the memory row buffer. 

By simulating higher interface widths we increase the 
“nearness” of near-memory compute, thereby increasing the 
“tightness” of the coupling between logic and memory, making 
it in-memory compute at the limit. While a production HBM has 
a 128 bit interface (burst) width, we simulate interface widths of 
16,384 bits and 128K bits using HBM timing. However, in the 
absence of off-the-shelf implementations, we hypothesize the 
physical realization and timing of the larger interface widths. 

4) Resource Pipelining 
As the Superstrider instances are mutually independent, we 

allow for interleaving between components across these 
instances, and, thereby benefit from channel-level parallelism.  

In addition, we optionally allow for pipelined execution 
within each Superstrider instance: 

Non-pipelined. There is no pipelining between the operation 
of the components (open row buffer, accumulator, merge 
network, function unit pool), as they process any given row. 

Pipelined. This builds upon the simplistic approach above 
by allowing adjacent components to overlap execution. For 

example, as a row is being read out from memory in bursts, it 
can proceed to the first stage of the merge network in same-sized 
bursts without having to wait for the entire row to be first read. 
Similarly, the last stage of the merge network can be overlapped 
with the first stage of the function unit execution, the last stage 
of which can be overlapped with the first stage of the deleting 
network. This fine-grained pipelining can be implemented using 
FIFOs. 

Pipelined with Write Buffer. The pipelining described 
above is limited to a single row because we need to have finished 
processing a row in its entirety before we know the address of 
the next row. As such, there is a window of time where the 
memory channel is inactive while it waits for the row processing 
to finish. Subsequently, there is another window of time where 
the processing logic is inactive when the just-processed row is 
being written back to memory. To increase the overlap between 
logic and memory components, we employ a write buffer to 
store processed rows and flush them out while a subsequent row 
is being processed. 

IV. RESULTS 

A. Data transfers 
The principal advantage of Superstrider is that it mitigates 

the von Neumann bottleneck by reducing the number of 
bandwidth-limiting and energy-consuming transfers between 
the processor and memory. In conventional processors, cache-
line utilization (including hardware prefetching) for sparse 
matrices is extremely low. In contrast, Superstrider makes 
effective use of an entire row and there is no extraneous traffic. 
In fact, to benefit from bank level parallelism and extract 
maximal algorithmic efficiency, recall that we stride a 
Superstrider row across its 8 banks, thereby making effective 
use of 8×2048 byte wide rows at a time. 

For an estimation of energy saved due to reduced memory 
traffic, we count the number of times logic accesses memory at 
a DRAM row granularity. We find that Superstrider accesses 
over 121× fewer physical rows from memory than the von 
Neumann baseline.  

We will see in the next section that the amount of 
computational resources required for orders of magnitude 
speedup is relatively low. A detailed power model is beyond the 
scope of this paper, but it is well known [2] that data transfers 
are the primary contributors to energy consumption. Clearly, the 
significant reduction in memory traffic described above renders 
a proportional reduction in system energy. 

B. Performance 
The Superstrider algorithm reduces the number of transfers 

between logic and memory thereby saving energy and reducing 
wasted bandwidth, or in other words, the Superstrider 
architecture circumvents the von Neumann bottleneck. As we 
shall describe below, even the most resource-constrained 
configuration results in close to 50× performance improvement 
over von Neumann baseline. Upon subsequently removing 
various resource bottlenecks from our Superstrider 
implementation, simulation shows an additional speedup of 
close to 80×. 



For the memory+logic configurations of Section III, we now 
present sensitivity of performance of each configuration to the 
simulation parameters as outlined in Section III C. 

Function unit pool configuration. Partitioned/8 yields a 
speedup of 49-96× for an HBM-based near-memory logic 
configuration with 4 comparators per channel, depending upon 
the Superstrider pipelining configuration employed. In other 
words, allocating just a single function unit and 4 comparators 
per Superstrider channel yields significant benefits, as shown in 
Fig. 5. 

Partitioned/64 and FCFS Greedy/8 yield identical benefits. In 
other words, the designer can make a tradeoff between 
dedicating 8 function units per Superstrider channel for shorter 
wires/low scheduling overhead, and, sharing 8 units across all 
channels for improved resource utilization. 

In general, we find that FCFS Greedy/64 approaches the 
performance of Infinite# when 4 comparators are used, meaning 
that 64 function units are more than sufficient as the bottlenecks 
are in the sorting network and memory access width. 

 Merge network size. For an HBM-based near-memory 
logic configuration, increasing the number of comparators per 
merge network from 4 to 256 yields an additional improvement 
of 1.8-2.6×, depending upon the resource pipelining scheme 
employed. Further increasing the merge network size is not 
useful as the system is bottlenecked by memory access width. 

Interface width. Increasing the interface width from 128 
bits to 16,384/128K bits (or by 128×/1024× respectively) 
renders an additional improvement of slightly less than 2× (for 
all resource pipelining and function unit pool configurations) 
when the system is bottlenecked by a mere 4 comparators. 

However, upon also increasing the number of comparators 
per merge network to 256, significant additional improvement is 
seen when the interface width and the capability of the function 
unit pool are increased, as shown in Fig. 6. The larger merge 
network is now able to better keep up with data being delivered 
due to the increased interface width, rendering improved 
marginal utility of more powerful function unit pool 
configurations as well. 

 Further increasing the size of the merge network to support 
2,048 comparisons per cycle realizes very modest improvements 
when increasing interface width to 16,384 bits and larger.  
Similarly, the fabrication/implementation cost of achieving 
logic-memory integration all the way to 128K bits is not 

sufficiently justified by the relative improvement in 
performance.   

Resource pipelining. Improving the degree of overlap 
between logic and memory access components yields additional 
benefits (about 2×) in a manner similar to that of improving the 
function unit pool or merge network’s capability, as the system 
becomes bottlenecked by interface width. This is demonstrated 
in Fig. 5, but applies to other configurations as well. 

In the general scenario, the relative order of efficiency is 
Non-pipelined < Pipelined < Pipelined with Write Buffer. 
However, in the scenario where there is little overhead in 
computation (such as with over 2,048 comparators and 64 
function units), using write-buffer based pipelining can be 
detrimental to performance. This is because without a write 
buffer, the write-back occurs to the same row, resulting in a 
single precharge  latency incurred upon closing that row, post its 
write. With a write buffer, however, adjacent reads and writes 
are to different rows, meaning that there is an additional 
overhead of row activation and precharge. When there is little 
overhead in computation, this additional row opening and 
closing DRAM command latencies are no longer hidden. A row 
remap memory may be designed to remove this limitation. 

V. COMPARISON WITH RELATED WORK 
Superstrider is a proposed hardware solution to address 

computational efficiency issues for many algorithms that 
experience performance degradation due to the von Neumann 
bottleneck. Sparse matrix multiplication suffers performance 
loss on current computational platforms due to this bottleneck. 

Fig. 5. Significant performance improvements are seen even with 
simplistic, resource-constrained implementations of Superstrider, owing 
to alleviation of the von Neumann bottleneck. 
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Many software solutions have been proposed to address this [8-
11]. However, little work has been done to address this issue in 
the hardware space. 

Song et. al. introduce a graph processor architecture that 
represents graph processing as a sparse matrix algebra     
problem [12]. They propose a novel node architecture that 
comprises several modules including memory (cacheless), 
ALU, systolic merge sorter, matrix reader and writer, control, 
and interprocessor communication. The systolic merger sorter is 
used for sorting matrix record indices during matrix operations 
and is the key to graph processing. The ALU module operates 
on a stream of sparse matrix elements, making it more efficient 
than operation of data in a register file as in traditional processor 
architectures. These graph processing nodes are interconnected 
in a 3D toroidal configuration to form a 3D parallel processor. 
Through bit-level simulation models using various graph 
processing kernels, they show orders of magnitude speedup over 
commercial systems. 

A 3D-stacked logic-in-memory (LiM) system architecture 
for accelerating graph processing proposed [13] has logic layers 
stacked between DRAM dies that communicate vertically using 
through silicon vias. Their customized logic for processing 
sparse matrix data is integrated with a CAM memory 
customized to specifically support matrix assembly in the 
SPGEMM benchmark. Results show over two orders of 
magnitude of performance and energy efficiency improvement 
over traditional multithreaded implementations. However, they 
operate only on compressed data, which means that the input 
matrices have to be static. Not only do we provide comparable 
benefits (if not better), our architecture is also capable of 
supporting inputs that require dynamic insertion. Furthermore, 
our abstraction provides the potential to implement other data 
irregular applications by modifying the collision function to 
something other than addition.   

Although we simulated only the accumulation phase of 
sparse matrix multiply (index sort and merge), this accounts for 
more than 95% of computational throughput for sparse matrix 
multiply [12]. Neither of the architectures described above 
implement as tight an integration of logic and memory, 
Superstrider implements a unique merge capability, is coupled 
with HBM rather than a more traditional memory device, and it 
strides/operates on a “super”-sized, very wide memory word. 
All of these features together realize very large improvements in 
computational efficiency. 

VI. CONCLUSION 
In this work, we present Superstrider, a 3D architecture that 

integrates logic in memory to alleviate the von Neumann 
bottleneck and increase computational efficiency of key 
scientific algorithms, particularly the sparse matrix 
accumulation phase in sparse matrix multiplication that suffers 
from poor cache utilization. We show that Superstrider can 
potentially provide orders of magnitude speedup for 
accumulation compared to conventional von Neumann 
architectures and processing. 

This is as a result of improved bandwidth utilization and we 
attribute this to its unique operational primitives (merge and 
compress) that operate at the granularity of a memory row, and 

its novel tree-based representation of sparse matrices. Even the 
most resource-constrained HBM configuration simulated results 
in a 50× performance improvement. Furthermore, reasonably 
increasing the tightness of logic-memory integration and the 
amount of computational logic resources available renders a 
further, potential improvement of 80×. 

VII. FUTURE WORK 
The authors have already performed additional theoretical 

work on Superstrider’s generality, reported in Ref. 3. The 
memory “tightness” can be generalized into an incremental 
development strategy, like Moore’s law. Also, the floating point 
add and multiply operations are a mathematical semi-ring. If the 
semi-ring is replaced by, for example, addition and minimum, 
Superstrider can perform graph operations useful in, for 
example, big data computations. The generalization of 
Superstrider is an associative array processor. 

It should be possible to broaden Superstrider’s function 
beyond “accumulation.” For example, store matrices A and B in 
Superstrider and create an empty tree for C. Then run a function 
that computes C = AB with no processor intervention. 

Hardware demonstrations should be possible, even without 
building any hardware. There are companies selling HBM 
controller IP that offer samples of their product as an FPGA 
connected to an HBM stack. If these companies would allow 
augmentation of the controller IP with Superstrider function, 
perhaps these product samples could become the first production 
Superstrider hardware. 
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