
Superstrider Associative Array Architecture

Erik P. DeBenedictis, Jeanine Cook

Center for Computing Research, Sandia National Labs

P. O. Box 5800 m/s 1319

Albuquerque, NM 87185-1319

epdeben@sandia.gov, jeacook@sandia.gov

Sriseshan Srikanth and Thomas M. Conte

School of Computer Science

Georgia Institute of Technology

Atlanta, GA 30332

seshan@gatech.edu, conte@gatech.edu

Abstract—We define the Superstrider architecture and report

simulation results that show it could be key to achieving HIVE

hardware goals. Superstrider’s performance comes from a novel

sparse-to-dense stream converter, which relies on 3D

manufacturing to tightly couple DRAM to an internal network so

operations like merging and parallel prefix can be performed

quickly and efficiently. With the ability to use the stream

converter as a programming primitive, the memory-bound low-

level graph operations that we are aware of speed up

substantially. We give special attention to triangle counting in

this paper.

Simulations detailed elsewhere1 show 50-1,000× improvement

in speed and energy efficiency. The low end of the range should

be achievable by constructing a custom controller for current

High Bandwidth Memory (HBM) where the high end would

require fully integrated 3D that is on roadmaps for the future.

Keywords—Superstrider; Moore’s law; 3D chips; sorting,

processor-in-memory; sparse matrix; backpropagation; associative

array; GraphChallenge

I. INTRODUCTION

The world went through an information revolution driven
by the exponential growth of microprocessor performance and
DRAM size popularly called Moore’s law. The flat lining of
microprocessor performance has led to talk of “Moore’s law
ending” and dire consequences to the economy. However, the
vertical axis on the graph defining Moore’s law in Fig. 1 is
clearly labeled “number of components per integrated
function” (chip) not “microprocessor performance” and some
companies find they can maintain growth in component count
by using the third dimension to stack more
devices per unit surface area. It seems the
economy and Moore’s law are healthy, but
the top-level division of computers into
microprocessors and DRAM must change.

Could GraphChallenge and the
associated HIVE hardware project have a
role in the future direction the industry? The

organizers of GraphChallenge make a compelling case that
important new classes of applications conflict with von
Neumann’s division of computers into processor and memory,
which we argued in the paragraph above is limiting the
industry as a whole. If the HIVE project develops a graph
architecture that scales in a way that is compatible with
physical-level semiconductor roadmaps, perhaps HIVE could
help define the mainstream direction of the industry?

A. Moore’s law and 3D

Even though industry wanted to discover a new transistor
for logic, it actually developed new memory devices that can
be manufactured in 3D. Developments in 3D chips have been
compelling enough that there are now roadmaps for further
staged development.3 The roadmaps show a path through
intermediate technologies with progressively more features in
the third dimension, a greater variety of devices, and more
efficient transfer of information along the third dimension.

There are two 3D commercial product categories right now.
Stackable DRAM is the first, available as High Bandwidth
Memory (HBM4, illustrated in Fig. 2a) and Hybrid Memory
Cube (HMC5). HBM transfers 16,384-bit DRAM rows as 128
cycles of 128 bits. 3D flash storage is the second product
category.

There are several visions for long term development of
fully integrated memory, storage, and logic, one example being
N3XT6 illustrated at the top of Fig. 2b. The tighter integration
of the proposed N3XT system would have no reason to limit
the width of the memory interface, so for consistency we
assume a 16,384-bit interface that operates in 1 cycle. In fact, a

scale up path can be defined based on the
tightness of logic-memory integration, as
shown in Fig. 2c.

II. APPROACH

 Fig. 3 shows the basis of our approach
for exploiting 3D memory to improve graph
and other computations. Industry’s historic
choice to manufacture DRAM and
microprocessors as separate chips caused a
“data modality” problem. Fig. 3a applies to
essentially any multi-chip computer system,
showing yellow logic chips, orange memory
chips, and connected by gray chip-to-chip
interconnect. Algorithms where information

Sandia National Laboratories is a multimission

laboratory managed and operated by National
Technology and Engineering Solutions of Sandia, LLC.,

a wholly owned subsidiary of Honeywell International,

Inc., for the U.S. Department of Energy’s National
Nuclear Security Administration under contract DE-

NA-0003525.

Fig. 1. Graph defining Moore’s law from
Moore’s paper,2 projecting that device

count per chip will rise exponentially for

the decade 1965-1975.

Approved for unlimited unclassified release

SAND2017-7089 C

978-1-5386-3472-1/17/$31.00 ©2017 IEEE

dependencies alternate many times between logic and a large
memory (i. e. a memory too large for implementation by
cache) inevitably involve moving data across the interface
between the two twice per repetition, or shifting modes, as
illustrated by the green curve. While the efficiency of
electronics entirely within a chip improved with Moore’s law,
the speed and energy efficiency of chip-to-chip interconnect
scaled more slowly, creating a bottleneck.

A. Sorting networks

We remove the bottleneck using the additional design
flexibility offered by 3D. If memory can be stacked or
monolithically fabricated adjacent to logic along the chips’
planar faces, not only are wires shortened by the tighter
packing allowed by the additional dimension, but the modality
problem is relieved because data movement between logic and
memory no longer needs to traverse chip-to-chip interconnect.

The shift to 3D offers algorithmic benefit as well, which we
will discuss using sorting as an exemplary algorithm class.
Sorting has been studied extensively for the structures in Fig.
3a and b, where sorting networks, such as the O(log2n)-step
bitonic sort7 in Fig. 3c, have been known to be faster for
decades – but there is more to the story.

Fig. 3c shows the data dependency diagram for one merge
stage of bitonic sort. The diagram shows the merging of two
sorted lists of 8 data records, which occurs in 4 stages. The first
stage does pairwise comparison of all 16 values, swapping the
records so the largest one is on the left. The second and later
stages do pairwise comparisons as well, but on more groups of
fewer records. The pattern can extend to data that fills one or
more rows of DRAM. When implemented with the structure in
Fig. 3b, the comparisons and swaps can be laid out on the
surface of the logic layer as shown. The interface between

logic and memory will be via wires crossing the short gap
between the large 2D surfaces.

However, the literature for sorting algorithms follows
software conventions, which are modeled on a von Neumann
computer and hence the structure in Fig. 3a. A von Neumann
computer was originally viewed as doing one thing at a time –
although recent multicore computers can do up to, say, a dozen
things at a time. However, no von Neumann computer comes
anywhere close to being able to simultaneously operate on the
data in an entire row of DRAM at once. This is the rationale
for the Wikipedia page on “Sorting Algorithm” saying
“[p]ractical general sorting algorithms are almost always based
on an algorithm with average time complexity (and generally
worst-case complexity) O(n log n).”8 The best known such
algorithm is Quicksort.

Which sorting algorithm is fastest thus depends on whether
Fig. 3a or b is the model for implementation. A von Neumann
computer does the compare and swap operations one at a time,
raising the bitonic sort’s complexity from O(log2n) to
O(n log2n). Thus, Quicksort’s O(n log n) complexity makes it
faster than bitonic sort’s O(n log2n) complexity on a von
Neumann computer, but the winner shifts to bitonic sort for
implementation in 3D using Fig. 3b, allowing sorting O(log2 n)
steps, which is much faster.

B. Superstrider block diagram

Superstrider comprises a DRAM memory bank connected
to a functionally enhanced butterfly network and a control
system, as illustrated in Fig. 4. Functionally, Superstrider is in
a never-ending loop reading and immediately writing back
DRAM rows. However, the control system selects the row and
also uses functional features added to the butterfly network like
reduction and parallel prefix to modify the data between read
and write back.

Here are a few more details: A small portion of the DRAM
row width (a few dozen bits) is dedicated to control fields as
indicated in Fig. 4, but the rest comprises K data records. There
is also an accumulator that, in conjunction with the DRAM’s

HBM Row: 16,384 bits =

Interface width × Cycles Possible network size

128 bits (HBM) 128 8 = 4 × 2

256 64 24 = 8 × 3

512 32 64 = 16 × 4

1,024 16 160 = 32 × 5

16,384 (N3XT) 1 4,608 = 512 × 9

(c) Scaling scenario

128 bits

(a) HBM (Now) (b) N3XT (Future)

Read reg. (FIFO)

Write reg. (FIFO)

Accumulator

16,384

bits

Data

Logic Layer

Rank

16,384

bits

Fig. 2. (a) HBM physical structure on top and Superstrider layout on
bottom. (b) N3XT physical structure on top and functionally similar but

scaled Superstrider layout on bottom. (c) Hypothetical scaling sequence
based on doubling interface with, halving clock periods, and increasing

merge network depth.

Same architecture;

smaller version

logic

Data B

memor
y Data A

Data A

Data B

Fig. 3. (a) 2D systems comprise logic and memory chips, with the green

curve illustrating a mixed logic-memory calculation that is inefficient

precisely because of the partitioning into logic and memory. (b) A 3D
system with tight coupling between logic and memory avoids high

latency paths, bandwidth bottlenecks, and conversion of signals to high

energy levels for off-chip interconnects. The blue curve shows a

representative data movement step in sorting. (c) The sorting network

used for the 3D example.

(a) 2D (b) 3D w/merge network (c) Merge network

Data

A

Data

B

978-1-5386-3472-1/17/$31.00 ©2017 IEEE

open row buffer, form a 2K-record buffer; the butterfly
network actually operates on this double-length buffer. While
not shown, the memory is accessible to an external, von
Neumann-type, processor.

C. The sparse-to-dense stream converter

Imagine the pyramidal Champagne tower in Fig. 5a to be a
physical analogy of element insertion into a binary tree data
structure, where each Champagne glass corresponds to a
DRAM row holding K red or green records. A regular tree
insertion subroutine searches from the root downward through
descendant nodes until the proper one has been found, after
which the record is stored in its proper place and the subroutine
returns. However, pouring Champagne into the tower has a
feature not found in any computer algorithm (as far as we
know). Most of the Champagne poured into the top glass does
not end up in its final glass after just one pouring, but will
temporarily reside in glasses further up the tree until a later
pour causes it to move downward.

The problem is resistance to parallelization. If K records are
added at the root all at once, like pouring a glass of red and
green records into the top glass, there will be more groups of
fewer records moving at each level, as shown in Fig. 5a. Since
each glass is analogous to a DRAM row, almost all the DRAM
rows in the entire system will be accessed for even modest
values of K, which is why the structure in Fig. 3a experiences a
lot of inefficient data movement between logic and memory
chips for many problems.

Fig. 5b illustrates the idea behind Superstrider’s sparse-to-
dense stream conversion. When K records are poured into a
glass that contains another K records, Superstrider sorts these
2K records immediately and puts them back in the glasses, but
it carefully picks which glass gets the red versus green records.
Using the terminology of tree algorithms, each row has a pivot.
We’ll color records red if their key is less than the pivot and
green otherwise. There are now two scenarios corresponding to
the bottom halves of Fig. 5b. If sorting reveals K or more red

records, one glass will be entirely red and the other glass will
have mixed colors. If there are less than K red records, there
must be more than K green ones, so the previous statement will
be true with the colors interchanged. Now pour the glass where
all the records are the same color down just one subtree and
leave the other glass in its position in the tree with both colors.

The catch is that the records are not properly added to the
subtree that is not visited. So does Superstrider go back and
visit the subtree with incompletely processed records? No. That
subtree is ignored for the time being. Graph problems typically
do long sequences of additions, so subsequent sorts of that tree
node will eventually produce enough records of the other color
that the subtree will be visited naturally. Simulation shows this
to be very efficient for long sequences of additions, yet a
cleanup phase, which we call normalization, is required at the
end to move laggard records to their proper destination.

The step count reduction is significant and arguably an
“order reduction.” Adding a single element to a tree is an O(log

N) operation in standard algorithm theory, where N is the
number of elements in the tree. Superstrider can add K
elements in this amount of time, making the step count per
record added O(log N)/K, which captures parallelism but is not
an order reduction. However, DRAMs are designed to be
refreshed in 8,192 cycles, meaning they actually have 8,192
rows at some low level of the DRAM electronics. If the

number of rows is fixed, K N, and the step count reduces to
O((log N)/N), which is an order reduction. This argument is
rather abstract. If the reader prefers, Ref. 1 shows speedups of
50-1,000×.

D. Connection to associative arrays

The preceding description spoke of a 16,384-bit DRAM
row being divided into a few dozen control bits and the

Fig. 5. (a) Fluid flow in a Champagne tower, such as used at a wedding

reception, and a tree insertion algorithm. Imagine a Champagne glass
holds K red or green records in lieu of Champagne molecules. Pouring K

records into a glass or tree node recurses to two similar operations of size

K/2, ultimately disturbing nearly every glass in the tower. (b)
Superstrider can sort based on comparing keys with a pivot, where the

comparison result is illustrated by color, yielding asymptotically fewer

steps. If the amount poured at one time is the same as the capacity of a
glass tree node (K records), sorting the 2K items by color is guaranteed to

produce at least K items of the same color. Recursion will be needed only

down the branch with the predominate color (i. e. tail recursion) and the
algorithm will have just O(log N) steps for K records. (Photo

https://vimeo.com/114254175, labeled for noncommercial reuse.)

(a) Champagne tower (b) Superstrider

OR

Flow 1

Flow 1 Flow 1

Flow

¼

 Legend:

Red less than pivot

Green more than pivot

Flow 1

Flow

½

Flow

½

Fig. 4: Superstrider block diagram. A memory bank connects to the logic

across its entire width, typically 16,384-bits. The logic comprises a
butterfly network with functions listed, connected to both the memory

and an accumulator (in the historical sense of the word). A control system

implements a basic cycle where DRAM is read and written back
continuously as fast as possible. Superstrider function change data

between read and write, including storing data in the accumulator.

Open row

buffer

Control

DRAM & Flash

or alternatives

Accumulator

etc.

Network functions:

Merge
Reduce

Parallel prefix

Parallel suffix

Data routing

Scalar fields for:

Tree descendants

Pivot

Return address

Etc.
 16,384 bits 

Row 

number

978-1-5386-3472-1/17/$31.00 ©2017 IEEE

remainder into K records. In the notation of associative arrays,9
each record is of the form { k, vk }, where k is a key and vk is a
value. If the record is an int and a float, the record is 64 bits
and K is about 256 records. The DRAM may contain multiple
arrays such as A, B, and C where A[k] = vk.

Previous sections of this paper only referred to sorting
records, but the butterfly network also uses the network
functions listed in Fig. 4 to identify collisions and compress
records. This means the sparse-to-dense stream converter
performs accumulation part of sparse matrix multiply.

The Superstrider concept is generally compatible with
generalizations of associative arrays, but low-level hardware
would need to process diverse data types and aggregations
beyond what we have actually studied. The Superstrider
concept should support associative arrays defined as A[ki] = vi,
where A is the associative array, k = (k1…kd) is an array of
indices of primitive types, and v may be a data structure of
primitive types. Furthermore, even values that are data
structures must be an element of a semiring, in which case
there will be application-specific operators corresponding to

multiplication and addition ( and ).

Given the previous definitions, Superstrider could execute
graph algorithms, like shortest path, where the values are floats
or integers (albeit extended to include ∞) and the operation is

.  min.+.

While certain simple kernels can be expressed in
associative array syntax like C = A +.* B, many of the more
complex algorithms involve hundreds or thousands of lines of
conventional computer code interspersed with calls to
compute-intensive associative array operations. Reproducing
an example from Ref. 9, the Bellman-Ford algorithm for
finding the shortest distance from a node s to all other nodes in
a graph A appears below, where only the red characters would
be performed by Superstrider.

Bellman-Ford (A, s)
d = ∞
d(s) = 0
for k = 1 to N-1
 do d = d min.+ A
if d ≠ d min.+ A
 then return “A negative-weight cycle exists”
return d.9

E. Superstrider programming strategy

The sparse-to-dense stream converter becomes a
programming primitive of sorts, so we owe the reader a brief
lesson on how to program with it. This introduction will lead
up to the discussion of triangle finding requested by the Graph
Challenge.

Sparse matrix multiply C = AB can be performed with
multiplications on a host or entirely stand alone. For the first
option, Superstrider is initialized with an empty C matrix. The
host then sends Superstrider vectors of K records of the form
[i, j] = cij

(k), where i and j are matrix indices, cij
(k) is a

contribution to a matrix element, with superscript (k)
distinguishing between the contributions. After sending all the
records, the host would command Superstrider to do the

normalize function, which cleans up the representation so it
could be read out by the host in a packed lexicographic order.

Alternatively, Superstrider could compute C = AB
autonomously, where matrices A and B are already stored in
Superstrider’s memory. This requires first transposing A from
A[i, k] = aik to At[k, i] = aik. This is accomplished by
Superstrider accessing A internally, interchanging the indices,
and sending the records into the sparse-to-dense converter as
At. This entire process is performed by the hardware in Fig. 4.
Reading At later on will produce the records in lexicographic
order by what was originally the second index. The actual
multiply is then performed by streaming At and B[k, j] = bkj,
each in lexicographic order, whereby the products

Cij
(t) = k=1,t aikbkj can be formed by data close together in the

streams. The products are then sent to the sparse-to-dense
stream converter to creates C, using collision of the keys to
perform the addition required in sparse matrix multiplication.

The delta rule in backpropagation of neural network
learning, is defined as C = C + abt, which we will perform with
no fill-in in two steps. First, C[i, j] = cij is streamed along with
a[i] = ai to produce a temporary matrix T[j, i] = { cij, ai }. Note
that T’s indices are reversed, so its records contain the
elements of Ct. In addition, T’s records are a data structure
with both an element of Ct and an element of a. Secondly,
T[j, i] = { cij, ai } is streamed along with b[j] = bj to produce
C[i, j] = Tji.cij + bj * Tji.ai, which naturally adds to the existing
C when sent to the sparse-to-dense converter due to collisions.
Since Tji is a data structure, the notation Tji.ai represents the
second element of { cij, ai } given above (sorry, we need better
notation for data structures).

F. 3D Streaming and triangle counting

Superstrider is essentially a linear algebra machine, so it
should be able to execute any triangle-counting algorithm that
can be expressed as linear algebra. The authors’ attention was
directed to the semi-streaming triangle-counting approach of
Becchetti in Ref. 10, a paper from 2007. In short, we would put
Becchetti’s entire algorithm into Superstrider, but this simple
statement has more to it than may be immediately apparent.

We propose going a step beyond Becchetti’s view of semi-
streaming.10 Becchetti sees a computer as a CPU and DRAM in
one unit and “disks” (yes, the article uses the word for rotating
storage) on the other side of the cabinet. The large edge-
containing matrices are on the disk but DRAM is only deemed
big enough to hold vertex-containing matrices. If one were to
implement Becchetti’s system today, the disk storage would
probably be 3D SSD. So when we say we would “put the entire
algorithm into Superstrider,” we envision 3D chips, such as
N3XT in Fig. 2b,6 with the ability to integrate both RAM-
equivalent and storage-equivalent storage right on top of the
same logic base chip. This leads to a second interpretation,
illustrated in Fig. 4, where Superstrider’s memory includes
both DRAM and Flash in different ranges of row addresses, yet
all appearing to Superstrider as a memory bank. This would
allow Superstrider to, for example, multiply a matrix
physically stored in Flash by one physically stored in DRAM
just by properly specifying the row addresses. Let’s call this

978-1-5386-3472-1/17/$31.00 ©2017 IEEE

“3D steaming” because it works like streaming, but moves data
just a few microns in the vertical direction.

Ref. 10’s method is based on tagging vertices with random

numbers or permutations of node numbers ((.) in the
document). With the possible exception of having a von

Neumann host processor generate the permutations (.),
Superstrider could implement the algorithms in Ref. 10’s using
the linear algebra functions discussed above.

We therefore propose supporting triangle finding with a
change in algorithm. Line 15 of figure 5 in Ref. 10 is executed
when a triangle has been found, although in Ref. 10 it only
triggers a counter increment. We propose that this line
additionally create a 3-field record containing the triangle and
send it to a sparse-to-dense stream converter designated to hold
the output triangles.

We believe the algorithm as outlined so far will function,
but it will still be probabilistic, generating the same triangle
many times (the duplicates will be removed by the stream
converter) and it may take a lot of runs to generate the very last
triangle. So we propose modifying the tagging to effectively
remove nodes once it has been determined that they have
produced all the triangles they will ever produce. This can be

done by tagging nodes with  in lieu of (.).

III. EXPERIMENTS

We created a cycle accurate Superstrider simulator or 1,500
or 3,500 lines of C++, depending on whether the user interface
code is counted. The simulator compares the accumulation
phase of sparse matrix multiply against a von Neumann
architecture baseline.

A. Memory banks

To make reasonable comparisons with a conventional
processor, the simulator illustrated in Fig. 6 models 8 identical
instances of Superstrider, each connected to an HBM channel.
Each HBM channel comprises 8 16,384-bit wide physical
DRAM banks. To consider the extreme range of algorithmic
efficiency, each Superstrider row is set as wide as possible,
i. e., K = 2,048 records or 131,072 bits wide.

The physical configuration of a bank and the timing
parameters were obtained from the High Bandwidth Memory
(HBM) JEDEC standard,4 however we speculated on the
timing of hypothetical HBM successors with wider interfaces
per the scale up path in Fig. 2c.

B. Front end

A front end generates vectors of K sorted records to feed
both Superstrider and the von Neumann baseline. The front end
does not reorder the sparse matrices and the baseline does not
simulate caches because there is negligible spatial locality in
sparse matrices. The baseline traverses the HBM banks as
rectilinear memory, i. e., without the binary tree format of the
Superstrider algorithm. The front end supports matrices
downloaded from the University of Florida11 sparse matrix
collection as well as pseudo-random sparse matrices generated
on the fly. However, the results in this paper are for pseudo-

random matrices with 27 million records where the keys are
randomly chosen from a space of 27 million possibilities.

C. Simulated parameters

In the simulator, we vary the following five parameters to
explore the design space: (1) the width of the logic/memory
interface, (2) the size of butterfly network, (3) the number of
adders comprising the adder network for collisions, (4) effects
of adder partitioning schemes across Superstrider instances,
and (5) resource pipelining.

IV. RESULTS

A. Data transfers

The principal advantage of Superstrider is that it mitigates
the von Neumann bottleneck by reducing the number transfers
between the processor and memory, and the number of internal
memory accesses. In conventional processors, cache-line
utilization (including hardware prefetching) for sparse matrices
is extremely low. In contrast, Superstrider makes effective use
of an entire row.

The simulator counts the number of DRAM row accesses
to estimate energy saved due to reduced memory traffic.
Superstrider accesses 1/121 as many physical memory rows as
the von Neumann baseline on the random test case, although
this fraction is highly application dependent.

B. Performance

The vertical axis of the 3D bar charts in Fig. 7 is the
speedup of Superstrider over the von Neumann baseline. Two
messages are clear even at the low-level of detail in this paper.

1. Even the thinnest bars show a speedup of 50× or more,
making Superstrider a candidate for implementation as a
controller for off-the-shelf HBM memory.

2. Both the 16K and 128K interface widths include
speedups of 1,000× or more, although only with 256 or more
comparators. In simple terms, Superstrider can make very good
use of tight memory-logic integration, but the interface can be

128-,

16K-,

or
128K-

bit

inter-

face

HBM Die

HBM Ctrl

HBM Die

8× Superstrider

HBM Die

8× Superstrider

Fig. 6: Experimental framework. Baseline is an HBM stack with controller
(8 channels) but no cache anywhere. For compatibility, Superstrider is

implemented as 8 instances, one per HBM rank or channel, with a

parameter sweep over additional parameters.

Front end:

Random or

Matrix Market13

HBM Die

8× Superstrider

128-
bit

inter-

face

von Neumann baseline

Superstrider (108 versions)

Additional parameters:

Adders

Comparators

Interleave and/or pipeline

978-1-5386-3472-1/17/$31.00 ©2017 IEEE

“choked” by insufficient computational resources. The
resource is the comparators in this case, but see Ref. 1 for an
explanation of this component and the other parameters.

V. CONCLUSIONS

In an environment rife with computer technology efforts to
redesign computers from the devices up, we propose to address
graph problems through carefully chosen computer architecture
and algorithms yet based on just roadmaps of 3D chips. Our
result of 50× immediate benefit and 1,000× or more in the long
term is good enough to drive the industry and is on par with the
more radical approaches.

Instead of writing a specific algorithm or buying or
building a specific instance of hardware, we considered a
computer whose design is parameterized by the date of
manufacture and running software that adapts to the hardware
as it changes. The principle parameter is the “tightness” of the
logic-memory interface, where roadmaps can be consulted for
a rough schedule of this parameter over time. We then created
a cycle-accurate simulator and applied it to the most
challenging computational kernel, which is sparse matrix
multiplication and specifically the accumulation phase.

Algorithm theory showed that the tightening interface
between memory and logic will make hardware
implementation of sort, merge, parallel prefix, and some other
network operations progressively more effective, where the
“von Neumann bottleneck” makes them poor choices today.
Using the principle of Occam’s razor, we packed Superstrider
with as much of the new hardware as possible and as few
traditional components as absolutely necessary .

A. Loose ends

Superstrider is a chip-scale solution, but we need a way to
glue n Superstriders together have the same effect as an n×
bigger one.

We need to turn the simulator into a low-level linear
algebra library and then run triangle counting algorithms, as
requested by GraphChallenge.

It should be possible to configure Superstrider’s internal
state machine to do functions besides a sparse-to-dense stream
conversion, although it will be a challenge to figure out the
right functions.

Superstrider generalizes beyond DRAM.

B. Crossing the valley of death

We designed Superstrider to cross the “valley of death.” In
our view, an innovation needs immediate product potential and
a long term vision to cross the valley:

For an immediate product, Superstrider could be created in
an Intel/Altera Stratix 10 MX or Xilinx Virtex Ultrascale+
FPGA, both of which will come with on-package High
Bandwidth Memory when they available (for engineering
samples) in 6-12 months. They would implement Superstrider
in the programmable logic of the FPGA and test the result.
Simulations suggest about 50× improvement in speed for an
HBM implementation, but the simulations do not account for
the speed and energy efficiency penalty inherent in FPGA
implementations. Of course, an FPGA test would reduce risk
for an ASIC implementation.

Superstrider is part of a project to roadmap the continuation
of Moore’s law, which recently went down a dead end by
limiting itself to the microprocessor and better transistors. The
project’s goal is to devise and promote architectures like
Superstrider that can advance emerging applications areas like
graph problems, and then roadmap these approaches in the
IRDS to facilitate their funding. The plan is to roadmap a
scale-up path like “Moore’s law” based on progressively
tightening logic-memory interfaces through 3D packaging, as
shown in Fig. 2. This paper is one element of the strategy.

inf. func. units

inf. func. units

Fig. 7. Superstrider simulation results over the parameter sweeps discussed in the text. The vertical axis represents speedup over a non-cached sequential
HBM driven by a microprocessor. The conspicuous result is that performance is high in the back, right hand row. This area corresponds to tight processor

memory coupling (wide HBM burst width) and a large number of ports on the merging network. The other parameters are well-known techniques from
microprocessor architecture, such as pipelining and interleaving. While these other parameters yield the expected benefit, it appears small in the context of the

benefits of the non-von Neumann architectural components.

part/8

part/64

fcfs and greedy/64

part/64

part/8

fcfs and greedy/64

inf. func. units

part/8

part/64
fcfs and greedy/64

128K-bit interface

16K-bit interface

128-bit interface

No interleave Interleave Interleave + Pipeline

Speedup vs.

baseline
Speedup vs.

baseline
Speedup vs.

baseline

Comparators
same for all

plots

Comparators
4

256

2048

978-1-5386-3472-1/17/$31.00 ©2017 IEEE

REFERENCES

[1] Srikanth, Sriseshan et. al. The same authors with author names in a
different order, have submitted a paper to ICRC with details of the
archtiecture. If not accepted, this other paper could be published as a
Sandia tech report. "[the superstrider paper]." IEEE ICRC xx.y (2017):
pp. If a reviewer wants to see this paper prior to its publication, it will be
avialable temporarily at
http://www.debenedictis.org/erik/ComputerPapers/GraphChallenge/ICR
C_Superstrider_v3.4.pdf. Also, the simulator is online, open source, at
http://www.debenedictis.org/SuperStrider.cpp.

[2] G.E. Moore, “Cramming More Components onto Integrated Circuits,
Reprinted from Electronics, Volume 38, Number 8, April 19, 1965, pp.
114 ff,” IEEE J. Solid-State Circuits Newsletter, vol. 11, no. 5, 2006, pp.
33–35.

[3] International Roadmap for Devices and Systems, http://irds.ieee.org

[4] High Bandwidth Memory (HBM) DRAM (JESD235), JEDEC, October
2013 http://www.jedec.org/standards-documents/results/jesd235

[5] Official website of the Hybrid Memory Cube Consortium
http://www.hybridmemorycube.org/

[6] M.M. Sabry Aly et al., “Energy-Efficient Abundant-Data Computing:
The N3XT 1,000X,” Computer, vol. 48, no. 12, 2015, pp. 24–33.

[7] Batcher, Kenneth E. "Sorting networks and their applications."
Proceedings of the April 30-May 2, 1968, spring joint computer
conference. ACM, 1968.

[8] See https://en.wikipedia.org/wiki/Sorting_algorithm.

[9] Kepner, Jeremy, and John Gilbert, eds. Graph algorithms in the
language of linear algebra. Society for Industrial and Applied
Mathematics, 2011.

[10] Becchetti, Luca, et al. "Efficient semi-streaming algorithms for local
triangle counting in massive graphs." Proceedings of the 14th ACM
SIGKDD international conference on Knowledge discovery and data
mining. ACM, 2008.

[11] T. A. Davis and Y. Hu, “The university of Florida sparse matrix
collection,” ACM Transactions on Mathematical Software (TOMS), vol.
38, no. 1, 2011.

978-1-5386-3472-1/17/$31.00 ©2017 IEEE

