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Abstract—We define the Superstrider architecture and report 

simulation results that show it could be key to achieving HIVE 

hardware goals. Superstrider’s performance comes from a novel 

sparse-to-dense stream converter, which relies on 3D 

manufacturing to tightly couple DRAM to an internal network so 

operations like merging and parallel prefix can be performed 

quickly and efficiently. With the ability to use the stream 

converter as a programming primitive, the memory-bound low-

level graph operations that we are aware of speed up 

substantially. We give special attention to triangle counting in 

this paper. 

Simulations detailed elsewhere1 show 50-1,000× improvement 

in speed and energy efficiency. The low end of the range should 

be achievable by constructing a custom controller for current 

High Bandwidth Memory (HBM) where the high end would 

require fully integrated 3D that is on roadmaps for the future.  

Keywords—Superstrider; Moore’s law; 3D chips; sorting, 

processor-in-memory; sparse matrix; backpropagation; associative 

array; GraphChallenge 

I. INTRODUCTION 

The world went through an information revolution driven 
by the exponential growth of microprocessor performance and 
DRAM size popularly called Moore’s law. The flat lining of 
microprocessor performance has led to talk of “Moore’s law 
ending” and dire consequences to the economy. However, the 
vertical axis on the graph defining Moore’s law in Fig. 1 is 
clearly labeled “number of components per integrated 
function” (chip) not “microprocessor performance” and some 
companies find they can maintain growth in component count 
by using the third dimension to stack more 
devices per unit surface area. It seems the 
economy and Moore’s law are healthy, but 
the top-level division of computers into 
microprocessors and DRAM must change. 

Could GraphChallenge and the 
associated HIVE hardware project have a 
role in the future direction the industry? The 

organizers of GraphChallenge make a compelling case that 
important new classes of applications conflict with von 
Neumann’s division of computers into processor and memory, 
which we argued in the paragraph above is limiting the 
industry as a whole. If the HIVE project develops a graph 
architecture that scales in a way that is compatible with 
physical-level semiconductor roadmaps, perhaps HIVE could 
help define the mainstream direction of the industry? 

A. Moore’s law and 3D 

Even though industry wanted to discover a new transistor 
for logic, it actually developed new memory devices that can 
be manufactured in 3D. Developments in 3D chips have been 
compelling enough that there are now roadmaps for further 
staged development.3 The roadmaps show a path through 
intermediate technologies with progressively more features in 
the third dimension, a greater variety of devices, and more 
efficient transfer of information along the third dimension. 

There are two 3D commercial product categories right now. 
Stackable DRAM is the first, available as High Bandwidth 
Memory (HBM4, illustrated in Fig. 2a) and Hybrid Memory 
Cube (HMC5). HBM transfers 16,384-bit DRAM rows as 128 
cycles of 128 bits. 3D flash storage is the second product 
category. 

There are several visions for long term development of 
fully integrated memory, storage, and logic, one example being 
N3XT6 illustrated at the top of Fig. 2b. The tighter integration 
of the proposed N3XT system would have no reason to limit 
the width of the memory interface, so for consistency we 
assume a 16,384-bit interface that operates in 1 cycle. In fact, a 

scale up path can be defined based on the 
tightness of logic-memory integration, as 
shown in Fig. 2c. 

II. APPROACH 

 Fig. 3 shows the basis of our approach 
for exploiting 3D memory to improve graph 
and other computations. Industry’s historic 
choice to manufacture DRAM and 
microprocessors as separate chips caused a 
“data modality” problem. Fig. 3a applies to 
essentially any multi-chip computer system, 
showing yellow logic chips, orange memory 
chips, and connected by gray chip-to-chip 
interconnect. Algorithms where information 
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dependencies alternate many times between logic and a large 
memory (i. e. a memory too large for implementation by 
cache) inevitably involve moving data across the interface 
between the two twice per repetition, or shifting modes, as 
illustrated by the green curve. While the efficiency of 
electronics entirely within a chip improved with Moore’s law, 
the speed and energy efficiency of chip-to-chip interconnect 
scaled more slowly, creating a bottleneck. 

A. Sorting networks 

We remove the bottleneck using the additional design 
flexibility offered by 3D. If memory can be stacked or 
monolithically fabricated adjacent to logic along the chips’ 
planar faces, not only are wires shortened by the tighter 
packing allowed by the additional dimension, but the modality 
problem is relieved because data movement between logic and 
memory no longer needs to traverse chip-to-chip interconnect. 

The shift to 3D offers algorithmic benefit as well, which we 
will discuss using sorting as an exemplary algorithm class. 
Sorting has been studied extensively for the structures in Fig. 
3a and b, where sorting networks, such as the O(log2n)-step 
bitonic sort7 in Fig. 3c, have been known to be faster for 
decades – but there is more to the story. 

Fig. 3c shows the data dependency diagram for one merge 
stage of bitonic sort. The diagram shows the merging of two 
sorted lists of 8 data records, which occurs in 4 stages. The first 
stage does pairwise comparison of all 16 values, swapping the 
records so the largest one is on the left. The second and later 
stages do pairwise comparisons as well, but on more groups of 
fewer records. The pattern can extend to data that fills one or 
more rows of DRAM. When implemented with the structure in 
Fig. 3b, the comparisons and swaps can be laid out on the 
surface of the logic layer as shown. The interface between 

logic and memory will be via wires crossing the short gap 
between the large 2D surfaces. 

However, the literature for sorting algorithms follows 
software conventions, which are modeled on a von Neumann 
computer and hence the structure in Fig. 3a. A von Neumann 
computer was originally viewed as doing one thing at a time – 
although recent multicore computers can do up to, say, a dozen 
things at a time. However, no von Neumann computer comes 
anywhere close to being able to simultaneously operate on the 
data in an entire row of DRAM at once. This is the rationale 
for the Wikipedia page on “Sorting Algorithm” saying 
“[p]ractical general sorting algorithms are almost always based 
on an algorithm with average time complexity (and generally 
worst-case complexity) O(n log n).”8 The best known such 
algorithm is Quicksort. 

Which sorting algorithm is fastest thus depends on whether 
Fig. 3a or b is the model for implementation. A von Neumann 
computer does the compare and swap operations one at a time, 
raising the bitonic sort’s complexity from O(log2n) to 
O(n log2n). Thus, Quicksort’s O(n log n) complexity makes it 
faster than bitonic sort’s O(n log2n) complexity on a von 
Neumann computer, but the winner shifts to bitonic sort for 
implementation in 3D using Fig. 3b, allowing sorting O(log2 n) 
steps, which is much faster. 

B. Superstrider block diagram 

Superstrider comprises a DRAM memory bank connected 
to a functionally enhanced butterfly network and a control 
system, as illustrated in Fig. 4. Functionally, Superstrider is in 
a never-ending loop reading and immediately writing back 
DRAM rows. However, the control system selects the row and 
also uses functional features added to the butterfly network like 
reduction and parallel prefix to modify the data between read 
and write back. 

Here are a few more details: A small portion of the DRAM 
row width (a few dozen bits) is dedicated to control fields as 
indicated in Fig. 4, but the rest comprises K data records. There 
is also an accumulator that, in conjunction with the DRAM’s 
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open row buffer, form a 2K-record buffer; the butterfly 
network actually operates on this double-length buffer. While 
not shown, the memory is accessible to an external, von 
Neumann-type, processor. 

C. The sparse-to-dense stream converter 

Imagine the pyramidal Champagne tower in Fig. 5a to be a 
physical analogy of element insertion into a binary tree data 
structure, where each Champagne glass corresponds to a 
DRAM row holding K red or green records. A regular tree 
insertion subroutine searches from the root downward through 
descendant nodes until the proper one has been found, after 
which the record is stored in its proper place and the subroutine 
returns. However, pouring Champagne into the tower has a 
feature not found in any computer algorithm (as far as we 
know). Most of the Champagne poured into the top glass does 
not end up in its final glass after just one pouring, but will 
temporarily reside in glasses further up the tree until a later 
pour causes it to move downward. 

The problem is resistance to parallelization. If K records are 
added at the root all at once, like pouring a glass of red and 
green records into the top glass, there will be more groups of 
fewer records moving at each level, as shown in Fig. 5a. Since 
each glass is analogous to a DRAM row, almost all the DRAM 
rows in the entire system will be accessed for even modest 
values of K, which is why the structure in Fig. 3a experiences a 
lot of inefficient data movement between logic and memory 
chips for many problems. 

Fig. 5b illustrates the idea behind Superstrider’s sparse-to-
dense stream conversion. When K records are poured into a 
glass that contains another K records, Superstrider sorts these 
2K records immediately and puts them back in the glasses, but 
it carefully picks which glass gets the red versus green records. 
Using the terminology of tree algorithms, each row has a pivot. 
We’ll color records red if their key is less than the pivot and 
green otherwise. There are now two scenarios corresponding to 
the bottom halves of Fig. 5b. If sorting reveals K or more red 

records, one glass will be entirely red and the other glass will 
have mixed colors. If there are less than K red records, there 
must be more than K green ones, so the previous statement will 
be true with the colors interchanged. Now pour the glass where 
all the records are the same color down just one subtree and 
leave the other glass in its position in the tree with both colors. 

The catch is that the records are not properly added to the 
subtree that is not visited. So does Superstrider go back and 
visit the subtree with incompletely processed records? No. That 
subtree is ignored for the time being. Graph problems typically 
do long sequences of additions, so subsequent sorts of that tree 
node will eventually produce enough records of the other color 
that the subtree will be visited naturally. Simulation shows this 
to be very efficient for long sequences of additions, yet a 
cleanup phase, which we call normalization, is required at the 
end to move laggard records to their proper destination.  

The step count reduction is significant and arguably an 
“order reduction.” Adding a single element to a tree is an O(log 

N) operation in standard algorithm theory, where N is the 
number of elements in the tree. Superstrider can add K 
elements in this amount of time, making the step count per 
record added O(log N)/K, which captures parallelism but is not 
an order reduction. However, DRAMs are designed to be 
refreshed in 8,192 cycles, meaning they actually have 8,192 
rows at some low level of the DRAM electronics. If the 

number of rows is fixed, K N, and the step count reduces to 
O((log N)/N), which is an order reduction. This argument is 
rather abstract. If the reader prefers, Ref. 1 shows speedups of 
50-1,000×. 

D. Connection to associative arrays 

The preceding description spoke of a 16,384-bit DRAM 
row being divided into a few dozen control bits and the 

Fig. 5. (a) Fluid flow in a Champagne tower, such as used at a wedding 

reception, and a tree insertion algorithm. Imagine a Champagne glass 
holds K red or green records in lieu of Champagne molecules. Pouring K 

records into a glass or tree node recurses to two similar operations of size 

K/2, ultimately disturbing nearly every glass in the tower. (b) 
Superstrider can sort based on comparing keys with a pivot, where the 

comparison result is illustrated by color, yielding asymptotically fewer 

steps. If the amount poured at one time is the same as the capacity of a 
glass tree node (K records), sorting the 2K items by color is guaranteed to 

produce at least K items of the same color. Recursion will be needed only 

down the branch with the predominate color (i. e. tail recursion) and the 
algorithm will have just O(log N) steps for K records. (Photo 

https://vimeo.com/114254175, labeled for noncommercial reuse.) 
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remainder into K records. In the notation of associative arrays,9 
each record is of the form { k, vk }, where k is a key and vk is a 
value. If the record is an int and a float, the record is 64 bits 
and K is about 256 records. The DRAM may contain multiple 
arrays such as A, B, and C where A[k] = vk. 

Previous sections of this paper only referred to sorting 
records, but the butterfly network also uses the network 
functions listed in Fig. 4 to identify collisions and compress 
records. This means the sparse-to-dense stream converter 
performs accumulation part of sparse matrix multiply. 

The Superstrider concept is generally compatible with 
generalizations of associative arrays, but low-level hardware 
would need to process diverse data types and aggregations 
beyond what we have actually studied. The Superstrider 
concept should support associative arrays defined as A[ki] = vi, 
where A is the associative array, k = (k1…kd) is an array of 
indices of primitive types, and v may be a data structure of 
primitive types. Furthermore, even values that are data 
structures must be an element of a semiring, in which case 
there will be application-specific operators corresponding to 

multiplication and addition ( and ). 

Given the previous definitions, Superstrider could execute 
graph algorithms, like shortest path, where the values are floats 
or integers (albeit extended to include ∞) and the operation is 

.  min.+. 

While certain simple kernels can be expressed in 
associative array syntax like C = A +.* B, many of the more 
complex algorithms involve hundreds or thousands of lines of 
conventional computer code interspersed with calls to 
compute-intensive associative array operations. Reproducing 
an example from Ref. 9, the Bellman-Ford algorithm for 
finding the shortest distance from a node s to all other nodes in 
a graph A appears below, where only the red characters would 
be performed by Superstrider. 

Bellman-Ford (A, s) 
d = ∞ 
d(s) = 0 
for k = 1 to N-1 
    do d = d min.+ A 
if d ≠ d min.+ A 
    then return “A negative-weight cycle exists” 
return d.9 

E. Superstrider programming strategy 

The sparse-to-dense stream converter becomes a 
programming primitive of sorts, so we owe the reader a brief 
lesson on how to program with it. This introduction will lead 
up to the discussion of triangle finding requested by the Graph 
Challenge. 

Sparse matrix multiply C = AB can be performed with 
multiplications on a host or entirely stand alone. For the first 
option, Superstrider is initialized with an empty C matrix. The 
host then sends Superstrider vectors of K records of the form 
[i, j] = cij

(k), where i and j are matrix indices, cij
(k) is a 

contribution to a matrix element, with superscript (k) 
distinguishing between the contributions. After sending all the 
records, the host would command Superstrider to do the 

normalize function, which cleans up the representation so it 
could be read out by the host in a packed lexicographic order. 

Alternatively, Superstrider could compute C = AB 
autonomously, where matrices A and B are already stored in 
Superstrider’s memory. This requires first transposing A from 
A[i, k] = aik to At[k, i] = aik. This is accomplished by 
Superstrider accessing A internally, interchanging the indices, 
and sending the records into the sparse-to-dense converter as 
At. This entire process is performed by the hardware in Fig. 4. 
Reading At later on will produce the records in lexicographic 
order by what was originally the second index. The actual 
multiply is then performed by streaming At and B[k, j] = bkj, 
each in lexicographic order, whereby the products 

Cij
(t) = k=1,t aikbkj can be formed by data close together in the 

streams. The products are then sent to the sparse-to-dense 
stream converter to creates C, using collision of the keys to 
perform the addition required in sparse matrix multiplication. 

The delta rule in backpropagation of neural network 
learning, is defined as C = C + abt, which we will perform with 
no fill-in in two steps. First, C[i, j] = cij is streamed along with 
a[i] = ai to produce a temporary matrix T[j, i] = { cij, ai }. Note 
that T’s indices are reversed, so its records contain the 
elements of Ct. In addition, T’s records are a data structure 
with both an element of Ct and an element of a. Secondly, 
T[j, i] = { cij, ai } is streamed along with b[j] = bj to produce 
C[i, j] = Tji.cij + bj * Tji.ai, which naturally adds to the existing 
C when sent to the sparse-to-dense converter due to collisions. 
Since Tji is a data structure, the notation Tji.ai represents the 
second element of { cij, ai } given above (sorry, we need better 
notation for data structures). 

F. 3D Streaming and triangle counting 

Superstrider is essentially a linear algebra machine, so it 
should be able to execute any triangle-counting algorithm that 
can be expressed as linear algebra. The authors’ attention was 
directed to the semi-streaming triangle-counting approach of 
Becchetti in Ref. 10, a paper from 2007. In short, we would put 
Becchetti’s entire algorithm into Superstrider, but this simple 
statement has more to it than may be immediately apparent. 

We propose going a step beyond Becchetti’s view of semi-
streaming.10 Becchetti sees a computer as a CPU and DRAM in 
one unit and “disks” (yes, the article uses the word for rotating 
storage) on the other side of the cabinet. The large edge-
containing matrices are on the disk but DRAM is only deemed 
big enough to hold vertex-containing matrices. If one were to 
implement Becchetti’s system today, the disk storage would 
probably be 3D SSD. So when we say we would “put the entire 
algorithm into Superstrider,” we envision 3D chips, such as 
N3XT in Fig. 2b,6 with the ability to integrate both RAM-
equivalent and storage-equivalent storage right on top of the 
same logic base chip. This leads to a second interpretation, 
illustrated in Fig. 4, where Superstrider’s memory includes 
both DRAM and Flash in different ranges of row addresses, yet 
all appearing to Superstrider as a memory bank. This would 
allow Superstrider to, for example, multiply a matrix 
physically stored in Flash by one physically stored in DRAM 
just by properly specifying the row addresses. Let’s call this 
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“3D steaming” because it works like streaming, but moves data 
just a few microns in the vertical direction.  

Ref. 10’s method is based on tagging vertices with random 

numbers or permutations of node numbers ((.) in the 
document). With the possible exception of having a von 

Neumann host processor generate the permutations (.), 
Superstrider could implement the algorithms in Ref. 10’s using 
the linear algebra functions discussed above. 

We therefore propose supporting triangle finding with a 
change in algorithm. Line 15 of figure 5 in Ref. 10 is executed 
when a triangle has been found, although in Ref. 10 it only 
triggers a counter increment. We propose that this line 
additionally create a 3-field record containing the triangle and 
send it to a sparse-to-dense stream converter designated to hold 
the output triangles. 

We believe the algorithm as outlined so far will function, 
but it will still be probabilistic, generating the same triangle 
many times (the duplicates will be removed by the stream 
converter) and it may take a lot of runs to generate the very last 
triangle. So we propose modifying the tagging to effectively 
remove nodes once it has been determined that they have 
produced all the triangles they will ever produce. This can be 

done by tagging nodes with  in lieu of (.). 

III. EXPERIMENTS 

We created a cycle accurate Superstrider simulator or 1,500 
or 3,500 lines of C++, depending on whether the user interface 
code is counted. The simulator compares the accumulation 
phase of sparse matrix multiply against a von Neumann 
architecture baseline.  

A. Memory banks 

To make reasonable comparisons with a conventional 
processor, the simulator illustrated in Fig. 6 models 8 identical 
instances of Superstrider, each connected to an HBM channel. 
Each HBM channel comprises 8 16,384-bit wide physical 
DRAM banks. To consider the extreme range of algorithmic 
efficiency, each Superstrider row is set as wide as possible, 
i. e., K = 2,048 records or 131,072 bits wide. 

The physical configuration of a bank and the timing 
parameters were obtained from the High Bandwidth Memory 
(HBM) JEDEC standard,4 however we speculated on the 
timing of hypothetical HBM successors with wider interfaces 
per the scale up path in Fig. 2c. 

B. Front end 

A front end generates vectors of K sorted records to feed 
both Superstrider and the von Neumann baseline. The front end 
does not reorder the sparse matrices and the baseline does not 
simulate caches because there is negligible spatial locality in 
sparse matrices. The baseline traverses the HBM banks as 
rectilinear memory, i. e., without the binary tree format of the 
Superstrider algorithm. The front end supports matrices 
downloaded from the University of Florida11 sparse matrix 
collection as well as pseudo-random sparse matrices generated 
on the fly. However, the results in this paper are for pseudo-

random matrices with 27 million records where the keys are 
randomly chosen from a space of 27 million possibilities. 

C. Simulated parameters 

In the simulator, we vary the following five parameters to 
explore the design space: (1) the width of the logic/memory 
interface, (2) the size of butterfly network, (3) the number of 
adders comprising the adder network for collisions, (4) effects 
of adder partitioning schemes across Superstrider instances, 
and (5) resource pipelining. 

IV. RESULTS 

A. Data transfers 

The principal advantage of Superstrider is that it mitigates 
the von Neumann bottleneck by reducing the number transfers 
between the processor and memory, and the number of internal 
memory accesses. In conventional processors, cache-line 
utilization (including hardware prefetching) for sparse matrices 
is extremely low. In contrast, Superstrider makes effective use 
of an entire row. 

The simulator counts the number of DRAM row accesses 
to estimate energy saved due to reduced memory traffic. 
Superstrider accesses 1/121 as many physical memory rows as 
the von Neumann baseline on the random test case, although 
this fraction is highly application dependent. 

B. Performance 

The vertical axis of the 3D bar charts in Fig. 7 is the 
speedup of Superstrider over the von Neumann baseline. Two 
messages are clear even at the low-level of detail in this paper. 

1. Even the thinnest bars show a speedup of 50× or more, 
making Superstrider a candidate for implementation as a 
controller for off-the-shelf HBM memory. 

2. Both the 16K and 128K interface widths include 
speedups of 1,000× or more, although only with 256 or more 
comparators. In simple terms, Superstrider can make very good 
use of tight memory-logic integration, but the interface can be 
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“choked” by insufficient computational resources. The 
resource is the comparators in this case, but see Ref. 1 for an 
explanation of this component and the other parameters. 

V. CONCLUSIONS 

In an environment rife with computer technology efforts to 
redesign computers from the devices up, we propose to address 
graph problems through carefully chosen computer architecture 
and algorithms yet based on just roadmaps of 3D chips. Our 
result of 50× immediate benefit and 1,000× or more in the long 
term is good enough to drive the industry and is on par with the 
more radical approaches. 

Instead of writing a specific algorithm or buying or 
building a specific instance of hardware, we considered a 
computer whose design is parameterized by the date of 
manufacture and running software that adapts to the hardware 
as it changes. The principle parameter is the “tightness” of the 
logic-memory interface, where roadmaps can be consulted for 
a rough schedule of this parameter over time. We then created 
a cycle-accurate simulator and applied it to the most 
challenging computational kernel, which is sparse matrix 
multiplication and specifically the accumulation phase. 

Algorithm theory showed that the tightening interface 
between memory and logic will make hardware 
implementation of sort, merge, parallel prefix, and some other 
network operations progressively more effective, where the 
“von Neumann bottleneck” makes them poor choices today. 
Using the principle of Occam’s razor, we packed Superstrider 
with as much of the new hardware as possible and as few 
traditional components as absolutely necessary . 

A. Loose ends 

Superstrider is a chip-scale solution, but we need a way to 
glue n Superstriders together have the same effect as an n× 
bigger one.  

We need to turn the simulator into a low-level linear 
algebra library and then run triangle counting algorithms, as 
requested by GraphChallenge. 

It should be possible to configure Superstrider’s internal 
state machine to do functions besides a sparse-to-dense stream 
conversion, although it will be a challenge to figure out the 
right functions. 

Superstrider generalizes beyond DRAM. 

B. Crossing the valley of death 

We designed Superstrider to cross the “valley of death.” In 
our view, an innovation needs immediate product potential and 
a long term vision to cross the valley: 

For an immediate product, Superstrider could be created in 
an Intel/Altera Stratix 10 MX or Xilinx Virtex Ultrascale+ 
FPGA, both of which will come with on-package High 
Bandwidth Memory when they available (for engineering 
samples) in 6-12 months. They would implement Superstrider 
in the programmable logic of the FPGA and test the result. 
Simulations suggest about 50× improvement in speed for an 
HBM implementation, but the simulations do not account for 
the speed and energy efficiency penalty inherent in FPGA 
implementations. Of course, an FPGA test would reduce risk 
for an ASIC implementation. 

Superstrider is part of a project to roadmap the continuation 
of Moore’s law, which recently went down a dead end by 
limiting itself to the microprocessor and better transistors. The 
project’s goal is to devise and promote architectures like 
Superstrider that can advance emerging applications areas like 
graph problems, and then roadmap these approaches in the 
IRDS to facilitate their funding. The plan is to roadmap a 
scale-up path like “Moore’s law” based on progressively 
tightening logic-memory interfaces through 3D packaging, as 
shown in Fig. 2. This paper is one element of the strategy. 

inf. func. units 

inf. func. units 

Fig. 7. Superstrider simulation results over the parameter sweeps discussed in the text. The vertical axis represents speedup over a non-cached sequential 
HBM driven by a microprocessor. The conspicuous result is that performance is high in the back, right hand row. This area corresponds to tight processor 

memory coupling (wide HBM burst width) and a large number of ports on the merging network. The other parameters are well-known techniques from 
microprocessor architecture, such as pipelining and interleaving. While these other parameters yield the expected benefit, it appears small in the context of the 

benefits of the non-von Neumann architectural components. 
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