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Abstract— In the last decade, the microprocessor industry has 
undergone a dramatic change, ushering in the new era of multi-
/manycore processors.  As new designs incorporate increasing 
core counts, simulation technology has not matched pace, 
resulting in simulation times that increasingly dominate the 
design cycle.  Complexities associated with the execution of code 
and communication between simulated cores has presented new 
obstacles for the simulation of manycore designs.  Hence, many 
techniques developed to accelerate uniprocessor simulation 
cannot be easily adapted to accelerate manycore simulation. 

In this work, a novel time-parallel barrier-interval simulation 
methodology is presented to rapidly accelerate the simulation of 
certain classes of multi-threaded workloads.  A program 
delineated into intervals by barriers may be accurately simulated 
in parallel.  This approach avoids challenges originating from 
unknown thread progressions, since the program location of each 
executing thread is known.  For the workloads tested, wall-clock 
speedups range from 1.22x to 596x, with an average of 13.94x.  
Furthermore, this approach allows the estimation of stable 
performance metrics such as cycle counts with minimal losses in 
accuracy (2%, on average, for all tested workloads).  The 
proposed technique provides a fast and accurate mechanism to 
rapidly accelerate particular classes of manycore simulations. 
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I. INTRODUCTION  
Contemporary physical constraints, most notably the power 

wall, have necessitated a paradigm shift in architecture design.  
Although contemporary multi-core designs contain a small 
number of cores, it is expected that future systems may contain 
hundreds or even thousands of cores on a single die.  In order 
for such systems to become a reality, the industrial and 
academic communities must first tackle a number of 
challenges, that include determining the fundamental hardware 
building blocks, designing efficient interconnection networks, 
and providing new programming models to effectively and 
efficiently use system resources [6].  In prototyping potential 
solutions to these problems, detailed time-step simulation is 
vital for exploring the design space of potential architectures. 

During an iterative design cycle, long simulation times have 
been and remain to be one of the primary bottlenecks for 
architects [38].  The simulation of architectural designs is 
typically orders of magnitude slower than native execution.  In 
uniprocessor systems, this has resulted in runtimes that are 
intractable for the complete simulation of many realistically 
sized workloads.  The shift to manycore systems has only 
further exacerbated the problem of simulation intractability. 

Numerous strategies have been proposed to reduce the 
simulation effort.  Previous solutions include workload 
reduction (e.g., reduced input sets [13], statistically synthesized 
workloads [14], statistically sampled simulation [4], [9], [10], 
[11], [12], [21], [30], SimPoints [7], and benchmark subsetting 
[15]), optimizing simulation tasks (e.g., direct execution [22]), 
and parallelization of the simulator itself [2], [4].  
Unfortunately, many of these proposed techniques cannot be 
easily applied to the simulation of shared memory 
multiprocessor designs.  Single-application, multi-threaded 
workloads generally have higher degrees of inter-thread 
communication and inter-thread dependence, rendering many 
previous uniprocessor acceleration techniques ineffective. 
Because of this, statistical simulation, sampled simulation, and 
SimPoints, among others, have not been extended into the 
domain of multi-threaded applications and cannot be relied 
upon to safely reduce simulation times.  Although certain 
accelerative techniques have been extended to multiprocessors, 
including SimPoints for multiprogrammed (i.e., multiple, non-
interacting processes) workloads [29], and sampled simulation 
for throughput-oriented (i.e., multiple, non-interacting tasks) 
workloads [28], these acceleration techniques are not easily 
applied to the simulation of single-application, multi-threaded, 
parallel-algorithmic workloads.  One exception is [27], which 
applies sampling to multi-threaded workloads.  Unfortunately, 
the technique suffers from high error (“usually within 15%” 
[27]), and also cannot be used to estimate the execution time or 
speedup. 

The design, verification, and maintenance of an 
architectural simulator are complicated tasks [25].  When the 
simulator is the target of parallelization, system complexity can 
increase significantly and introduce challenges of parallel 
programming debugging and performance tuning.  Indeed, 
several contemporary manycore simulators currently execute 
sequentially even though they simulate parallel systems [16], 
[17], [18], [19].  This work presents a unique solution to 
parallel simulation that does not significantly increase the effort 
of simulator design, verification, or maintenance. 

Simulator parallelization may be divided into two classes 
characterized by the target parallelism extracted.  The first class 
is parallel discrete-event simulation (PDES), which parallelizes 
the simulator itself.  Simulator tasks and state variables are 
decomposed into a number of parallel logical processes.  
Logical processes communicate via timestamped event 
messages when other logical processes need to be notified of a 
particular event.  PDES techniques have been leveraged to 
obtain high levels of concurrency in architectural simulations 
[1], and are a promising method to accelerate multi-threaded 



simulation.  Several state-of-the-art simulation environments 
currently employ PDES [1], [23], [24].  PDES is completely 
compatible with the proposed technique in this paper.  The 
second class of parallel simulation is time-parallel simulation, 
which parallelizes simulator inputs (i.e., the workloads) rather 
than the simulator.  Time-parallel simulation separates 
simulation inputs into a number of temporally adjacent 
intervals, which are then simulated in parallel [5].  In order for 
time-parallel methods to obtain accurate measurements, the 
state-match problem must be overcome (see Section 2).  Time-
parallel simulations have been successfully applied to cache 
simulations [3], processor simulation [4][39], [38], and 
performance modeling [5]. 

This work proposes a novel time-parallel based simulation 
methodology to rapidly accelerate the simulation of an 
important class of multi-threaded workloads.  We leverage the 
idea that barriers provide a natural, inter-thread independent 
point at which to split multi-threaded simulations into discrete 
time intervals.  The proposed barrier interval simulation can 
also be used in conjunction with other approaches, such as 
PDES, to further parallelize simulation since the approaches 
are orthogonal and compatible.  Specifically, this work makes 
the following contributions: 

1) We quantitatively measure and define thread skew, a 
component of cold-start specific to multiprocessor simulation.  
Using the thread skew metric, we demonstrate why barriers are 
useful constructs that may be leveraged to accurately 
parallelize single-application, multi-threaded workloads. 

2) Unlike prior work that focused on process-multi-
programmed or independent-task, throughput-oriented 
workloads, our technique is the first to apply time-parallel 
techniques to the simulation of single-application multi-
threaded, parallel-algorithmic workloads for manycore 
architectures. 

3) Our technique achieves extremely high wall-clock 
speedups for multi-threaded, parallel simulations with minimal 
losses in simulation accuracy. 

4) Speedup is the most commonly used figure of merit for 
parallel algorithms and parallel architectures.  Our technique 
provides an accurate measurement of cycle counts (a stable 
performance metric) that can be used to calculate speedup 
across multiple machine configurations. 

5) Our technique is the first to evaluate the effectiveness of 
detailed warming for single-application, multi-threaded 
workloads, which allows us to minimize the state match 
problem (Section 2). 

The remainder of this paper is organized as follows: Section 
2 provides a basic description of time-parallel simulation; 
Section 3 discusses related work and describes how barrier 
interval simulation avoids the obstacles presented by thread 
skew; Section 4 describes the barrier-interval time-parallel 
simulation methodology; and, Sections 5, 6, and 7 discuss the 
experimental methodology, results, and conclusion, 
respectively. 

II. TIME PARALLEL SIMULATION 
In traditional time-parallel simulation, the time axis is 

decomposed into a set of non-overlapping intervals.  Although 
intervals are not required to be homogenous in size, 
homogeneity benefits load balancing and improves parallel 
speedup.  Computation then consists of two phases: first, the 

initial phase simulates each interval with a speculative initial 
state (thus performance measurements obtained from the initial 
phase may be inaccurate); and, the second phase, or the fix-up 
computation phase, iteratively re-simulates each of the 
intervals.  Subsequent fix-up iterations continue until an 
interval’s initial state matches that of the predecessor’s final 
state (i.e., the state-matching problem [3]). 

This paper presents a framework based upon time-parallel 
simulation to speedup the simulation of single-application, 
multi-threaded workloads.  Unlike traditional time-parallel 
simulation, we remove the iterative fix-up computation phase 
(which may limit wall-clock speedups), and instead use a 
warm-up based approach to approximate system state.  As in 
time-parallel simulation, the proposed technique parallelizes 
the input workload.  This work is based on the following 
intuition: that barriers provide a natural segmentation point to 
parallelize a workload. 

III. THE CIRCULAR DEPENDENCE DILEMMA OF PARALLEL 
WORKLOAD SIMULATION 

Many strategies for accelerating simulation are only 
applicable to single-threaded applications. Identification of 
representative simulation points [7], benchmark subsetting 
[15], statistically sampled approaches [4], [9], [10], [11], [12], 
[21], reduced workload input sets and loop counts [13], and 
statistically synthesized benchmarks [14], have all been used 
with great success in the simulation of uniprocessor designs.  
However, multiprocessor systems exhibit a circular dependence 
dilemma, explained below, that introduce new challenges that 
must be overcome to accurately and effectively accelerate their 
simulation. 

In multiprocessor systems, performance is a combination of 
individual thread executions, which depend upon system state.  
Thread interactions occur implicitly through shared resources 
(e.g., a shared Last Level Cache) or explicitly through 
synchronization constructs.  Race conditions due to resource 
locking may not be predictably modeled unless detailed state 
information regarding cache contents, system coherence state, 
core proximity to the home node, network contention, etc., are 
known.  For example, consider the common practice of 
skipping initialization code at the beginning of a workload, 
which leaves the system in a cold state at detailed simulation 
startup.  For uniprocessor systems, solutions to the cold-start 
problem have been extensively studied and mitigated [8], [9], 
[12], [21].  In multiprocessor systems, previously studied 
solutions are limited to fast-forwarding over serial code 
regions.  If fast-forwarding terminates in a region of parallel 
thread executions, not only is system state unknown, but the 
relative thread progression and thread interleavings are 
unknown as well.  Effectively compensating for cold-start 
involves reconstructing system state, and requires precise 
knowledge of each individual thread’s progress.  But, the 
reconstructions of each thread’s progress requires knowledge 
of system state to determine, for instance, the order that threads 
acquire and release critical sections.  The approximation of 
system state, therefore, is dependent upon individual thread 
progressions, and the approximation of thread progressions are 
dependent upon system state, resulting in a circular dependence 
dilemma. 



In order to measure thread divergence quantitatively, and 
thus the impact of the circular dependence dilemma, we 
introduce thread skew.  Thread Skew measures the divergence 
of thread progressions between two simulations: one simulation 
that uses functional fast-forwarding (where thread divergence 
is introduced through imprecise skipping), and another that 
performs full-simulation from the beginning of the program.  A 
formal definition of thread skew is shown in Figure 1.  Skew 
values are measured at the beginning of various program 
locations.  For each location with imprecise skipping, the fetch 
counts1 of all threads are summed to obtain a total system fetch 
count.  Full simulations are performed to profile the fetch 
counts of all threads when the system observes the same 
system fetch count.  The use of total fetched instructions 
provides a system-wide estimator of progress that is used to 
map divergent executions between the two simulations. 

Thread skew is shown graphically in Figure 2 for ocean 
contiguous executing with 16 cores and for lu contiguous 
executing with 256 cores. Comparing thread progressions at a 
constant system fetch count causes skew values for all threads 
to sum to zero, since for every thread that leads true execution, 
another must lag.  Threads leading true execution have positive 
thread skew, and those lagging have negative thread skew.  
Barriers cause thread skew of all threads to collapse to zero.  
This leads to an important observation: the circular dependence 
dilemma can be avoided by parallelizing the simulation at 
barrier events. 

IV. BARRIER INTERVAL SIMULATION 
Barriers are an important, and commonly used 

synchronization construct found in many parallel algorithm 
implementations.  They are found within the SPLASH-2, 
PARSEC [32], SpecOMP, and NAS parallel benchmark suites, 
among others.  The popularity of barrier based programs stems 
directly from the popular parallel programming paradigms.  

                                                             
1 The fetch counts used in the calculation of the thread skew metric exclude 

instructions that occur within thread synchronization functions. 

Directive-based languages, such as OpenMP, implicitly define 
barriers at parallel loop constructs.  Barriers are also present in 
fork/join models of parallelism (e.g., CUDA [36]).  What’s 
more, they are used in next-generation programming language 
constructs such as Cilk’s synch operation [33] and X10’s finish 
[34] operation.  Barriers are of particular importance within 
scientific applications, since many coarse-grained parallel 
programs execute in phases separated by barriers [37]. Others, 
such as Liu, et al. [31] leverage barriers to, for example, 
conserve power in CMP systems, whereas our work exploits 
barriers to accelerate architectural simulation. 

The proposed barrier-interval simulation methodology is 
illustrated in Figure 3.  First, the input workload is 
instrumented to identify, at runtime, barrier release events to 
define discrete time intervals for parallelization.  Barrier release 
events are triggered following the last thread’s arrival at a 
barrier, when all threads are allowed to continue execution.  
Each workload, comprising a parallel algorithm, is functionally 
executed to completion to determine the number of emulated 
instructions before each barrier release.  These functional 
instruction counts provide the functional fast-forwarding values 
necessary to begin each simulation at the appropriate barrier 
release event.  The functional profiling of barrier interval 
locations is necessary only once per workload and core count, 
irrespective of changes to the detailed simulator.  Every 
interval is then simulated in parallel with a specified warm-up 
length.  If a warm-up of W instructions were desired before an 
interval occurring at instruction I, fast-forwarding would be 
performed for I-W instructions.  Detailed warming simulation 
continues until the first barrier release, where simulator 
statistics are reset.  Execution of the interval then commences 
until the subsequent barrier release, which terminates the 
interval. 

The extensions necessary for a sequential simulator to 
support barrier-interval simulation are outlined below.  In 
addition to functional fast-forwarding, the simulator must be 
notified of barrier release events to clear system statistics and 
precisely terminate intervals.  The clearing of system statistics 

For each measurement, C,: 

1) After functional fast-forwarding: 

  - Record sys_fetch
C
 and all !!  where, 

   !! ,! = fetch&count&of&thread'i 
   ! = #"threads 
   !"!_!"#$ℎ! = !! ,!!

!!!   

2) From the full simulation (no fast-forwarding) 

     !!! = fetch&count&of&thread'i 
     !"!_!"#$ℎ!! = !!!!

!!!   

     when (sys_fetch
C
’ == sys_fetch

C
): 

             !! ,!! = ! !!!!∀!  
 

 

3) Calculate thread skew from profiled data 

        !ℎ!"#$_!"#$! ,! = !! ,! − !! ,!!  

When    !"!_!"#$ℎ!! = !"!_!"#$ℎ!  

           !! ,!!!
!!! = !! ,!!

!!!      

           !! ,!!
!!! − !! ,!!!

!!! = 0 

           !! ,! − !! ,!!!
!!! = 0    

           !ℎ!"#$_!"#$! ,!!
!!! = 0 

 

Furthermore, at barrier releases: 

     !ℎ!"#$_!"#$! = 0, for all i  

 

Figure 1. Thread skew is calculated using aggregate system and per-thread fetch counts.  Simulations with functional fast-
forwarding record fetch counts for all threads at the beginning of a simulation.  Full simulations use these counts to determine 
when fetch counts are recorded.  Since total system fetch counts are identical in the fast-forwarded and full simulations, the sum 
of thread skew for every measurement must be zero.  Individual threads may lead or lag their counterpart in the full simulation. 

 



is present in many simulators since many studies include a 
detailed warming period after the functional skipping of 
initialization code.  Warm-up can be applied either before or 
after an interval’s starting point.  However, if detailed warm-up 
consumes instructions after an interval’s starting point, then 
errors associated with accumulative metrics such as cycle 
counts grow proportionally with the amount of warm-up.  
Although increased warm-up prior to the starting point 
generally improves accuracy, it does so at the expense of 
speedup since extra work is introduced into the simulation 
effort by overlapping particular instruction streams (i.e., from 
two or more barrier-intervals). 

 
Interval NInterval N-1Interval 2Interval 1

Time

...

...

BarrierThread

BI1 BI2 BIN-1

 
Figure 3. An illustration of simulation parallelization via the barrier-interval 
simulation method.  A target workload is divided into intervals delineated by 
barrier releases, all of which are then simulated in parallel. 

 
Barrier release events are also necessary to precisely 

simulate the targeted barrier-interval boundaries.  Profiled 
interval boundaries are imprecise since they are not guaranteed 
to be exact locators in the instruction stream, unless fast-
forwarding is performed for all previous instructions (thus 
reproducing the profiled thread schedule).  Simulating 
instructions in full cycle-accurate detail can cause divergent 
thread behaviors within synchronization events, such as the 
number of times a thread spins in a test-and-set operation 
waiting to acquire a lock.  Thus, potential divergent thread 
behaviors create unknown interval boundaries, which may only 
be identified at runtime. 

The methodology employed by barrier-interval time-
parallel simulation eliminates thread skew, since the simulated 
intervals are guaranteed to be at boundaries where thread 
progressions are known (e.g., convergence points in Figure 2).  

By applying detailed warm-up heuristics adopted from sampled 
simulation, cache state and coherence information may be 
reconstructed to obtain highly accurate measurements over the 
defined intervals, producing measurements that closely 
resemble those of sequential simulation.  Measurements 
obtained from individual intervals can then be aggregated to 
form estimated system metrics of the simulated program.  For 
accumulative metrics, such as simulated runtime, individual 
measurements can simply be summed.  For rate-based metrics, 
system metrics can be formed through the appropriate means 
(e.g., harmonic, arithmetic, geometric). 

V. EXPERIMENTAL METHODOLOGY 
Experiments in this study were conducted using the 

Manifold shared-memory manycore simulator, which is part of 
a larger, multi-agency-funded simulation framework being 
developed by the authors and other collaborators.  The 
simulator is execution-driven, using the SESC front-end 
framework to perform functional emulation of RISC 
instructions, and to provide input instructions to the detailed 
simulator back-end.  During SESC functional emulation, 
threads are assigned instructions in a two-dimensional queue 
based upon the thread ID.  During fast-forwarding, each thread 
is emulated by a constant number of instructions in a round-
robin fashion.  The detailed back-end consists of a number of 
architectural nodes, each containing a processor, a private L1 
cache, a distributed, shared L2 cache-slice, and a network 
interface.  The system implements a directory-based MESI 
coherence protocol.  Nodes are connected via a network-on-
chip incorporating a mesh topology that implements wormhole 
routing. Table 1 shows a summary of the simulation 
parameters.  Experimental workloads consist of SPLASH-2 
benchmarks cross-compiled to the target ISA using the GNU C 
compiler (gcc) version 4.2.2. 

Evaluation of the barrier-interval simulation approach was 
performed on the following SPLASH-2 workloads: lu 
contiguous, ocean contiguous, radix, fft, and water spatial.  
Each workload was simulated by varying the number of cores 
between 1 and 512, resulting in 10 distinct simulations for each 
workload.  For each (core count, workload) pairing, multiple 
detailed warming lengths were applied: none, 10k, 100k, 1M, 
and 10M pre-interval instructions.  Although implementing 

Figure 2. An illustration of thread skew.  This is a time sequence showing the difference of thread progressions between various 
program measurements with imprecise fast-forwarding and the full-simulation.  Barriers cause thread skew to collapse to zero, and 
may be exploited to accurately parallelize the target workload. 



fast-functional warming [12], instead of detailed warming, 
might produce further speedups, its use is reserved for future 
work.  For the workloads evaluated, 181,000 simulations were 
performed to evaluate the trade-offs of the proposed technique 
in terms of speed and accuracy. 

TABLE 1. ARCHITECTURE PARAMETERS OF THE SIMULATED SYSTEM 

# Cores 1, 2, 4, 8, 16, 32, 
64,128, 256, 512 

Coherence / 
Tracking 

Directory-based 
MESI Protocol 
w/ Full Presence 
Bits 

Core Model 2-issue in-order 
2 MSHRs 

NOC Topology Mesh 
4-node express 
links 

Per-node L1 
Cache 

32 KB set 
associative 
4-way (WBWA) 
2-cycle hit 
latency 

NOC Router 
Architecture 

3-stage pipeline 
4 VCs / 
connection 
2 buffers / VC 

Per-node L2 
Shared 
Last-level 
Cache 

256KB set 
associative 
8-way (WBWA) 
8-cycle hit 
latency 

Cache line 
size 

64B 

Cache 
replacement 

LRU 

Main Memory Latency 
200 cycles System L2 

size 
# Cores * 256KB 

VI. RESULTS 

A. Parallel Simulation Accuracy 
The accuracy of interval estimates are dependent upon 

overcoming cold-start effects.  For multi-threaded simulation, 
cold-start components consist of thread skew, unknown cache, 
network, and directory state.  Through the use of detailed 
warming, error components associated with unknown cache 
state and network state are sufficiently reduced.  Error results 
collected for individual (core count, workload) pairs for the 
tested warm-up lengths, and their summaries, are shown in 
Figure 4.  Error summaries are obtained by calculating the 
harmonic mean of error percentages for each warm-up length.  
Cycle counts of the barrier-intervals are summed for the 
parallel simulations, and then compared to the sequential 
simulation using absolute relative error.  On average, the error 
rates of the five warm-up lengths are 0.81%, 0.79%, 0.62%, 
0.09%, and 0.01% for none, 10k, 100k, 1M, and 10M, 
respectively.  This demonstrates that, if cold-start effects 
associated with thread skew are sufficiently reduced, then 
cache state, network state and cache coherence information of 
multi-threaded workloads may be accurately approximated 
through the application of warm-up methods. 

Larger warm-ups intuitively, and often empirically, lead to 
increased accuracy for interval measurements.  However, 
certain data points, such as lu contiguous for 512 cores, observe 
higher error when a warm-up of 10k instructions is used vs. no 
warm-up.  Error rates occasionally increase with more warm-
up, but eventually converge to their expected values once 
sufficient warm-up is performed.  One reason for this effect 
involves the incorrect partial warming of the caches and the on-
chip network.  Even though system statistics are cleared at the 
start of an interval, network packets generated from cache 
misses are still in-flight when the new interval begins.  In 
general, this is desirable for reducing cold-start effects.  
However, in some cases high network contention caused by 

detailed warming can affect cache request latencies at the 
beginning of the interval.  For example, no warm-up results in 
a cold network without any contention.  Increasing warm-up to 
10k-instructions can create a large burst of cache accesses, 
resulting in miss-traffic and corresponding network contention 
that spills into the interval execution.  If warm-up is increased 
to 100k- instructions, however, the accesses in the shorter 10k-
instruction warm-up reveal themselves to actually be cache hits 
due to earlier accesses in the larger 100k-instruction window.  
As a result, correct network contention is achieved with both 
the lowest and highest warm-up lengths, whereas the mid-range 
warm-up length creates additional bias from incorrect miss-
traffic on the network.  The important observation is that larger 
warm-ups are not always guaranteed to increase accuracy, and 
can even introduce additional bias. 

The effect that initial state has upon measurement error is 
also impacted by individual thread performance.  Performance 
is measured as the speedup relative to a single core machine.  
As cores are added to the simulated machine, the performance 
of a multi-threaded workload increases until a saturation point.  
Once the saturation point is reached, the addition of cores to the 
simulated machine begins to erode performance gains due to 
the increased traffic and overheads associated with thread 
synchronization.  For the SPLASH-2 workloads, computation 
is divided among all the available cores.  The overheads to 
obtain work eventually dominate useful computation, and 
result in system slowdown.  Thus, computation performed by 
threads after saturation becomes increasingly non-useful.  For 
ocean contiguous, the point of saturation occurs at eight cores, 
and has the highest error rate of all experiments.   Increasing 
the number of cores past saturation causes long chains of 
requests to form, where each thread must wait to access 
semaphores.  As more threads are queued waiting to receive 
work, the relative importance of warm-up towards 
measurement accuracy diminishes. 

B. Error Rates vs. Interval Size 
In the single-threaded domain where sampling is viable, a 

common metric is the relationship between sampled 
measurements and error rates [20].  If we consider a barrier 
interval to be a sample of the full execution we can perform a 
similar study.  Past work in the single-threaded domain found 
an inverse relationship between an interval’s size and the 
measured error rates when no warm-up has been applied.  The 
intuition behind this trend is that cold-start effects are 
amortized across the interval.  The larger the interval, the less 
impact that cold-start has upon measurement error.  Therefore, 
measurements obtained from small intervals may not be 
reliable if warm-up is not incorporated. 

The relationship between barrier interval sizes and 
associated error rates for the barrier-interval simulation of 
multi-threaded parallel workloads is also explored.  To 
determine if the single-threaded trend between interval size and 
error holds for barrier intervals, we show the average 
normalized interval sizes (measured in cycles) as the number of 
cores increases.  Measurements are normalized such that the 
core count with the largest interval size is assigned a value of 
one.  All experiments incorporate no warm-up.  As shown in 
Figure 5a, the interval sizes vary dramatically.  In all tested 
workloads increasing the number of cores causes interval sizes 
to follow a parabolic shape, where the average size decreases to 



a minima before eventually increasing.  The intuition behind 
these results is also related to the per-thread performance.  
Prior to saturation, additional threads cause more work to be 
performed in parallel, resulting in higher system performance, 
and a reduction in average interval sizes.  After saturation, 
thread overheads causes additional threads to cause 
performance degradation of all threads, and result in larger 
interval sizes.  This is interesting since even without warm-up, 
where measurements may be the most suspect, the saturation 
point is correctly identified for all tested workloads.  
Comparisons with baseline experiments confirm that saturation 
occurs for all of the workloads at the smallest interval size.  
Saturation for fft occurs at 64 cores, lu contiguous at 16 cores, 

radix at 256 cores, ocean contiguous at 8 cores, and water 
spatial at 8 cores.  Similar speedup limitations have been 
observed for SPLASH-2 in the past (see, e.g., [26]). 

If multi-threaded simulations exhibit a similar relationship 
to interval size and error rates as single-threaded workloads, 
then it would have been expected that experiments containing 
the highest interval sizes would have the lowest interval errors, 
and vice versa.  This was not the case, and is explained by the 
central limit theorem (CLT) of statistics.  Average error rates 
for interval measurements for all workloads without warm-up 
are shown in Figure 5b.  Error rates are higher in this graph 
than in Figure 4 since the errors are based upon per-interval 
measurements rather than cumulative statistics.  Even without 

! !

! !

! !
Figure 4. Accuracy measurements of barrier-interval time-parallel simulation.  Absolute relative errors are computed for the differences in 
simulated cycles times between the parallel and sequential simulations 



any warm-up, increasing the number of cores causes interval 
errors to drop. 

The distribution of interval errors with no warm-up at 
varying core counts for ocean contiguous is shown in Figure 5.  
Due to space constraints, only this workload is shown; 
however, other workloads exhibit similar behaviors.  At one, 
two, and four cores, the distributions of errors closely follow 
the inverse relationship of error rates and interval sizes found in 
single-threaded sampling.  Prior to saturation, as the number of 
cores increased, interval measurements begin forming clusters 
in the error space.  These clusters of measurements decrease in 
size until the point of saturation, and then increase in size as the 
intervals become larger.  At the same time, maximum interval 
error rates decrease due to CLT effects.  The CLT dictates that 
the distribution of an average appears to be normal, even if the 
underlying distribution from which samples are taken is 
decidedly non-normal.  The performance of individual threads 
may be considered as forming a distribution from which overall 
system performance is determined.  Thus, overall system error 
becomes a function of component errors of the individual 
threads, which tends towards lower error as the number of 
threads increases (shown in Figure 5b and Figure 6). 

C. Parallel Simulation Speedup 
For these experiments, wall-clock speedup values were 

calculated from repeated measurements of the sequential and 
time-parallel workloads.  Simulations were performed on 
identical Intel Xeon X5450 (12MB L2Cache, 3.00 GHz, 1,333 

MHz FSB) machines, with 16GB of physical memory.  Since 
distribution outliers have large effects upon the arithmetic 
mean, wall-clock speedups were calculated as the ratio of 
median values for both the sequential and parallel simulations.  
Wall-clock speedup results for the five workloads are shown in 
Figure 7.  Although increasing warm-up generally improves the 
accuracy of interval measurements, it does so at the expense of 
speedup. 

Measured speedups for each workload at each core count 
generally fluctuate as the interval size and interval 
homogeneity vary.  Since each workload inherently contains a 
different number of barriers, expected speedups may differ 
significantly from one workload to another.  Table 2 shows the 
number of barriers contained within the simulated workloads, 
along with the maximum obtained speedup.  The computed 
relative efficiency is the ratio of obtained speedup to the 
maximum theoretical speedup.  Coefficient of Variation (CV) 
values were computed for each workload, which is the ratio of 
the standard deviation, σ, to the absolute value of the mean, |µ|. 
As shown, there is a strong correlation between calculated CV 
values and relative efficiency.  Lower CV values result in 
higher relative efficiencies.  Minimum and maximum speedup 
values are taken from runtimes across all warm-up lengths.  
Even at the largest warm-up lengths, no simulation experienced 
slowdown over its sequential simulation. 

The barrier-interval simulation methodology improves 
simulation times dramatically compared to their sequential 

! !
Figure 5. (a) Average normalized interval size and (b) average interval error as the number of cores increase. 

! !
Figure 6. Distribution of interval errors for ocean contiguous as a function of the core count.  No warm-up is applied before interval 
measurements. 



simulation.  On average, detailed warming using none, 10k, 
100k, 1M, and 10M instruction lengths had speedups of 
20.13x, 19.95x, 17.56x, 8.32x, and 3.70x, respectively.  The 
smallest speedup of 1.22x was obtained for lu contiguous 10M 
instruction warm-up for 2 cores.  The highest speedup of 596x 
was obtained for ocean contiguous with no warm-up for 512 
cores. 

Since there are no dependencies between barrier intervals, 
all intervals may be simulated in parallel.  Thus, the potential 
simulation speedup is determined by two factors: (1) the 
number of barriers, and therefore barrier intervals, that are 
contained in the workload; and, (2) the homogeneity of barrier-
interval sizes.  The more barriers there are in the workload, the 
greater the opportunity for parallelization.  However, since 
parallelization speedup is dominated by the slowest executing 

interval, it is also beneficial if intervals are approximately 
equivalent in size.  The artificial introduction of additional 
barriers into the workload is a possible technique that could 
improve the parallelization effort, however it must first be 
proven that additional barriers do not change fundamental 
properties of the simulation (both in terms of runtime 
characteristics and correctness), and this is a topic reserved for 
future research.  Barrier intervals could also be melded to 
achieve heterogeneously sized intervals, but this too is left for 
future research. 

As shown in Section 6.2, barrier-interval sizes vary 
dramatically with the number of threads.  Interval size 
homogeneity was measured using the coefficient of variation, 
which is a normalized measure of dispersion for a distribution 
and allows CV values to be compared across different 

! !
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Figure 7. Wall-clock simulation speedup measurements of barrier-interval time-parallel simulation.  Speedup is relative to the sequential 
simulation environment. 



distributions. Distributions with CV values greater than one are 
considered high-variance, and those below one are considered 
low-variance.  For each experiment, the CV is calculated using 
the interval sizes measured in cycles.  As expected, lower CV 
values correspond to higher speedups.  For example, for lu 
contiguous: 512 cores has a CV of 0.10 with a speedup of 
27.8x; and, 2 cores has a CV of 1.45 with a speedup of 6x.  CV 
values exhibit an inverse relationship with observed speedup 
for all tested workloads.  Interestingly, CV values for all 
workloads are the smallest at the highest core counts where 
interval homogeneity is improved, despite increased interval 
size caused by thread saturation. 

Larger warm-up generally results in increased accuracy, but 
rapidly diminishes speedup opportunities for certain workloads.  
Workloads with fewer barriers (i.e., fft, radix, and water-
spatial) are more robust towards speedup losses, and can 
incorporate larger warm-ups without significant penalties in 
performance.  Since speedup losses are more prevalent in 
workloads containing high numbers of barriers, an analysis of 
lu contiguous and ocean contiguous was performed to show the 
speedups lost due to increased warm-up, and are shown in 
Figure 8.  The normalized speedup loss refers to the percentage 
of speedup (relative to no warm-up) that was eroded by 
increased warm-up.  Since error rates significantly differed for 
these workloads at the various core counts, error and speedup 
values are classified into two groups: 1 to 16 cores (Figure 8a) 
and 32 to 512 processors (Figure 8b).  Although higher core 
counts generally exhibit lower error rates even in the absence 
of warm-up, certain outliers exhibited non-negligible error rates 
(see, FFT at 512 cores).  Thus, a conservative estimation of the 
necessary warm-up to obtain extremely high levels of accuracy 
results in a recommendation of 1M pre-interval instructions.  
At this warm-up length, the maximum error rate for all tested 
workloads was 6.7%, with an average error rate of 0.09%.  

Although a warm-up of 1M instructions diminishes attainable 
speedup between 28% and 41%, the actual performance loses 
are not as severe if a limited context environment is assumed. 

VII. CONCLUSION 
In this study, a novel simulation acceleration strategy was 

presented to rapidly simulate certain important classes of multi-
threaded, parallel-algorithm, applications with minimal losses 
in accuracy.  The strategy can be readily implemented by 
architects to obtain good speedups, at low cost.  Using time-
parallel barrier-interval simulation, wall-clock runtimes of a 
number of SPLASH-2 simulations were sped up by 13.94x on 
average, with a maximum speedup of 596x.  These speedups 
were obtained using a technique that can be incorporated into a 
number of simulation environments, including PDES based 
approaches.  By exploiting barriers, challenges associated with 
the circular dependence dilemma (Section 3) that currently 
hinder the applicability of other uniprocessor accelerative 
techniques are avoided.  Additionally, we investigated the 
relationship between error rates associated with state-loss 
obtained from interval measurements in a multi-threaded 
context, which may be applied towards other time-parallel or 
even sampled simulation domains.  Our results showed that for 
parallel workloads with barriers, dramatic simulator 
performance gains are possible, thus shortening the design 
process and enabling larger workloads and input sets to be 
simulated efficiently. 

Workload Barriers Min Speedup Max Speedup Rel. Efficiency CV 
fft 5 1.94x 4.10x 82% 0.3939 
lu contiguous 33 1.22x 27.78x 84% 0.1025 
ocean 
contiguous 

654 1.29x 596.04x 91% 0.0564 
radix 13 2.88x 4.16x 32% 0.6953 
water spatial 18 2.69x 7.08x 39% 0.7070 

 

 
 

TABLE 2. RELATIVE SPEEDUP EFFICIENCY VS. COEFFICIENT OF VARIATION. 

! !
Figure 8. A comparison of accuracy and speedup for lu contiguous and ocean contiguous.  Error rates are shown along with normalized 
speedup losses as warm-up lengths increase for 1 to 16 cores (a), and 32 to 512 cores (b). 
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